ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Geophysical Union  (87)
  • Nature Research  (29)
  • UNESCO  (29)
  • American Institute of Physics
  • American Meteorological Society (AMS)
  • PANGAEA
  • 2020-2023  (147)
  • 1980-1984
  • 1925-1929
  • 2022  (147)
Collection
Years
  • 2020-2023  (147)
  • 1980-1984
  • 1925-1929
  • 2020-2024  (6,341)
Year
  • 1
    Publication Date: 2022-02-10
    Description: Muography represents a recent and innovative tool for investigating the interior of active volcanoes. However, when dealing with frequently erupting open-vent volcanoes such as Stromboli, any result should take into con- sideration the structural and morphology changes caused by the eruptive activity. This may cause either summit collapses by magma withdrawal, or morphology growth by the accumulations of a fallout from the explosive activity, or more often a combination of both. In this chapter, we present an integration of various techniques, comprising muography and digital elevation model reconstruction, together with GBInSAR ground deformation and volcano seismicity, to reconstruct the geometry of the shallow magma supply system of the volcano and its changes in time. We show how muography can display the interior of the volcano as well as its outer growth, being sensitive to all volume changes that occurred between the framed surface and the detector. This was discovered in Stromboli by comparing digital topography in the interval between 2010 and 2012, when the rapid growth of the volcano summit by the accumulation of ballistic products in the area between the crater zone and the muon detec- tor occurred. This deposit, together with the filling in of the graben-like depression, formed during the 2007 eruption, by fallout during the persistent explosive activity, contributed to generating a remarkable anomaly in the summit area of the volcano visualized by muography. In addition, the shallow feeding system of the volcano was surveyed by GBInSAR and seismicity, which allowed us to reconstruct its path up to a depth of a few hundred meters.
    Description: Published
    Description: 75-91
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Keywords: Stromboli volcano ; Shallow supply system ; Muography of active volcanoes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Geophysical Union
    In:  EPIC3Paleoceanography and Paleoclimatology, American Geophysical Union, 37(2), pp. e2020PA003953, ISSN: 2572-4517
    Publication Date: 2022-02-15
    Description: Cenozoic climate changes have been linked to tectonic activity and variations in atmospheric CO2 concentrations. Here we present Miocene and Pliocene sensitivity experiments performed with the climate model COSMOS. The experiments contain changes with respect to paleogeography, ocean gateway configuration, and atmospheric CO2 concentrations, as well as a range of vertical mixing coefficients in the ocean. For the Mid-Miocene, we show that the impact of ocean mixing on surface temperature is comparable to the effect of the possible range in reconstructed CO2 concentrations. In combination with stronger vertical mixing, relatively moderate CO2-concentrations of 450 ppmv enable global mean surface, deep-water and meridional temperature characteristics representative of Mid-Miocene Climatic Optimum (MMCO) reconstructions. The Miocene climate shows a reduced meridional temperature gradient and reduced seasonality. In the case of enhanced mixing, surface and deep ocean temperatures show significant warming of up to 5-10°C and an Arctic temperature anomaly of more than 12°C. In the Pliocene simulations, the impact of vertical mixing and CO2 is less important for the deep ocean, which we interpret as a different sensitivity dependence on the background state and mixed layer dynamics. We find a significant reduction in surface albedo and effective emissivity for either a high level of atmospheric CO2 or increased vertical mixing. Our mixing sensitivity experiments provide a warm deep ocean via ocean heat uptake. We propose that the mixing hypothesis can be tested by reconstructions of the thermocline and seasonal paleoclimate data indicating a lower seasonality relative to today.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-09-14
    Description: The general public is not aware of the full extent of the medical, economic, social, political and environmental importance of the sea. Many of us are not aware that our day-to-day actions can have a cumulative effect on the health of the ocean and seas – a necessary resource that must be protected for all life on planet earth to exist. In other words, people lack a sense of ‘Ocean Literacy’ i.e. an understanding of the ocean’s influence on us and our influence on the ocean.
    Description: OpenASFA input
    Description: Published
    Description: Refereed
    Keywords: Ocean literacy
    Repository Name: AquaDocs
    Type: Report
    Format: 7pp.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-09-14
    Description: Nature-based solutions (NBS) are inspired and supported by nature and use, or mimic, natural processes to contribute to the improved management of water. An NBS can involve conserving or rehabilitating natural ecosystems and/or the enhancement or creation of natural processes in modified or artificial ecosystems. They can be applied at micro- (e.g. a dry toilet) or macro- (e.g. landscape) scales. Attention to NBS has significantly increased in recent years. This is evidenced through the mainstreaming of NBS into a wide range of policy advances, including in water resources, food security and agriculture, biodiversity, environment, disaster risk reduction, urban settlements, and climate change. This welcome trend illustrates a growing convergence of interests around the recognition of the need for common objectives and the identification of mutually supporting actions – as illustrated best in the 2030 Agenda for Sustainable Development through its acknowledgment of the interdependency of its various Goals and targets. Upscaling NBS will be central to achieving the 2030 Agenda for Sustainable Development. Sustainable water security will not be achieved through business-as-usual approaches. NBS work with nature instead of against it, and thereby provide an essential means to move beyond business-as-usual to escalate social, economic and hydrological efficiency gains in water resources management. NBS show particular promise in achieving progress towards sustainable food production, improved human settlements, access to water supply and sanitation services, and water-related disaster risk reduction. They can also help to respond to the impacts of climate change on water resources.
    Description: Governement of Italy
    Description: Regione Umbria
    Description: Published
    Description: Refereed
    Keywords: ASFA_2015::S::Sustainable development ; ASFA_2015::E::Ecosystems ; ASFA_2015::H::Human health ; ASFA_2015::A::Agriculture ; ASFA_2015::W::Water resources
    Repository Name: AquaDocs
    Type: Report
    Format: 139pp.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-09-16
    Description: Virtually every coastal country in the world is affected by harmful algal blooms (HABs, commonly called “red tides”). This diverse array of phenomena includes blooms of toxic, microscopic algae that lead to illness and death in humans, fish, seabirds, marine mammals, and other oceanic life. There are also non-toxic HABs that cause damage to ecosystems, fisheries resources, and recreational facilities, often due to the sheer biomass of the accumulated algae. The term “HAB” also applies to non-toxic macroalgae (seaweeds), which can cause major ecological impacts such as the displacement of indigenous species, habitat alteration and oxygen depletion in bottom waters. The frequency, spatial extent, and economic impact of HABs have all expanded in recent decades, in parallel with, and sometimes a result of, the world’s increasing exploitation on the coastal zone for shelter, food, recreation, and commerce. HABs are complex oceanographic phenomena that require multidisciplinary study ranging from molecular and cell biology to large-scale field surveys, numerical modelling, and remote sensing from space. Multi-lateral international programmes and bilateral initiatives are bringing scientists together from different countries and disciplines in a concerted attack on this complex and multi-faceted issue. Our understanding of these phenomena is increasing dramatically, and with this understanding come technologies and management tools that can reduce HAB incidence and impact. More effective HAB management is sure to be one major outcome of the growing investment in the Global Ocean Observing System. HABs will always be with us, and in the next few decades at least, are likely to continue to expand in geographic extent and frequency. Nevertheless, scientifically based management should permit full exploitation of fisheries, recreational, and commercial resources, despite the recurrent and diverse threat that HABs pose. This series of lectures is dedicated to the memory of the noted Danish oceanographer and first chairman of the Commission, Dr Anton Frederick Bruun. The "Anton Bruun Memorial Lectures" were established in accordance with Resolution 19 of the Sixth Session of the IOC Assembly, in which the Commission proposed that important inter-session developments be summarized by speakers in the fields of solid earth studies, physical and chemical oceanography and meteorology, and marine biology.
    Description: Published
    Description: Refereed
    Keywords: Harmful algal blooms ; HAB ; Anton Bruun Memorial Lecture ; ASFA_2015::O::Oceanographers ; ASFA_2015::M::Marine biology ; ASFA_2015::A::Algal blooms
    Repository Name: AquaDocs
    Type: Report
    Format: 28pp.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-10-27
    Description: This paper is not subject to U.S. copyright. The definitive version was published in ten Brink, U. S., Vanacore, E. A., Fielding, E. J., Chaytor, J. D., Lopez-Venegas, A. M., Baldwin, W. E., Foster, D. S., & Andrews, B. D. Mature diffuse tectonic block boundary revealed by the 2020 southwestern Puerto Rico seismic sequence. Tectonics, 41(3), (2022): e2021TC006896, https://doi.org/10.1029/2021TC006896.
    Description: Distributed faulting typically tends to coalesce into one or a few faults with repeated deformation. The progression of clustered medium-sized (≥Mw4.5) earthquakes during the 2020 seismic sequence in southwestern Puerto Rico (SWPR), modeling shoreline subsidence from InSAR, and sub-seafloor mapping by high-resolution seismic reflection profiles, suggest that the 2020 SWPR seismic sequence was distributed across several short intersecting strike-slip and normal faults beneath the insular shelf and upper slope of Guayanilla submarine canyon. Multibeam bathymetry map of the seafloor shows significant erosion and retreat of the shelf edge in the area of seismic activity as well as slope-parallel lineaments and submarine canyon meanders that typically develop over geological time. The T-axis of the moderate earthquakes further matches the extension direction previously measured on post early Pliocene (∼〉3 Ma) faults. We conclude that although similar deformation has likely taken place in this area during recent geologic time, it does not appear to have coalesced during this time. The deformation may represent the southernmost part of a diffuse boundary, the Western Puerto Rico Deformation Boundary, which accommodates differential movement between the Puerto Rico and Hispaniola arc blocks. This differential movement is possibly driven by the differential seismic coupling along the Puerto Rico—Hispaniola subduction zone. We propose that the compositional heterogeneity across the island arc retards the process of focusing the deformation into a single fault. Given the evidence presented here, we should not expect a single large event in this area but similar diffuse sequences in the future.
    Description: 2022-08-08
    Keywords: Rupture of multiple faults ; Intra-arc deformation ; Earthquake-generated submarine canyon ; Anisotropic arc composition ; Caribbean seismic hazard
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-10-27
    Description: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 49(6), (2022): e2021GL095559, https://doi.org/10.1029/2021GL095559.
    Description: The valuable ecosystem services of salt marshes are spurring marsh restoration projects around the world. However, it is difficult to determine the final vegetated area based on physical drivers. Herein, we use a 3D fully coupled vegetation-hydrodynamic-morphological modeling system to simulate the final vegetation cover and the timescale to reach it under various forcing conditions. Marsh development in our simulations can be divided in three distinctive phases: A preparation phase characterized by sediment accumulation in the absence of vegetation, an encroachment phase in which the vegetated area grows, and an adjustment phase in which the vegetated area remains relatively constant while marsh accretes vertically to compensate for sea level rise. Sediment concentration, settling velocity, sea level rise, and tidal range each comparably affect equilibrium coverage and timescale in different ways. Our simulations show that the Unvegetated-Vegetated Ratio also relates to sediment budget in marsh development under most conditions.
    Description: This study was supported by the Department of the Interior Hurricane Sandy Recovery program (ID G16AC00455), NSF awards 1637630 (PIE LTER) and 1832221 (VCR LTER), and China Scholarship Council.
    Description: 2022-09-16
    Keywords: Marsh restoration ; Land reclamation ; COAWST ; Vegetation dynamics ; Phases of marsh development ; Expectance of marsh coverage
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-10-27
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 126(10),(2021): e2021JB022050, https://doi.org/10.1029/2021JB022050.
    Description: On-fault earthquake magnitude distributions are calculated for northern Caribbean faults using estimates of fault slip and regional seismicity parameters. Integer programming, a combinatorial optimization method, is used to determine the optimal spatial arrangement of earthquakes sampled from a truncated Gutenberg-Richter distribution that minimizes the global misfit in slip rates on a complex fault system. Slip rates and their uncertainty on major faults are derived from a previously published GPS block model for the region, with fault traces determined from offshore geophysical mapping and previously published onshore studies. The optimal spatial arrangement of the sampled earthquakes is compared with the 500-year history of earthquake observations. Rupture segmentation of the subduction interface along the Hispaniola-Puerto Rico Trench (PRT) fault and seismic coupling on the PRT fault appear to exert the primary control over this spatial arrangement. Introducing a rupture barrier for the Hispaniola-PRT fault northwest of Mona Passage, based on geophysical and seismicity observations, and assigning a low slip rate of 2 mm/yr on the PRT fault are most consistent with historical earthquakes in the region. The addition of low slip-rate secondary faults as well as segmentation of the Hispaniola and Septentrional strike-slip fault improves the consistency with historical seismicity. An important observation from the modeling is that varying the slip rate on the PRT fault and different segmentation scenarios result in significant changes to the optimal magnitude distribution on faults farther away. In general, optimal on-fault magnitude distributions are more complex and inter-dependent than is typically assumed in probabilistic seismic hazard analysis and probabilistic tsunami hazard analysis.
    Description: Funding for this study is from the U.S. Geological Survey Coastal and Marine Hazards and Resources Program.
    Description: 2022-04-11
    Keywords: Northern Caribbean ; Rupture forecast ; Combinatorial optimization ; Integer programming
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-10-27
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Loescher, H., Vargas, R., Mirtl, M., Morris, B., Pauw, J., Yu, X., Kutsch, W., Mabee, P., Tang, J., Ruddell, B., Pulsifer, P., Bäck, J., Zacharias, S., Grant, M., Feig, G., Zheng, L., Waldmann, C., & Genazzio, M. Building a global ecosystem research infrastructure to address global grand challenges for macrosystem ecology. Earth’s Future, 10(5), (2022): e2020EF001696, https://doi.org/10.1029/2020ef001696.
    Description: The development of several large-, “continental”-scale ecosystem research infrastructures over recent decades has provided a unique opportunity in the history of ecological science. The Global Ecosystem Research Infrastructure (GERI) is an integrated network of analogous, but independent, site-based ecosystem research infrastructures (ERI) dedicated to better understand the function and change of indicator ecosystems across global biomes. Bringing together these ERIs, harmonizing their respective data and reducing uncertainties enables broader cross-continental ecological research. It will also enhance the research community capabilities to address current and anticipate future global scale ecological challenges. Moreover, increasing the international capabilities of these ERIs goes beyond their original design intent, and is an unexpected added value of these large national investments. Here, we identify specific global grand challenge areas and research trends to advance the ecological frontiers across continents that can be addressed through the federation of these cross-continental-scale ERIs.
    Description: This manuscript is in part the product of several workshops and ongoing GERI development. The first workshop was the Terrestrial Ecosystem Research Network (TERN) sponsored and entitled: “Towards a Global Ecosystem Observatory”, 5–7 March 2017, University of Queensland, Brisbane Australia. Another workshop was sponsored by Chinese Academy of Sciences (CAS) and entitled: “Global Integrated Research Infrastructure component in Next Generation ILTER”, 17–20 April, 2018, South China Botanical Garden, Zhaoqing, Guangdong Province, China. The National Science Foundation (NSF) supported two workshops. The first was entitled: ‘Building a Global Ecological Understanding’ held at the University of Delaware, Newark Delaware, 3–6 June, 2016 (NSF 1347883) and the second entitled: “Global Environmental Research Infrastructure (GERI) Planning Workshop”, held at NEON HQ, Boulder Colorado, 25–27 June 2019 (NSF 1917180). The authors wish to thank the workshop attendees for their thoughtful contributions. NEON is a project sponsored by the NSF and managed under cooperative support agreement (DBI-1029808) to Battelle.
    Keywords: Environmental research infrastructure ; Macrosystem science ; Interoperability ; Societal benefit ; New capabilities ; Federating infrastructure
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-10-27
    Description: This paper is not subject to U.S. copyright. The definitive version was published in Hegermiller, C. A., Warner, J. C., Olabarrieta, M., Sherwood, C. R., & Kalra, T. S. Modeling of barrier breaching during hurricanes Sandy and Matthew. Journal of Geophysical Research: Earth Surface, 127(3), (2022): e2021JF006307, https://doi.org/10.1029/2021JF006307.
    Description: Physical processes driving barrier island change during storms are important to understand to mitigate coastal hazards and to evaluate conceptual models for barrier evolution. Spatial variations in barrier island topography, landcover characteristics, and nearshore and back-barrier hydrodynamics can yield complex morphological change that requires models of increasing resolution and physical complexity to predict. Using the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system, we investigated two barrier island breaches that occurred on Fire Island, NY during Hurricane Sandy (2012) and at Matanzas, FL during Hurricane Matthew (2016). The model employed a recently implemented infragravity (IG) wave driver to represent the important effects of IG waves on nearshore water levels and sediment transport. The model simulated breaching and other changes with good skill at both locations, resolving differences in the processes and evolution. The breach simulated at Fire Island was 250 m west of the observed breach, whereas the breach simulated at Matanzas was within 100 m of the observed breach. Implementation of the vegetation module of COAWST to allow three-dimensional drag over dune vegetation at Fire Island improved model skill by decreasing flows across the back-barrier, as opposed to varying bottom roughness that did not positively alter model response. Analysis of breach processes at Matanzas indicated that both far-field and local hydrodynamics influenced breach creation and evolution, including remotely generated waves and surge, but also surge propagation through back-barrier waterways. This work underscores the importance of resolving the complexity of nearshore and back-barrier systems when predicting barrier island change during extreme events.
    Description: C. A. Hegermiller is grateful to the U.S. Geological Survey (USGS) Mendenhall Research Fellowship Program for support. This project was supported by the USGS Coastal and Marine Geology Program and the Office of Naval Research, Increasing the Fidelity of Morphological Storm Impact Predictions Project. M. Olabarrieta acknowledges support from the NSF project OCE-1554892.
    Description: 2022-07-26
    Keywords: Breach ; Barrier island ; Hurricane
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2022-10-27
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Zeigler, S. L., Gutierrez, B. T., Lentz, E. E., Plant, N. G., Sturdivant, E. J., & Doran, K. S. Predicted sea-level rise-driven biogeomorphological changes on Fire Island, New York: implications for people and plovers. Earth’s Future, 10(4), (2022): e2021EF002436, https://doi.org/10.1029/2021EF002436.
    Description: Forecasting biogeomorphological conditions for barrier islands is critical for informing sea-level rise (SLR) planning, including management of coastal development and ecosystems. We combined five probabilistic models to predict SLR-driven changes and their implications on Fire Island, New York, by 2050. We predicted barrier island biogeomorphological conditions, dynamic landcover response, piping plover (Charadrius melodus) habitat availability, and probability of storm overwash under three scenarios of shoreline change (SLC) and compared results to observed 2014/2015 conditions. Scenarios assumed increasing rates of mean SLC from 0 to 4.71 m erosion per year. We observed uncertainty in several morphological predictions (e.g., beach width, dune height), suggesting decreasing confidence that Fire Island will evolve in response to SLR as it has in the past. Where most likely conditions could be determined, models predicted that Fire Island would become flatter, narrower, and more overwash-prone with increasing rates of SLC. Beach ecosystems were predicted to respond dynamically to SLR and migrate with the shoreline, while marshes lost the most area of any landcover type compared to 2014/2015 conditions. Such morphological changes may lead to increased flooding or breaching with coastal storms. However—although modest declines in piping plover habitat were observed with SLC—the dynamic response of beaches, flatter topography, and increased likelihood of overwash suggest storms could promote suitable conditions for nesting piping plovers above what our geomorphology models predict. Therefore, Fire Island may offer a conservation opportunity for coastal species that rely on early successional beach environments if natural overwash processes are encouraged.
    Description: Funding for this work was provided by the U.S. Geological Survey's Coastal and Marine Hazards and Resources Program, with supplemental funding through the Disaster Relief Act.
    Keywords: Sea level rise ; Erosion ; Coastal habitats ; Barrier island ; Shorebirds
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Chandanpurkar, H. A., Lee, T., Wang, X., Zhang, H., Fournier, S., Fenty, I., Fukumori, I., Menemenlis, D., Piecuch, C. G., Reager, J. T., Wang, O., & Worden, J. Influence of nonseasonal river discharge on sea surface salinity and height. Journal of Advances in Modeling Earth Systems, 14(2), (2022): e2021MS002715, https://doi.org/10.1029/2021MS002715.
    Description: River discharge influences ocean dynamics and biogeochemistry. Due to the lack of a systematic, up-to-date global measurement network for river discharge, global ocean models typically use seasonal discharge climatology as forcing. This compromises the simulated nonseasonal variation (the deviation from seasonal climatology) of the ocean near river plumes and undermines their usefulness for interdisciplinary research. Recently, a reanalysis-based daily varying global discharge data set was developed, providing the first opportunity to quantify nonseasonal discharge effects on global ocean models. Here we use this data set to force a global ocean model for the 1992–2017 period. We contrast this experiment with another experiment (with identical atmospheric forcings) forced by seasonal climatology from the same discharge data set to isolate nonseasonal discharge effects, focusing on sea surface salinity (SSS) and sea surface height (SSH). Near major river mouths, nonseasonal discharge causes standard deviations in SSS (SSH) of 1.3–3 practical salinity unit (1–2.7 cm). The inclusion of nonseasonal discharge results in notable improvement of model SSS against satellite SSS near most of the tropical-to-midlatitude river mouths and minor improvement of model SSH against satellite or in-situ SSH near some of the river mouths. SSH changes associated with nonseasonal discharge can be explained by salinity effects on halosteric height and estimated accurately through the associated SSS changes. A recent theory predicting river discharge impact on SSH is found to perform reasonably well overall but underestimates the impact on SSH around the global ocean and has limited skill when applied to rivers near the equator and in the Arctic Ocean.
    Description: This research was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004) with support from the Physical Oceanography (PO) and Modeling, Analysis, and Prediction (MAP) Programs. High-end computing resources for the numerical simulation were provided by the NASA Advanced Supercomputing Division at the Ames Research Center.
    Keywords: River discharge ; Sea surface salinity ; Sea surface height
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in German, C., Baumberger, T., Lilley, M., Lupton, J., Noble, A., Saito, M., Thurber, A., & Blackman, D. Hydrothermal exploration of the southern Chile Rise: sediment‐hosted venting at the Chile Triple Junction. Geochemistry Geophysics Geosystems, 23(3), (2022): e2021GC010317, https://doi.org/10.1029/2021gc010317.
    Description: We report results from a hydrothermal plume survey along the southernmost Chile Rise from the Guamblin Fracture Zone to the Chile Triple Junction (CTJ) encompassing two segments (93 km cumulative length) of intermediate spreading-rate mid-ocean ridge axis. Our approach used in situ water column sensing (CTD, optical clarity, redox disequilibrium) coupled with sampling for shipboard and shore based geochemical analyses (δ3He, CH4, total dissolvable iron (TDFe) and manganese, (TDMn)) to explore for evidence of seafloor hydrothermal venting. Across the entire survey, the only location at which evidence for submarine venting was detected was at the southernmost limit to the survey. There, the source of a dispersing hydrothermal plume was located at 46°16.5’S, 75°47.9’W, coincident with the CTJ itself. The plume exhibits anomalies in both δ3He and dissolved CH4 but no enrichments in TDFe or TDMn beyond what can be attributed to resuspension of sediments covering the seafloor where the ridge intersects the Chile margin. These results are indicative of sediment-hosted venting at the CTJ.
    Description: We acknowledge University of California Ship Funds for their support of that shiptime and the NOAA Ocean Exploration and Research Grant NA08OAR4600757 which supported the research presented here. Finally, we thank two anonymous reviewers whose important contributions helped to improve the final version of this paper. This is PMEL contribution number 5341.
    Keywords: Hydrothermal ; Geochemistry ; Chile Rise ; Chile Triple Junction ; Sediment hosted
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 127(1), (2022): e2021JC017927, https://doi.org/10.1029/2021JC017927.
    Description: Observations and high-resolution numerical modeling are used to investigate the dynamical processes related to the initiation of an advective Marine Heatwave in the Middle Atlantic Bight of the Northwest Atlantic continental shelf. Both the observations and the model identify two significant cross-shelf intrusions in November 2016 and January 2017, with the latter inducing large-magnitude water mass anomalies across the shelf. Model prognostic fields reveal the importance of the combination of cyclonic eddies or ringlets and upwelling-favorable winds in producing the large-distance cross-shelf penetration and temperature/salinity anomalies. The cyclonic eddies in close proximity to the shelfbreak set up local along-isobath pressure gradients and provide favorable conditions for the intensification of the shelfbreak front, both processes driving cross-isobath intrusions of warm, salty offshore water onto the outer continental shelf. Subsequently, strong and persistent upwelling-favorable winds drive a rapid, bottom intensified cross-shelf penetration in January 2017 composed of the anomalous water mass off the shelfbreak. The along-shelf settings including realistic representation of bathymetric features are essential in the characteristics of the cross-shelf penetration. The results highlight the importance of smaller scale cyclonic eddies and the intricacy of the interplay between multiple processes to drive significant cross-shelf events.
    Description: This work was supported by Woods Hole Oceanographic Institution (WHOI) Independent Research and Development (IR&D) award and National Oceanic and Atmospheric Administration (NOAA) Climate Program Office (CPO) Climate Variability and Predictability (CVP) program under grant NA20OAR4310398. Numerical modeling work was conducted at WHOI High-Performance Computing cluster Poseidon with startup support to Ke Chen.
    Description: 2022-06-08
    Keywords: Drivers of Marine heatwave ; Warm core rings and cyclonic eddies ; Shelfbreak front and frontogenesis ; Pressure gradient setup ; Wind-driven upwelling and bottom intrusion ; Cross-shelf exchange
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 49, (2022): e2021GL096530, https://doi.org/10.1029/2021gl096530.
    Description: Water-mass transports in the vast and seemingly quiescent abyssal ocean, basically along topographically-guided pathways, play a pivotal role in the Earth's climate. The pulse of abyssal circulations can be taken with observations at topographic choke points. The Yap-Mariana Junction (YMJ) is the exclusive choke point through which the Lower Circumpolar Deep Water (LCDW) enters the Philippine Sea. Here, we quantify the LCDW transport and its variability based on mooring observations at the YMJ and the Mariana Trench (MT). The LCDW flows northward toward the Philippine Sea as an intensified current on the western side of the YMJ, with maximum mean velocity reaching 7.6 cm/s. The mean LCDW transports through the MT and the YMJ are 2.2 ± 1.0 Sv and 2.1 ± 0.4 Sv, respectively. Reversal flow at autumn in both the YMJ and MT is captured, indicating seasonal variability of the abyssal flow.
    Description: This work was supported by the National Natural Science Foundation of China (Grant no. 91858203, 91958205, 42076027, 41676011), the National Key R&D Program of China (Grant no. 2018YFC0309800), the Global Change and Air–Sea Interaction Project (Grant no. GASI-IPOVAI-01-03, GASI-IPOVAI-01-02).
    Description: 2022-07-28
    Keywords: Abyssal circulation ; Yap-Mariana Junction ; Lower circumpolar deep water
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Wu, J., Parnell‐Turner, R., Fornari, D., Kurras, G., Berrios‐Rivera, N., Barreyre, T., & McDermott, J. Extent and volume of lava flows erupted at 9°50’N, East Pacific Rise in 2005–2006 from autonomous underwater vehicle surveys. Geochemistry Geophysics Geosystems, 23, (2022): e2021GC010213, https://doi.org/10.1029/2021gc010213.
    Description: Seafloor volcanic eruptions are difficult to directly observe due to lengthy eruption cycles and the remote location of mid-ocean ridges. Volcanic eruptions in 2005–2006 at 9°50′N on the East Pacific Rise have been well documented, but the lava volume and flow extent remain uncertain because of the limited near-bottom bathymetric data. We present near-bottom data collected during 19 autonomous underwater vehicle (AUV) Sentry dives at 9°50′N in 2018, 2019, and 2021. The resulting 1 m-resolution bathymetric grid and 20 cm-resolution sidescan sonar images cover 115 km2, and span the entire area of the 2005–2006 eruptions, including an 8 km2 pre-eruption survey collected with AUV ABE in 2001. Pre- and post-eruption surveys, combined with sidescan sonar images and seismo-acoustic impulsive events recorded during the eruptions, are used to quantify the lava flow extent and to estimate changes in seafloor depth caused by lava emplacement. During the 2005–2006 eruptions, lava flowed up to ∼3 km away from the axial summit trough, covering an area of ∼20.8 km2; ∼50% larger than previously thought. Where pre- and post-eruption surveys overlap, individual flow lobes can be resolved, confirming that lava thickness varies from ∼1 to 10 m, and increases with distance from eruptive fissures. The resulting lava volume estimate indicates that ∼57% of the melt extracted from the axial melt lens probably remained in the subsurface as dikes. These observations provide insights into recharge cycles in the subsurface magma system, and are a baseline for studying future eruptions at the 9°50′N area.
    Description: This project is supported by National Science Foundation grants OCE-1834797, OCE-1949485, OCE-194893, OCE-1949938, and by Scripps Institution of Oceanography's David DeLaCour Endowment Fund.
    Keywords: Submarine volcanism ; Mid-ocean ridges ; Autonomous underwater vehicle ; Eruption cycles ; Seafloor mapping
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 126(12), (2021): e2021JB022201, https://doi.org/10.1029/2021JB022201.
    Description: Sparse wide-angle seismic profiling supported by coincident reflection imaging has been instrumental for advancing our knowledge about rifted margins. Nevertheless, features of critical importance for understanding rifting processes have been poorly resolved. We derive a high-resolution velocity model by applying full waveform inversion to the dense OETR-2009 wide-angle seismic profile crossing the northeastern Nova Scotian margin. We then create a coincident reflection image by prestack depth migrating the multichannel seismic data. This allows for the first detailed interpretation of the structures related to the final stages of continental breakup and incipient oceanic accretion at the Eastern North America Margin. Our interpretation includes a hyperextended continental domain overlying partially serpentinized mantle, followed by a 10-km-wide domain consisting of a continental block surrounded by layered and bright reflectors indicative of magmatic extrusions. A major fault, representing the continent-ocean boundary, marks a sharp seaward transition to a 16-km-wide domain characterized by smoother basement with chaotic reflectors, where no continental materials are present and a 3-km-thick embryonic oceanic crust overlying partially serpentinized mantle is created by the breakup magmatism. Further seaward, thin oceanic crust overlies the serpentinized mantle suggesting magma-poor oceanic spreading with variable magma supply as determined from variable basement topography, 2–4 km thick volcanic layer, and magnetic anomalies. Our results demonstrate that magmatism played an important role in the lithospheric breakup of the area crossed by the OETR-2009 profile. Considering that the northeastern Nova Scotian margin has been classified as amagmatic, large margin-parallel variations in magma supply likely characterize a single rift segment.
    Description: H. Jian was supported by the Ocean Frontier Institute International Postdoctoral Fellowship at Dalhousie University and NSF grant OCE-2001012.
    Keywords: Rifted continental margin ; Magma-poor rifting ; Breakup magmatism ; Nova Scotian margin
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Rovira‐Navarro, M., Katz, R., Liao, Y., Wal, W., & Nimmo, F. The tides of Enceladus’ porous core. Journal of Geophysical Research: Planets, 127, (2022): e2021JE007117, https://doi.org/10.1029/2021je007117.
    Description: The inferred density of Enceladus' core, together with evidence of hydrothermal activity within the moon, suggests that the core is porous. Tidal dissipation in an unconsolidated core has been proposed as the main source of Enceladus' geological activity. However, the tidal response of its core has generally been modeled assuming it behaves viscoelastically rather than poroviscoelastically. In this work, we analyze the poroviscoelastic response to better constrain the distribution of tidal dissipation within Enceladus. A poroviscoelastic body has a different tidal response than a viscoelastic one; pressure within the pores alters the stress field and induces a Darcian porous flow. This flow represents an additional pathway for energy dissipation. Using Biot's theory of poroviscoelasticity, we develop a new framework to obtain the tidal response of a spherically symmetric, self-gravitating moon with porous layers and apply it to Enceladus. We show that the boundary conditions at the interface of the core and overlying ocean play a key role in the tidal response. The ocean hinders the development of a large-amplitude Darcian flow, making negligible the Darcian contribution to the dissipation budget. We therefore infer that Enceladus' core can be the source of its geological activity only if it has a low rigidity and a very low viscosity. A future mission to Enceladus could test this hypothesis by measuring the phase lags of tidally induced changes of gravitational potential and surface displacements.
    Description: M. Rovira-Navarro has been financially supported by the Space Research User Support program of the Netherlands Organization for Scientific Research (NWO) under contract number ALW-GO/16–19. F. Nimmo and Y. Liao have been supported by the National Aeronautics and Space Administration (NASA) Solar System Workings (SSW) Program, Grant No. 80NSSC21K0158. R. Katz acknowledges funding from the Leverhulme Trust through a Research Project Grant.
    Keywords: Enceladus ; Tides ; Poroviscoelasticity ; Interior ; Hydrotherma
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 127(5), (2022): e2021JC018359, https://doi.org/10.1029/2021JC018359.
    Description: Climate change is transforming the Arctic Ocean in unprecedented ways which can be most directly observed in the systematic decline in seasonal ice coverage. From the collection and analysis of particulate and dissolved activities of 210Po and 210Pb from four deepwater superstations, as a part of the US Arctic GEOTRACES cruise during 2015, and in conjunction with previously published data, the temporal and spatial variations in their activities, inventories and residence times are evaluated. The results show that the partitioning of particulate and dissolved phases has changed significantly in the 8 years between 2007 and 2015, while the total 210Po and 210Pb activities have remained relatively unchanged. Observed total 210Po/210Pb activity ratio was less than unity in all deepwater stations, implying disequilibria in the entire water column. From the distribution of total 210Po and 210Pb in the upper 500 m of all major Arctic Basins, the derived scavenging efficiencies decrease as per the following sequence: Makarov Basin 〉 Gakkel Bridge 〉 Canada Basin Nansen Basin ∼ Amundsen Basin 〉 Alpha Ridge, which is the reverse order of the calculated residence times of 210PoT. The scavenging intensities differ between the fully ice-covered, partially ice-covered, and no ice-covered stations, as observed from the differences in the average activities of 210Po and 210Pb. The average settling velocity of particulate matter based on the 210Pb activity is similar to the published values based on 230Th, indicating removal mechanism(s) of Th and Pb is (are) similar.
    Description: This work was supported by National Science Foundation grants (NSF-PLR-1434578, MB; and NSF-OPP-1435376 KM). Mark Baskaran (PI) and Kanchan Maiti were independently funded by NSF.
    Description: 2022-10-06
    Keywords: 210Po ; 210Pb ; Biogeochemical cycles in the Arctic ; Residence time ; Climate change impacts in the Arctic Ocean
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 36(6), (2022): e2022GB007330, https://doi.org/10.1029/2022gb007330.
    Description: Processes controlling dissolved barium (dBa) were investigated along the GEOTRACES GA03 North Atlantic and GP16 Eastern Tropical Pacific transects, which traversed similar physical and biogeochemical provinces. Dissolved Ba concentrations are lowest in surface waters (∼35–50 nmol kg−1) and increase to 70–80 and 140–150 nmol kg−1 in deep waters of the Atlantic and Pacific transects, respectively. Using water mass mixing models, we estimate conservative mixing that accounts for most of dBa variability in both transects. To examine nonconservative processes, particulate excess Ba (pBaxs) formation and dissolution rates were tracked by normalizing particulate excess 230Th activities. Th-normalized pBaxs fluxes, with barite as the likely phase, have subsurface maxima in the top 1,000 m (∼100–200 μmol m−2 year−1 average) in both basins. Barite precipitation depletes dBa within oxygen minimum zones from concentrations predicted by water mass mixing, whereas inputs from continental margins, particle dissolution in the water column, and benthic diffusive flux raise dBa above predications. Average pBaxs burial efficiencies along GA03 and GP16 are ∼37% and 17%–100%, respectively, and do not seem to be predicated on barite saturation indices in the overlying water column. Using published values, we reevaluate the global freshwater dBa river input as 6.6 ± 3.9 Gmol year−1. Estuarine mixing processes may add another 3–13 Gmol year−1. Dissolved Ba inputs from broad shallow continental margins, previously unaccounted for in global marine summaries, are substantial (∼17 Gmol year−1), exceeding terrestrial freshwater inputs. Revising river and shelf dBa inputs may help bring the marine Ba isotope budget more into balance.
    Description: The International GEOTRACES Programme is possible in part thanks to the support from the U.S. National Science Foundation (Grant OCE-1840868) to the Scientific Committee on Oceanic Research (SCOR). This research was supported by the National Science Foundation under Grant No. NSF OCE-0927951, NSF OCE-1137851, NSF OCE-1261214, and NSF OCE-1925503 to A. M. Shiller; NSF OCE-1829563 to R. F. Anderson; NSF OCE-0927064 and NSF OCE-1233688 to R. F. Anderson and M. Q. Fleisher; NSF OCE-0927754 to R. Lawrence Edwards; NSF OCE-1233903 to R. Lawrence Edwards and H. Cheng; NSF OCE-0926860 to L. F. Robinson; NSF OCE-0963026 and NSF OCE-1518110 to P. J. Lam; and NSF OCE-1232814 to B. S. Twining.
    Keywords: Barium ; Excess barium ; Barite ; GEOTRACES ; Th-normalized flux ; Burial efficiency
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Reyes-Macaya, D., Hoogakker, B., Martinez-Mendez, G., Llanillo, P. J., Grasse, P., Mohtadi, M., Mix, A., Leng, M. J., Struck, U., McCorkle, D. C., Troncoso, M., Gayo, E. M., Lange, C. B., Farias, L., Carhuapoma, W., Graco, M., Cornejo-D’Ottone, M., De Pol Holz, R., Fernandez, C., Narvaez, D., Vargas, C. A., García-Araya, F., Hebbeln, D. Isotopic characterization of water masses in the Southeast Pacific Region: paleoceanographic implications. Journal of Geophysical Research: Oceans, 127(1), (2022): e2021JC017525, https://doi.org/10.1029/2021JC017525.
    Description: In this study, we used stable isotopes of oxygen (δ18O), deuterium (δD), and dissolved inorganic carbon (δ13CDIC) in combination with temperature, salinity, oxygen, and nutrient concentrations to characterize the coastal (71°–78°W) and an oceanic (82°–98°W) water masses (SAAW—Subantarctic Surface Water; STW—Subtropical Water; ESSW—Equatorial Subsurface water; AAIW—Antarctic Intermediate Water; PDW—Pacific Deep Water) of the Southeast Pacific (SEP). The results show that δ18O and δD can be used to differentiate between SAAW-STW, SAAW-ESSW, and ESSW-AAIW. δ13CDIC signatures can be used to differentiate between STW-ESSW (oceanic section), SAAW-ESSW, ESSW-AAIW, and AAIW-PDW. Compared with the oceanic section, our new coastal section highlights differences in both the chemistry and geometry of water masses above 1,000 m. Previous paleoceanographic studies using marine sediments from the SEP continental margin used the present-day hydrological oceanic transect to compare against, as the coastal section was not sufficiently characterized. We suggest that our new results of the coastal section should be used for past characterizations of the SEP water masses that are usually based on continental margin sediment samples.
    Description: R/V Sonne cruises (SO102, SO211 ad SO245) were financed by the German Federal Ministry of Education and Research projects #03G0102A, #03G0211A and #03G0245A. SO261 cruise was funded by the HADES-ERC Advanced Grant (“Benthic diagenesis and microbiology of hadal trenches” Grant agreement No. 669947) awarded to R. N. Glud (SDU, Denmark). SO245 cruise recived contributions from the Max Planck Society (Germany), the German State of Lower Saxony, the National Environmental Research Council of Great Britain and the Science Foundation of Ireland. R/V Meteor cruise M93 was financed by the Sonderforschungsbereich 754 “Climate-Biogeochemistry Interactions in the Tropical Ocean” (www.sfb754.de), which is supported by the Deutsche Forschungsgemeinschaft. “Expedición TAITAO” was financed by the grant “Concurso Nacional de Asignación de Tiempo de Buque ASG-61 Cabo de Hornos” AUB180003, FONDECyT grants 11161091 (DN), 1180954 (CF), and the COPAS Sur-Austral Center (CONICYT PIA APOYO CCTE AFB170006). Sampling at Time-Series station 18 off Concepción during 2015 was funded by several FONDECYT/ANID grants from researchers at the Department of Oceanography and Research Line 5 of COPAS Sur-Austral (UdeC). ANID—Chile National Competition for ship time (AUB 150006/12806) financed the expedition LowpHOX organized by the Millennium Institute of Oceanography (IMO). The expedition Crio1218 was financed by the PPR 137 titled “Proyecto de Estudio Integrado del Afloramiento Costero Frente a Perú" and sponsored by IMARPE-Perú. Additional funding was provided by the ANID—Millennium Science Initiative Program—NCN19_153 (Millennium Nucleus UPWELL), ANID/FONDAP (CR)2 15110009 (LF and EMG), FONDECYT Grant 1210171 (CAV), ANID/FONDAP IDEAL 15150003 (CBL), and the Millennium Institute of Oceanography (IMO, ICN12_019). Dharma A. Reyes-Macaya was supported by Becas Chile (17342817-0), DAAD (57144001) and FARGO project (FAte of ocean oxygenation in a waRminG wOrld, UKRI).
    Keywords: Oxygen and deuterium stable isotopes in seawater ; Carbon stable isotopes in dissolved inorganic carbon ; Southeast Pacific ; Water mass distribution ; Paleoceanography proxies
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Liao, F., Liang, X., Li, Y., & Spall, M. Hidden upwelling systems associated with major western boundary currents. Journal of Geophysical Research: Oceans. 127, (2022): e2021JC017649, https://doi.org/10.1029/2021jc017649.
    Description: Western boundary currents (WBCs) play an essential role in regulating global climate. In contrast to their widely examined horizontal motions, less attention has been paid to vertical motions associated with WBCs. Here, we examine vertical motions associated with the major WBCs by analyzing vertical velocity from five ocean synthesis products and one eddy-resolving ocean simulation. These data reveal robust and intense subsurface upwelling systems, which are primarily along isopycnal surfaces, in five major subtropical WBC systems. These upwelling systems are part of basin-scale overturning circulations and are likely driven by meridional pressure gradients along the western boundary. Globally, the WBC upwelling contributes significantly to the vertical transport of water mass and ocean properties and is an essential yet overlooked branch of the global ocean circulation. In addition, the WBC upwelling intersects the oceanic euphotic and mixed layers, and thus likely plays an important role in ocean biological and chemical processes by transporting nutrients, carbon and other tracers vertically inside the ocean. This study calls for more research into the dynamics of the WBC upwelling and their role in the ocean and climate systems.
    Description: X. Liang is supported by the National Science Foundation through Grants OCE-2021274, OCE-2122507, and the Alfred P. Sloan Foundation through Grant FG-2019-12536. M. Spall is supported through the National Science Foundation Grants OCE-1947290 and OCE-2122633.
    Keywords: Western boundary current ; Upwelling ; Overturning circulation ; Ocean vertical transport ; Ocean synthesis products ; Ocean vertical velocity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2022-10-19
    Description: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography and Paleoclimatology 37(1), (2022): e020PA004137, https://doi.org/10.1029/2020PA004137.
    Description: Reconstructions of aeolian dust flux to West African margin sediments can be used to explore changing atmospheric circulation and hydroclimate over North Africa on millennial to orbital timescales. Here, we extend West African margin dust flux records back to 37 ka in a transect of sites from 19° to 27°N, and back to 67 ka at Ocean Drilling Program (ODP) Hole 658C, in order to explore the interplay of orbital and high-latitude forcings on North African climate and make quantitative estimates of dust flux during the core of the Last Glacial Maximum (LGM). The ODP 658C record shows a Green Sahara interval from 60 to 50 ka during a time of high Northern Hemisphere summer insolation, with dust fluxes similar to levels during the early Holocene African Humid Period, and an abrupt peak in flux during Heinrich event 5a (H5a). Dust fluxes increase from 50 to 35 ka while the high-latitude Northern Hemisphere cools, with peaks in dust flux associated with North Atlantic cool events. From 35 ka through the LGM dust deposition decreases in all cores, and little response is observed to low-latitude insolation changes. Dust fluxes at sites from 21° to 27°N were near late Holocene levels during the LGM time slice, suggesting a more muted LGM response than observed from mid-latitude dust sources. Records along the northwest African margin suggest important differences in wind responses during different stadials, with maximum dust flux anomalies centered south of 20°N during H1 and north of 20°N during the Younger Dryas.
    Description: This research was supported by NSF #OCE-1103262 to L. Bradtmiller, NSF #OCE-1030784 to D. McGee, P. deMenocal, and G. Winckler, and by internal grants from Macalester College and MIT.
    Description: 2022-06-07
    Keywords: North Africa ; Dust flux ; Aeolian dust ; Green Sahara ; Stadials
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2022-10-19
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Zhou, P., Stockli, D. F., Ireland, T., Murray, R. W., & Clift, P. D. Zircon U-Pb age constraints on NW Himalayan exhumation from the Laxmi Basin, Arabian Sea. Geochemistry Geophysics Geosystems, 23(1), (2022): e2021GC010158, https://doi.org/10.1029/2021GC010158.
    Description: The Indus Fan, located in the Arabian Sea, contains the bulk of the sediment eroded from the Western Himalaya and Karakoram. Scientific drilling in the Laxmi Basin by the International Ocean Discovery Program recovered a discontinuous erosional record for the Indus River drainage dating back to at least 9.8 Ma, and with a single sample from 15.6 Ma. We dated detrital zircon grains by U-Pb geochronology to reconstruct how erosion patterns changed through time. Long-term increases in detrital zircon U-Pb components of 750–1,200 and 1,500–2,300 Ma record increasing preferential erosion of the Himalaya relative to the Karakoram between 8.3–7.0 and 5.9–5.7 Ma. The average contribution of Karakoram-derived sediment to the Indus Fan fell from 70% of the total at 8.3–7.0 Ma to 35% between 5.9 and 5.7 Ma. An increase in the contribution of 1,500–2,300 Ma zircons starting between 2.5 and 1.6 Ma indicates significant unroofing of the Inner Lesser Himalaya (ILH) by that time. The trend in zircon age spectra is consistent with bulk sediment Nd isotope data. The initial change in spatial erosion patterns at 7.0–5.9 Ma occurred during a time of drying climate in the foreland. The increase in ILH erosion postdated the onset of dry-wet glacial-interglacial cycles suggesting some role for climate control. However, erosion driven by rising topography in response to formation of the ILH thrust duplex, especially during the Pliocene, also played an important role, while the influence of the Nanga Parbat Massif to the total sediment flux was modest.
    Description: This work was partially funded by a grant from the USSSP, as well as additional funding from the Charles T. McCord Chair in petroleum geology at LSU, and the Chevron (Gulf) Centennial professorship and the UTChron Laboratory at the University of Texas.
    Keywords: Erosion ; Zircon ; Monsoon ; Himalaya ; Provenance
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2022-10-19
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Chase, A. P., Boss, E. S., Haentjens, N., Culhane, E., Roesler, C., & Karp-Boss, L. Plankton imagery data inform satellite-based estimates of diatom carbon. Geophysical Research Letters, 49(13), (2022): e2022GL098076, https://doi.org/10.1029/2022GL098076.
    Description: Estimating the biomass of phytoplankton communities via remote sensing is a key requirement for understanding global ocean ecosystems. Of particular interest is the carbon associated with diatoms given their unequivocal ecological and biogeochemical roles. Satellite-based algorithms often rely on accessory pigment proxies to define diatom biomass, despite a lack of validation against independent diatom biomass measurements. We used imaging-in-flow cytometry to quantify diatom carbon in the western North Atlantic, and compared results to those obtained from accessory pigment-based approximations. Based on this analysis, we offer a new empirical formula to estimate diatom carbon concentrations from chlorophyll a. Additionally, we developed a neural network model in which we integrated chlorophyll a and environmental information to estimate diatom carbon distributions in the western North Atlantic. The potential for improving satellite-based diatom carbon estimates by integrating environmental information into a model, compared to models that are based solely on chlorophyll a, is discussed.
    Description: Funding for this work was provided by NASA grants #NNX15AE67G and #80NSSC20M0202. A. Chase is supported by a Washington Research Foundation Postdoctoral Fellowship.
    Keywords: Diatoms ; Carbon ; Remote sensing ; Pigments ; Cell imagery
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2022-10-20
    Description: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 127(4), (2022): e2021JC018246, https://doi.org/10.1029/2021jc018246.
    Description: Storm surge barriers are increasingly being considered as risk mitigation measures for coastal population centers. During non-storm periods, permanent barrier infrastructure reduces the flow cross-sectional area and affects tidal exchange. Effects of barrier structures on estuarine tidal and salinity dynamics have not been extensively examined, particularly for partially mixed estuaries. A nested, high-resolution model is used to characterize impacts of a potential storm surge barrier near the mouth of the Hudson River estuary. Maximum tidal velocities through barrier openings are more than double those in the base case. Landward of the barrier, tidal amplitude decreases on average by about 6% due to increased drag. The drag coefficient with the barrier is about 5 times greater than the base case due primarily to form drag from flow separation at barrier structures rather than increased bottom friction. The form drag scales with barrier geometry similar to previous studies of flow around headlands. Tidal water levels are reduced particularly during spring tides, such that marsh inundation frequency is reduced up to 25%. Strong tidal velocities through barrier openings enhance salinity mixing locally, but overall mixing in the estuary decreases due to reduced tidal velocities. Correspondingly, stratification decreases near the barrier and increases landward in the estuary. The salinity intrusion length increases by 5%–15% depending on discharge due to the decreased mixing and increased exchange flow. Exchange flow increases near the barrier due reflux into the lower layer with the increased mixing, which has the potential to increase estuarine residence times.
    Description: Funding from Hudson Research Foundation (Award #003/19A).
    Description: 2022-10-11
    Keywords: Storm surge barrier ; Form drag ; Mixing ; Stratification ; Exchange flow ; Salinity intrusion
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2022-10-14
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Marshall, T., Granger, J., Casciotti, K. L., Dahnke, K., Emeis, K.-C., Marconi, D., McIlvin, M. R., Noble, A. E., Saito, M. A., Sigman, D. M., & Fawcett, S. E. The Angola Gyre is a hotspot of dinitrogen fixation in the South Atlantic Ocean. Communications Earth & Environment, 3(1), (2022): 151, https://doi.org/10.1038/s43247-022-00474-x.
    Description: Biological dinitrogen fixation is the major source of new nitrogen to marine systems and thus essential to the ocean’s biological pump. Constraining the distribution and global rate of dinitrogen fixation has proven challenging owing largely to uncertainty surrounding the controls thereon. Existing South Atlantic dinitrogen fixation rate estimates vary five-fold, with models attributing most dinitrogen fixation to the western basin. From hydrographic properties and nitrate isotope ratios, we show that the Angola Gyre in the eastern tropical South Atlantic supports the fixation of 1.4–5.4 Tg N.a−1, 28-108% of the existing (highly uncertain) estimates for the basin. Our observations contradict model diagnoses, revealing a substantial input of newly-fixed nitrogen to the tropical eastern basin and no dinitrogen fixation west of 7.5˚W. We propose that dinitrogen fixation in the South Atlantic occurs in hotspots controlled by the overlapping biogeography of excess phosphorus relative to nitrogen and bioavailable iron from margin sediments. Similar conditions may promote dinitrogen fixation in analogous ocean regions. Our analysis suggests that local iron availability causes the phosphorus-driven coupling of oceanic dinitrogen fixation to nitrogen loss to vary on a regional basis.
    Description: This work was supported by the South African National Research Foundation (114673 and 130826 to T.M., 115335, 116142 and 129320 to S.E.F.); the US National Science Foundation (CAREER award, OCE-1554474 to J.G., OCE-1736652 to D.M.S. and K.L.C., OCE-05-26277 to K.L.C.); the German Federal Agency for Education and Research (DAAD-SPACES 57371082 to T.M.); the Royal Society (FLAIR fellowship to S.E.F.); and the University of Cape Town (T.M., J.G., S.E.F.). The authors also recognize the support of the South African Department of Science and Innovation’s Biogeochemistry Research Infrastructure Platform (BIOGRIP).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2022-10-12
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Struve, T., Wilson, D., Hines, S., Adkins, J., & van de Flierdt, T. A deep Tasman outflow of Pacific waters during the last glacial period. Nature Communications, 13(1), (2022): 3763, https://doi.org/10.1038/s41467-022-31116-7.
    Description: The interoceanic exchange of water masses is modulated by flow through key oceanic choke points in the Drake Passage, the Indonesian Seas, south of Africa, and south of Tasmania. Here, we use the neodymium isotope signature (εNd) of cold-water coral skeletons from intermediate depths (1460‒1689 m) to trace circulation changes south of Tasmania during the last glacial period. The key feature of our dataset is a long-term trend towards radiogenic εNd values of ~−4.6 during the Last Glacial Maximum and Heinrich Stadial 1, which are clearly distinct from contemporaneous Southern Ocean εNd of ~−7. When combined with previously published radiocarbon data from the same corals, our results indicate that a unique radiogenic and young water mass was present during this time. This scenario can be explained by a more vigorous Pacific overturning circulation that supported a deeper outflow of Pacific waters, including North Pacific Intermediate Water, through the Tasman Sea.
    Description: The authors acknowledge financial support from the Grantham Institute of Climate Change and the Environment (T.v.d.F. and T.S.), the Ministry for Science and Culture of the State of Lower Saxony (T.S.), Marie Curie Reintegration grant IRG 230828 (T.v.d.F.), Leverhulme Trust grant RPG-398 (T.v.d.F.), Natural Environment Research Council grants NE/F016751/1 (T.v.d.F.), NE/N001141/1 (T.v.d.F. and D.J.W.), and NE/T011440/1 (D.J.W.), and National Science Foundation grant OCE-1503129 (J.F.A. and S.K.V.H.). Open Access funding is enabled by the DFG open access publication fund and the Carl von Ossietzky University Oldenburg.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2022-10-20
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 126(10), (2021): e2021JC017537, https://doi.org/10.1029/2021JC017537.
    Description: Mixed-layer dynamics exert a first order control on nutrient and light availability for phytoplankton. In this study, we examine the influence of mixed-layer dynamics on net community production (NCP) in the Southern Ocean on intra-seasonal, seasonal, interannual, and decadal timescales, using biogeochemical Argo floats and satellite-derived NCP estimates during the period from 1997 to 2020. On intraseasonal timescales, the shoaling of the mixed layer is more likely to enhance NCP in austral spring and winter, suggesting an alleviation of light limitation. As expected, NCP generally increases with light availability on seasonal timescales. On interannual timescales, NCP is correlated with mixed layer depth (MLD) and mixed-layer-averaged photosynthetically active radiation (PAR) in austral spring and winter, especially in regions with deeper mixed layers. Though recent studies have argued that winter MLD controls the subsequent growing season's iron and light availability, the limited number of Argo float observations contemporaneous with our satellite observations do not show a significant correlation between NCP and the previous-winter's MLD on interannual timescales. Over the 1997–2020 period, we observe regional trends in NCP (e.g., increasing around S. America), but no trend for the entire Southern Ocean. Overall, our results show that the dependence of NCP on MLD is a complex function of timescales.
    Description: Work was supported by NSF OPP-1043339 to N.Cassar and NASA NNX13AC94G to M. S. Lozier. Z. Li was supported by a NASA Earth and Space Science Fellowship (Grant No. NNX13AN85H) and the Postdoctoral Scholarship Program at Woods Hole Oceanographic Institution.
    Description: 2022-03-21
    Keywords: Mixed layer depth ; Net community production ; Southern Ocean
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2022-10-20
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 126(12), (2021): e2021JC017989, https://doi.org/10.1029/2021JC017989.
    Description: Gulf Stream warm-core rings (WCRs) impinging onto the Mid-Atlantic Bight (MAB) shelf edge can induce substantial water exchange between the shelf and slope seas. Combining satellite imagery and idealized ocean models, this study investigates the long-neglected influence of submarine canyons on the WCR impingement process. Satellite images show onshore intrusion of the WCR water concentrated near the MAB shelf-break canyons, indicating canyon-induced enhancement of cross-shelf exchange. Model simulations of the ring-canyon interaction qualitatively reproduce the observed pattern and show greatly enhanced vertical motions and cross-shelf transport in a canyon. The ring-induced transient flow in a canyon resolved by the model is consistent with the three-dimensional canyon circulation driven by ambient along-slope steady flows as depicted in the literature. Cross-isobath flows occur over both canyon slopes with a strong upwelling onshore flow over the slope upstream to the coastal-trapped wave propagation (the upwave slope) and a weak downwelling offshore flow over the downwave slope. To conserve potential vorticity, a subsurface-intensified cyclonic eddy is formed inside the canyon, which interacts with the sloping bottom and enhances the upwelling onshore flow over the upwave slope. The upwelled deep ring water is transported either back offshore by the ring-edge current on the upwave side of the canyon or across the canyon onto the downwave shelf forming a localized bulge pattern. While the former is an ephemeral onshore transport process, the latter represents a more sustained onshore transport of the ring water, both of which have major implication for ecosystem dynamics at the shelf edge.
    Description: XL was supported by the China Scholarship Council; ZR was supported by the National Key Research and Development Program of China (2016YFC1402000). This work was also support by the WHOI-OUC Collaborative Initiative Program.
    Description: 2022-06-13
    Keywords: Warm-core ring ; Submarine canyon ; Topographic influence ; Cross-shelf exchange ; Upwelling ; Eddy
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2022-10-20
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Zippel, S. F., Farrar, J. T., Zappa, C. J., & Plueddemann, A. J. Parsing the kinetic energy budget of the ocean surface mixed layer. Geophysical Research Letters, 49(2), (2022): 2021GL095920, https://doi.org/10.1029/2021GL095920.
    Description: The total rate of work done on the ocean by the wind is of considerable interest for understanding global energy balances, as the energy from the wind drives ocean currents, grows surface waves, and forces vertical mixing. A large but unknown fraction of this atmospheric energy is dissipated by turbulence in the upper ocean. The focus of this work is twofold. First, we describe a framework for evaluating the vertically integrated turbulent kinetic energy (TKE) equation using measurable quantities from a surface mooring, showing the connection to the atmospheric, mean oceanic, and wave energy. Second, we use this framework to evaluate turbulent energetics in the mixed layer using 10 months of mooring data. This evaluation is made possible by recent advances in estimating TKE dissipation rates from long-enduring moorings. We find that surface fluxes are balanced by TKE dissipation rates in the mixed layer to within a factor of two.
    Description: This work was funded by NSF Award No. 2023 020, and by NASA as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS), supporting field work for SPURS-1 (NASA Grant No. NNX11AE84G), and for analysis (NASA Grant No. 80NSSC18K1494), and as part of SASSIE (NASA Grant No. 80NSSC21K0832). This work was also funded by NSF through Grant Award Nos. 1756 839, 2049546, and by ONR through Grant N000141712880 (MISO-BoB).
    Keywords: Air/sea interaction ; Turbulence ; Mixed layer ; Wind work ; Boundary layer ; Waves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2022-10-20
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Baranes, H., Woodruff, J., Geyer, W., Yellen, B., Richardson, J. & Griswold, F. Sources, mechanisms, and timescales of sediment delivery to a New England salt marsh. Journal of Geophysical Research: Earth Surface, 127, (2022): e2021JF006478, https://doi.org/10.1029/2021jf006478.
    Description: he availability and delivery of an external clastic sediment source is a key factor in determining salt marsh resilience to future sea level rise. However, information on sources, mechanisms, and timescales of sediment delivery are lacking, particularly for wave-protected mesotidal estuaries. Here we show that marine sediment mobilized and delivered during coastal storms is a primary source to the North and South Rivers, a mesotidal bar-built estuary in a small river system impacted by frequent, moderate-intensity storms that is typical to New England (United States). On the marsh platform, deposition rates, clastic content, and dilution of fluvially-sourced contaminated sediment by marine material all increase down-estuary toward the inlet, consistent with a predominantly marine-derived sediment source. Marsh clastic deposition rates are also highest in the storm season. We observe that periods of elevated turbidity in channels and over the marsh are concurrent with storm surge and high wave activity offshore, rather than with high river discharge. Flood tide turbidity also exceeds ebb tide turbidity during storm events. Timescales of storm-driven marine sediment delivery range from 2.5 days to 2 weeks, depending on location within the estuary; therefore the phasing of storm surge and waves with the spring-neap cycle determines how effectively post-event suspended sediment is delivered to the marsh platform. This study reveals that sediment supply and the associated resilience of New England mesotidal salt marshes involves the interplay of coastal and estuarine processes, underscoring the importance of looking both up- and downstream to identify key drivers of environmental change.
    Description: The project described in this publication was in part supported by Grant or Cooperative Agreement No. G20AC00071 from the U.S. Geological Survey and a Department of Interior Northeast Climate Adaptation Science Center graduate fellowship awarded to H.E.B (G12AC00001).
    Keywords: Salt marsh ; Sediment ; Estuary ; Tides ; Massachusetts
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2022-10-20
    Description: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 127(5), (2022): e2021JC018222, https://doi.org/10.1029/2021jc018222.
    Description: Mixing processes in the upper ocean play a key role in transferring heat, momentum, and matter in the ocean. These mixing processes are significantly enhanced by wave-driven Langmuir turbulence (LT). Based on a paired analysis of observations and simulations, this study investigates wind fetch and direction effects on LT at a coastal site south of the island Martha’s Vineyard (MA, USA). Our results demonstrate that LT is strongly influenced by wind fetch and direction in coastal oceans, both of which contribute to controlling turbulent coastal transport processes. For northerly offshore winds, land limits the wind fetch and wave development, whereas southerly winds are associated with practically infinite fetch. Observed and simulated two-dimensional wave height spectra reveal persistent southerly swell and substantially more developed wind-driven waves from the south. For oblique offshore winds, waves develop more strongly in the alongshore direction with less limited fetch, resulting in significant wind and wave misalignments. Observations of coherent near-surface crosswind velocities indicate that LT is only present for sufficiently developed waves. The fetch-limited northerly winds inhibit wave developments and the formation of LT. In addition to limited fetch, strong wind–wave misalignments prevent LT development. Although energetic and persistent, swell waves do not substantially influence LT activity during the observation period because these relatively long swell waves are associated with small Stokes drift shear. These observational results agree well with turbulence-resolving large eddy simulations (LESs) based on the wave-averaged Navier–Stokes equation, validating the LES approach to coastal LT in the complex wind and wave conditions.
    Description: We acknowledge the support of National Science Foundation grant OCE-1634578 for funding this work. The Office of Naval Research funded the CBLAST-low experiment. This research was supported in part through the use of Information Technologies (IT) resources at the University of Delaware, specifically the high-performance computing resources.
    Description: 2022-10-20
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Opher, J., Brearley, J., Dye, S., Pickart, R., Renfrew, I., Harden, B., & Meredith, M. The annual salinity cycle of the Denmark Strait Overflow. Journal of Geophysical Research: Oceans, 127(4), (2022): e2021JC018139, https://doi.org/10.1029/2021jc018139.
    Description: The Denmark Strait Overflow (DSO) is an important source of dense water input to the deep limb of the Atlantic Meridional Overturning Circulation (AMOC). It is fed by separate currents from the north that advect dense water masses formed in the Nordic Seas and Arctic Ocean which then converge at Denmark Strait. Here we identify an annual salinity cycle of the DSO, characterized by freshening in winter and spring. The freshening is linked to freshening of the Shelfbreak East Greenland Current in the Blosseville Basin north of the Denmark Strait. We demonstrate that the East Greenland Current advects fresh pycnocline water above the recirculating Atlantic Water, which forms a low salinity lid for the overflow in Denmark Strait and in the Irminger Basin. This concept is supported by intensified freshening of the DSO in lighter density classes on the Greenland side of the overflow. The salinity of the DSO in the Irminger Basin is significantly correlated with northerly/northeasterly winds in the Blosseville Basin at a lag of 3–4 months, consistent with estimated transit times. This suggests that wind driven variability of DSO source water exerts an important influence on the salinity variability of the downstream DSO, and hence the composition of the deep limb of the AMOC.
    Description: This research was funded by: NERC EnvEast DTP studentship NE/L002582 (JO) and Cefas Seedcorn DP371 (JO, SRD); as well as by NERC, by AFIS (NE/N009754/1) (IR), JAB is funded by NE/L011166/1, ORCHESTRA (NE/N018095/1) and ENCORE (NE/V013254/1) and RP is funded by the US National Science Foundation grants OCE-1756361 and OCE-1558742. Cefas work on the Angmagssallik array was supported by multiple international partners including NSF, NOAA-CORC-ARCHES, WHOI-OCCI, European Community's fifth & seventh framework programme under grants ASOF-W (contract EVK2-CT-2002-00,149) & No. GA212643 (THOR: “Thermohaline Overturning—at Risk”, 2008–2012) and from UK Department for Environment, Food and Rural Affairs (DEFRA) including A1222, SD0440 & ME5102.
    Keywords: Overflow ; Salinity ; Seasonality ; Fresh lid ; Advection
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Whitmore, L., Shiller, A., Horner, T., Xiang, Y., Auro, M., Bauch, D., Dehairs, F., Lam, P., Li, J., Maldonado, M., Mears, C., Newton, R., Pasqualini, A., Planquette, H., Rember, R., & Thomas, H. Strong margin influence on the Arctic Ocean Barium Cycle revealed by pan‐Arctic synthesis. Journal of Geophysical Research: Oceans, 127(4), (2022): e2021JC017417, https://doi.org/10.1029/2021jc017417.
    Description: Early studies revealed relationships between barium (Ba), particulate organic carbon and silicate, suggesting applications for Ba as a paleoproductivity tracer and as a tracer of modern ocean circulation. But, what controls the distribution of barium (Ba) in the oceans? Here, we investigated the Arctic Ocean Ba cycle through a one-of-a-kind data set containing dissolved (dBa), particulate (pBa), and stable isotope Ba ratio (δ138Ba) data from four Arctic GEOTRACES expeditions conducted in 2015. We hypothesized that margins would be a substantial source of Ba to the Arctic Ocean water column. The dBa, pBa, and δ138Ba distributions all suggest significant modification of inflowing Pacific seawater over the shelves, and the dBa mass balance implies that ∼50% of the dBa inventory (upper 500 m of the Arctic water column) was supplied by nonconservative inputs. Calculated areal dBa fluxes are up to 10 μmol m−2 day−1 on the margin, which is comparable to fluxes described in other regions. Applying this approach to dBa data from the 1994 Arctic Ocean Survey yields similar results. The Canadian Arctic Archipelago did not appear to have a similar margin source; rather, the dBa distribution in this section is consistent with mixing of Arctic Ocean-derived waters and Baffin Bay-derived waters. Although we lack enough information to identify the specifics of the shelf sediment Ba source, we suspect that a sedimentary remineralization and terrigenous sources (e.g., submarine groundwater discharge or fluvial particles) are contributors.
    Description: This research was supported by the National Science Foundation [OCE-1434312 (AMS), OCE-1436666 (RN), OCE-1535854 (PL), OCE-1736949, OCE-2023456 (TJH), and OCE-1829563 (R. Anderson for open access support)], Natural Sciences and Engineering Research Council of Canada (NSERC)-Climate Change and Atmospheric Research (CCAR) Program (MTM), and LEFE-CYBER EXPATE (HP). HT acknowledges support by the Canadian GEOTRACES via NSERC-CCAR and the German Academic Exchange Service (DAAD): MOPGA-GRI (Make Our Planet Great Again—Research Initiative) sponsored by BMBF (Federal German Ministry of Education and Research; Grant No. 57429828).
    Keywords: GEOTRACES ; Barium isotopes ; Geochemical cycles ; Climate ; Continental shelves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Peña‐Molino, B., Sloyan, B., Nikurashin, M., Richet, O., & Wijffels, S. Revisiting the seasonal cycle of the Timor throughflow: impacts of winds, waves and eddies. Journal of Geophysical Research: Oceans, 127, (2022): e2021JC018133, https://doi.org/10.1029/2021jc018133.
    Description: The tropical Pacific and Indian Oceans are connected via a complex system of currents known as the Indonesian Throughflow (ITF). More than 30% of the variability in the ITF is linked to the seasonal cycle, influenced by the Monsoon winds. Despite previous efforts, a detailed knowledge of the ITF response to the components of the seasonal forcing is still lacking. Here, we describe the seasonal cycle of the ITF based on new observations of velocity and properties in Timor Passage, satellite altimetry and a high-resolution regional model. These new observations reveal a complex mean and seasonally varying flow field. The amplitude of the seasonal cycle in volume transport is approximately 6 Sv. The timing of the seasonal cycle, with semi-annual maxima (minima) in May and December (February and September), is controlled by the flow below 600 m associated with semi-annual Kelvin waves. The transport of thermocline waters (〈300 m) is less variable than the deep flow but larger in magnitude. This top layer is modulated remotely by cycles of divergence in the Banda Sea, and locally through Ekman transport, coastal upwelling, and non-linearities of the flow. The latter manifests through the formation of eddies that reduce the throughflow during the Southeast Monsoon, when is expected to be maximum. While the reduction in transport associated with the eddies is small, its impact on heat transport is large. These non-linear dynamics develop over small scales (〈10 km), and without high enough resolution, both observations and models will fail to capture them adequately.
    Description: B. Peña-Molino, B. M. Sloyan, M. Nikurashin, and O. Richet were supported by the Centre for Southern Hemisphere Oceans Research (CSHOR). CSHOR is a joint research Centre for Southern Hemisphere Ocean Research between QNLM and CSIRO. S. E. Wijffels was supported by the US National Science Foundation Grant No. OCE-1851333.
    Keywords: Indonesian Throughflow ; Timor Passage ; Seasonal cycle ; Moorings ; Transport ; Eddies
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 127(5), (2022): e2021JC018056, https://doi.org/10.1029/2021jc018056.
    Description: As Arctic sea ice declines, wind energy has increasing access to the upper ocean, with potential consequences for ocean mixing, stratification, and turbulent heat fluxes. Here, we investigate the relationships between internal wave energy, turbulent dissipation, and ice concentration and draft using mooring data collected in the Beaufort Sea during 2003–2018. We focus on the 50–300 m depth range, using velocity and CTD records to estimate near-inertial shear and energy, a finescale parameterization to infer turbulent dissipation rates, and ice draft observations to characterize the ice cover. All quantities varied widely on monthly and interannual timescales. Seasonally, near-inertial energy increased when ice concentration and ice draft were low, but shear and dissipation did not. We show that this apparent contradiction occurred due to the vertical scales of internal wave energy, with open water associated with larger vertical scales. These larger vertical scale motions are associated with less shear, and tend to result in less dissipation. This relationship led to a seasonality in the correlation between shear and energy. This correlation was largest in the spring beneath full ice cover and smallest in the summer and fall when the ice had deteriorated. When considering interannually averaged properties, the year-to-year variability and the short ice-free season currently obscure any potential trend. Implications for the future seasonal and interannual evolution of the Arctic Ocean and sea ice cover are discussed.
    Description: This work was supported by the Postdoctoral Scholar Program at Woods Hole Oceanographic Institution, with funding provided by the Weston Howland Jr. Postdoctoral Scholarship. S. T. Cole was supported by Office of Naval Research grant N00014-16-1-2381.
    Description: 2022-10-14
    Keywords: Arctic ; Internal waves ; Mixing ; Sea ice ; Turbulence
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Fendrock, M., Condron, A., & McGee, D. Modeling iceberg longevity and distribution during Heinrich Events. Paleoceanography and Paleoclimatology, 37(6), (2022): e2021PA004347, https://doi.org/10.1029/2021pa004347.
    Description: During the last glacial period (120–12 ka), the Laurentide ice sheet discharged large numbers of icebergs into the North Atlantic. These icebergs carried sediments that were dropped as the icebergs melted, leaving a record of past iceberg activity on the floor of the subpolar North Atlantic. Periods of significant iceberg discharge and increased ice-rafted debris (IRD) deposition, are known as Heinrich Events. These events coincide with global climate change, and the melt from the icebergs involved is frequently hypothesized to have contributed to these changes in climate by adding a significant volume of cold, fresh water to the North Atlantic. Using an iceberg model coupled with the Massachusetts Institute of Technology Global Circulation Model numerical circulation model, we explore the various factors controlling iceberg drift and rates of melt that influence the spatial patterns of IRD deposition during Heinrich Events. In addition to clarifying the influence of sea surface temperature and wind on the path of an armada of icebergs, we demonstrate that the same volume of ice can produce very different patterns of iceberg drift simply by altering the size of icebergs involved. We note also a significant difference in the seasonal locations of icebergs, influenced primarily by the changing winds, and show that the spatial patterns of IRD for Heinrich Event 1 most closely corresponds to where icebergs are located during the summer months. Consistent with proxy evidence, the ocean must be several degrees colder than temperatures estimated for the Last Glacial Maximum in order for icebergs to travel the distance implied by Heinrich Layers.
    Keywords: Heinrich Event ; Iceberg ; Modeling ; Ice rafted debris ; Paleoclimate
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Davila, X., Gebbie, G., Brakstad, A., Lauvset, S. K., McDonagh, E. L., Schwinger, J., & Olsen, A. How Is the ocean anthropogenic carbon reservoir filled? Global Biogeochemical Cycles, 36(5), (2022): e2021GB007055, https://doi.org/10.1029/2021GB007055.
    Description: About a quarter of the total anthropogenic CO2 emissions during the industrial era has been absorbed by the ocean. The rate limiting step for this uptake is the transport of the anthropogenic carbon (Cant) from the ocean mixed layer where it is absorbed to the interior ocean where it is stored. While it is generally known that deep water formation sites are important for vertical carbon transport, the exact magnitude of the fluxes across the base of the mixed layer in different regions is uncertain. Here, we determine where, when, and how much Cant has been injected across the mixed-layer base and into the interior ocean since the start of the industrialized era. We do this by combining a transport matrix derived from observations with a time-evolving boundary condition obtained from already published estimates of ocean Cant. Our results show that most of the Cant stored below the mixed layer are injected in the subtropics (40.1%) and the Southern Ocean (36.0%), while the Subpolar North Atlantic has the largest fluxes. The Subpolar North Atlantic is also the most important region for injecting Cant into the deep ocean with 81.6% of the Cant reaching depths greater than 1,000 m. The subtropics, on the other hand, have been the most efficient in transporting Cant across the mixed-layer base per volume of water ventilated. This study shows how the oceanic Cant uptake relies on vertical transports in a few oceanic regions and sheds light on the pathways that fill the ocean Cant reservoir.
    Description: X. Davila was supported by a PhD research fellowship from the University of Bergen. G. Gebbie was supported by U.S. NSF Grant 88075300. A. Brakstad was supported by the Trond Mohn Foundation under grant agreement BFS2016REK01. E. L. McDonagh was supported by UKRI grants Atlantic Biogeochemical fluxes (ref no. NE/M005046/2) and TICTOC:Transient tracer-based Investigation of Circulation and Thermal Ocean Change (ref no. NE/P019293/2). A. Olsen and S. K. Lauvset appreciate support from the Research Council of Norway (ICOS-Norway, project number 245972). J. Schwinger acknowledges support by the Research Council of Norway through project INES (project number 270061). Supercomputer time and storage resources were provided by the The Norwegian e-infrastructure for Research Education (UNINETT Sigma2, projects nn2980k and ns2980k).
    Keywords: Anthropogenic carbon ; Transport matrix ; Mixed-layer ; Observations ; Fluxes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 127(6), (2022): e2021JC017307, https://doi.org/10.1029/2021jc017307.
    Description: This study examines the spatial and temporal variability of eddy kinetic energy over the Northeast Shelf using observations of surface currents from a unique array of six high frequency radar systems. Collected during summer and winter conditions over three consecutive years, the horizontal scales present were examined in the context of local wind and hydrographic variability, which were sampled concurrently from moorings and autonomous surface vehicles. While area-averaged mean kinetic energy at the surface was tightly coupled to wind forcing, eddy kinetic energy was not, and was lower in magnitude in winter than summer in all areas. Kinetic energy wavenumber spectral slopes were generally near k−5/3, but varied seasonally, spatially, and between years. In contrast, wavenumber spectra of surface temperature and salinity along repeat transect lines had sharp k−3 spectral slopes with little seasonal or inter-annual variability. Radar-based estimates of spectral kinetic energy fluxes revealed a mean transition scale of energy near 18 km during stratified months, but suggested much longer scales during winter. Overall, eddy kinetic energy was unrelated to local winds, but the up- or down-scale flux of kinetic energy was tied to wind events and, more weakly, to local density gradients.
    Description: This analysis was supported by NSF grants OCE-1657896 and OCE-1736930 to Kirincich, OCE-1736709 to Flament, and OCE-1736587 to Futch. Flament is also supported by NOAAs Integrated Ocean Observing System through award NA11NOS0120039.
    Description: 2023-11-21
    Keywords: Coastal circulation ; Eddy kinetic energy ; HF radar ; Mid atlantic bight ; Sub-mesoscale ; Energy cascade
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Hage, S., Galy, V., Cartigny, M., Heerema, C., Heijnen, M., Acikalin, S., Clare, M., Giesbrecht, I., Gröcke, D., Hendry, A., Hilton, R., Hubbard, S., Hunt, J., Lintern, D., McGhee, C., Parsons, D., Pope, E., Stacey, C., Sumner, E., Tank, S., & Talling, P. Turbidity currents can dictate organic carbon fluxes across river‐fed fjords: an example from Bute Inlet (BC, Canada). Journal of Geophysical Research: Biogeosciences, 127(6), (2022): e2022JG006824, https://doi.org/10.1029/2022jg006824.
    Description: The delivery and burial of terrestrial particulate organic carbon (OC) in marine sediments is important to quantify, because this OC is a food resource for benthic communities, and if buried it may lower the concentrations of atmospheric CO2 over geologic timescales. Analysis of sediment cores has previously shown that fjords are hotspots for OC burial. Fjords can contain complex networks of submarine channels formed by seafloor sediment flows, called turbidity currents. However, the burial efficiency and distribution of OC by turbidity currents in river-fed fjords had not been investigated previously. Here, we determine OC distribution and burial efficiency across a turbidity current system within Bute Inlet, a fjord in western Canada. We show that 62% ± 10% of the OC supplied by the two river sources is buried across the fjord surficial (30–200 cm) sediment. The sandy subenvironments (channel and lobe) contain 63% ± 14% of the annual terrestrial OC burial in the fjord. In contrast, the muddy subenvironments (overbank and distal basin) contain the remaining 37% ± 14%. OC in the channel, lobe, and overbank exclusively comprises terrestrial OC sourced from rivers. When normalized by the fjord’s surface area, at least 3 times more terrestrial OC is buried in Bute Inlet, compared to the muddy parts of other fjords previously studied. Although the long-term (〉100 years) preservation of this OC is still to be fully understood, turbidity currents in fjords appear to be efficient at storing OC supplied by rivers in their near-surface deposits.
    Description: S.H. acknowledges funding by the IAS postgraduate grant scheme, a Research Development funds offered by Durham University, and the NOCS/WHOI exchange program. S.H. has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement no. 899546. The field campaign and geochemical analyses were supported by Natural Environment Research Council grants NE/M007138/1, NE/W30601/1, NE/N012798/1, NE/K011480/1 and NE/M017540/1. M.J.B.C. was funded by a Royal Society Research Fellowship (DHF\R1\180166). M.A.C. was supported by the U.K. National Capability NERC CLASS program (NE/R015953/1) and NERC grants (NE/P009190/1 and NE/P005780/1). C.J.H. and M.S.H. were funded by the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement no. 721403 - ITN SLATE. E.L.P. was supported by a Leverhulme Early Career Fellowship (ECF-2018-267).
    Keywords: Fjords ; Organic carbon ; Sediment ; Submarine channel ; Carbon burial ; Rivers
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2022-05-27
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 126(10),(2021): e2021JC017375.,https://doi.org/10.1029/2021JC017375.
    Description: The Deep Water Horizon oil spill dramatically impacted the Gulf of Mexico from the seafloor to the surface. While dispersion of contaminants at the surface has been extensively studied, little is known about deep water dispersion properties. This study describes the results of the Deep Water Dispersion Experiment (DWDE), which consisted of the release of surface drifters and acoustically tracked RAFOS floats drifting at 300 and 1,500 dbar in the Gulf of Mexico. We show that surface diffusivity is elevated and decreases with depth: on average, diffusivity at 1,500 dbar is 5 times smaller than at the surface, suggesting that the dispersion of contaminants at depth is a significantly slower process than at the surface. This study also examines the turbulent regimes driving the dispersion, although conflicting evidences and large uncertainties do not allow definitive conclusions. At all depths, while the growth of dispersion and kurtosis with time supports the possibility of an exponential regime at very short time scales, indicating that early dispersion is nonlocal, finite size Lyapunov exponents support the hypothesis of local dispersion, suggesting that eddies of size comparable to the initial separation (6 km), may dominate the early dispersion. At longer time scales, the quadratic growth of dispersion is indicative of a ballistic regime, where a mean shear flow would be the dominating process. Examination of the along- and across-bathymetry components of float velocities supports the idea that boundary currents could be the source for this shear dispersion.
    Description: This research has been funded by the Mexican National Council for Science and Technology - Mexican Ministry of Energy - Hydrocarbon Fund, project 201441. This is a contribution of the Gulf of Mexico Research Consortium (CIGoM).
    Description: 2022-03-18
    Keywords: Lagrangian experiment ; turbulence ; RAFOS ; relative dispersion ; Gulf of Mexico ; Deep Water Dispersion
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Sil, S., Gangopadhyay, A., Gawarkiewicz, G., & Pramanik, S. Shifting seasonality of cyclones and western boundary current interactions in Bay of Bengal as observed during Amphan and Fani. Scientific Reports, 11(1), (2021): 22052 https://doi.org/10.1038/s41598-021-01607-6.
    Description: In recent years, the seasonal patterns of Tropical Cyclones (TC) in the Bay of Bengal have been shifting. While tropical depressions have been common in March–May (spring), they typically have been relatively weaker than the TCs during October–December. Here we show that the spatial pattern of recent warming trends during the last two decades in the southwestern Bay has allowed for stronger springtime pre-monsoon cyclones such as Amphan (May 2020, Super Cyclone) and Fani (April–May 2019, Extremely Severe Cyclone). The tracks of the pre-monsoon cyclones shifted westward, concurrent with an increasing rate of warming. This shift allowed both Fani and Amphan tracks to cross the northeastward warm Western Boundary Current (WBC) and associated warm anti-cyclonic eddies, while the weaker Viyaru (April 2013, Cyclonic Storm) did not interact with the WBC. A quantitative model linking the available along-track heat potential to cyclone’s intensity is developed to understand the impact of the WBC on cyclone intensification. The influence of the warming WBC and associated anti-cyclonic eddies will likely result in much stronger springtime TCs becoming relatively common in the future.
    Description: The authors gratefully acknowledge the financial and infrastructural support from the Indian Institute of Technology Bhubaneswar to carry out this research. SS acknowledges the financial assistance from Science and Engineering Research Board (SERB), Government of India (Grant No. CRG/2019/005842). All the figures are prepared using MATLAB. AG and SS appreciate the support of SERB's VAJRA Faculty Scheme (VJR/2018/000108) for the initiation of this collaborative work between SMAST and IITBBS. AG also acknowledges partial support from NSF (OCE 1851242) in completing this manuscript. GG was supported by a Grant from the Office of Naval Research as part of the Task Force Ocean initiative.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Hines, S. K. V., Bolge, L., Goldstein, S. L., Charles, C. D., Hall, I. R., & Hemming, S. R. Little change in ice age water mass structure from Cape Basin benthic neodymium and carbon isotopes. Paleoceanography and Paleoclimatology, 36(11), (2021): e2021PA004281, https://doi.org/10.1029/2021PA004281.
    Description: A common conception of the deep ocean during ice age episodes is that the upper circulation cell in the Atlantic was shoaled at the Last Glacial Maximum compared to today, and that this configuration facilitated enhanced carbon storage in the deep ocean, contributing to glacial CO2 draw-down. Here, we test this notion in the far South Atlantic, investigating changes in glacial circulation structure using paired neodymium and benthic carbon isotope measurements from International Ocean Discovery Program Site U1479, at 2,615 m water depth in the Cape Basin. We infer changes in circulation structure across the last glacial cycle by aligning our site with other existing carbon and neodymium isotope records from the Cape Basin, examining vertical isotope gradients, while determining the relative timing of inferred circulation changes at different depths. We find that Site U1479 had the most negative neodymium isotopic composition across the last glacial cycle among the analyzed sites, indicating that this depth was most strongly influenced by North Atlantic Deep Water (NADW) in both interglacial and glacial intervals. This observation precludes a hypothesized dramatic shoaling of NADW above ∼2,000 m. Our evidence, however, indicates greater stratification between mid-depth and abyssal sites throughout the last glacial cycle, conditions that developed in Marine Isotope Stage 5. These conditions still may have contributed to glacial carbon storage in the deep ocean, despite little change in the mid-depth ocean structure.
    Description: This work was supported by NSF grant OCE-1831415 (S. K. V. Hines, S. L. Goldstein., S. R. Hemming.).
    Description: 2022-04-25
    Keywords: Ocean circulation ; Neodymium isotopes ; Carbon isotopes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2022-05-27
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 48(22), (2021): e2021GL094396, https://doi.org/10.1029/2021GL094396.
    Description: Newly available mooring observations from the Overturning in the Subpolar North Atlantic Program (OSNAP) show an abrupt decline in Iceland Scotland Overflow (ISOW) salinity from 2017 to 2018 summer. Previous declines in ISOW salinity of similar magnitude have largely been attributed to changes in convectively formed deep waters in the Nordic Seas on decadal time scales. We show that this rapid decline in salinity was driven by entrainment of a major upper ocean salinity anomaly in the Iceland Basin. This is shown by tracking the propagation of the upper ocean anomaly into ISOW using a combination of mooring and Argo observations, surface drifter trajectories, and numerical model results. A 2-year total transit time from the upper ocean into the ISOW layer was found. The results show that entrainment allows for rapid modification of ISOW, and consequently the lower limb of Atlantic Meridional Overturning Circulation, on subdecadal timescales.
    Description: Financial support for this research was provided by the US National Science Foundation under grants OCE-1259398 and OCE-1756231. S. Zou is supported by the US National Science Foundation Grants OCE-1756361.
    Description: 2022-05-15
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Mayorova, T. D., Hammar, K., Jung, J. H., Aronova, M. A., Zhang, G., Winters, C. A., Reese, T. S., & Smith, C. L. Placozoan fiber cells: mediators of innate immunity and participants in wound healing. Scientific Reports, 11(1), (2021): 23343, https://doi.org/10.1038/s41598-021-02735-9.
    Description: Placozoa is a phylum of non-bilaterian marine animals. These small, flat organisms adhere to the substrate via their densely ciliated ventral epithelium, which mediates mucociliary locomotion and nutrient uptake. They have only six morphological cell types, including one, fiber cells, for which functional data is lacking. Fiber cells are non-epithelial cells with multiple processes. We used electron and light microscopic approaches to unravel the roles of fiber cells in Trichoplax adhaerens, a representative member of the phylum. Three-dimensional reconstructions of serial sections of Trichoplax showed that each fiber cell is in contact with several other cells. Examination of fiber cells in thin sections and observations of live dissociated fiber cells demonstrated that they phagocytose cell debris and bacteria. In situ hybridization confirmed that fiber cells express genes involved in phagocytic activity. Fiber cells also are involved in wound healing as evidenced from microsurgery experiments. Based on these observations we conclude that fiber cells are multi-purpose macrophage-like cells. Macrophage-like cells have been described in Porifera, Ctenophora, and Cnidaria and are widespread among Bilateria, but our study is the first to show that Placozoa possesses this cell type. The phylogenetic distribution of macrophage-like cells suggests that they appeared early in metazoan evolution.
    Description: Open Access funding provided by the National Institutes of Health (NIH).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Brun, N. R., Salanga, M. C., Mora-Zamorano, F. X., Lamb, D. C., Goldstone, J. V., & Stegeman, J. J. Orphan cytochrome P450 20a1 CRISPR/Cas9 mutants and neurobehavioral phenotypes in zebrafish. Scientific Reports, 11(1), (2021): 23892, https://doi.org/10.1038/s41598-021-03068-3.
    Description: Orphan cytochrome P450 (CYP) enzymes are those for which biological substrates and function(s) are unknown. Cytochrome P450 20A1 (CYP20A1) is the last human orphan P450 enzyme, and orthologs occur as single genes in every vertebrate genome sequenced to date. The occurrence of high levels of CYP20A1 transcripts in human substantia nigra and hippocampus and abundant maternal transcripts in zebrafish eggs strongly suggest roles both in the brain and during early embryonic development. Patients with chromosome 2 microdeletions including CYP20A1 show hyperactivity and bouts of anxiety, among other conditions. Here, we created zebrafish cyp20a1 mutants using CRISPR/Cas9, providing vertebrate models with which to study the role of CYP20A1 in behavior and other neurodevelopmental functions. The homozygous cyp20a1 null mutants exhibited significant behavioral differences from wild-type zebrafish, both in larval and adult animals. Larval cyp20a1-/- mutants exhibited a strong increase in light-simulated movement (i.e., light–dark assay), which was interpreted as hyperactivity. Further, the larvae exhibited mild hypoactivity during the adaptation period of the optomotor assays. Adult cyp20a1 null fish showed a pronounced delay in adapting to new environments, which is consistent with an anxiety paradigm. Taken together with our earlier morpholino cyp20a1 knockdown results, the results described herein suggest that the orphan CYP20A1 has a neurophysiological role.
    Description: These studies were supported in part by the Boston University Superfund Research Program NIH 5P42ES007381 (MCS, NRB, FXM, JVG, JJS), the Woods Hole Center for Oceans and Human Health (NIH: P01ES021923 and P01ES028938; NSF: OCE-1314642 and OCE-1840381; NRB and JJS), and EBI/EMBL Medakatox NIEHS R01ES029917 (JVG). DCL was funded by a UK-US Fulbright Scholarship.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Beman, J. M., Vargas, S. M., Wilson, J. M., Perez-Coronel, E., Karolewski, J. S., Vazquez, S., Yu, A., Cairo, A. E., White, M. E., Koester, I., Aluwihare, L. I., & Wankel, S. D. Substantial oxygen consumption by aerobic nitrite oxidation in oceanic oxygen minimum zones. Nature Communications, 12(1), (2021): 7043, https://doi.org/10.1038/s41467-021-27381-7.
    Description: Oceanic oxygen minimum zones (OMZs) are globally significant sites of biogeochemical cycling where microorganisms deplete dissolved oxygen (DO) to concentrations 〈20 µM. Amid intense competition for DO in these metabolically challenging environments, aerobic nitrite oxidation may consume significant amounts of DO and help maintain low DO concentrations, but this remains unquantified. Using parallel measurements of oxygen consumption rates and 15N-nitrite oxidation rates applied to both water column profiles and oxygen manipulation experiments, we show that the contribution of nitrite oxidation to overall DO consumption systematically increases as DO declines below 2 µM. Nitrite oxidation can account for all DO consumption only under DO concentrations 〈393 nM found in and below the secondary chlorophyll maximum. These patterns are consistent across sampling stations and experiments, reflecting coupling between nitrate reduction and nitrite-oxidizing Nitrospina with high oxygen affinity (based on isotopic and omic data). Collectively our results demonstrate that nitrite oxidation plays a pivotal role in the maintenance and biogeochemical dynamics of OMZs.
    Description: This work was supported by NSF CAREER Grant OCE-1555375 to J.M.B. Metagenome sequencing was supported by the UCMEXUS-CONACyT Collaborative Grants Program (joint awards to J.M.B. and José García Maldonado).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Remple, K. L., Silbiger, N. J., Quinlan, Z. A., Fox, M. D., Kelly, L. W., Donahue, M. J., & Nelson, C. E. Coral reef biofilm bacterial diversity and successional trajectories are structured by reef benthic organisms and shift under chronic nutrient enrichment. Npj Biofilms and Microbiomes, 7(1), (2021): 84, https://doi.org/10.1038/s41522-021-00252-1.
    Description: Work on marine biofilms has primarily focused on host-associated habitats for their roles in larval recruitment and disease dynamics; little is known about the factors regulating the composition of reef environmental biofilms. To contrast the roles of succession, benthic communities and nutrients in structuring marine biofilms, we surveyed bacteria communities in biofilms through a six-week succession in aquaria containing macroalgae, coral, or reef sand factorially crossed with three levels of continuous nutrient enrichment. Our findings demonstrate how biofilm successional trajectories diverge from temporal dynamics of the bacterioplankton and how biofilms are structured by the surrounding benthic organisms and nutrient enrichment. We identify a suite of biofilm-associated bacteria linked with the orthogonal influences of corals, algae and nutrients and distinct from the overlying water. Our results provide a comprehensive characterization of marine biofilm successional dynamics and contextualize the impact of widespread changes in reef community composition and nutrient pollution on biofilm community structure.
    Description: This work was supported through grants from the National Science Foundation for Biological Oceanography (1923877 to C.E.N. and M.J.D., 1949033 to C.E.N. and 2118687 to L.W.K., and 1924281 to N.J.S.) and the National Fish and Wildlife Foundation (grant no. 44447 to C.E.N.). This paper is funded in part by the National Oceanic and Atmospheric Administration, Project A/AS-1, which is sponsored by the University of Hawaii Sea Grant College Program, SOEST, under Institutional Grant No. NA18OAR4170076 from NOAA Office of Sea Grant, Department of Commerce. This is CSUN marine biology contribution #365, UH Sea Grant contribution UNIHI-SEAGRANT-JC-21-06, and UH SOEST contribution 11435.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in James, B. D., Kimmins, K. M., Nguyen, M.-T., Lausch, A. J., & Sone, E. D. Attachment of zebra and quagga mussel adhesive plaques to diverse substrates. Scientific Reports, 11(1), (2021): 23998, https://doi.org/10.1038/s41598-021-03227-6.
    Description: Like marine mussels, freshwater zebra and quagga mussels adhere via the byssus, a proteinaceous attachment apparatus. Attachment to various surfaces allows these invasive mussels to rapidly spread, however the adhesion mechanism is not fully understood. While marine mussel adhesion mechanics has been studied at the individual byssal-strand level, freshwater mussel adhesion has only been characterized through whole-mussel detachment, without direct interspecies comparisons on different substrates. Here, adhesive strength of individual quagga and zebra mussel byssal plaques were measured on smooth substrates with varying hydrophobicity—glass, PVC, and PDMS. With increased hydrophobicity of substrates, adhesive failures occurred more frequently, and mussel adhesion strength decreased. A new failure mode termed 'footprint failure' was identified, where failure appeared to be adhesive macroscopically, but a microscopic residue remained on the surface. Zebra mussels adhered stronger and more frequently on PDMS than quagga mussels. While their adhesion strengths were similar on PVC, there were differences in the failure mode and the plaque-substrate interface ultrastructure. Comparisons with previous marine mussel studies demonstrated that freshwater mussels adhere with comparable strength despite known differences in protein composition. An improved understanding of freshwater mussel adhesion mechanics may help explain spreading dynamics and will be important in developing effective antifouling surfaces.
    Description: This work was supported by Discovery grant (#342455) to EDS from the National Sciences and Engineering Research Council (NSERC) of Canada (RGPIN-2019-06210).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Johnson, M. D., Swaminathan, S. D., Nixon, E. N., Paul, V. J., & Altieri, A. H. Differential susceptibility of reef-building corals to deoxygenation reveals remarkable hypoxia tolerance. Scientific Reports, 11(1), (2021): 23168, https://doi.org/10.1038/s41598-021-01078-9.
    Description: Ocean deoxygenation threatens the persistence of coastal ecosystems worldwide. Despite an increasing awareness that coastal deoxygenation impacts tropical habitats, there remains a paucity of empirical data on the effects of oxygen limitation on reef-building corals. To address this knowledge gap, we conducted laboratory experiments with ecologically important Caribbean corals Acropora cervicornis and Orbicella faveolata. We tested the effects of continuous exposure to conditions ranging from extreme deoxygenation to normoxia (~ 1.0 to 6.25 mg L−1 dissolved oxygen) on coral bleaching, photophysiology, and survival. Coral species demonstrated markedly different temporal resistance to deoxygenation, and within a species there were minimal genotype-specific treatment effects. Acropora cervicornis suffered tissue loss and mortality within a day of exposure to severe deoxygenation (~ 1.0 mg L−1), whereas O. faveolata remained unaffected after 11 days of continuous exposure to 1.0 mg L−1. Intermediate deoxygenation treatments (~ 2.25 mg L−1, ~ 4.25 mg L−1) elicited minimal responses in both species, indicating a low oxygen threshold for coral mortality and coral resilience to oxygen concentrations that are lethal for other marine organisms. These findings demonstrate the potential for variability in species-specific hypoxia thresholds, which has important implications for our ability to predict how coral reefs may be affected as ocean deoxygenation intensifies. With deoxygenation emerging as a critical threat to tropical habitats, there is an urgent need to incorporate deoxygenation into coral reef research, management, and action plans to facilitate better stewardship of coral reefs in an era of rapid environmental change.
    Description: This research was funded by an award from the National Oceanic and Atmospheric Administration’s National Centers for Coastal Ocean Science Competitive Research Program to AA, MJ, and VP (NA18NOS4780170) through the University of Florida. MJ was funded by postdoctoral fellow awards from the Smithsonian Institution's Marine Global Earth Observatory (MarineGEO), the Smithsonian Marine Station, and Woods Hole Oceanographic Institution. This material is based on work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1842473. This is contribution 259 from the Coastal Hypoxia Research Program, 93 from the Smithsonian’s MarineGEO and Tennenbaum Marine Observatories Network, and 1167 from the Smithsonian Marine Station at Fort Pierce.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2022-05-27
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 48(20), (2021): e2021GL094693, https://doi.org/10.1029/2021GL094693.
    Description: Pacific Summer Water (PSW) plays a critical role in the ecosystem of the western Arctic Ocean, impacting sea-ice melt and providing freshwater to the basin. Most of the water exits the Chukchi Sea shelf through Barrow Canyon, but the manner in which this occurs and the ultimate fate of the water remain uncertain. Using an extensive collection of historical hydrographic and velocity data, we demonstrate how the PSW outflow depends on different wind conditions, dictating whether the warm water progresses eastward or westward away from the canyon. The current carrying the water westward along the continental slope splits into different branches, influenced by the strength and extent of the Beaufort Gyre, while the eastward penetration of PSW along the shelfbreak is limited. Our results provide the first broad-scale view of how PSW is transferred from the shelf to the basin, highlighting the role of winds, boundary currents, and eddy exchange.
    Description: Funding for the project was provided by National Science Foundation grant OPP-1733564 and National Oceanic and Atmospheric Administration grant NA14OAR4320158 (P. Lin, R. S. Pickart, J. Li), and Trond Mohn Foundation Grant BFS2016REK01 (K. Vage).
    Description: 2022-04-01
    Keywords: Pacific Summer Water ; Arctic ; Beaufort Gyre ; Chukchi Slope Current ; Beaufort Shelfbreak Jet ; Barrow Canyon
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2022-05-27
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 126(12),(2021): e2021JC017549, https://doi.org/10.1029/2021JC017549.
    Description: Rivers deliver freshwater and entrained terrestrial materials into the coastal ocean from adjacent continental landmasses. In the coastal Arctic, a large fraction of terrestrially sourced dissolved and particulate organic carbon (DOC and POC) is delivered by snowpack meltwaters of the spring freshet, when many coastal ocean regions remain covered by landfast ice. Here we report on an array of moored sensors and telemetering ice buoys deployed in advance of the 2018 spring freshet in Stefansson Sound near Prudhoe Bay, Alaska. This instrumented array monitored temporal and spatial variations in hydrographic properties before and during the freshet, as well as optical properties that serve as proxies for DOC and POC contained in the freshet plumes. The temporal evolution of these optical signals occurred in five stages, each associated with characteristic water column structural and kinematic characteristics. Spatial differences among fluorescent dissolved organic matter (FDOM) and optical backscatter (OBS) signals across the ice buoy array, evident later during the freshet, allowed identification of plume waters sourced from the Kuparuk, Sagavanirktok, and Shaviovik drainage basins.
    Description: This work was funded by the National Aeronautics and Space Administration's Carbon Cycle and Ecosystems program (NNX17AI72G). This is contribution #11 from the Scholarly Union of Bio-Physical Arctic Researchers.
    Description: 2022-05-25
    Keywords: arctic ; estuarine ; carbon ; optics ; rivers ; sea ice
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2022-05-27
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 126(12),(2021): e2021JC017884, https://doi.org/10.1029/2021JC017884.
    Description: The Southern Ocean, an important region for the uptake of anthropogenic carbon dioxide (CO2), features strong surface currents due to substantial mesoscale meanders and eddies. These features interact with the wind and modify the momentum transfer from the atmosphere to the ocean. Although such interactions are known to reduce momentum transfer, their impact on air-sea carbon exchange remains unclear. Using a 1/20° physical-biogeochemical coupled ocean model, we examined the impact of the current-wind interaction on the surface carbon concentration and the air-sea carbon exchange in the Southern Ocean. The current-wind interaction decreased winter partial pressure of CO2 (pCO2) at the ocean surface mainly south of the northern subantarctic front. It also reduced pCO2 in summer, indicating enhanced uptake, but not to the same extent as the winter loss. Consequently, the net outgassing of CO2 was found to be reduced by approximately 17% when including current-wind interaction. These changes stem from the combined effect of vertical mixing and Ekman divergence. A budget analysis of dissolved inorganic carbon (DIC) revealed that a weakening of vertical mixing by current-wind interaction reduces the carbon supply from below, and particularly so in winter. The weaker wind stress additionally lowers the subsurface DIC concentration in summer, which can affect the vertical diffusive flux of carbon in winter. Our study suggests that ignoring current-wind interactions in the Southern Ocean can overestimate winter CO2 outgassing.
    Description: The Southern Ocean, an important region for the uptake of anthropogenic carbon dioxide (CO2), features strong surface currents due to substantial mesoscale meanders and eddies. These features interact with the wind and modify the momentum transfer from the atmosphere to the ocean. Although such interactions are known to reduce momentum transfer, their impact on air-sea carbon exchange remains unclear. Using a 1/20° physical-biogeochemical coupled ocean model, we examined the impact of the current-wind interaction on the surface carbon concentration and the air-sea carbon exchange in the Southern Ocean. The current-wind interaction decreased winter partial pressure of CO2 (pCO2) at the ocean surface mainly south of the northern subantarctic front. It also reduced pCO2 in summer, indicating enhanced uptake, but not to the same extent as the winter loss. Consequently, the net outgassing of CO2 was found to be reduced by approximately 17% when including current-wind interaction. These changes stem from the combined effect of vertical mixing and Ekman divergence. A budget analysis of dissolved inorganic carbon (DIC) revealed that a weakening of vertical mixing by current-wind interaction reduces the carbon supply from below, and particularly so in winter. The weaker wind stress additionally lowers the subsurface DIC concentration in summer, which can affect the vertical diffusive flux of carbon in winter. Our study suggests that ignoring current-wind interactions in the Southern Ocean can overestimate winter CO2 outgassing.
    Description: 2022-05-15
    Keywords: Southern Ocean ; Current-Wind interaction ; CO2 flux ; Air-Sea interaction ; Biogeochemistry ; DIC
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Shinoda, T., Pei, S., Wang, W., Fu, J. X., Lien, R.-C., Seo, H., & Soloviev, A. Climate Process Team: improvement of ocean component of NOAA Climate Forecast System relevant to Madden-Julian Oscillation simulations. Journal of Advances in Modeling Earth Systems, 13(12), (2021): e2021MS002658, https://doi.org/10.1029/2021MS002658.
    Description: Given the increasing attention in forecasting weather and climate on the subseasonal time scale in recent years, National Oceanic and Atmospheric Administration (NOAA) announced to support Climate Process Teams (CPTs) which aim to improve the Madden-Julian Oscillation (MJO) prediction by NOAA’s global forecasting models. Our team supported by this CPT program focuses primarily on the improvement of upper ocean mixing parameterization and air-sea fluxes in the NOAA Climate Forecast System (CFS). Major improvement includes the increase of the vertical resolution in the upper ocean and the implementation of General Ocean Turbulence Model (GOTM) in CFS. In addition to existing mixing schemes in GOTM, a newly developed scheme based on observations in the tropical ocean, with further modifications, has been included. A better performance of ocean component is demonstrated through one-dimensional ocean model and ocean general circulation model simulations validated by the comparison with in-situ observations. These include a large sea surface temperature (SST) diurnal cycle during the MJO suppressed phase, intraseasonal SST variations associated with the MJO, ocean response to atmospheric cold pools, and deep cycle turbulence. Impact of the high-vertical resolution of ocean component on CFS simulation of MJO-associated ocean temperature variations is evident. Also, the magnitude of SST changes caused by high-resolution ocean component is sufficient to influence the skill of MJO prediction by CFS.
    Description: This research was supported by NOAA Grant NA15OAR431074. Computing resources were provided partly by the HPC systems at the Texas A&M University (College Station and Corpus Christi) and the Climate Simulation Laboratory at NCAR's Computational and Information Systems Laboratory, sponsored by the National Science Foundation. TS and SP are supported by DOD Grant W911NF-20-1-0309. TS is also supported by NSF Grant OCE-1658218 and NOAA Grant NA17OAR4310256.
    Keywords: Climate Process Team ; NOAA Climate Forecast System ; Madden-Julian Oscillation ; DYNAMO field campaign ; ocean mixing process
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Tyne, R. L., Barry, P. H., Lawson, M., Byrne, D. J., Warr, O., Xie, H., Hillegonds, D. J., Formolo, M., Summers, Z. M., Skinner, B., Eiler, J. M., & Ballentine, C. J. Rapid microbial methanogenesis during CO2 storage in hydrocarbon reservoirs. Nature, 600(7890), (2021): 670-674, https://doi.org/10.1038/s41586-021-04153-3.
    Description: Carbon capture and storage (CCS) is a key technology to mitigate the environmental impact of carbon dioxide (CO2) emissions. An understanding of the potential trapping and storage mechanisms is required to provide confidence in safe and secure CO2 geological sequestration1,2. Depleted hydrocarbon reservoirs have substantial CO2 storage potential1,3, and numerous hydrocarbon reservoirs have undergone CO2 injection as a means of enhanced oil recovery (CO2-EOR), providing an opportunity to evaluate the (bio)geochemical behaviour of injected carbon. Here we present noble gas, stable isotope, clumped isotope and gene-sequencing analyses from a CO2-EOR project in the Olla Field (Louisiana, USA). We show that microbial methanogenesis converted as much as 13–19% of the injected CO2 to methane (CH4) and up to an additional 74% of CO2 was dissolved in the groundwater. We calculate an in situ microbial methanogenesis rate from within a natural system of 73–109 millimoles of CH4 per cubic metre (standard temperature and pressure) per year for the Olla Field. Similar geochemical trends in both injected and natural CO2 fields suggest that microbial methanogenesis may be an important subsurface sink of CO2 globally. For CO2 sequestration sites within the environmental window for microbial methanogenesis, conversion to CH4 should be considered in site selection.
    Description: R.L.T. was supported by a Natural Environment Research Council studentship (grant reference NE/L002612/1). C.J.B. and P.H.B. acknowledge A. Regberg and B. Meurer for their support of the project and help with sample collection. C.J.B. was part supported by an Earth4D CIFAR fellowship. P.H.B. was supported by NSF awards 1923915 and 2015789. O.W. was supported by Natural Sciences and Engineering Research Council of Canada Discovery and Accelerator grants awarded to the Sherwood Lollar research group and acknowledges B. Sherwood Lollar’s support for the project. Z.M.S. acknowledges J. Biddle and G. Christman for their help in generating the microbial data.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2022-08-03
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Schmidbaur, H., Kawaguchi, A., Clarence, T., Fu, X., Hoang, O. P., Zimmermann, B., Ritschard, E. A., Weissenbacher, A., Foster, J. S., Nyholm, S., Bates, P. A., Albertin, C. B., Tanaka, E., & Simakov, O. Emergence of novel cephalopod gene regulation and expression through large-scale genome reorganization. Nature Communications, 13(1), (2022): 2172, https://doi.org/10.1038/s41467-022-29694-7.
    Description: Coleoid cephalopods (squid, cuttlefish, octopus) have the largest nervous system among invertebrates that together with many lineage-specific morphological traits enables complex behaviors. The genomic basis underlying these innovations remains unknown. Using comparative and functional genomics in the model squid Euprymna scolopes, we reveal the unique genomic, topological, and regulatory organization of cephalopod genomes. We show that coleoid cephalopod genomes have been extensively restructured compared to other animals, leading to the emergence of hundreds of tightly linked and evolutionary unique gene clusters (microsyntenies). Such novel microsyntenies correspond to topological compartments with a distinct regulatory structure and contribute to complex expression patterns. In particular, we identify a set of microsyntenies associated with cephalopod innovations (MACIs) broadly enriched in cephalopod nervous system expression. We posit that the emergence of MACIs was instrumental to cephalopod nervous system evolution and propose that microsyntenic profiling will be central to understanding cephalopod innovations.
    Description: H.S., O.P.H., E.R., and O.S. were supported by the Austrian Science Fund (FWF) grant P30686-B29. O.S. was supported by Whitman Center Early Career Fellowship (Frank R. Lillie Quasi-Endowment Fund, L. & A. Colwin Summer Research Fellowship, Bell Research Award in Tissue Engineering). H.S. was supported by the short-term grant abroad (KWA) of the University of Vienna. H.S. and O.S. were supported by the University of Chicago/Vienna Strategic Partnership Programme Mobility Grant. A.K. was supported by the JSPS Postdoctoral Fellowship for Overseas Researchers program from Japan. C.B.A. was supported by the Hibbitt Early Career Fellowship. Eggs and paralarvae of E. scolopes were generated in part by support by the NASA Space Biology 80NSSC18K1465 awarded to J.S.F. S.V.N. was supported by the National Science Foundation IOS-1557914. This work was supported by the Francis Crick Institute, which receives its core funding from Cancer Research UK (FC0001003), the UK Medical Research Council (FC001003), and the Wellcome Trust (FC001003).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2022-08-04
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Caudron, C., Vandemeulebrouck, J., & Sohn, R. A. Turbulence-induced bubble nucleation in hydrothermal fluids beneath Yellowstone Lake. Communications Earth & Environment, 3(1), (2022): 103, https://doi.org/10.1038/s43247-022-00417-6.
    Description: Volcanic systems generate large amounts of gas, and understanding gas fluxes is a fundamental aspect of volcanology and hazard mitigation. Volcanic gases can be challenging to measure, but acoustic methods hold promise in underwater environments because gas bubbles are powerful sound sources. We deployed an acoustic system to study the nature of gas discharge at a large (~30 MW) thermal field on the floor of Yellowstone Lake, which has experienced numerous hydrothermal explosions since the last glaciation (~13.4 ka). We find that small (〈10 Pa) turbulent flow instabilities trigger the nucleation of CO2 bubbles in the saturated fluids. The observation of CO2 bubbles nucleating in hydrothermal fluids due to small pressure perturbations informs our understanding of hydrothermal explosions in Yellowstone Lake, and demonstrates that acoustic data in underwater environments can provide insight into the stability of gas-rich systems, as well as gas fluxes.
    Description: This research was supported by the National Science Foundation grant EAR-1516361 to R.A.S. All work in Yellowstone National Park was completed under an authorized research permit (YELL-2018-SCI-7018). We also acknowledge the IRGA 2021 Volquan project (funded by Université Grenoble Alpes) and Thomas Jefferson Fund Face Foundation (project TJF20_009 ‘Quantifying underwater volcano degassing using novel seismo-acoustic approaches’).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    facet.materialart.
    Unknown
    UNESCO | Paris, France
    Publication Date: 2022-09-28
    Description: There have been spectacular advances in the field of artificial intelligence (AI) in recent years, leading to inventions that we had never thought possible. Computers and robots now have the capacity to learn how to improve their own work, and even make decisions – this is done through an algorithm, of course, and without individual consciousness. All the same, we must not fail to ask some questions. Can a machine think? Towards a global code of ethics for artificial intelligence research © Evgenija Demnievska (evgenijademnievska.com) What is an AI capable of at this stage of its evolution? To what degree is it autonomous? Where does that leave human decision-making? More than ushering in a Fourth Industrial Revolution, AI is provoking a cultural revolution. It is undeniably destined to transform our future, but we don’t know exactly how, yet. This is why it inspires both fascination and fear. In this issue, the Courier presents its investigation to the reader, elaborating on several aspects of this cutting-edge technology at the frontiers of computer science, engineering and philosophy. It sets the record straight on a number of points along the way. Because, let’s be clear – as things stand, the AI cannot think. And we are very far from being able to download all the components of a human being into a computer! A robot obeys a set of routines that allows it to interact with us humans, but outside the very precise framework within which it is supposed to interact, it cannot forge a genuine social relationship. Even so, some of AI’s applications are already questionable – data collection that intrudes on privacy, facial recognition algorithms that are supposed to identify hostile behaviour or are imbued with racial prejudice, military drones and autonomous lethal weapons, etc. The ethical problems that AI raises – and will undoubtedly continue to raise tomorrow, with greater gravity – are numerous. While research is moving full speed ahead on the technical side of AI, not much headway has been made on the ethical front. Though many researchers have expressed concern about this, and some countries are starting to give it serious thought, there is no legal framework to guide future research on ethics on a global scale. “It is our responsibility to lead a universal and enlightened debate in order to enter this new era with our eyes wide open, without sacrificing our values, and to make it possible to establish a common global foundation of ethical principles,” says Director- General Audrey Azoulay, of UNESCO’s role, in this issue of the Courier (see pp. 37-39). An international regulatory instrument is essential for the responsible development of AI, a task that UNESCO is in the process of undertaking. The Courier lends this initiative its support, by exploring different avenues of thought on the subject.
    Description: OPENASFA INPUT
    Description: Published
    Description: Refereed
    Keywords: Ethics ; AI ; ASFA_2015::A::Artificial intelligence ; ASFA_2015::D::Digital records
    Repository Name: AquaDocs
    Type: Book/Monograph/Conference Proceedings
    Format: 72pp.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    facet.materialart.
    Unknown
    UNESCO | Paris, France
    Publication Date: 2022-09-30
    Description: The last several years have seen a discernible shift in global priorities towards advancing the concept of sustainable development. In particular, the establishment of the post-2015 development agenda and the 17 Sustainable Development Goals (SDGs) by the UN General Assembly points towards an integrated plan towards tackling global challenges. The goals seek to protect and improve five key areas of the world including people, planet, prosperity, peace and partnership. The intent of this paper is to emphasize the vital role that transboundary water cooperation plays in global development, and to map out the relationship that this cooperation has with the other goals. Existing and emerging rules and institutions have been developed in international law to minimise, and where possible halt, negative consequences stemming from poor management of transboundary waters. SDG 6 provides for an important spotlight on improving water and sanitation, however for the context of global development it is crucial for water management to be interpreted and actionably combined with the other relevant SDGs, rather than curtailed as an individual entity. From direct linkages to indirect references, transboundary water cooperation is intrinsically connected to several other principles of sustainable development reflected in the goals and targets, including environment, energy, and food amongst others, and therefore must be viewed as an integral piece of global water management. Furthermore, Target 6.5 requires a set of two indicators in order to fully capture the importance of both integrated water resources management (IWRM) and transboundary water cooperation in the implementation of the SDGs. It is paramount that an indicator is retained solely for the transboundary water cooperation element embedded in Target 6.5. This paper advocates for an indicator that should be broad enough to reward also cooperative frameworks aimed at developing a sound system of exchange of information, and not only fully fledged IWRM systems. This is particularly important in the context of transboundary aquifers governance, where many of the cooperative frameworks being discussed are at a very initial stage. The indicator can be reviewed throughout the implementation of the SDGs, especially in relation to the quantity and quality of the information that needs to be exchanged in order to meet the indicator. UNESCO-IHP and UNECE can play an important role, together with other members of UN Water, in monitoring this much needed indicator.
    Description: OPENASFA INPUT
    Description: Published
    Description: Not Known
    Keywords: Sustainable Development ; Transboundary Waters ; Sanitation ; SDG indicator 6.5.2.
    Repository Name: AquaDocs
    Type: Report
    Format: 45pp.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2022-09-30
    Description: Pursuant to 200 EX/Decision 5.I.B and 38 C/Resolution 19, the Director-General submits to the General Conference this information document which contains a summary of progress made in the implementation of the MAB Strategy 2015-2025 and the Lima Action Plan for UNESCO’s Man and the Biosphere (MAB) Programme and its World Network of Biosphere Reserves 2016-2025. Notably, this document includes information recently collected for and presented at the 29th session of the International Co-ordinating Council of the Man and Biosphere Programme held from 12 to 15 June 2017 at UNESCO Headquarters in Paris, France. The Man and the Biosphere (MAB) Programme Strategy 2015-2025 (“the MAB Strategy") was endorsed by the 38th session of the General Conference (38 C/Resolution 19) following a broad and transparent consultation process and the collective contributions of many Member States under the auspices of the MAB International Coordinating Council (MAB ICC). Through 38 C/Resolution 19, the General Conference also encouraged the MAB ICC, in cooperation with the MAB Secretariat, to finalize the development of the Lima Action Plan for UNESCO’s Man and the Biosphere (MAB) Programme and its World Network of Biosphere Reserves (WNBR) 2016-2025 (“Lima Action Plan”) in support of the MAB Strategy, and requested the Director-General to present to the Executive Board, at its 200th session, a progress report on the implementation of the MAB Strategy and the associated Lima Action Plan, including their contribution to the implementation and follow-up of the 2030 Agenda for Sustainable Development. At its 200th session, the Executive Board expressed its appreciation to the Director-General for the report and to Peru for hosting the Lima Congress and the 28th MAB ICC (14-17 March 2016, Lima, Peru). The Executive Board then endorsed the Lima Action Plan as adopted and endorsed respectively by the 28th MAB ICC and the Lima Congress and requested the Director-General to present a progress report on the implementation of the MAB Strategy for 2015-2025 and the Lima Action Plan to the 39th session of the General Conference (200 EX/Decision 5.I.B). The requested progress report is contained in the present document. Relevant information can also be found in the report of the MAB ICC on its activities (2016-2017) contained in document 39 C/REP/10. For ease of reference, the complete texts of the MAB Strategy, the Lima Action Plan and the Lima Congress Declaration are available in a single publication (in the six official languages of UNESCO) entitled “A New Roadmap for the Man and the Biosphere (MAB) Programme and its World Network of Biosphere Reserves”.
    Description: OPENASFA INPUT Report submitted for information to the UNESCO General Conference, 39th Session, Paris, 2017.
    Description: Published
    Description: Non Refereed
    Keywords: UNESCO General Conference ; Man and Biosphere ; Biosphere reserves ; Nature conservation ; Biodiversity ; Sustainable science ; Education for sustainable development ; Capacity Building ; Restore and enhance ecosystem services ; Sustainable use of natural resources ; Healthy and equitable societies ; Climate Change
    Repository Name: AquaDocs
    Type: Report
    Format: 5pp.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    facet.materialart.
    Unknown
    UNESCO | Paris, France
    Publication Date: 2022-09-30
    Description: In 2017, the UN General Assembly declared the UN Decade of Ocean Science for Sustainable Development (2021-2030). It has entrusted IOC-UNESCO with the design and delivery of the Decade to ensure that ocean science is indeed underpinning sustainable ocean management and the 2030 Sustainable Development Agenda more broadly. Fulfilling its mandate as trustee of the Ocean Decade, as well as delivering on a growing list of additional roles, in an oceanographic space that is both expanding and increasingly crowded, establishes an important opportunity but also an overarching challenge for IOC-UNESCO. In the context of the upcoming UN Decade of the Ocean, the IOC-UNESCO agreed with the Internal Oversight Service (IOS) on the merit of conducting an evaluation of its strategic positioning within the UN system and the broader landscape of ocean-related actors and programmes, taking into account relevant enabling policy frameworks to which the work of the Commission responds.
    Description: OPENASFA INPUT Published by UNESCO's Internal Oversight Service.
    Description: Published
    Description: Not Known
    Keywords: Evaluation ; International Oceanographic Commission of UNESCO ; Oceanography ; Scientific programmes
    Repository Name: AquaDocs
    Type: Report
    Format: 2pp.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2022-09-30
    Description: The present document contains information on activities of the Scientific and Technical Advisory Body and the Secretariat on the UN Decade of Ocean Science for Sustainable Development (2021-2030) & the UN Ocean Conference in Lisbon. 1. The United Nations have proclaimed the Decade to support efforts to gather ocean stakeholders worldwide behind a common framework that will ensure that ocean science can fully support countries in creating improved conditions for the sustainable development of the Ocean. 2. The Scientific and Technical Advisory Body (STAB) elaborated a Strategic Framework (see also full text in annex) on engaging in the UN Decade and presented it to the 8th Meeting of States Parties in 2021. The Meeting, in Resolution 4/8 MSP, welcomed the STAB’s Strategic Framework and reiterated the need to ensure full authorization of the concerned States and respect of confidentiality for unprotected sites in all mapping processes foreseen in it. The Meeting also called on Member States to support actions in the framework of the UN Decade of Ocean Science focusing on underwater and coastal cultural heritage financially. 3. In this regard, in February 2022, a letter was sent by the Secretariat to the States Parties to raise funding for the implementation of the Strategic Framework. Pending the necessary additional contributions, the STAB is invited to determine the priorities among the actions proposed in the Strategic Framework to launch its implementation.
    Description: OPENASFA INPUT Item 5 - 'Ocean Decade & Ocean Conference' of the Provisional Agenda of the 16th Meeting of the Scientific and Technical Advisory Body (STAB) of the Convention on the Protection of the Underwater Cultural Heritage held in Tunis, Tunisia on 6 and 7 May 2022.
    Description: Published
    Description: Non Refereed
    Keywords: United Nations Decade of Ocean Science for Sustainable Development ; Underwater Cultural Heritage ; Underwater archeology ; Ocean Science ; Sustainable Development ; SDG indicator 14 ; STAB
    Repository Name: AquaDocs
    Type: Report
    Format: 10pp.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2022-09-30
    Description: This item has been included in the provisional agenda of the 214th session of the Executive Board at the request of Colombia, Egypt, Kenya, Monaco, Morocco, Oman, Palau, Portugal, Serbia and Togo. An explanatory note, together with a proposed decision is attached. 1. The United Nations Educational, Scientific and Cultural Organization (UNESCO) undertakes a significant number of ocean-related activities. Founded in 1960, UNESCO’s Intergovernmental Oceanographic Commission (IOC) brings together 150 Member States. It coordinates major global ocean programmes such as ocean observing, data management, tsunami warning, develops ecosystem-based approaches to ocean management, and acts as a custodian agency for reporting on SDG targets 14.3 and 14.a. UNESCO is also the guardian of 232 marine biosphere reserves and 50 marine World Heritage sites of outstanding universal value. 2. It is within this context that UNESCO, through IOC, is coordinating the United Nations Decade of Ocean Science for Sustainable Development (“the Ocean Decade”), from 2021 to 2030. The Ocean Decade provides a common framework to ensure that ocean science can ably support countries in achieving the 2030 Agenda for Sustainable Development. This year, the Ocean Decade is high on agenda of major international summits, such as the “One Ocean Summit” (Brest, February 2022) and the UN Ocean Conference (Lisbon, June 2022), setting the stage for collective mobilization on ocean and climate issues at the 27th session of the Conference of the Parties (COP 27, Sharm El-Sheikh, November 2022) to the United Nations Framework Convention on Climate Change (UNFCCC). 3. At the One Ocean Summit, UNESCO announced its readiness to work with partners towards complete mapping of the seabed by 2030, compared to 20% currently, and to expand the work on ocean literacy, contributing to establishing more harmonious relations between humans and the ocean. These two announced ambitions complement other major UNESCO activities related to the ocean. It is relevant to note in this connection that knowledge of high-resolution ocean depth is essential to identifying the location of ocean faults, understanding of ocean currents, tides, and transport of sediments, anticipating seismic and tsunami risks, identifying natural sites and living marine resources that need to be safeguarded for sustainable exploitation. 4. The UNESCO ocean activities are conducted in line with resolutions and decisions adopted by UNESCO and IOC Member States. The second strategic objective of the UNESCO Medium-Term Strategy (2022-2029) is to “work towards sustainable societies by preserving the environment through the promotion of science, technology and natural heritage”. Its third outcome is to “enhance knowledge for climate action, respect for biodiversity, water and ocean management, and disaster risk reduction”. The IOC Medium-Term Strategy (2022-2029) focuses on ocean health, ocean-climate nexus, hazard warnings, ocean economy and knowledge of emerging ocean science issues. This work strongly contributes to the achievement of the 2030 Agenda for Sustainable Development, including Goal 14 “Conserve and sustainably use the Oceans, seas and marine resources for sustainable development”. 5. Overall, the negative impact of climate change, land-based pollution, and other stressors on the ocean and marine life is alarming. While there is considerable progress on the international arena in terms of awareness, global efforts deployed so far to overcome these negative effects are still not up to the hoped-for level. 6. The combination of the forthcoming African Conference on Priority Setting and Partnership Development for the UN Decade of Ocean Science for Sustainable Development (Alexandria, May 2022) and the UNFCCC COP 27 (Sharm el-Sheikh, November 2022) represents a unique opportunity to develop an active research agenda on ocean and climate in line with the UNESCO global priority of Africa. 7. It is suggested therefore that Executive Board adopt a decision that UNESCO continues its active involvement in major ocean related events of 2022, and supports IOC in developing necessary partnerships, further strengthening momentum of the Ocean Decade, successfully seeking extrabudgetary resources and increasing UNESCO’s overall contribution to the protection of the seas and ocean from the effects of climate change as well as the preservation of the sustainability and diversity of marine life.
    Description: OPENASFA INPUT
    Description: Published
    Description: Non Refereed
    Keywords: Member States ; Executive Board ; IOC and the Decade ; UN Ocean Conference ; United Nations Decade of Ocean Science for Sustainable Development ; Priority Africa ; Ocean Decade
    Repository Name: AquaDocs
    Type: Report
    Format: 5pp.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    facet.materialart.
    Unknown
    UNESCO | Paris, France
    Publication Date: 2022-09-30
    Description: Environmental DNA expeditions in UNESCO World Heritage Marine Sites: engaging citizen-scientists for biodiversity conservation of UNESCO sites.
    Description: Government of Flanders
    Description: OPENASFA INPUT
    Description: Published
    Keywords: Biodiversity ; Environmental DNA ; eDNA ; Marine environment ; Water analysis ; Oceanographic data ; OBIS ; Open Science ; Community participation ; Research projects ; World Heritage List
    Repository Name: AquaDocs
    Type: Other
    Format: 2pp.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3INTERACT Webinar on Data Repositories, Online, 2022-05-12Bremerhaven, PANGAEA
    Publication Date: 2022-10-04
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2022-10-04
    Description: The BRESEP project (Biosphere Reserves as a tool for the sustainable management of coastal areas and islands in the South Eastern Pacific) strengthens and promotes the creation of biosphere reserves as tools for innovative and appropriate practices from a social, cultural and environmental point of view. In addition, it promotes the creation of a network of collaboration and exchange of information and experiences on biodiversity loss, coastal zone management and sustainable development, particularly in coastal areas and in the islands of the South Eastern Pacific in Chile, Colombia, Ecuador, Panama and Peru. In this way, it contributes to improving the livelihoods of the inhabitants of the region. The BRESEP project is coordinated by the UNESCO Man and the Biosphere Program thanks to the financial support of the Government of Flanders of Belgium and has the support of the Intergovernmental Oceanographic Commission of UNESCO.
    Description: OPENASFA INPUT
    Description: Published
    Description: Not Known
    Keywords: SPINCAM ; ASFA_2015::C::Coastal zone management ; ASFA_2015::B::Biodiversity ; ASFA_2015::S::Sustainable development ; ASFA_2015::C::Coastal environment
    Repository Name: AquaDocs
    Type: Report
    Format: 21pp.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2022-10-04
    Description: A fundamental element towards attaining water security, water education has been at the heart of UNESCO’s Intergovernmental Hydrological Programme since its establishment in 1975. However, in much of Asia and the Pacific, water security remains elusive. Ensuring a water secure future for the region will require the unlocking of broader appreciation, acceptance and internalization of basic water science principles and concepts among experts and communities alike. For this, broader and more effective water education is required. For this potential to be fulfilled, reinforced human, financial and technical resources are required to deliver education, training and capacity development across large segments of society. Not only does this require the mobilization of a much larger contingent of trainers, instructors and conveners—it requires the development of new teaching and learning approaches, methodologies and curricula. This curriculum represents an invitation to tertiary-level educators as well as water managers and decision-makers to redouble efforts towards water security in Asia and the Pacific – and invitation grounded in a process that lies at the heart of UNESCO’s mission: the sharing of knowledge, experience and technologies – in this case among scientific, educational and water management communities across the region. Published with the support of the Government of Japan.
    Description: OPENASFA INPUT
    Description: Published
    Description: Not Known
    Keywords: Hydrology education ; Water security ; Ecohydrology ; Water resources management ; Climate Change ; Higher education ; Curriculum guides ; International Hydrographic Programme
    Repository Name: AquaDocs
    Type: Report
    Format: 120pp.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2022-10-03
    Description: Six years after the First International Conference on “Water, Megacities and Global Change”, held on the occasion of the 21st United Nations Conference on Climate Change (COP 21), which drew attention to the significant challenges megacities are facing, and proposed the creation of the Megacities Alliance on Water and Climate (MAWAC), UNESCO’s Division of Water Sciences and ARCEAU-IdF1 decided to join forces once again to co-organize the Second International Conference on Water, Megacities and Global Change (EauMega) at UNESCO Headquarters in Paris, France and online on a dedicated platform for the conference, on 11-14 January 2022. Organized in close collaboration with the Greater Paris Metropolis and the Greater Paris Sanitation Authority (SIAAP), and with the support of many other public and private partners, this conference builds on the results of the online Pre-Conference on Water, Megacities and Global Change, which took place in December 2020. The Pre-Conference event, which brought together more than 6,000 participants, helped the organizers identify the issues requiring further consideration during the Second International Conference on Water, Megacities and Global Change by selected scientists, water operators, decision-makers, representatives of basin authorities and civil society at large. Given their size, the challenges posed to Megacities by water management within the context of climate change are of particular importance. Indeed, they raise new and specific issues that require close collaboration between scientists who advance knowledge, operators and basin authorities (public and private) who innovate technically and socio-politically, and local decision-makers who can support new, just and more efficient models of water governance, while remaining in constant interaction with civil society. Following a Call for Papers launched in late 2019, this publication is a compilation of the best scientific articles selected and peer-reviewed by the 87 international experts responsible for designing the scientific programme of the conference. Reflecting the structure of the conference with its 12 thematic sessions, the Proceedings present all the peer-reviewed articles in the following thematic chapters: • Disaster Risk Reduction; • Sustainable Development Goals & Service continuity; • Knowledge of the technical and social conditions; • Governance modalities in megacities; • Holistic water management; • Land issues and challenges; • Planning tools. • Technical and technological solutions; • Innovative initiatives at governance, technical, institutional or social level; • New water culture; • Strengthening of sustainable solidarity; The publication not only provides a state of the art on the challenges that Megacities are facing in their management of water and of the new global changes they encounter, but also presents the latest innovative and multi-disciplinary solutions being used to overcome these challenges and ensure optimal and sustainable resource management. By compiling a collection of experiences and best practices at global level, integrating the following three aspects – megacities, water and global change including climate change – it is our hope that this publication will represent a source of inspiration for other Megacities and large urban centers to overcome similar challenges and strengthen their climate resilience. By promoting fruitful exchanges and synergies among megacities, research institutions, the private sector and civil society at large, as well as inspiring further joint research studies on climate change and water-security related issues, the conference represents without doubt a fundamental building block of the Megacities Alliance on Water and Climate (MAWAC). On behalf of the Conference organizers, we wish to thank the co-conveners and partners of this second major international Conference on Water, Megacities and Global Change, as well as all the authors for their valuable contribution and their recommendations.
    Description: Published
    Description: Refereed
    Keywords: Urban areas ; Water resources management ; Climate Change ; Governance ; Sustainable Development ; International Cooperation ; Disaster risk reduction
    Repository Name: AquaDocs
    Type: Book/Monograph/Conference Proceedings
    Format: 1172pp.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2022-10-05
    Description: Este documento de trabajo examina los vínculos entre el aprendizaje de la alfabetización, el desarrollo de competencias y el mundo del trabajo, en línea con el tema del Día Internacional de la Alfabetización (ILD, por sus siglas en inglés) 2018. Su objetivo es identificar acciones de política que ayudan a integrar el aprendizaje de la alfabetización y el desarrollo de competencias, con el objetivo de apoyar las vías hacia el empleo.
    Description: OPENASFA INPUT Documento de trabajo preparado para la Conferencia Internacional sobre “Alfabetización y desarrollo de competencias” (París, 7 de septiembre de 2018)
    Description: Published
    Description: Not Known
    Keywords: Desarrollo de competencias ; Alfabetización ; Educación ; Desempleo ; Igualdad de género
    Repository Name: AquaDocs
    Type: Report
    Format: 20pp.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2022-10-04
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biló, T., Straneo, F., Holte, J., & Le Bras, I. Arrival of new great salinity anomaly weakens convection in the Irminger Sea. Geophysical Research Letters, 49(11), (2022): e2022GL098857, https://doi.org/10.1029/2022gl098857.
    Description: The Subpolar North Atlantic is prone to recurrent extreme freshening events called Great Salinity Anomalies (GSAs). Here, we combine hydrographic ocean analyses and moored observations to document the arrival, spreading, and impacts of the most recent GSA in the Irminger Sea. This GSA is associated with a rapid freshening of the upper Irminger Sea between 2015 and 2020, culminating in annually averaged salinities as low as the freshest years of the 1990s and possibly since 1960. Upon the GSA propagation into the Irminger Sea over the Reykjanes Ridge, the boundary currents rapidly advected its signal around the basin within months while fresher waters slowly spread and accumulated into the interior. The anomalies in the interior freshened waters produced by deep convection during the 2017–2018 winter and actively contributed to the suppression of deep convection in the following two winters.
    Description: We gratefully acknowledge the US National Science Foundation for funding this work under grants OCE-1258823, OCE-1756272, OCE-1948335, and OCE-2038481.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2022-08-12
    Description: In every ocean, regional and national tsunami warning systems must maintain a high level of readiness so as to be able to efficiently and effectively act to provide for the public’s safety during fast-onset and rapidly-evolving natural disasters involving marine inundation of coastal areas. Because of the relative infrequency of tsunamis, but knowing that tsunamis can have widespread impact across oceans and seas, the UNESCO/IOC and its Member States have been advocating through their Intergovernmental Coordination Groups (ICGs) for the regular conduct of tsunami exercises. To maintain a high state of operational readiness, National Tsunami Warning Centres (NTWCs) and Civil Protection agencies (CPA) must regularly practice their emergency response procedures to ensure that vital communication links work seamlessly, and that agencies and response personnel know the roles that they will need to play during a real event.
    Description: Published
    Description: Refereed
    Keywords: Connected seas region ; Tsunami warning ; ASFA_2015::T::Tsunamis
    Repository Name: AquaDocs
    Type: Report
    Format: 383pp.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    facet.materialart.
    Unknown
    UNESCO | Paris, France
    Publication Date: 2022-08-12
    Description: International coordination of a tsunami warning system originated in the Pacific in 1968 under the auspices of the Intergovernmental Oceanographic Commission of UNESCO in cooperation with the International Tsunami Information Centre (ITIC) established on 12 November 1965 by the Intergovernmental Oceanographic Commission (IOC) and hosted by the National Weather Service of the National Oceanic and Atmospheric Administration (USA). As early as 1988, experts and Member States recognized the need to develop standardized tsunami terminology in the form of a glossary which had endorsement of the scientific community. The first edition of the Tsunami Glossary (IOC Technical series, 37, 1991) was published by IOC and ITIC and contained more than 2000 terms and definitions building on disciplines such as geophysics, oceanography, engineering and mathematics. Following the Indian Ocean tsunami of December 2004, the IOC was mandated by the United Nations to coordinate development of similar regional tsunami and other coastal hazards warning and mitigation systems in the Caribbean, the Northeastern Atlantic and the Mediterranean Sea, the Indian Ocean in addition to the Pacific Ocean. Expert groups from different regional perspectives developed a common understanding of language to be used for the development of the four regional systems. Under the coordination of ITIC, this international effort resulted in 2008 in a new edition of the Tsunami Glossary (IOC Technical Series No 85). Over the years the Glossary has been translated and is available in English (original), Arabic, Chinese, French, Indonesian, Spanish, Urdu, Korean, Tagalog, Thai and several other languages. Since 2015 changes to the content of the Tsunami Glossary are subject to the validation of the IOC Working Group on Tsunamis and Other Hazards related to Sea-Level Warning and Mitigation Systems (TOWS-WG) and subsequent endorsement by the Governing Bodies of the IOC. By this mechanism it is expected that the publication will be recognized and adopted by Member States as a validated standard in this field. The 2019 edition of Tsunami Glossary includes the definition of technical terms, and information on the expert and governance groups for tsunami warning and mitigation.
    Description: revision of an originally published in 2008
    Description: Published
    Description: Refereed
    Keywords: ASFA_2015::T::Tides ; ASFA_2015::T::Tsunamis
    Repository Name: AquaDocs
    Type: Report
    Format: 46pp.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2022-08-15
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Sievert, S. M., Buehring, S., Gulmann, L. K., Hinrichs, K.-U., Ristova, P. P., & Gomez-Saez, G. Fluid flow stimulates chemoautotrophy in hydrothermally influenced coastal sediments. Communications Earth & Environment, 3(1), (2022): 96, https://doi.org/10.1038/s43247-022-00426-5.
    Description: Hydrothermalism in coastal sediments strongly impacts biogeochemical processes and supports chemoautotrophy. Yet, the effect of fluid flow on microbial community composition and rates of chemoautotrophic production is unknown because rate measurements under natural conditions are difficult, impeding an assessment of the importance of these systems. Here, in situ incubations controlling fluid flow along a transect of three geochemically distinct locations at a shallow-water hydrothermal system off Milos (Greece) show that Campylobacteria dominated chemoautotrophy in the presence of fluid flow. Based on injected 13C-labelled dissolved inorganic carbon and its incorporation into fatty acids, we constrained carbon fixation to be as high as 12 µmol C cm−3 d−1, corresponding to areal rates up to 10-times higher than previously reported for coastal sediments, and showed the importance of fluid flow for supplying the necessary substrates to support chemoautotrophy. Without flow, rates were substantially lower and microbial community composition markedly shifted. Our results highlight the importance of fluid flow in shaping the composition and activity of microbial communities of shallow-water hydrothermal vents, identifying them as hotspots of microbial productivity.
    Description: Open Access funding enabled and organized by Projekt DEAL.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2022-08-15
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Sufke, F., Gutjahr, M., Keigwin, L. D., Reilly, B., Giosan, L., & Lippold, J. Arctic drainage of Laurentide Ice Sheet meltwater throughout the past 14,700 years. Communications Earth & Environment, 3(1), (2022): 98, https://doi.org/10.1038/s43247-022-00428-3.
    Description: During the last deglaciation substantial volumes of meltwater from the decaying Laurentide Ice Sheet were supplied to the Arctic, Gulf of Mexico and North Atlantic along different drainage routes, sometimes as catastrophic flood events. These events are suggested to have impacted global climate, for example initiating the Younger Dryas cold period. Here we analyze the authigenic Pb isotopic composition of sediments in front of the Arctic Mackenzie Delta, a sensitive tracer for elevated freshwater runoff of the retreating Laurentide Ice Sheet. Our data reveal continuous meltwater supply to the Arctic along the Mackenzie River since the onset of the Bølling–Allerød. The strongest Lake Agassiz outflow event is observed at the end of the Bølling–Allerød close to the onset of the Younger Dryas. In context of deglacial North American runoff records from the southern and eastern outlets, our findings provide a detailed reconstruction of the deglacial drainage chronology of the disintegrating Laurentide Ice Sheet.
    Description: Open Access funding enabled and organized by Projekt DEAL.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2022-08-26
    Description: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 127(3), (2022): e2021JC017839, https://doi.org/10.1029/2021JC017839.
    Description: Using long-term moorings data together with wind and sea ice measurements, we document the characteristics and variations of upwelling in Barrow Canyon and investigate the upwelled Atlantic Water (AW) on the Chukchi Sea shelf and how it impacts the ice cover. Driven by strong northeasterly winds, upwelling occurs more often in the cold months, and the occurrence tends to increase interannually since 2001. Over the 12-year mooring record at the mouth of Barrow Canyon, roughly 10% of the upwelling events can drive AW onto the Chukchi Sea shelf. Both AW and non-AW upwelling events have more occurrence and stronger strength in the cold months, but do not present a significant interannual trend. These variations are associated with the northeasterly winds. Comparing to the non-AW upwelling, the AW upwelling is generally characterized by more vertical displacement of the AW layer at the mouth of Barrow Canyon, and stronger up-canyon volume and heat transport. In the ice-covered period, these two types of upwelling have different consequences for forming polynyas on the shelf. Under similar wind forcing, the ice reduction appears confined in the coastal region in the non-AW upwelling events, while during AW upwelling events, the sea ice declines dramatically in the shelf interior with 15% more ice loss. It elucidates that the heat carried by the upwelled AW plays a considerable role in modulating the ice cover in the shelf interior.
    Description: This work was supported by the National Key Research and Development Program of China under Grant 2018YFC1406104; and the National Nature Science Foundation of China under grants NSFC 41425003 and NSFC 41971084 (S. Li, T. Dou, C. Xiao, and D. Qin); and the National Science Foundation under grants PLR-1504333 and OPP-1733564; the National Oceanic and Atmospheric Administration under grant NA14OAR4320158 (P. Lin); Arctic Challenge for Sustainability II (ArCSII, M. Itoh, T. Kikuchi).
    Description: 2022-08-26
    Keywords: upwelling ; Atlantic Water ; Sea Ice ; Barrow Canyon ; Chukchi Sea
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2022-08-19
    Description: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography and Paleoclimatology 37, (2022): e2021PA004379, https://doi.org/10.1029/2021pa004379.
    Description: Atlantic Meridional Overturning Circulation (AMOC) plays a central role in the global redistribution of heat and precipitation during both abrupt and longer-term climate shifts. Over the next century, AMOC is projected to weaken due to greenhouse gas warming, though projecting its future behavior is dependent on a better understanding of how AMOC changes are forced. Seeking to resolve an apparent contradiction of AMOC trends from paleorecords of the more recent past, we reconstruct seawater cadmium, a nutrient-like tracer, in the Florida Straits over the last ∼8,000 years, with emphasis on the last millennium. The gradual reduction in seawater Cd over the last 8,000 years could be due to a reduction in AMOC, consistent with cooling Northern Hemisphere temperatures and a southward shift of the Intertropical Convergence Zone. However, it is difficult to reconcile this finding with evidence for an increase in geostrophic flow through the Florida Straits over the same time period. We combine data from intermediate water depth sediment cores to extend this record into the Common Era at sufficient resolution to address the broad scale changes of this time period. There is a small decline in the Cd concentration in the Late Little Ice Age relative to the Medieval Climate Anomaly, but this change was much smaller than the changes observed over the Holocene and on the deglaciation. This suggests that any trend in the strength of AMOC over the last millennium must have been very subtle.
    Description: This work was funded by the NSF Graduate Research Fellowship DGE-1148903 (SV) and NSF grant OCE-1459563 and OCE-1851900 (JLS).
    Keywords: AMOC ; seawater cadmium ; Florida Straits ; Holocene ; Little Ice Age
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2022-08-19
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Albertin, C. B., Medina-Ruiz, S., Mitros, T., Schmidbaur, H., Sanchez, G., Wang, Z. Y., Grimwood, J., Rosenthal, J. J. C., Ragsdale, C. W., Simakov, O., & Rokhsar, D. S. Genome and transcriptome mechanisms driving cephalopod evolution. Nature Communications, 13(1), (2022): 2427, https://doi.org/10.1038/s41467-022-29748-w.
    Description: Cephalopods are known for their large nervous systems, complex behaviors and morphological innovations. To investigate the genomic underpinnings of these features, we assembled the chromosomes of the Boston market squid, Doryteuthis (Loligo) pealeii, and the California two-spot octopus, Octopus bimaculoides, and compared them with those of the Hawaiian bobtail squid, Euprymna scolopes. The genomes of the soft-bodied (coleoid) cephalopods are highly rearranged relative to other extant molluscs, indicating an intense, early burst of genome restructuring. The coleoid genomes feature multi-megabase, tandem arrays of genes associated with brain development and cephalopod-specific innovations. We find that a known coleoid hallmark, extensive A-to-I mRNA editing, displays two fundamentally distinct patterns: one exclusive to the nervous system and concentrated in genic sequences, the other widespread and directed toward repetitive elements. We conclude that coleoid novelty is mediated in part by substantial genome reorganization, gene family expansion, and tissue-dependent mRNA editing.
    Description: We thank the Marine Resources Center and the Cephalopod program at the Marine Biological Laboratory for supplying D. pealeii, R. Hanlon for the image in Fig. 1a, R. Hanlon and S. Senft for help with tissue dissection, Dr. Chuck Winkler for supplying O. bimaculoides, B. Burford and W. Gilly for assistance with D. opalescens collection, and the Vienna Zoo (Tiergarten Schönbrunn), particularly R. Halbauer, A. Weissenbacher, and the aquarist team for E. scolopes husbandry. Computation was done using the Life Science Cluster at the University of Vienna. This project began with generous funding from the Grass Foundation, administered by the MBL through J.J.R. It was also supported by Austrian Science fund FWF (P30686-B29) to H.S. and O.S., the Whitman Center Early Career Fellowship to O.S., the Okinawa Institute of Science and Technology Molecular Genetics Unit, Chan-Zuckerberg BioHub, and the Marthella Foskett Brown Chair in Computational Biology to D.S.R, NSF grant (IOS-1354898) to C.W.R, and the Hibbitt Early Career Fellowship to C.B.A. Sequencing at the University of Chicago Functional Genomics Facility was partially supported by the NIH (5UL1TR002389-02 and UL1 TR000430).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2022-08-19
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Yuan, D., Yin, X., Li, X., Corvianawatie, C., Wang, Z., Li, Y., Yang, Y., Hu, X., Wang, J., Tan, S., Surinati, D., Purwandana, A., Wardana, A., Ismail, M., Budiman, A., Bayhaqi, A., Avianto, P., Santoso, P., Kusmanto, E., Dirhamsyah, Arifin, Z., & Pratt, L. A Maluku Sea intermediate western boundary current connecting Pacific Ocean circulation to the Indonesian Throughflow. Nature Communications, 13(1), (2022): 2093, https://doi.org/10.1038/s41467-022-29617-6.
    Description: The Indonesian Throughflow plays an important role in the global ocean circulation and climate. Existing studies of the Indonesian Throughflow have focused on the Makassar Strait and the exit straits, where the upper thermocline currents carry North Pacific waters to the Indian Ocean. Here we show, using mooring observations, that a previous unknown intermediate western boundary current (with the core at ~1000 m depth) exists in the Maluku Sea, which transports intermediate waters (primarily the Antarctic Intermediate Water) from the Pacific into the Seram-Banda Seas through the Lifamatola Passage above the bottom overflow. Our results suggest the importance of the western boundary current in global ocean intermediate circulation and overturn. We anticipate that our study is the beginning of more extensive investigations of the intermediate circulation of the Indo-Pacific ocean in global overturn, which shall improve our understanding of ocean heat and CO2 storages significantly.
    Description: This study is supported by NSFC (D.Y., Z.W., Y.L., Y.Y., S.T., J.W., and X.L.: 41720104008; D.Y., J.W., Y.L., X.L., Y.Y., S.T., X.H., and X.Y.: 91858204), the National Key Research and Development Program of China (D.Y. and X.L.: 2020YFA0608800), CAS (D.Y., Z.W., J.W., and Y.L.: XDB42000000), projects. Affiliations 1 and 2 share the first position. D.Y. is supported by QMSNL (2018SDKJ0104-02), and Shandong Provincial (U1606402) and the “Kunpeng Outstanding Scholar Program” of the FIO/NMR of China, J.W. supported by NSFC (41776011), Z.W. by NSFC (41876025).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2022-06-29
    Description: The possibility that Arctic sea ice loss weakens mid-latitude westerlies, promoting more severe cold winters, has sparked more than a decade of scientific debate, with apparent support from observations but inconclusive modelling evidence. Here we show that sixteen models contributing to the Polar Amplification Model Intercomparison Project simulate a weakening of mid-latitude westerlies in response to projected Arctic sea ice loss. We develop an emergent constraint based on eddy feedback, which is 1.2 to 3 times too weak in the models, suggesting that the real-world weakening lies towards the higher end of the model simulations. Still, the modelled response to Arctic sea ice loss is weak: the North Atlantic Oscillation response is similar in magnitude and offsets the projected response to increased greenhouse gases, but would only account for around 10% of variations in individual years. We further find that relationships between Arctic sea ice and atmospheric circulation have weakened recently in observations and are no longer inconsistent with those in models.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2022-06-28
    Description: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 127(1), (2022): e2021JC017715, https://doi.org/10.1029/2021JC017715.
    Description: The Mid-Atlantic Bight (MAB) hosts a large and productive marine ecosystem supported by high phytoplankton concentrations. Enhanced surface chlorophyll concentrations at the MAB shelf-break front have been detected in synoptic measurements, yet this feature is not present in seasonal means. To understand why, we assess the conditions associated with enhanced surface chlorophyll at the shelf break. We employ in-situ and remote sensing data, and a 2-dimensional model to show that Ekman restratification driven by upfront winds drives ephemerally enhanced chlorophyll concentrations at the shelf-break front in spring. Using 8-day composite satellite-measured surface chlorophyll concentration data from 2003–2020, we constructed a daily running mean (DRM) climatology of the cross-shelf chlorophyll distribution for the northern MAB region. While the frontal enhancement of chlorophyll is apparent in the DRM climatology, it is not captured in the seasonal climatology due to its short duration of less than a week. In-situ measurements of the frontal chlorophyll enhancement reveal that chlorophyll is highest in spring when the shelf-break front slumps offshore from its steep wintertime position causing restratification in the upper part of the water column. Several restratification mechanisms are possible, but the first day of enhanced chlorophyll at the shelf break corresponds to increasing upfront winds, suggesting that the frontal restratification is driven by offshore Ekman transport of the shelf water over the denser slope water. The 2-dimensional model shows that upfront winds can indeed drive Ekman restratification and alleviate light limitation of phytoplankton growth at the shelf-break front.
    Description: This research was supported by the National Science Foundation (OCE-1657803, OCE-1657855, and OCE-1655686) and the Dalio Explorer Fund. Support for H. Oliver was provided by the WHOI Postdoctoral Scholar program.
    Description: 2022-06-28
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2022-09-07
    Description: This publication outlines good management practices but also explores how the protection of WWII UCH can benefit local communities and contribute to sustainable development in the region. The Pacific region covers about one-third of the total surface area of the Earth and has a long history of human migration and settlement. Beneath the waters of the Pacific Ocean lie traces of human existence that span across the centuries. These sites include ancient sunken villages, traditional fish traps of indigenous communities, and shipwrecks of missionaries and explorers. There is also a large number of shipwrecks and aircraft dated from WWII when the Pacific Ocean became the theatre of some of the fiercest battles of that time. Some of these sites are the final resting place of many lives and remain a sombre reminder of tragedies that wars bring upon people. Today many of these sites have become popular diving sites for tourists. However, some of the WWII-related UCH are slowly degrading with increasing risk of oil pollution, particularly in the event of severe storms.
    Description: Tokai University and the Heritage Emergency Fund at UNESCO
    Description: UNESCO hopes that government officials, policymakers, academics and communities engaged in UCH and broader ocean management issues will use this work as a resource to develop guidelines for the effective and sustainable management of WWII-related UCH in the Pacific. This publication was made possible by financial assistance from the UNESCO Heritage Emergency Fund and Tokai University, Japan. OpenASFA INPUT
    Description: Published
    Description: Refereed
    Keywords: Underwater Cultural Heritage ; ASFA_2015::U::Underwater structures ; ASFA_2015::H::Human impact
    Repository Name: AquaDocs
    Type: Report
    Format: 112pp.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    facet.materialart.
    Unknown
    UNESCO | Paris, France
    Publication Date: 2022-09-21
    Description: The book highlights the achievements made in the management and conservation of cultural and natural heritage in Africa, reflects on the dynamic nature of this heritage, and provides recommendations to ensure its safeguarding. UNESCO is committed to working closely with African States Parties and our numerous partners to ensure that the recommendations from the conference are effectively implemented. To this end, it is essential to mobilize the necessary resources to support African institutions to achieve these recommendations. These mobilization efforts must include the participation of African youth, whose role is critical to sustainability as future guardians and caretakers of Africa’s rich heritage. It is for this reason that I call upon all readers to support sustainable development at World Heritage sites in sub-Saharan Africa for the benefit of future generations and the global community
    Description: OPENASFA INPUT
    Description: Published
    Description: Refereed
    Keywords: ASFA_2015::S::Sustainable development ; ASFA_2015::E::Ecosystems
    Repository Name: AquaDocs
    Type: Report
    Format: 274pp.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    facet.materialart.
    Unknown
    UNESCO | Paris, France
    Publication Date: 2022-09-21
    Description: The publication of this issue marking the relaunch of the UNESCO Courier is particularly fitting, given that it falls within the 2030 Agenda for Sustainable Development that the United Nations adopted in September 2015. This new agenda represents a turning point towards a more humanistic attitude in global development policies, relying on people’s capacities to respond to the challenges of peace and climate change through education, science and culture, which is an underlying element of each of the objectives of sustainable development. We are convinced that in a world full of limitations — in terms of our resources and our means — humanity can count on the renewable resources of its intelligence, creativity and ingenuity. This wealth, fostered by the moral requirement to respect the rights and dignity of each individual, represents an infinite source of progress. To unlock this potential, we must also help raise awareness of the creative wealth of humanity, and the Courier can contribute to this by circulating words of peace, trust and intelligence in response to the discourse of hatred, fear and rejection that currently spreads so easily on the internet and on the streets. The UNESCO Courier is also a powerful tool of this fundamental aspiration, and I call upon all UNESCO Member States and partners, and first and foremost all intellectuals, artists and experts, to make their voices heard by enriching the pages of this Courier, which has inspired so many generations of readers and will continue to do so for a long time.
    Description: OPENASFA INPUT
    Description: Published
    Description: Non Refereed
    Keywords: SDGs ; Sustainable Development Goals ; Agenda 2030 ; Quality of Education ; Gender Equality ; Clean Water and Sanitation ; Industry, Innovation and Infrastructure ; Sustainable cities and communities ; Climate Action ; Life below water ; Life on land ; Peace, Justice and strong institutions
    Repository Name: AquaDocs
    Type: Book/Monograph/Conference Proceedings
    Format: 76pp.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2022-09-21
    Description: UNESCO’s Global Action Programme (GAP) was launched at the World Conference on Education for Sustainable Development (ESD) in November 2014 in Aichi-Nagoya, Japan as a follow-up programme to the Decade of ESD (2005-2014). Five Partner Networks were established by UNESCO to drive implementation of the GAP on ESD and to serve as a global community of practice. A Partner Network exists for each of the GAP’s five Priority Action Areas, which are: 1) advancing policy; 2) transforming learning and training environments; 3) building capacities of educators and trainers; 4) empowering and mobilizing youth; 5) accelerating sustainable solutions at local level. This booklet contains profiles of the current 96 members (also called Key Partners) of the GAP Partner Networks. Each Key Partner is listed in alphabetical order within one of the five Partner Networks. Each profile presents the main objective of their work, their GAP launch commitment and specific activities that contribute to the GAP, as well as related website links and contact information for the organization’s focal point. Key Partners are chosen from all regions of the world for their extensive outreach capacity and their ability to innovate and have major impact on ESD. Key Partners are expected to create synergies and joint activities among themselves, as well as to reach out to a wider group of stakeholders beyond the Partner Networks. This booklet will facilitate and intensify synergies between the GAP activities of the Key Partners, and catalyze further action from other ESD stakeholders. It complements the GAP Information folder ( http://unesdoc. unesco.org/images/0024/002462/246270e.pdf) by offering additional details on each GAP Key Partner. The Key Partners’ profiles will also be made available on the UNESCO GAP Clearinghouse website: https://en.unesco.org/gap At the back of the booklet you will also find a list of UNESCO GAP Secretariat staff who can be contacted for assistance on relevant topics and activities.
    Description: OPENASFA INPUT
    Description: Published
    Description: Non Refereed
    Keywords: Education ; Global Action Programme (GAP) ; Eduction for Sustainable Development (ESD) ; Outreach capacity ; SDG indicator 4
    Repository Name: AquaDocs
    Type: Report
    Format: 112pp.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2022-09-24
    Description: Under the overall goal to enhance the capacity for the UCH safeguarding, the objectives of this consultancy are to support the national process towards ratification (or implementation) of the UNESCO Convention on the Protection of the Underwater Cultural Heritage 2001 (UCH Convention) by developing recommendations based on analysis on the two aspects; i) UCH-related policies/laws/legislation and ii) UCH-related programmes/initiatives, in the five states (Federated States of Micronesia, Kiribati, Nauru, Palau and Republic of the Marshall Islands) in Micronesia. The Assignment involves the following; • To map the current UCH-related policies/laws/legislation in the five states in Micronesia; • To map the current UCH safeguarding programme/projects both in the public and civil society sectors in the five countries in Micronesia; • To identify gaps to be addressed in order to strengthen the UCH safeguarding for sustainable development and to join (or implement) the UCH Convention; and • To provide recommendations as a way forward. In drafting the report, the following consideration were taken into account: • The diversity of types of UCH that exist in the countries concerned and their tangible and intangible aspects; • The policies/laws/legislation and Programmes/Initiatives pertaining to UCH safeguarding for sustainable development beyond the culture/heritage sector (eg. fishery, education, ocean transportation, environment, tourism, customs, climate change, etc.) • The programmes/initiatives both in the government and civil society sectors; • Linkage of UCH safeguarding to national sustainable development plan.
    Description: OpenASFA input
    Description: Published
    Description: Not Known
    Keywords: Underwater Cultural Heritage ; ASFA_2015::C::Cultures
    Repository Name: AquaDocs
    Type: Report
    Format: 143pp.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2022-09-24
    Description: A combination of anthropogenic and natural pressures is impacting the health and productivity of LMEs, compromising the sustainability of LME ecosystem services. These pressures are accelerating, and without concerted action their impacts could become irreversible.
    Description: OPENASFA INPUT
    Description: Published
    Description: Not Known
    Keywords: Large marine ecosystems (LME) ; Ocean acidification ; Nutrients ; Human impact ; ASFA_2015::E::Ecosystems ; ASFA_2015::B::Biodiversity ; ASFA_2015::S::Sustainable development
    Repository Name: AquaDocs
    Type: Report
    Format: 24pp.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2022-09-23
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Pattanayak, R., Underwood, R., Crowley, M. R., Crossman, D. K., Morgan, J. R., & Yacoubian, T. A. Deletion in chromosome 6 spanning alpha-synuclein and multimerin1 loci in the Rab27a/b double knockout mouse. Scientific Reports, 12(1), (2022): 9837, https://doi.org/10.1038/s41598-022-13557-8.
    Description: We report an incidental 358.5 kb deletion spanning the region encoding for alpha-synuclein (αsyn) and multimerin1 (Mmrn1) in the Rab27a/Rab27b double knockout (DKO) mouse line previously developed by Tolmachova and colleagues in 2007. Western blot and RT-PCR studies revealed lack of αsyn expression at either the mRNA or protein level in Rab27a/b DKO mice. PCR of genomic DNA from Rab27a/b DKO mice demonstrated at least partial deletion of the Snca locus using primers targeted to exon 4 and exon 6. Most genes located in proximity to the Snca locus, including Atoh1, Atoh2, Gm5570, Gm4410, Gm43894, and Grid2, were shown not to be deleted by PCR except for Mmrn1. Using whole genomic sequencing, the complete deletion was mapped to chromosome 6 (60,678,870–61,037,354), a slightly smaller deletion region than that previously reported in the C57BL/6J substrain maintained by Envigo. Electron microscopy of cortex from these mice demonstrates abnormally enlarged synaptic terminals with reduced synaptic vesicle density, suggesting potential interplay between Rab27 isoforms and αsyn, which are all highly expressed at the synaptic terminal. Given this deletion involving several genes, the Rab27a/b DKO mouse line should be used with caution or with appropriate back-crossing to other C57BL/6J mouse substrain lines without this deletion.
    Description: This study was supported by NIH [R56NS115767 (TAY), RF1NS115767-01A1 (TAY), P50NS108675 (TAY), and NINDS/NIA RF1NS078165 (JRM)].
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2022-05-29
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 126(12), (2021): e2021JC017621, https://doi.org/10.1029/2021JC017621.
    Description: Wind-driven coastal upwelling is an important process that transports nutrients from the deep ocean to the surface, fueling biological productivity. To better understand what affects the upward transport of nutrients (and many other properties such as temperature, salinity, oxygen, and carbon), it is necessary to know the depth of source waters (i.e., “source depth”) or the density of source waters (“source density”). Here, we focus on the upwelling driven by offshore Ekman transport and present a scaling relation for the source depth and density by considering a balance between the wind-driven upwelling and eddy-driven restratification processes. The scaling suggests that the source depth varies as (τ/N)1/2, while the source density goes as (τ1/2N3/2), where τ is the wind stress and N is the stratification. We test these relations using numerical simulations of an idealized coastal upwelling front with varying constant wind forcing and initial stratification, and we find good agreement between the theory and numerical experiments. This work highlights the importance of considering stratification in wind-driven upwelling dynamics, especially when thinking about how nutrient transport and primary production of coastal upwelling regions might change with increased ocean warming and stratification.
    Description: This work was funded by the ONR grant N00014-17-1-2390, and J. He was supported by the NASA FINESST award 80NSSC19K1350.
    Description: 2022-05-29
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2022-06-06
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Piecuch, C. G., Coats, S., Dangendorf, S., Landerer, F. W., Reager, J. T., Thompson, P. R., & Wahl, T. High-tide floods and storm surges during atmospheric rivers on the US West Coast. Geophysical Research Letters, 49(2), (2022): e2021GL096820, https://doi.org/10.1029/2021GL096820.
    Description: Atmospheric rivers (ARs) cause inland hydrological impacts related to precipitation. However, little is known about coastal hazards associated with these events. We elucidate high-tide floods (HTFs) and storm surges during ARs on the US West Coast during 1980–2016. HTFs and ARs cooccur more often than expected from chance. Between 10% and 63% of HTFs coincide with ARs on average, depending on location. However, interannual-to-decadal variations in HTFs are due more to tides and mean sea-level changes than storminess variability. Only 2–15% of ARs coincide with HTFs, suggesting that ARs typically must cooccur with high tides or mean sea levels to cause HTFs. Storm surges during ARs reflect local wind, pressure, and precipitation forcing: meridional wind and barometric pressure are primary drivers, but precipitation makes secondary contributions. This study highlights the relevance of ARs to coastal impacts, clarifies the drivers of storm surge during ARs, and identifies future research directions.
    Description: This work was supported by National Aeronautics and Space Administration Sea Level Change Team awards 80NSSC20K1241 and 80NM0018D0004 (to C. G. P.). The contribution from F. W. L. and J. T. R. represents research carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004).
    Keywords: atmospheric rivers ; high-tide flooding ; storm surge ; coastal impacts ; coastal hazards ; sea level
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2022-06-06
    Description: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 49(2), (2022): e2021GL096216, https://doi.org/10.1029/2021GL096216.
    Description: Ocean-to-ice heat flux (OHF) is important in regulating the variability of sea ice mass balance. Using surface drifting buoy observations, we show that during winter in the Arctic Ocean's Beaufort Gyre region, OHF increased from 0.76 ± 0.05 W/m2 over 2006–2012 to 1.63 ± 0.08 W/m2 over 2013–2018. We find that this is a result of thinner and less-compact sea ice that promotes enhanced winter ice growth, stronger ocean vertical convection, and subsurface heat entrainment. In contrast, Ekman upwelling declined over the study period, suggesting it had a secondary contribution to OHF changes. The enhanced ice growth creates a cooler, saltier, and deeper ocean surface mixed layer. In addition, the enhanced vertical temperature gradient near the mixed layer base in later years favors stronger entrainment of subsurface heat. OHF and its increase during 2006–2018 were not geographically uniform, with hot spots found in an upwelling region where ice was most seasonally variable.
    Description: This study was supported by the National Key Research and Development Program of China (2018YFA0605901), the National Natural Science Foundation of China (41941012; 42076225; 41776192; 41976219; 41706211). S. C. was supported by the Woods Hole Oceanographic Institution Early Career Scientist Fund and the Lenfest Fund for Early Career Scientists. J. Z. was supported by U.S. NSF Grants PLR-1603259, PLR-1602985, and NNA-1927785. M. S. was supported by U.S. ONR Grant N00014-17-1-2545, NSF Grants PLR 1603266 and OPP-1751363 and NOAA Grants NA15OAR4320063AM170 and NA20OAR4320271.
    Keywords: ocean-to-ice heat flux ; entrainment heat flux ; Ekman pumping ; Beaufort Gyre ; sea ice retreat ; ice leads
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2022-06-17
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Chan, D., Rigden, A., Proctor, J., Chan, P. W., & Huybers, P. Differences in radiative forcing, not sensitivity, explain differences in summertime land temperature variance change between CMIP5 and CMIP6. Earth’s Future, 10(2), (2022): e2021EF002402, https://doi.org/10.1029/2021EF002402.
    Description: How summertime temperature variability will change with warming has important implications for climate adaptation and mitigation. CMIP5 simulations indicate a compound risk of extreme hot temperatures in western Europe from both warming and increasing temperature variance. CMIP6 simulations, however, indicate only a moderate increase in temperature variance that does not covary with warming. To explore this intergenerational discrepancy in CMIP results, we decompose changes in monthly temperature variance into those arising from changes in sensitivity to forcing and changes in forcing variance. Across models, sensitivity increases with local warming in both CMIP5 and CMIP6 at an average rate of 5.7 ([3.7, 7.9]; 95% c.i.) × 10−3°C per W m−2 per °C warming. We use a simple model of moist surface energetics to explain increased sensitivity as a consequence of greater atmospheric demand (∼70%) and drier soil (∼40%) that is partially offset by the Planck feedback (∼−10%). Conversely, forcing variance is stable in CMIP5 but decreases with warming in CMIP6 at an average rate of −21 ([−28, −15]; 95% c.i.) W2 m−4 per °C warming. We examine scaling relationships with mean cloud fraction and find that mean forcing variance decreases with decreasing cloud fraction at twice the rate in CMIP6 than CMIP5. The stability of CMIP6 temperature variance is, thus, a consequence of offsetting changes in sensitivity and forcing variance. Further work to determine which models and generations of CMIP simulations better represent changes in cloud radiative forcing is important for assessing risks associated with increased temperature variance.
    Description: This study was supported by the Harvard Global Institute and NSF (Award 1903657). D. Chan was also supported by the Woods Hole Oceanographic Institute Weston Howland Jr. Postdoctoral Fellowship.
    Keywords: continental temperature variability ; extreme events ; soil moisture ; radiative forcing ; evapotranspiration ; CMIP
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2022-06-16
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Semper, S., Våge, K., Pickart, R., Jónsson, S., & Valdimarsson, H. Evolution and transformation of the North Icelandic Irminger Current along the North Iceland Shelf. Journal of Geophysical Research: Oceans, 127(3), (2022): e2021JC017700, https://doi.org/10.1029/2021jc017700.
    Description: The North Icelandic Irminger Current (NIIC) flowing northward through Denmark Strait is the main source of salt and heat to the north Iceland shelf. We quantify its along-stream evolution using the first high-resolution hydrographic/velocity survey north of Iceland that spans the entire shelf along with historical hydrographic measurements as well as data from satellites and surface drifters. The NIIC generally follows the shelf break. Portions of the flow recirculate near Denmark Strait and the Kolbeinsey Ridge. The current's volume transport diminishes northeast of Iceland before it merges with the Atlantic Water inflow east of Iceland. The hydrographic properties of the current are modified along its entire pathway, predominantly because of lateral mixing with cold, fresh offshore waters rather than air-sea interaction. Progressing eastward, the NIIC cools and freshens by approximately 0.3°C and 0.02–0.03 g kg−1 per 100 km, respectively, in both summer and winter. Dense-water formation on the shelf is limited, occurring only sporadically in the historical record. The hydrographic properties of this locally formed water match the lighter portion of the North Icelandic Jet (NIJ), which emerges northeast of Iceland and transports dense water toward Denmark Strait. In the region northeast of Iceland, the NIIC is prone to baroclinic instability. Enhanced eddy kinetic energy over the steep slope there suggests a dynamical link between eddies shed by the NIIC and the formation of the NIJ as previously hypothesized. Thus, while the NIIC rarely supplies the NIJ directly, it may be dynamically important for the overturning circulation in the Nordic Seas.
    Description: This research was supported by the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 101022251 (S. Semper), the Trond Mohn Foundation Grant BFS2016REK01 (S. Semper and K. Våge), and the U.S. National Science Foundation Grants OCE-1558742 and OCE-1259618 (R. S. Pickart).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2022-06-13
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 48(24), (2021): e2021GL095615, https://doi.org/10.1029/2021GL095615.
    Description: The North Atlantic deep water (NADW), according to the classic ocean circulation theory, moves southward as a deep western boundary current (DWBC) even though it may veer into interior and then rejoin DWBC when encountering regional circulation features, such as eddy-driven recirculation. In potential vorticity dynamics, the eastern side of the Mid-Atlantic Ridge (MAR) may provide a similar topographic support as the continental slope off the western boundary for a southward transport of NADW. In this article, we quantify the mean meridional NADW transports on both sides of the MAR using a data-assimilated product and find that the flow in the eastern basin contributes about 38 ± 14% of the net southward transport of NADW from 50° to 35°N. Our study points to the importance of observing NADW transport variations on the eastern side of the MAR in order to monitor the transport strength of Atlantic Meridional Overturning Circulation.
    Description: iayan Yang is supported by the WHOI-OUC Collaborative Initiative, the W. V. A. Clark Chair for Excellence in Oceanography from WHOI, and National Science Foundation. Sijia Zou acknowledges the support from the Physical Oceanography Program of the United States National Science Foundation Grants OCE-1756361. Yujia Zhai is supported by China Scholarship Council as a 2-yr guest student to visit WHOI. Yujia Zhai and Xiuquan Wan are supported by major project (41776009) of National Natural Science Foundation of China. Data from the RAPID MOC monitoring project are funded by the Natural Environment Research Council and are freely available from www.rapid.ac.uk/rapidmoc. Collection of MOVE data was funded by NOAA Research, and carried out by principal investigators Uwe Send and Matthias Lankhorst. MOVE data are made freely available through the international OceanSITES program.
    Description: 2022-06-13
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2022-06-13
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Forsyth, J., Gawarkiewicz, G., & Andres, M. The impact of Warm Core Rings on Middle Atlantic Bight shelf temperature and shelf break velocity. Journal of Geophysical Research: Oceans, 127, (2022): e2021JC017759, https://doi.org/10.1029/2021jc017759.
    Description: Warm Core Rings (WCRs) are known to disrupt the shelf flow as well as drive strong heat transport onto the Middle Atlantic Bight shelf. We examine 27 rings sampled by the container ship Oleander, 16 rings which have in-situ velocity data and 11 rings identified from satellite sea surface height but with in-situ temperature data, to study the variability in rings' impact on shelf break velocities and on the temperature of the adjacent shelf. WCRs that have higher rotational velocities and are closer to the shelf are found to exert greater influence on the along-shelf velocities, with the fastest and closest rings reversing the direction of flow at the shelf break. As rings approach the study site, the Shelfbreak Jet is faster than when the rings are about to exit the study site, likely due to first steepening then flattening of the isopycnals at the Shelfbreak Front. Rings also have lasting impacts on the shelf temperature: rings with faster rotational velocities cool the shelf and rings with slower rotational velocities warm the shelf. The evolution of temperature on the shelf as a ring passes is strongly tied to the season. During warmer seasons, when temperature stratification on the shelf is strong, a ring cools the shelf; during periods of weak thermal stratification, rings tend to warm the shelf. Rings which cool the shelf are additionally associated with increased upwelling as they pass the study site.
    Description: J. Forsyth and M. Andres were supported by OCE-1924041. J. Forsyth and G. Gawarkiewicz were supported by ONR N00014-19-1-2646. G. Gawarkiewicz was also supported by NSF under grant OCE-1851261.
    Keywords: Warm Core Rings ; Middle Atlantic Bight ; CMV Oleander ; Shelfbreak processes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    facet.materialart.
    Unknown
    UNESCO | Paris, France
    Publication Date: 2022-08-06
    Description: Most of the activities described in this Report were conducted under the leadership of Dr Wendy Watson-Wright, the Executive Secretary of IOC during the years 2010-2014. Pending the arrival of the new Executive Secretary, Dr Flavia Schlegel, Assistant Director-General of UNESCO for Natural Sciences served as Executive Secretary ad interim from 12 January to 28 February 2015. Dr Vladimir Ryabinin started his work as the Executive Secretary on 1 March 2015. He is very grateful to Dr Watson-Wright for very ably leading the IOC during her tenure as well for her support during the transitional period. The smooth continuation of the IOC Secretariat work under the interim leadership of Dr Schlegel is also much appreciated by the IOC Secretariat and Dr Ryabinin. Like UNESCO, IOC continued to work in 2014- 2015 under the significantly reduced spending plan for the approved regular UNESCO 37 C/5 Programme and Budget (2014–2015) and with reduced staff. The Secretariat, guided by the IOC Assembly and adhering to the principles of the IOC Medium Term Strategy 2014-2021, has completed all planned tasks for the period and has achieved all assigned targets at the level corresponding to the available reduced budget
    Description: Published
    Description: Non Refereed
    Keywords: Oceanographic research ; Scientific programmes ; Scientific activities
    Repository Name: AquaDocs
    Type: Report
    Format: 69pp.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    facet.materialart.
    Unknown
    UNESCO | Paris, France
    Publication Date: 2022-08-06
    Description: The Data Buoy Cooperation Panel (DBCP) is an international organization jointly supported by the World Meteorological Organization (WMO) and the Intergovernmental Oceanographic Commission (IOC) of UNESCO. It operates under the Joint WMO-IOC Technical Commission for Oceanography and Marine Meteorology (JCOMM). The DBCP has functioned effectively since 1985. This Retrospective will review the history of the DBCP, document its successes and accomplishments, highlight its approaches and acknowledge contributions from organizations and individuals. Please refer to the DBCP web site for information on the background, programmes, data and more at http://www.jcommops.org/dbcp/.
    Description: OPenASFA input
    Description: Published
    Description: Non Refereed
    Keywords: Research programmes ; Oceanographic research ; ASFA_2015::O::Oceanographic buoys ; ASFA_2015::O::Oceanographic data
    Repository Name: AquaDocs
    Type: Report
    Format: 32pp.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2022-07-20
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ballou, L., Brankovits, D., Chavez-Solis, E. M., Diaz, J. M. C., Gonzalez, B. C., Rohret, S., Salinas, A., Liu, A., Simoes, N., Alvarez, F., Miglietta, M. P., Iliffe, T. M., & Borda, E. An integrative re-evaluation of Typhlatya shrimp within the karst aquifer of the Yucatan Peninsula, Mexico. Scientific Reports, 12(1), (2022): 5302, https://doi.org/10.1038/s41598-022-08779-9.
    Description: The Yucatán Peninsula, Mexico is a carbonate platform well-known for extensive karst networks of densely stratified aquifer ecosystems. This aquifer supports diverse anchialine fauna, including species of the globally distributed anchialine shrimp genus Typhlatya (Atyidae). Four species (T. campecheae, T. pearsei, T. dzilamensis and T. mitchelli) are endemic to the Peninsula, of which three are federally listed in Mexico. This first integrative evaluation (i.e., molecular, morphological, broad geographic and type locality sampling, and environmental data) of Yucatán Typhlatya reveals considerable species identity conflict in prior phylogenetic assessments, broad species ranges, syntopy within cave systems and five genetic lineages (of which two are new to science). Despite sampling from the type locality of endangered T. campecheae, specimens (and molecular data) were indistinguishable from vulnerable T. pearsei. Ancestral/divergence reconstructions support convergent evolution of a low-salinity ancestor for a post-Paleogene arc Yucatán + Cuba Typhlatya clade within the anchialine Atyidae clade. A secondary adaptation for the coastal-restricted euryhaline (2–37 psu), Typhlatya dzilamensis (unknown conservation status) was identified, while remaining species lineages were low-salinity (〈 5 psu) adapted and found within the meteoric lens of inland and coastal caves. This study demonstrates the need for integrative/interdisciplinary approaches when conducting biodiversity assessments in complex and poorly studied aquifers.
    Description: Financial support for this study was provided by Texas A&M-CONACYT (TI, FA), TI, FA), PAPIIT IN208519 (DGAPA-UNAM) (FA), CONACYT Ciencia Básica A1-S-32846 (FA), Texas A&M University San Antonio (TAMUSA) Start-up Funds (EB), TAMUSA Research Council Grant (EB), TAMUSA Summer Faculty Grant and Fellowship (EB). NSF-REU/OCE: 1560242 supported AL and EB, and TAMU-Louis Stokes Alliance for Minority Participation (HRD: 1612776) supported SR, LS. This work was also supported by the NSF Graduate Research Fellowship Program (M1703014) and the Cave Conservancy Foundation (LB). Typhlatya sampling was sanctioned under collection permits SEMARNAT/SGPA/DGVS 05263/14, 004471/18, 05996/19.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2022-07-21
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Kim, S., Park, J.-H., & Kug, J.-S. Tropical origins of the record-breaking 2020 summer rainfall extremes in East Asia. Scientific Reports, 12(1), (2022): 5366, https://doi.org/10.1038/s41598-022-09297-4.
    Description: The East Asian countries have experienced heavy rainfalls in boreal summer 2020. Here, we investigate the dynamical processes driving the rainfall extremes in East Asia during July and August. The Indian Ocean basin warming in June can be responsible for the anticyclonic anomalies in the western North Pacific (WNP), which modulate the zonally-elongated rainfalls in East Asia during July through an atmospheric Rossby wave train. In August, the East Asian rainfall increase is also related to the anticyclonic anomalies in the subtropical WNP, although it is located further north. The north tropical Atlantic warming in June partly contributes to the subtropical WNP rainfall decrease in August through a subtropical teleconnection. Then the subtropical WNP rainfall decrease drives the local anticyclonic anomalies that cause the rainfall increase in East Asia during August. The tropical Indian Ocean anomalously warmed in June and the subtropical WNP rainfall decreased in August 2020, which played a role in modulating the WNP anticyclonic anomalies. Therefore, the record-breaking rainfall extremes in East Asia that occurred during summer 2020 can be explained by the teleconnections associated with the tropical origins among the Indian, Pacific, and Atlantic Oceans and their interbasin interactions.
    Description: This work is supported by the National Research Foundation of Korea (NRF-2018R1A5A1024958 & NRF-2021M3I6A1086808).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2022-07-21
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Kellogg, R., Moosburner, M., Cohen, N., Hawco, N., McIlvin, M., Moran, D., DiTullio, G., Subhas, A., Allen, A., & Saito, M. Adaptive responses of marine diatoms to zinc scarcity and ecological implications. Nature Communications, 13(1), (2022): 1995, https://doi.org/10.1038/s41467-022-29603-y.
    Description: Scarce dissolved surface ocean concentrations of the essential algal micronutrient zinc suggest that Zn may influence the growth of phytoplankton such as diatoms, which are major contributors to marine primary productivity. However, the specific mechanisms by which diatoms acclimate to Zn deficiency are poorly understood. Using global proteomic analysis, we identified two proteins (ZCRP-A/B, Zn/Co Responsive Protein A/B) among four diatom species that became abundant under Zn/Co limitation. Characterization using reverse genetic techniques and homology data suggests putative Zn/Co chaperone and membrane-bound transport complex component roles for ZCRP-A (a COG0523 domain protein) and ZCRP-B, respectively. Metaproteomic detection of ZCRPs along a Pacific Ocean transect revealed increased abundances at the surface (〈200 m) where dZn and dCo were scarcest, implying Zn nutritional stress in marine algae is more prevalent than previously recognized. These results demonstrate multiple adaptive responses to Zn scarcity in marine diatoms that are deployed in low Zn regions of the Pacific Ocean.
    Description: This work was funded by the National Science Foundation (OCE-1736599 and OCE-1657766), NIH (R01GM135709), Gordon and Betty Moore Foundation (GBMF3782) to M.A.S., and Simons Foundation award 544236 to N.R.C. This work was further supported by the National Science Foundation (NSF-OCE-1756884 and NSF-MCB-1818390), United States Department of Energy (DE-SC0018344), and Gordon and Betty Moore Foundation grants GBMF3828 and GBMF5006 to A.E.A.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...