ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-11-25
    Description: Southern Europe (Italy and the surrounding countries) experienced an unusual wet summer in 2014. The month- ly rainfall in July 2014 was 84% above (more than three standard deviation) normal with respect to the 1982– 2013 July climatology. The heavy rainfall damaged agriculture, and affected tourism and overall economy of the region. In this study, we tried to understand the physical mechanisms responsible for such abnormal weather by using model and observed datasets. The anomalously high precipitation over Italy is found to be associated with the positive sea surface temperature (SST) and convective anomalies in the tropical Pacific through the at- mospheric teleconnection. Rossby wave activity flux at upper levels shows an anomalous tropospheric quasi- stationary Rossby wave from the Pacific with an anomalous cyclonic phase over southern Europe. This anomalous cyclonic circulation is barotropic in nature and seen extending to lower atmospheric levels, weakening the sea- sonal high and causing heavy precipitation over the Southern Europe. The hypothesis is verified using the Nation- al Centers for Environmental Prediction (NCEP) coupled forecast system model (CFSv2) seasonal forecasts. It is found that two-month lead forecast of CFSv2 was able to capture the wet summer event of 2014 over Southern Europe. The teleconnection pattern from Pacific to Southern Europe was also forecasted realistically by the CFSv2 system.
    Description: Published
    Description: 61-68
    Description: 4A. Oceanografia e clima
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Shinoda, T., Pei, S., Wang, W., Fu, J. X., Lien, R.-C., Seo, H., & Soloviev, A. Climate Process Team: improvement of ocean component of NOAA Climate Forecast System relevant to Madden-Julian Oscillation simulations. Journal of Advances in Modeling Earth Systems, 13(12), (2021): e2021MS002658, https://doi.org/10.1029/2021MS002658.
    Description: Given the increasing attention in forecasting weather and climate on the subseasonal time scale in recent years, National Oceanic and Atmospheric Administration (NOAA) announced to support Climate Process Teams (CPTs) which aim to improve the Madden-Julian Oscillation (MJO) prediction by NOAA’s global forecasting models. Our team supported by this CPT program focuses primarily on the improvement of upper ocean mixing parameterization and air-sea fluxes in the NOAA Climate Forecast System (CFS). Major improvement includes the increase of the vertical resolution in the upper ocean and the implementation of General Ocean Turbulence Model (GOTM) in CFS. In addition to existing mixing schemes in GOTM, a newly developed scheme based on observations in the tropical ocean, with further modifications, has been included. A better performance of ocean component is demonstrated through one-dimensional ocean model and ocean general circulation model simulations validated by the comparison with in-situ observations. These include a large sea surface temperature (SST) diurnal cycle during the MJO suppressed phase, intraseasonal SST variations associated with the MJO, ocean response to atmospheric cold pools, and deep cycle turbulence. Impact of the high-vertical resolution of ocean component on CFS simulation of MJO-associated ocean temperature variations is evident. Also, the magnitude of SST changes caused by high-resolution ocean component is sufficient to influence the skill of MJO prediction by CFS.
    Description: This research was supported by NOAA Grant NA15OAR431074. Computing resources were provided partly by the HPC systems at the Texas A&M University (College Station and Corpus Christi) and the Climate Simulation Laboratory at NCAR's Computational and Information Systems Laboratory, sponsored by the National Science Foundation. TS and SP are supported by DOD Grant W911NF-20-1-0309. TS is also supported by NSF Grant OCE-1658218 and NOAA Grant NA17OAR4310256.
    Keywords: Climate Process Team ; NOAA Climate Forecast System ; Madden-Julian Oscillation ; DYNAMO field campaign ; ocean mixing process
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-09-02
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-06-28
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019
    Description: The effect of SO2 on the selective catalytic reduction of NOx by NH3 over V2O5-0.2CeO2/TiO2-ZrO2 catalysts was studied through catalytic activity tests and various characterization methods, like Brunner−Emmet−Teller (BET) surface measurement, X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray fluorescence (XRF), hydrogen temperature-programmed desorption (H2-TPR), X-ray photoelectron spectroscopy (XPS) and in situ diffused reflectance infrared Fourier transform spectroscopy (DRIFTS). The results showed that the catalyst exhibited superior SO2 resistance when the volume fraction of SO2 was below 0.02%. As the SO2 concentration further increased, the NOx conversion exhibited some degree of decline but could restore to the original level when stopping feeding SO2. The deactivation of the catalyst caused by water in the flue gas was reversible. However, when 10% H2O was introduced together with 0.06% SO2, the NOx conversion was rapidly reduced and became unrecoverable. Characterizations indicated that the specific surface area of the deactivated catalyst was significantly reduced and the redox ability was weakened, which was highly responsible for the decrease of the catalytic activity. XPS results showed that more Ce3+ was generated in the case of reacting with SO2. In situ DRIFTS results confirmed that the adsorption capacity of SO2 was enhanced obviously in the presence of O2, while the SO2 considerably refrained the adsorption of NH3. The adsorption of NOx was strengthened by SO2 to some extent. In addition, NH3 adsorption was improved after pre-adsorbed by SO2 + O2, indicating that the Ce3+ and more oxygen vacancy were produced.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-06-04
    Description: The statistical characteristics of precipitation on the daily resolution play an important role not only in the risk assessment of floods and droughts, but also in the land-use management. In this study, spatial and temporal patterns of the precipitation concentration in the Yangtze River Basin are investigated by using three indices, i.e., precipitation concentration index (CI), precipitation concentration degree (PCD) and precipitation concentration period (PCP). Based on meteorological data of 147 stations for the period of 1960–2008, non-parametric trend analysis and wavelet transformation analysis are employed to detect the temporal variation of these indices. Spatial variability of precipitation concentration indices and their trends are analyzed and demonstrated with the help of GIS tools. The results indicate: (1) The high precipitation CI values mainly distribute in the middle region of the Yangtze River Basin, while the lower and lowest CI values are found in the lower and upper regions, respectively. A roughly east–west gradient for PCD value and PCP value vary from 0.26 to 0.77 and from 123 to 197, respectively. (2) The analysis results of precipitation CI trends for different periods (i.e., recent 40-year, 30-year and 20 year) show that the middle region of the Yangtze River Basin experienced a transition from decreasing precipitation CI to increasing precipitation CI during last two decades, although the decreasing long-term trends in the precipitation CI are not significant in most areas during the period of 1960–2008. (3) The upper basin, middle basin and lower basin are respectively dominated by the significant decreasing, increasing trends and no significant trends in PCD. A dominance of insignificant PCP trends is observed in the entire basin during 1960–2008 despite that a few areas in the upper region are characterized by significant decreasing trends. (4) Inter-decadal oscillations can be found for three precipitation indices, but with no constant periodicity. Furthermore, good positive correlations have been detected between precipitation CI and PCD, while insignificant correlation coefficients of PCP with precipitation are common in the basin. The results can provide beneficial reference to water resource and eco-environment and mitigation to flood or drought hazards in the Yangtze River Basin for policymakers and stakeholders. Copyright © 2012 John Wiley & Sons, Ltd.
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-05-20
    Description: Pavements always play a predominant role in transportation. Health monitoring of pavements is becoming more and more significant, as frequently suffering from cracks, rutting, and slippage renders them prematurely out of service. Effective and reliable sensing elements are thus in high demand to make prognosis on the mechanical properties and occurrence of damage to pavements. Therefore, in this paper, various types of functionality enhancement of industrialized optical fiber sensors for pavement monitoring are developed, with the corresponding operational principles clarified in theory and the performance double checked by basic experiments. Furthermore, a self-healing optical fiber sensing network system is adopted to accomplish full-scale monitoring of pavements. The application of optical fiber sensors assembly and self-healing network system in pavement has been carried out to validate the feasibility. It has been proved that the research in this article provides a valuable method and meaningful guidance for the integrity monitoring of civil structures, especially pavements.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-04-12
    Description: [1]  Long-term changes in historical observations and future projections of reference evapotranspiration (ET 0 ) are of great importance in assessing the potential impacts of climate change on the hydrologic regime as well as water resources systems. In this study, with the aid of non-parametric trend analysis and GIS methods, spatial and seasonal patterns of changes in ET 0 across the Tibetan Plateau (TP) were investigated using meteorological data of 81 stations for the period of 1961–2010. Almost half of all stations in the plateau, most of which were distributed in the north plateau, the southwest and southeast corners, were characterized by decreasing trends in ET 0 during 1961–2010 at both annual and seasonal scales. The temporal regional average series presented a zigzag increasing-decreasing-increasing pattern with two joint points in 1973 and 1993. The increasing vapor pressure deficit and air temperature dominated the increase in ET 0 in the past two decades. The intrinsic mechanism term of hydrological feedback was attempted to explore by examining the applicability of the Bouchet's hypothesis and Budyko-type expressions in the TP. Complementary effect existed between potential evaporation and actual evapotranspiration, deviating from theoretic relationship of Bouchet's hypothesis. Water-limited and energy-limited evaporation patterns at mean annual scale can be described well by Budyko-type expressions in the TP, especially Zhang's curve. Changing characteristics of the projected ET 0 on the plateau during 2011–2100 from the HadCM3 (Hadley Centre Coupled Model version 3) under A2 and B2 emissions scenarios and CGCM3 (the third generation couple global climate model) under A2 and A1B emissions scenarios were projected based on a statistical downscaling method (SDSM). The SDSM performed fairly well in reproducing ET 0 . The continuous increase in ET 0 in the 21st century was revealed by both climate models. Concurrently, a larger increasing magnitude in ET 0 was generally projected by HadCM3 compared with that by CGCM3. Spatially, projected annual ET 0 changes under the different scenarios are similar with the increments in the north and the southeast corner of the plateau and low increments over the southwest, northwest and middle of the plateau. The results can provide beneficial reference to agriculture, water resource and eco-environment management strategies in the plateau region for associated policymakers and stakeholders.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-07-01
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-07-01
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...