ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Carter, G. S., Voet, G., Alford, M. H., Girton, J. B., Mickett, J. B., Klymak, J. M., Pratt, L. J., Pearson-Potts, K. A., Cusack, J. M., & Tan, S. A spatial geography of abyssal turbulent mixing in the Samoan passage. Oceanography, 32(4), (2019): 194-203, doi: 10.5670/oceanog.2019.425.
    Description: High levels of turbulent mixing have long been suspected in the Samoan Passage, an important topographic constriction in the deep limb of the Pacific Meridional Overturning Circulation. Along the length of the passage, observations undertaken in 2012 and 2014 showed the bottom water warmed by ~55 millidegrees Celsius and decreased in density by 0.01 kg m–3. Spatial analysis of this first-ever microstructure survey conducted in the Samoan Passage confirmed there are multiple hotspots of elevated abyssal mixing. This mixing was not just confined to the four main sills—even between sills, the nature of the mixing processes appeared to differ: for example, one sill is clearly a classical hydraulically controlled overflow, whereas another is consistent with mode-2 hydraulic control. When microstructure casts were averaged into 0.1°C conservative temperature classes, the largest dissipation rates and diapycnal diffusivity values (〉10–7 W kg–1 and 10–2 m2 s–1, respectively) occurred immediately downstream of the northern sill in the eastern and deepest channel. Although topographic blocking is the primary reason that no water colder than Θ = 0.7°C is found in the western channel, intensive mixing at the entrance sills appeared to be responsible for eroding an approximately 100 m thick layer of Θ 〈 0.7°C water. Three examples highlighting weak temporal variability, and hence suggesting that the observed spatial patterns are robust, are presented. The spatial variability in mixing over short lateral scales suggests that any simple parameterization of mixing within the Samoan Passage may not be applicable.
    Description: This work was funded by the National Science Foundation under grants OCE-1029268, OCE-1029483, OCE-1657264, OCE-1657870, OCE-1658027, and OCE-1657795.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-08-19
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Yuan, D., Yin, X., Li, X., Corvianawatie, C., Wang, Z., Li, Y., Yang, Y., Hu, X., Wang, J., Tan, S., Surinati, D., Purwandana, A., Wardana, A., Ismail, M., Budiman, A., Bayhaqi, A., Avianto, P., Santoso, P., Kusmanto, E., Dirhamsyah, Arifin, Z., & Pratt, L. A Maluku Sea intermediate western boundary current connecting Pacific Ocean circulation to the Indonesian Throughflow. Nature Communications, 13(1), (2022): 2093, https://doi.org/10.1038/s41467-022-29617-6.
    Description: The Indonesian Throughflow plays an important role in the global ocean circulation and climate. Existing studies of the Indonesian Throughflow have focused on the Makassar Strait and the exit straits, where the upper thermocline currents carry North Pacific waters to the Indian Ocean. Here we show, using mooring observations, that a previous unknown intermediate western boundary current (with the core at ~1000 m depth) exists in the Maluku Sea, which transports intermediate waters (primarily the Antarctic Intermediate Water) from the Pacific into the Seram-Banda Seas through the Lifamatola Passage above the bottom overflow. Our results suggest the importance of the western boundary current in global ocean intermediate circulation and overturn. We anticipate that our study is the beginning of more extensive investigations of the intermediate circulation of the Indo-Pacific ocean in global overturn, which shall improve our understanding of ocean heat and CO2 storages significantly.
    Description: This study is supported by NSFC (D.Y., Z.W., Y.L., Y.Y., S.T., J.W., and X.L.: 41720104008; D.Y., J.W., Y.L., X.L., Y.Y., S.T., X.H., and X.Y.: 91858204), the National Key Research and Development Program of China (D.Y. and X.L.: 2020YFA0608800), CAS (D.Y., Z.W., J.W., and Y.L.: XDB42000000), projects. Affiliations 1 and 2 share the first position. D.Y. is supported by QMSNL (2018SDKJ0104-02), and Shandong Provincial (U1606402) and the “Kunpeng Outstanding Scholar Program” of the FIO/NMR of China, J.W. supported by NSFC (41776011), Z.W. by NSFC (41876025).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-07-20
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Tan, S., Pratt, L. J., Voet, G., Cusack, J. M., Helfrich, K. R., Alford, M. H., Girton, J. B., & Carter, G. S. Hydraulic control of flow in a multi-passage system connecting two basins. Journal of Fluid Mechanics, 940, (2022): A8, https://doi.org/10.1017/jfm.2022.212.
    Description: When a fluid stream in a conduit splits in order to pass around an obstruction, it is possible that one branch will be critically controlled while the other remains not so. This is apparently the situation in Pacific Ocean abyssal circulation, where most of the northward flow of Antarctic bottom water passes through the Samoan Passage, where it is hydraulically controlled, while the remainder is diverted around the Manihiki Plateau and is not controlled. These observations raise a number of questions concerning the dynamics necessary to support such a regime in the steady state, the nature of upstream influence and the usefulness of rotating hydraulic theory to predict the partitioning of volume transport between the two paths, which assumes the controlled branch is inviscid. Through the use of a theory for constant potential vorticity flow and accompanying numerical model, we show that a steady-state regime similar to what is observed is dynamically possible provided that sufficient bottom friction is present in the uncontrolled branch. In this case, the upstream influence that typically exists for rotating channel flow is transformed into influence into how the flow is partitioned. As a result, the partitioning of volume flux can still be reasonably well predicted with an inviscid theory that exploits the lack of upstream influence.
    Description: This work was supported by the National Science Foundation under grants OCE-1029268, OCE-1029483, OCE-1657264, OCE-1657795, OCE-1657870 and OCE-1658027.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 49(6), (2019): 1577-1592, doi:10.1175/JPO-D-18-0124.1.
    Description: The main source feeding the abyssal circulation of the North Pacific is the deep, northward flow of 5–6 Sverdrups (Sv; 1 Sv ≡ 106 m3 s−1) through the Samoan Passage. A recent field campaign has shown that this flow is hydraulically controlled and that it experiences hydraulic jumps accompanied by strong mixing and dissipation concentrated near several deep sills. By our estimates, the diapycnal density flux associated with this mixing is considerably larger than the diapycnal flux across a typical isopycnal surface extending over the abyssal North Pacific. According to historical hydrographic observations, a second source of abyssal water for the North Pacific is 2.3–2.8 Sv of the dense flow that is diverted around the Manihiki Plateau to the east, bypassing the Samoan Passage. This bypass flow is not confined to a channel and is therefore less likely to experience the strong mixing that is associated with hydraulic transitions. The partitioning of flux between the two branches of the deep flow could therefore be relevant to the distribution of Pacific abyssal mixing. To gain insight into the factors that control the partitioning between these two branches, we develop an abyssal and equator-proximal extension of the “island rule.” Novel features include provisions for the presence of hydraulic jumps as well as identification of an appropriate integration circuit for an abyssal layer to the east of the island. Evaluation of the corresponding circulation integral leads to a prediction of 0.4–2.4 Sv of bypass flow. The circulation integral clearly identifies dissipation and frictional drag effects within the Samoan Passage as crucial elements in partitioning the flow.
    Description: This work was supported by the National Science Foundation under Grants OCE-1029268, OCE-1029483, OCE-1657264, OCE-1657870, OCE-1658027, and OCE-1657795. We thank the captain, crew, and engineers at APL/UW for their hard work and skill.
    Description: 2020-06-11
    Keywords: Abyssal circulation ; Bottom currents ; Boundary currents ; Channel flows ; Mixing ; Transport
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(9),(2020): 2797-2814, https://doi.org/10.1175/JPO-D-19-0326.1.
    Description: Hydrographic measurements recently acquired along the thalweg of the Lifamatola Passage combined with historical moored velocity measurements immediately downstream of the sill are used to study the hydraulics, transport, mixing, and entrainment in the dense overflow. The observations suggest that the mean overflow is nearly critical at the mooring site, suggesting that a weir formula may be appropriate for estimating the overflow transport. Our assessment suggests that the weir formulas corresponding to a rectangular, triangular, or parabolic cross section all result in transports very close to the observation, suggesting their potential usage in long-term monitoring of the overflow transport or parameterizing the transport in numerical models. Analyses also suggest that deep signals within the overflow layer are blocked by the shear flow from propagating upstream, whereas the shallow wave modes of the full-depth continuously stratified flow are able to propagate upstream from the Banda Sea into the Maluku Sea. Strong mixing is found immediately downstream of the sill crest, with Thorpe-scale-based estimates of the mean dissipation rate within the overflow up to 1.1 × 10−7 W kg−1 and the region-averaged diapycnal diffusivity within the downstream overflow in the range of 2.3 × 10−3 to 10.1 × 10−3 m2 s−1. Mixing in the Lifamatola Passage results in 0.6–1.2-Sv (1 Sv ≡ 106 m3 s−1) entrainment transport added to the overflow, enhancing the deep-water renewal in the Banda Sea. A bulk diffusivity coefficient estimated in the deep Banda Sea yields 1.6 × 10−3 ± 5 × 10−4 m2 s−1, with an associated downward turbulent heat flux of 9 W m−2.
    Description: This study is supported by NSFC (91858204), the CAS Strategic Priority Research Program (XDB42000000), NSFC(41720104008, 41421005, 41876025), QMSNL (2018SDKJ0104-02), and the Shandong Provincial projects (U1606402). L. Pratt was supported by the U.S. NSF Grant OCE-1657870.
    Keywords: Diapycnal mixing ; Entrainment ; Internal waves ; Topographic effects ; In situ oceanic observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Cusack, J. M., Voet, G., Alford, M. H., Girton, J. B., Carter, G. S., Pratt, L. J., Pearson-Potts, K. A., & Tan, S. Persistent turbulence in the Samoan Passage. Journal of Physical Oceanography, 49(12), (2019): 3179-3197, doi: 10.1175/JPO-D-19-0116.1.
    Description: Abyssal waters forming the lower limb of the global overturning circulation flow through the Samoan Passage and are modified by intense mixing. Thorpe-scale-based estimates of dissipation from moored profilers deployed on top of two sills for 17 months reveal that turbulence is continuously generated in the passage. Overturns were observed in a density band in which the Richardson number was often smaller than ¼, consistent with shear instability occurring at the upper interface of the fast-flowing bottom water layer. The magnitude of dissipation was found to be stable on long time scales from weeks to months. A second array of 12 moored profilers deployed for a shorter duration but profiling at higher frequency was able to resolve variability in dissipation on time scales from days to hours. At some mooring locations, near-inertial and tidal modulation of the dissipation rate was observed. However, the modulation was not spatially coherent across the passage. The magnitude and vertical structure of dissipation from observations at one of the major sills is compared with an idealized 2D numerical simulation that includes a barotropic tidal forcing. Depth-integrated dissipation rates agree between model and observations to within a factor of 3. The tide has a negligible effect on the mean dissipation. These observations reinforce the notion that the Samoan Passage is an important mixing hot spot in the global ocean where waters are being transformed continuously.
    Description: The authors thank Zhongxiang Xao and Jody Klymak, who provided earlier setups of the numerical model, and also Arjun Jagannathan for insightful discussions on the subject of flow over topography. We also thank John Mickett and Eric Boget for their assistance in designing, deploying, and recovering the moorings. In addition, we also thank the crew and scientists aboard the R/V Revelle and R/V Thompson, without whom the data presented in this paper could not have been gathered. Ilker Fer and two anonymous reviewers provided thoughtful feedback that improved the paper. This work was supported by the National Science Foundation under Grants OCE-1029268, OCE-1029483, OCE-1657264, OCE-1657795, OCE-1657870, and OCE-1658027.
    Keywords: Gravity waves ; Turbulence ; Abyssal circulation ; Mixing ; Tides
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(4),(2020): 921-933, doi:10.1175/JPO-D-19-0184.1.
    Description: Intermediate-depth intraseasonal variability (ISV) at a 20–90-day period, as detected in velocity measurements from seven subsurface moorings in the tropical western Pacific, is interpreted in terms of equatorial Rossby waves. The moorings were deployed between 0° and 7.5°N along 142°E from September 2014 to October 2015. The strongest ISV energy at 1200 m occurs at 4.5°N. Peak energy at 4.5°N is also seen in an eddy-resolving global circulation model. An analysis of the model output identifies the source of the ISV as short equatorial Rossby waves with westward phase speed but southeastward and downward group velocity. Additionally, it is shown that a superposition of first three baroclinic modes is required to represent the ISV energy propagation. Further analysis using a 1.5-layer shallow water model suggests that the first meridional mode Rossby wave accounts for the specific meridional distribution of ISV in the western Pacific. The same model suggests that the tilted coastlines of Irian Jaya and Papua New Guinea, which lie to the south of the moorings, shift the location of the northern peak of meridional velocity oscillation from 3°N to near 4.5°N. The tilt of this boundary with respect to a purely zonal alignment therefore needs to be taken into account to explain this meridional shift of the peak. Calculation of the barotropic conversion rate indicates that the intraseasonal kinetic energy below 1000 m can be transferred into the mean flows, suggesting a possible forcing mechanism for intermediate-depth zonal jets.
    Description: This study is supported by the National Natural Science Foundation of China (Grants 91958204 and 41776022), the China Ocean Mineral Resources Research and Development Association Program (DY135-E2-3-02), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant XDA22000000). L. Pratt was supported by the U.S. National Science Foundation Grant OCE-1657870. F. Wang thanks the support from the Scientific and Technological Innovation Project by Qingdao National Laboratory for Marine Science and Technology (Grant 2016ASKJ12), the National Program on Global Change and Air-Sea Interaction (Grant GASI-IPOVAI-01-01), and the National Natural Science Foundation of China (Grants 41730534, 41421005, and U1406401).
    Keywords: North Pacific Ocean ; Rossby waves ; Model output statistics ; Numerical analysis/modeling ; Intraseasonal variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Girton, J. B., Mickett, J. B., Zhao, Z., Alford, M. H., Voet, G., Cusack, J. M., Carter, G. S., Pearson-Potts, K. A., Pratt, L. J., Tan, S., & Klymak, J. M. Flow-topography interactions in the Samoan Passage. Oceanography, 32(4), (2019): 184-193, doi: 10.5670/oceanog.2019.424.
    Description: Mixing in the Samoan Passage has implications for the abyssal water properties of the entire North Pacific—nearly 20% of the global ocean’s volume. Dense bottom water formed near Antarctica encounters the passage—a gap in a ridge extending from north of Samoa eastward across the Pacific at around 10°S—and forms an energetic cascade much like a river flowing through a canyon. The 2011–2014 Samoan Passage Abyssal Mixing Experiment explored the importance of topography to the dense water flow on a wide range of scales, including (1) constraints on transport due to the overall passage shape and the heights of its multiple sills, (2) rapid changes in water properties along particular pathways at localized mixing hotspots where there is extreme topographic roughness and/or downslope flow acceleration, and (3) diversion and disturbance of flow pathways and density surfaces by small-scale seamounts and ridges. The net result is a complex but fairly steady picture of interconnected pathways with a limited number of intense mixing locations that determine the net water mass transformation. The implication of this set of circumstances is that the dominant features of Samoan Passage flow and mixing (and their responses to variations in incoming or background properties) can be described by the dynamics of a single layer of dense water flowing beneath a less-dense one, combined with mixing and transformation that is determined by the small-scale topography encountered along flow pathways.
    Description: We are grateful to Eric Boget, Andrew Cookson, Sam Fletcher, Trina Litchendorf, and Keith Magness for their assistance in the field program, and to the captains and crews of R/Vs Roger Revelle and Thomas G. Thompson for their excellent ship handling and assistance—without which this work would not have been possible. This work was supported by the National Science Foundation.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-09-01
    Electronic ISSN: 2158-3226
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-08-01
    Description: The Maluku Channel is a major opening of the eastern Indonesian Seas to the western Pacific Ocean, the upper-ocean currents of which have rarely been observed historically. During December 2012–November 2016, long time series of the upper Maluku Channel transport are measured successfully for the first time using subsurface oceanic moorings. The measurements show significant intraseasonal-to-interannual variability of over 14 Sv (1 Sv ≡ 106 m3 s−1) in the upper 300 m or so, with a mean transport of 1.04–1.31 Sv northward and a significant southward interannual change of over 3.5 Sv in the spring of 2014. Coincident with the interannual transport change is the Mindanao Current, choked at the entrance of the Indonesian Seas, which is significantly different from its climatological retroflection in fall–winter. A high-resolution numerical simulation suggests that the variations of the Maluku Channel currents are associated with the shifting of the Mindanao Current retroflection. It is suggested that the shifting of the Mindanao Current outside the Sulawesi Sea in the spring of 2014 elevates the sea level at the entrance of the Indonesian Seas, which drives the anomalous transport through the Maluku Channel. The results suggest the importance of the western boundary current nonlinearity in driving the transport variability of the Indonesian Throughflow.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...