ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Geophysical Union  (133)
  • Oxford University Press  (59)
  • Annual Reviews
  • Blackwell Publishing Ltd
  • International Union of Crystallography
  • 2020-2024  (67)
  • 2020-2023  (126)
  • 1980-1984
  • 1930-1934
  • 1925-1929
  • 2020  (193)
  • 2020  (193)
Collection
Years
  • 2020-2024  (67)
  • 2020-2023  (126)
  • 1980-1984
  • 1930-1934
  • 1925-1929
  • +
Year
  • 1
    Publication Date: 2022-01-07
    Description: Intense bottom-ice algal blooms, often dominated by diatoms, are an important source of food for grazers, organic matter for export during sea ice melt, and dissolved organic carbon. Sea-ice diatoms have a number of adaptations, including accumulation of compatible solutes, that allows them to inhabit this highly variable environment characterized by extremes in temperature, salinity, and light. In addition to protecting them from extreme conditions, these compounds present a labile, nutrient-rich source of organic matter, and include precursors to climate active compounds (e.g., dimethyl sulfide [DMS]), which are likely regulated with environmental change. Here, intracellular concentrations of 45 metabolites were quantified in three sea-ice diatom species and were compared to two temperate diatom species, with a focus on compatible solutes and free amino acid pools. There was a large diversity of metabolite concentrations between diatoms with no clear pattern identifiable for sea-ice species. Concentrations of some compatible solutes (isethionic acid, homarine) approached 1 M in the sea-ice diatoms, Fragilariopsis cylindrus and Navicula cf. perminuta, but not in the larger sea-ice diatom, Nitzschia lecointei or in the temperate diatom species. The differential use of compatible solutes in sea-ice diatoms suggests different adaptive strategies and highlights which small organic compounds may be important in polar biogeochemical cycles.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-08
    Description: Deep-towed geophysical surveys require precise knowledge of navigational parameters such as instrument position and orientation because navigational uncertainties reflect in the data and therefore in the inferred geophysical properties of the subseafloor. We address this issue for the case of electrical conductivity inferred from controlled source electromagnetic data. We show that the data error is laterally variable due to irregular motion during deep towing, but also due to lateral variations in conductivity, including those resulting from topography. To address this variability and quantify the data error prior to inversion, we propose a 2-D perturbation study. Our workflow enables stable and geologically reliable results for multicomponent and multifrequency inversions. An error estimation workflow is presented, which comprises the assessment of navigational uncertainties, perturbation of navigational parameters, and forward modelling of electric field amplitudes for a homogeneous and then a heterogeneous subseafloor conductivity model. Some navigational uncertainties are estimated from variations of direct measurements. Other navigational parameters required for inversion are derived from the measured quantities and their error is calculated by means of error propagation. Some navigational parameters show direct correlation with the measured electric fields. For example, the antenna dip correlates with the vertical electric field and the depth correlates with the horizontal electric field. For the perturbation study each standard deviation is added to the navigational parameters. Forward models are run for each perturbation. Amplitude deviations are summed in quadrature with the stacking error for a total, laterally varying, data error. The error estimation is repeated for a heterogeneous subseafloor model due to the large conductivity range (several orders of magnitude), which affects the forward model. The approach enables us to utilize data from several components (multiple electric fields, frequencies and receivers) in the inversion to constrain the final model and reduce ambiguity. The final model is geologically reasonable, in this case enabling the identification of conductive metal sulphide deposits on the seafloor.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-02-08
    Description: In the last few decades, numerous studies have investigated the impacts of simulated ocean acidification on marine species and communities, particularly those inhabiting dynamic coastal systems. Despite these research efforts, there are many gaps in our understanding, particularly with respect to physiological mechanisms that lead to pathologies. In this review, we trace how carbonate system disturbances propagate from the coastal environment into marine invertebrates and highlight mechanistic links between these disturbances and organism function. We also point toward several processes related to basic invertebrate biology that are severely understudied and prevent an accurate understanding of how carbonate system dynamics influence organismic homeostasis and fitness-related traits. We recommend that significant research effort be directed to studying cellular phenotypes of invertebrates acclimated or adapted to elevated seawater pCO2 using biochemical and physiological methods.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-02-08
    Description: Background: The giant squid (Architeuthis dux; Steenstrup, 1857) is an enigmatic giant mollusc with a circumglobal distribution in the deep ocean, except in the high Arctic and Antarctic waters. The elusiveness of the species makes it difficult to study. Thus, having a genome assembled for this deep-sea-dwelling species will allow several pending evolutionary questions to be unlocked. Findings: We present a draft genome assembly that includes 200 Gb of Illumina reads, 4 Gb of Moleculo synthetic long reads, and 108 Gb of Chicago libraries, with a final size matching the estimated genome size of 2.7 Gb, and a scaffold N50 of 4.8 Mb. We also present an alternative assembly including 27 Gb raw reads generated using the Pacific Biosciences platform. In addition, we sequenced the proteome of the same individual and RNA from 3 different tissue types from 3 other species of squid (Onychoteuthis banksii, Dosidicus gigas, and Sthenoteuthis oualaniensis) to assist genome annotation. We annotated 33,406 protein-coding genes supported by evidence, and the genome completeness estimated by BUSCO reached 92%. Repetitive regions cover 49.17% of the genome. Conclusions: This annotated draft genome of A. dux provides a critical resource to investigate the unique traits of this species, including its gigantism and key adaptations to deep-sea environments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-02-08
    Description: Parasites are arguably among the strongest drivers of natural selection, constraining hosts to evolve resistance and tolerance mechanisms. Although, the genetic basis of adaptation to parasite infection has been widely studied, little is known about how epigenetic changes contribute to parasite resistance and eventually, adaptation. Here, we investigated the role of host DNA methylation modifications to respond to parasite infections. In a controlled infection experiment, we used the three-spined stickleback fish, a model species for host-parasite studies, and their nematode parasite Camallanus lacustris. We showed that the levels of DNA methylation are higher in infected fish. Results furthermore suggest correlations between DNA methylation and shifts in key fitness and immune traits between infected and control fish, including respiratory burst and functional trans-generational traits such as the concentration of motile sperm. We revealed that genes associated with metabolic, developmental and regulatory processes (cell death and apoptosis) were differentially methylated between infected and control fish. Interestingly, genes such as the neuropeptide FF receptor 2 and the integrin alpha 1 as well as molecular pathways including the Th1 and Th2 cell differentiation were hypermethylated in infected fish, suggesting parasite-mediated repression mechanisms of immune responses. Altogether, we demonstrate that parasite infection contributes to genome-wide DNA methylation modifications. Our study brings novel insights into the evolution of vertebrate immunity and suggests that epigenetic mechanisms are complementary to genetic responses against parasite-mediated selection.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-02-08
    Description: International Ocean Discovery Program (IODP) Expedition 351 “Izu–Bonin–Mariana (IBM) Arc Origins” drilled Site U1438, situated in the north-western region of the Philippine Sea. Here volcaniclastic sediments and the igneous basement of the proto-IBM volcanic arc were recovered. To gain a better understanding of the magmatic processes and evolution of the proto-IBM arc, we studied melt inclusions hosted in fresh igneous minerals and sampled from 30- to 40-Ma-old deposits, reflecting the maturation of arc volcanism following subduction initiation at 52 Ma. We performed a novel statistical analysis on the major element composition of 237 representative melt inclusions selected from a previously published dataset, covering the full age range between 30 and 40 Ma. In addition, we analysed volatiles (H2O, S, F and Cl) and P2O5 by Secondary Ion Mass Spectrometry (SIMS) for a subset of 47 melt inclusions selected from the dataset. Based on statistical analysis of the major element composition of melt inclusions and by considering their trace and volatile element compositions, we distinguished five main clusters of melt inclusions, which can be further separated into a total of eight subclusters. Among the eight subclusters, we identified three major magma types: (1) enriched medium-K magmas, which form a tholeiitic trend (30–38 Ma); (2) enriched medium-K magmas, which form a calc-alkaline trend (30–39 Ma); and (3) depleted low-K magmas, which form a calc-alkaline trend (35–40 Ma). We demonstrate that (1) the eruption of depleted low-K calc-alkaline magmas occurred prior to 40 Ma and ceased sharply at 35 Ma; (2) the eruption of depleted low-K calc-alkaline magmas, enriched medium-K calc-alkaline magmas and enriched medium-K tholeiitic magmas overlapped between 35 and 38 − 39 Ma; and (3) the eruption of enriched medium-K tholeiitic and enriched medium-K calc-alkaline magmas became predominant thereafter at the proto-IBM arc. Identification of three major magma types are distinct from the previous work, in which enriched medium-K calc-alkaline magmas and depleted low-K calc-alkaline magmas were not identified. This indicates the usefulness of our statistical analysis as a powerful tool to partition a mixture of multivariable geochemical datasets, such as the composition of melt inclusions in this case. Our data suggest that a depleted mantle source had been replaced by an enriched mantle source due to convection beneath the proto-IBM arc from >40 to 35 Ma. Finally, thermodynamic modelling indicates that the overall geochemical variation of melt inclusions assigned to each cluster can be broadly reproduced either by crystallisation differentiation assuming P = 50 MPa (∼2-km deep) and ∼2 wt % H2O (almost saturated H2O content at 50 MPa) or P = 300 MPa (∼15-km deep) and ∼6 wt % H2O (almost saturated H2O content at 300 MPa). Assuming oxygen fugacity (fO2) of log fO2 equal to + 1 relative to nickel-nickel oxide (NNO) buffer best reproduces the overall geochemical variation of melt inclusions, but assuming a more oxidising conditions (log fO2 = +1 to + 2 NNO) likely reproduces the geochemical variation of enriched medium-K and calc-alkaline melt inclusions (30 − 39 Ma).
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-02-08
    Description: The present study quantified prey preferences by adult males and females of the mysid Mesopodopsis wooldridgei fed the calanoid copepods Pseudodiaptomus hessei and Paracartia longipatella at varying proportions. Both sexes of M. wooldridgei showed a lack of prey switching and a strong preference for the smaller, less active P. longipatella irrespective of density. Given a lack of low-density prey refuge, this finding may have important implications for the distribution of P. longipatella in estuaries along the eastern seaboard of South Africa. Results of the present study contribute to a growing body of literature that suggests that selective predation may play an important role in structuring plankton prey populations in shallow water ecosystems.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-02-08
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-02-08
    Description: The two toothed jaws of cichlid fishes provide textbook examples of convergent evolution. Tooth phenotypes such as enlarged molar-like teeth used to process hard-shelled molluscs have evolved numerous times independently during cichlid diversification. While the ecological benefit of molar-like teeth to crush prey is known, it is unclear whether the same molecular mechanisms underlie these convergent traits. To identify genes involved in the evolution and development of enlarged cichlid teeth, we performed RNA-seq on the serially homologous toothed oral and pharyngeal jaws as well as the fourth toothless gill arch of Astatoreochromis alluaudi. We identified 27 genes that are highly upregulated on both tooth-bearing jaws compared to the toothless gill arch. Most of these genes have never been reported to play a role in tooth formation. Two of these genes (unk, rpfA) are not found in other vertebrate genomes but are present in all cichlid genomes. They also cluster genomically with two other highly expressed tooth genes (odam, scpp5) that exhibit conserved expression during vertebrate odontogenesis. Unk and rpfA were confirmed via in situ hybridization to be expressed in developing teeth of Astatotilapia burtoni. We then examined expression of the cluster's four genes in six evolutionarily independent and phylogenetically disparate cichlid species pairs each with a large- and a small-toothed species. Odam and unk commonly and scpp5 and rpfA always showed higher expression in larger-toothed cichlid jaws. Convergent trophic adaptations across cichlid diversity are associated with the repeated developmental deployment of this genomic cluster containing conserved and novel cichlid-specific genes.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-12-01
    Print ISSN: 0886-6236
    Electronic ISSN: 1944-9224
    Topics: Biology , Chemistry and Pharmacology , Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
  • 12
    Publication Date: 2020-12-01
    Print ISSN: 0886-6236
    Electronic ISSN: 1944-9224
    Topics: Biology , Chemistry and Pharmacology , Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2020-12-01
    Print ISSN: 0886-6236
    Electronic ISSN: 1944-9224
    Topics: Biology , Chemistry and Pharmacology , Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2020-12-10
    Description: The Protein Ensemble Database (PED) (https://proteinensemble.org), which holds structural ensembles of intrinsically disordered proteins (IDPs), has been significantly updated and upgraded since its last release in 2016. The new version, PED 4.0, has been completely redesigned and reimplemented with cutting-edge technology and now holds about six times more data (162 versus 24 entries and 242 versus 60 structural ensembles) and a broader representation of state of the art ensemble generation methods than the previous version. The database has a completely renewed graphical interface with an interactive feature viewer for region-based annotations, and provides a series of descriptors of the qualitative and quantitative properties of the ensembles. High quality of the data is guaranteed by a new submission process, which combines both automatic and manual evaluation steps. A team of biocurators integrate structured metadata describing the ensemble generation methodology, experimental constraints and conditions. A new search engine allows the user to build advanced queries and search all entry fields including cross-references to IDP-related resources such as DisProt, MobiDB, BMRB and SASBDB. We expect that the renewed PED will be useful for researchers interested in the atomic-level understanding of IDP function, and promote the rational, structure-based design of IDP-targeting drugs.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2020-12-01
    Print ISSN: 0886-6236
    Electronic ISSN: 1944-9224
    Topics: Biology , Chemistry and Pharmacology , Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2020-12-01
    Print ISSN: 0886-6236
    Electronic ISSN: 1944-9224
    Topics: Biology , Chemistry and Pharmacology , Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2020-11-25
    Print ISSN: 0886-6236
    Electronic ISSN: 1944-9224
    Topics: Biology , Chemistry and Pharmacology , Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2020-12-01
    Print ISSN: 0886-6236
    Electronic ISSN: 1944-9224
    Topics: Biology , Chemistry and Pharmacology , Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2020-11-26
    Print ISSN: 0886-6236
    Electronic ISSN: 1944-9224
    Topics: Biology , Chemistry and Pharmacology , Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2020-11-26
    Print ISSN: 0886-6236
    Electronic ISSN: 1944-9224
    Topics: Biology , Chemistry and Pharmacology , Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2020-12-01
    Print ISSN: 0886-6236
    Electronic ISSN: 1944-9224
    Topics: Biology , Chemistry and Pharmacology , Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2020-10-31
    Description: Extragalactic studies have demonstrated that there is a moderately tight (≈0.3 dex) relationship between galaxy stellar mass (M⋆) and star formation rate (SFR) that holds for star-forming galaxies at M⋆ ∼ 3 × 108–1011 M⊙, i.e. the ‘star formation main sequence’. However, it has yet to be determined whether such a relationship extends to even lower mass galaxies, particularly at intermediate or higher redshifts. We present new results using observations for 714 narrow-band H α-selected galaxies with stellar masses between 106 and 1010 M⊙ (average of 108.2 M⊙) at z ≈ 0.07–0.5. These galaxies have sensitive ultraviolet (UV) to near-infrared photometric measurements and optical spectroscopy. The latter allows us to correct our H α SFRs for dust attenuation using Balmer decrements. Our study reveals that: (1) for low-SFR galaxies, our H α SFRs systematically underpredict compared to far-UV measurements, consistent with other studies; (2) at a given stellar mass (≈108 M⊙), log (specific SFR) evolves as A log (1 + z) with A = 5.26 ± 0.75, and on average, specific SFR increases with decreasing stellar mass; (3) the SFR–M⋆ relation holds for galaxies down to ∼106 M⊙ (∼1.5 dex below previous studies), and over lookback times of up to 5 Gyr, follows a redshift-dependent relation of log (SFR) ∝ α log (M⋆/M⊙) + β z with α = 0.60 ± 0.01 and β = 1.86 ± 0.07; and (4) the observed dispersion in the SFR–M⋆ relation at low stellar masses is ≈0.3 dex. Accounting for survey selection effects using simulated galaxies, we estimate that the true dispersion is ≈0.5 dex.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2020-10-30
    Description: The Earth’s magnetotail region provides a unique environment for the study of plasma turbulence. We investigate the turbulence developed in an exhaust produced by magnetic reconnection in the terrestrial magnetotail region. Magnetic and velocity spectra show broad-band fluctuations corresponding to the inertial range, with Kolmorogov scaling of −5/3, indicative of a well-developed turbulent cascade. We examine the mixed, third-order structure functions, and obtain a linear scaling in the inertial range. This linear scaling of the third-order structure functions implies a scale-invariant cascade of energy through the inertial range. A Politano–Pouquet third-order analysis gives an estimate of the incompressive energy transfer rate of ${sim}10^{7}~mathrm{J, kg^{-1}, s^{-1}}$. This is four orders of magnitude higher than the values typically measured in the 1-au solar wind, suggesting that the turbulence cascade plays an important role as a pathway of energy dissipation during reconnection events in the tail region.
    Print ISSN: 1745-3925
    Electronic ISSN: 1745-3933
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2020-10-27
    Description: We present Bayesian active galactic nucleus (AGN) Decomposition Analysis for Sloan Digital Sky Survey (SDSS) Spectra, an open source spectral analysis code designed for automatic detailed deconvolution of AGN and host galaxy spectra, implemented in python, and designed for the next generation of large-scale surveys. The code simultaneously fits all spectral components, including power-law continuum, stellar line-of-sight velocity distribution, Fe ii emission, as well as forbidden (narrow), permitted (broad), and outflow emission line features, all performed using Markov chain Monte Carlo to obtain robust uncertainties and autocorrelation analysis to assess parameter convergence. Our code also utilizes multiprocessing for batch fitting large samples of spectra while efficiently managing memory and computation resources and is currently being used in a cluster environment to fit thousands of SDSS spectra. We use our code to perform a correlation analysis of 63 SDSS type 1 AGNs with evidence of strong non-gravitational outflow kinematics in the [O iii] λ5007 emission feature. We confirm findings from previous studies that show the core of the [O iii] profile is a suitable surrogate for stellar velocity dispersion σ*, however there is evidence that the core experiences broadening that scales with outflow velocity. We find sufficient evidence that σ*, [O iii] core dispersion, and the non-gravitational outflow dispersion of the [O iii] profile form a plane whose fit results in a scatter of ∼0.1 dex. Finally, we discuss the implications, caveats, and recommendations when using the [O iii] dispersion as a surrogate for σ* for the MBH−σ* relation.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2020-10-27
    Description: The splashback radius (Rsp) of dark matter haloes has recently been detected using weak gravitational lensing and cross-correlations with galaxies. However, different methods have been used to measure Rsp and to assess the significance of its detection. In this paper, we use simulations to study the precision and accuracy to which we can detect the splashback radius with 3D density, 3D subhalo, and weak lensing profiles. We study how well various methods and tracers recover Rsp by comparing it with the value measured directly from particle dynamics. We show that estimates of Rsp from density and subhalo profiles correspond to different percentiles of the underlying Rsp distribution of particle orbits. At low accretion rates, a second caustic appears and can bias results. Finally, we show that upcoming lensing surveys may be able to constrain the Rsp–Γdyn relation directly.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2020-11-24
    Description: Ecosystem-based Fisheries Management is a holistic management approach that integrates the dynamics of an entire ecosystem, including societal dimensions. However, this approach seldom lives up to its promise because economic and social objectives are rarely specified. To fill this gap, we explored how an ecosystem model could better integrate economic and social objectives, using the coral reef ecosystem around Hawai`i as a case study. After meeting with stakeholders and conducting a literature review of policy/strategy documents, we identified societal and ecological objectives and associated performance indicators for which data existed. We developed a social–ecological system conceptual framework to illustrate the relationships between ecological and social state components. This framework was the foundation for the development of the final social–ecological system model which we simulated using an Ecopath with Ecosim model. We simulated four gear/species restrictions for the reef-based fishery, two fishing scenarios associated with the opening of hypothetical no-take Marine Protected Areas for the deepwater-based fishery, and a Constant Effort (No Action) scenario. Despite limitations in the model, our approach shows that when social and economic objectives and social–ecological relationships are defined, we can quantify the trade-offs among the identified societal objectives to support managers in choosing among alternative interventions.
    Print ISSN: 1054-3139
    Electronic ISSN: 1095-9289
    Topics: Biology , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
  • 28
    Publication Date: 2020-01-01
    Description: We present the conditional H i (neutral hydrogen) mass function (HIMF) conditioned on observed optical properties, Mr (r-band absolute magnitude), and Cur (u − r colour), for a sample of 7709 galaxies from Arecibo Legacy Fast ALFA (40 per cent data release – α.40) which overlaps with a common volume in SDSS DR7. Based on the conditional HIMF, we find that the luminous red, luminous blue, and faint blue populations dominate the total HIMF at the high-mass end, knee, and the low-mass end, respectively. We use the conditional HIMF to derive the underlying distribution function of ΩH i (H i density parameter), p(ΩH i), in the colour–magnitude plane of galaxies. The distribution, p(ΩH i), peaks in the blue cloud at $mathit{ M_{{r}}}^{ext{max}}=-19.25, mathit{ C_{{ur}}}^{ext{max}}=1.44$ but is skewed. It has a long tail towards faint blue galaxies, and luminous red galaxies. We argue that p(ΩH i) can be used to reveal the underlying relation between cold gas, stellar mass, and the star formation rate in an unbiased way, that is, the derived relation does not suffer from survey or sample selection.
    Print ISSN: 1745-3925
    Electronic ISSN: 1745-3933
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2020-10-31
    Description: We present a deep XMM−Newton observation of the extremely massive, rapidly rotating, relativistic-jet-launching spiral galaxy 2MASX J23453268−0449256. Diffuse X-ray emission from the hot gaseous halo around the galaxy is robustly detected out to a radius of 160 kpc, corresponding roughly to 35 per cent of the virial radius (≈450 kpc). We fit the X-ray emission with the standard isothermal β model, and it is found that the enclosed gas mass within 160 kpc is $1.15_{-0.24}^{+0.22} imes 10^{11} , m {M}_{odot }$. Extrapolating the gas mass profile out to the virial radius, the estimated gas mass is $8.25_{-1.77}^{+1.62} imes 10^{11} , m {M}_{odot }$, which makes up roughly 65 per cent of the total baryon mass content of the galaxy. When the stellar mass is considered and accounting for the statistical and systematic uncertainties, the baryon mass fraction within the virial radius is $0.121_{-0.043}^{+0.043}$, in agreement with the universal baryon fraction. The baryon mass fraction is consistent with all baryons falling within r200, or with only half of the baryons falling within r200. Similar to the massive spiral galaxies NGC 1961 and NGC 6753, we find a low value for the metal abundance of ≈ 0.1 Z⊙, which appears uniform with radius. We also detect diffuse X-ray emission associated with the northern and southern lobes, possibly attributed to inverse Compton scattering of cosmic microwave background photons. The estimated energy densities of the electrons and magnetic field in these radio lobes suggest that they are electron-dominated by a factor of 10−200, depending on the choice of the lower cut-off energy of the electron spectrum.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2020-10-29
    Description: We report the results from a detailed timing and spectral study of a transient X-ray pulsar, 4U 1901+03 during its 2019 outburst. We performed broadband spectroscopy in the 1–70 $ m keV$ energy band using four observations made with Swift and NuSTAR at different intensity levels. Our timing results reveal the presence of highly variable pulse profiles dependent on both luminosity and energy. Our spectroscopy results showed the presence of a cyclotron resonance scattering feature (CRSF) at ∼ 30 keV. This feature at 30 keV is highly luminosity and pulse phase dependent. Phase-averaged spectra during the last two observations, made close to the declining phase of the outburst, showed the presence of this feature at around $30~ m {keV}$. The existence of CRSF at 30 keV during these observations is well supported by an abrupt change in the shape of pulse profiles found close to this energy. We also found that 30 keV feature was significantly detected in the pulse phase-resolved spectra of observations made at relatively high luminosities. Moreover, all spectral fit parameters showed a strong pulse phase dependence. In line with the previous findings, an absorption feature at around $10~ m {keV}$ is significantly observed in the phase-averaged X-ray spectra of all observations and also showed a strong pulse phase dependence.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2020-10-28
    Description: We provide an empirical list of the Galactic dispersion measure (DMGal) contribution to the extragalactic fast radio bursts (FRBs) along 72 sightlines. It is independent of any model of the Galaxy, i.e. we do not assume the density of the disc or the halo, spatial extent of the halo, baryonic mass content, or any such external constraints to measure DMGal. We use 21-cm, UV, EUV, and X-ray data to account for different phases, and find that DMGal is dominated by the hot phase probed by X-ray absorption. We improve upon the measurements of N($ m{O},{small VII}$) and f$_{ m O,{small VII}}$ compared to previous studies, thus providing a better estimate of the hot phase contribution. The median DMGal = 64$^{+20}_{-23}$ cm−3 pc, with a 68 per cent (90 per cent) confidence interval of 33–172 (23–660) cm−3 pc. The DMGal does not appear to follow any trend with the Galactic longitude or latitude, and there is a large scatter around the values predicted by simple disc + spherical halo models. Our measurements provide more complete and accurate estimates of DMGal independent from the previous studies. We provide a table and a code to retrieve DMGal for any FRB localized in the sky.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2020-10-30
    Description: Enabling efficient injection of light into single-mode fibres (SMFs) is a key requirement in realizing diffraction-limited astronomical spectroscopy on ground-based telescopes. SMF-fed spectrographs, facilitated by the use of adaptive optics (AO), offer distinct advantages over comparable seeing-limited designs, including higher spectral resolution within a compact and stable instrument volume, and a telescope independent spectrograph design. iLocater is an extremely precise radial velocity (EPRV) spectrograph being built for the Large Binocular Telescope (LBT). We have designed and built the front-end fibre injection system, or acquisition camera, for the SX (left) primary mirror of the LBT. The instrument was installed in 2019 and underwent on-sky commissioning and performance assessment. In this paper, we present the instrument requirements, acquisition camera design, as well as results from first-light measurements. Broad-band SMF coupling in excess of 35 per cent (absolute) in the near-infrared (0.97–1.31 ${mu { m m}}$) was achieved across a range of target magnitudes, spectral types, and observing conditions. Successful demonstration of on-sky performance represents both a major milestone in the development of iLocater and in making efficient ground-based SMF-fed astronomical instruments a reality.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
  • 34
    Publication Date: 2020-12-01
    Print ISSN: 0886-6236
    Electronic ISSN: 1944-9224
    Topics: Biology , Chemistry and Pharmacology , Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2020-11-28
    Print ISSN: 0886-6236
    Electronic ISSN: 1944-9224
    Topics: Biology , Chemistry and Pharmacology , Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2020-10-30
    Description: Separating galactic foreground emission from maps of the cosmic microwave background (CMB) and quantifying the uncertainty in the CMB maps due to errors in foreground separation are important for avoiding biases in scientific conclusions. Our ability to quantify such uncertainty is limited by our lack of a model for the statistical distribution of the foreground emission. Here, we use a deep convolutional generative adversarial network (DCGAN) to create an effective non-Gaussian statistical model for intensity of emission by interstellar dust. For training data we use a set of dust maps inferred from observations by the Planck satellite. A DCGAN is uniquely suited for such unsupervised learning tasks as it can learn to model a complex non-Gaussian distribution directly from examples. We then use these simulations to train a second neural network to estimate the underlying CMB signal from dust-contaminated maps. We discuss other potential uses for the trained DCGAN, and the generalization to polarized emission from both dust and synchrotron.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2020-10-31
    Description: In the cold neutral medium, high out-of-equilibrium temperatures are created by intermittent dissipation processes, including shocks, viscous heating, and ambipolar diffusion. The high-temperature excursions are thought to explain the enhanced abundance of CH+ observed along diffuse molecular sightlines. Intermittent high temperatures should also have an impact on H2 line luminosities. We carry out simulations of magnetohydrodynamic (MHD) turbulence in molecular clouds including heating and cooling, and post-process them to study H2 line emission and hot-gas chemistry, particularly the formation of CH+. We explore multiple magnetic field strengths and equations of state. We use a new H2 cooling function for $n_{ext{H}}le 10^5, {ext{cm}}^{-3}$, $Tle 5000, {ext{K}}$, and variable H2 fraction. We make two important simplifying assumptions: (i) the H2/H fraction is fixed everywhere and (ii) we exclude from our analysis regions where the ion–neutral drift velocity is calculated to be greater than 5 km s−1. Our models produce H2 emission lines in accord with many observations, although extra excitation mechanisms are required in some clouds. For realistic root-mean-square (rms) magnetic field strengths (≈10 μG) and velocity dispersions, we reproduce observed CH+ abundances. These findings contrast with those of Valdivia et al. (2017) Comparison of predicted dust polarization with observations by Planck suggests that the mean field is ≳5 µG, so that the turbulence is sub-Alfvénic. We recommend future work treating ions and neutrals as separate fluids to more accurately capture the effects of ambipolar diffusion on CH+ abundance.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2020-10-29
    Description: Long-period variability in luminous red giants has several promising applications, all of which require models able to accurately predict pulsation periods. Linear pulsation models have proven successful in reproducing the observed periods of overtone modes in evolved red giants, but they fail to accurately predict their fundamental mode (FM) periods. Here, we use a 1D hydrodynamic code to investigate the long-period variability of M-type asymptotic giant branch stars in the non-linear regime. We examine the period and stability of low-order radial pulsation modes as a function of mass and radius, and find overtone mode periods in complete agreement with predictions from linear pulsation models. In contrast, non-linear models predict an earlier onset of dominant FM pulsation, and shorter periods at large radii. Both features lead to a substantially better agreement with observations that we verify against OGLE and Gaia data for the Magellanic Clouds. We provide simple analytical relations describing the non-linear FM period–mass–radius relation. Differences with respect to linear predictions originate from the readjustment of the envelope structure induced by large-amplitude pulsation. We investigate the impact of turbulent viscosity on linear and non-linear pulsation, and probe possible effects of varying metallicity and carbon abundance.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2020-10-29
    Description: X-ray observations of shocked gas in novae can provide a useful probe of the dynamics of the ejecta. Here we report on X-ray observations of the nova V959 Mon, which was also detected in GeV gamma-rays with the Fermi satellite. We find that the X-ray spectra are consistent with a two-temperature plasma model with non-solar abundances. We interpret the X-rays as due to shock interaction between the slow equatorial torus and the fast polar outflow that were inferred from radio observations of V959 Mon. We further propose that the hotter component, responsible for most of the flux, is from the reverse shock driven into the fast outflow. We find a systematic drop in the column density of the absorber between days 60 and 140, consistent with the expectations for such a picture. We present intriguing evidence for a delay of around 40 d in the expulsion of the ejecta from the central binary. Moreover, we infer a relatively small (a few times 10−6 M⊙) ejecta mass ahead of the shock, considerably lower than the mass of 104 K gas inferred from radio observations. Finally, we infer that the dominant X-ray shock was likely not radiative at the time of our observations, and that the shock power was considerably higher than the observed X-ray luminosity. It is unclear why high X-ray luminosity, closer to the inferred shock power, is never seen in novae at early times, when the shock is expected to have high enough density to be radiative.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2020-10-27
    Description: Fundamental Plane (FP) of elliptical galaxies can be used to predict the intrinsic size of galaxies and has a number of plausible application to study cosmology and galaxy physics. We present a detailed analysis of the FP of the SDSS-III BOSS LOWZ and CMASS galaxies. For the standard FP, we find a strong redshift evolution for the mean residual and show that it is primarily driven by the redshift evolution of the surface brightness of the galaxies. After correcting for the redshift evolution, the FP residuals are strongly correlated with the galaxy properties and some observational systematics. We show that the variations in the FP between the central and satellite galaxies, which have been observed in the literature, can primarily be explained by the correlation of the FP with the galaxy luminosity. We also measure the cross-correlations of the FP residuals with the galaxy density field. The amplitude of the cross-correlations depends on the galaxy properties and environment with brighter and redder galaxies showing stronger correlation. In general, galaxies in denser environments (higher galaxy bias) show stronger correlations. We also compare FP amplitude with the amplitudes of intrinsic alignments (IA) of galaxy shapes, finding the two to be correlated. Finally, using the FP residuals, we also study the impact of IA on the constraint of growth rate using redshift-space distortions (RSD). We do not observe any significant trends in measurements of the growth rate f as function of the amplitude of FP–density correlations, resulting in null detection of the effects of IA on the RSD measurements.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2020-10-27
    Description: The Oef category gathers rapidly rotating and evolved O-stars displaying a centrally reversed He ii λ 4686 emission line. The origin of the variability of their photospheric and wind spectral lines is debated, with rotational modulation or pulsations as the main contenders. To shed new light on this question, we analysed high-quality and high-cadence Transiting Exoplanet Survey Satellite photometric time series for five Oef stars. We also collected a new time series of spectra for one target (λ Cep) which had been the subject of specific debates in the last years. These observations reveal the variety of Oef behaviours. While space-based photometric data reveal substantial red noise components in all targets, only ζ Pup seems to display a long-lived periodicity. In our sample, stars exhibit a dominant signal at low frequencies but it appears relatively short-lived. This is reminiscent of rotational modulations by transient photospheric spots, though this scenario is challenged by the case of HD 14 442, whose 1.230 d−1 signal significantly exceeds the critical rotational frequency. In parallel, no evidence of persistent p mode non-radial pulsations is found in either photometry or spectroscopy of the stars, only temporary excitation of g mode pulsations could offer an alternative explanation for the dominant signals. Finally, the revised luminosities of the stars using GAIA-DR2 show that they are not all supergiants as ζ Pup. The question then arises whether the Oef peculiarity denotes a homogeneous class of objects after all.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2020-10-27
    Description: EPIC 216747137 is a new HW Virginis system discovered by the Kepler spacecraft during its K2 ‘second life’. Like the other HW Vir systems, EPIC 216747137 is a post-common-envelope eclipsing binary consisting of a hot subluminous star and a cool low-mass companion. The short orbital period of 3.87 h produces a strong reflection effect from the secondary (∼9 per cent in the R band). Together with AA Dor and V1828 Aql, EPIC 216747137 belongs to a small subgroup of HW Vir systems with a hot evolved sdOB primary. We find the following atmospheric parameters for the hot component: Teff = 40400 ± 1000 K, log g = 5.56 ± 0.06, and log(N(He)/N(H)) = −2.59 ± 0.05. The sdOB rotational velocity v sin  i = 51 ± 10 km s−1 implies that the stellar rotation is slower than the orbital revolution and the system is not synchronized. When we combine photometric and spectroscopic results with the Gaia parallax, the best solution for the system corresponds to a primary with a mass of about 0.62 M⊙ close to, and likely beyond, the central helium exhaustion, while the cool M-dwarf companion has a mass of about 0.11 M⊙.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2020-10-27
    Description: The two established techniques for measuring black hole spin in X-ray binaries often yield conflicting results, which must be resolved before either method may be deemed robust. In practice, black hole spin measurements based on fitting the accretion disc continuum effectively do not marginalize over the colour-correction factor fcol. This factor parametrizes spectral hardening of the disc continuum by the disc atmosphere, whose true properties are poorly constrained. We incorporate reasonable systematic uncertainties in fcol into the eight (non-maximal) black hole spin measurements vetted by the disc continuum fitting community. In most cases, an fcol uncertainty of ±0.2–0.3 dominates the black hole spin error budget. We go on to demonstrate that plausible departures in fcol values from those adopted by the disc continuum fitting practitioners can bring the discrepant black hole spins into agreement with those from iron line modelling. Systematic uncertainties in fcol, such as the effects of strong magnetization, should be better understood before dismissing their potentially dominant impact on the black hole spin error budget.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2020-10-27
    Description: We present the spectrum analysis of the hot Am star HR 3383 (A1 Vm). Hubble Space Telescope STIS and Nordic Optical Telescope SOFIN data are modelled with synthetic spectra, and abundances are investigated for 78 elements. Most light elements up through oxygen show deficiencies, compared to solar abundances, followed by the general trend of increasing abundance enhancement with atomic number that levels off at a 30-fold enhancement at the lanthanide group and heavier elements. The derived element distribution is generally consistent with what is observed in other hot Am stars. Abundances for HR 3383 are also similar to what is seen for the cooler HgMn stars, with the exception of the platinum-group elements that generally show dramatic enhancements in the HgMn stars. Current theory and calculations are able to predict most observed abundances and abundance trends through the iron group. The large number of derived element abundances in this study provides a constraint for theoretical calculations attempting to explain the heavy element abundances in chemically peculiar stars. This paper includes a comprehensive description of spectral lines useful for an abundance analysis of late B and A type stars, and comments are provided on the atomic data. New data for hyperfine structure components for three lines in Lu iii and a single line in Lu ii are presented, based on laboratory spectra. In addition to the stellar spectrum, lines from the interstellar medium are noted for several of the strongest Fe ii ultraviolet transitions.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2020-10-27
    Description: In Pop III stellar models, convection-induced mixing between H- and He-rich burning layers can induce a burst of nuclear energy and thereby substantially alter the subsequent evolution and nucleosynthesis in the first massive stars. We investigate H–He shell and core interactions in 26 stellar evolution simulations with masses 15–140, M⊙, using five sets of mixing assumptions. In 22 cases H–He interactions induce local nuclear energy release in the range $sim 10^{9}!-!10^{13.5}, mathrm{L}_{odot }$. The luminosities on the upper end of this range amount to a substantial fraction of the layer’s internal energy over a convective advection time-scale, indicating a dynamic stellar response that would violate 1D stellar evolution modelling assumptions. We distinguish four types of H–He interactions depending on the evolutionary phase and convective stability of the He-rich material. H-burning conditions during H–He interactions give 12C/13C ratios between ≈ 1.5 to ∼1000 and [C/N] ratios from ≈ −2.3 to ≈ 3 with a correlation that agrees well with observations of CEMP (carbon-enhanced metal-poor) no stars. We also explore Ca production from hot CNO breakout and find the simulations presented here likely cannot explain the observed Ca abundance in the most Ca-poor CEMP-no star. We describe the evolution leading to H–He interactions, which occur during or shortly after core-contraction phases. Three simulations without an H–He interaction are computed to Fe-core infall and a $140, mathrm{M}_{odot }$ simulation becomes pair unstable. We also discuss present modelling limitations and the need for 3D hydrodynamic models to fully understand these stellar evolutionary phases.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2020-10-27
    Description: Observations of ultraviolet (UV) metal absorption lines have provided insight into the structure and composition of the circumgalactic medium (CGM) around galaxies. We compare these observations with the low-redshift (z ≤ 0.3) CGM around dwarf galaxies in high-resolution cosmological zoom-in runs in the FIRE-2 (Feedback In Realistic Environments) simulation suite. We select simulated galaxies that match the halo mass, stellar mass, and redshift of the observed samples. We produce absorption measurements using trident for UV transitions of C iv, O vi, Mg ii, and Si iii. The FIRE equivalent width (EW) distributions and covering fractions for the C iv ion are broadly consistent with observations inside 0.5Rvir, but are underpredicted for O vi, Mg ii, and Si iii. The absorption strengths of the ions in the CGM are moderately correlated with the masses and star formation activity of the galaxies. The correlation strengths increase with the ionization potential of the ions. The structure and composition of the gas from the simulations exhibit three zones around dwarf galaxies characterized by distinct ion column densities: the discy interstellar medium, the inner CGM (the wind-dominated regime), and the outer CGM (the IGM accretion-dominated regime). We find that the outer CGM in the simulations is nearly but not quite supported by thermal pressure, so it is not in hydrostatic equilibrium, resulting in halo-scale bulk inflow and outflow motions. The net gas inflow rates are comparable to the star formation rate of the galaxy, but the bulk inflow and outflow rates are greater by an order of magnitude, with velocities comparable to the virial velocity of the halo. These roughly virial velocities (${sim } 100 , m km, s^{-1}$) produce large EWs in the simulations. This supports a picture for dwarf galaxies in which the dynamics of the CGM at large scales are coupled to the small-scale star formation activity near the centre of their haloes.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2020-10-27
    Description: We present correlations involving central intensity ratio (CIR) of 52 early-type galaxies, including 24 ellipticals and 28 lenticulars, selected from low-density environment in the nearby (
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2020-11-26
    Print ISSN: 0886-6236
    Electronic ISSN: 1944-9224
    Topics: Biology , Chemistry and Pharmacology , Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2020-10-27
    Description: Past Suzaku, XMM–Newton, and NuSTAR observations of the nearby (z = 0.03233) bright Seyfert 2 galaxy MCG-03-58-007 revealed the presence of two deep and blue-shifted iron K-shell absorption line profiles. These could be explained with the presence of two phases of a highly ionized, high column density accretion disc wind outflowing with vout1 ∼ −0.1c and vout2 ∼ −0.2c. Here we present two new observations of MCG-03-58-007: one was carried out in 2016 with Chandra and one in 2018 with Swift. Both caught MCG-03-58-007 in a brighter state ($F_{{mathrm{2}-10, keV}} sim 4 imes 10^{-12}$ erg cm−2 s−1) confirming the presence of the fast disc wind. The multi-epoch observations of MCG-03-58-007 covering the period from 2010 to 2018 were then analysed. These data show that the lower velocity component outflowing with vout1 ∼ −0.072 ± 0.002c is persistent and detected in all the observations, although it is variable in column density in the range NH ∼ 3–8 × 1023 cm−2. In the 2016 Swift observation we detected again the second faster component outflowing with vout2 ∼ −0.2c, with a column density ($N_{mbox{H}}=7.0^{+5.6}_{-4.1}imes 10^{23}$ cm−2), similar to that seen during the Suzaku observation. However during the Chandra observation 2 yr earlier, this zone was not present (NH 〈 1.5 × 1023 cm−2), suggesting that this faster zone is intermittent. Overall the multi-epochs observations show that the disc wind in MCG-03-58-007 is not only powerful, but also extremely variable, hence placing MCG-03-58-007 among unique disc winds such as the one seen in the famous QSO PDS456. One of the main results of this investigation is the consideration that these winds could be extremely variable, sometime appearing and sometime disappearing; thus to reach solid and firm conclusions about their energetics multiple observations are mandatory.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2020-10-27
    Description: We report the result of searching for globular clusters (GCs) around 55 Milky Way (MW) satellite dwarf galaxies within the distance of 450 kpc from the Galactic Centre except for the Large and Small Magellanic Clouds and the Sagittarius dwarf. For each dwarf, we analyse the stellar distribution of sources in Gaia DR2, selected by magnitude, proper motion, and source morphology. Using the kernel density estimation of stellar number counts, we identify 11 possible GC candidates. Cross-matched with existing imaging data, all 11 objects are known either GCs or galaxies and only Fornax GC 1–6 among them are associated with the targeted dwarf galaxy. Using simulated GCs, we calculate the GC detection limit $M_{ m V}^{ m lim}$ that spans the range from $M_{ m V}^{ m lim}sim -7$ for distant dwarfs to $M_{ m V}^{ m lim}sim 0$ for nearby systems. Assuming a Gaussian GC luminosity function, we compute that the completeness of the GC search is above 90 per cent for most dwarf galaxies. We construct the 90 per cent credible intervals/upper limits on the GC specific frequency SN of the MW dwarf galaxies: 12 〈 SN 〈 47 for Fornax, SN 〈 20 for the dwarfs with −12 〈 MV 〈 −10, SN 〈 30 for the dwarfs with −10 〈 MV 〈 −7, and SN 〈 90 for the dwarfs with MV 〉 −7. Based on SN, we derive the probability of galaxies hosting GCs given their luminosity, finding that the probability of galaxies fainter than MV = −9 to host GCs is lower than 0.1.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2020-10-27
    Description: We present the analysis of archival Very Large Telescope (VLT) Multi-Unit Spectroscopic Explorer (MUSE) observations of the interacting galaxies NGC 4038/39 (a.k.a. the Antennae) at a distance of 18.1 Mpc. Up to 38 young star-forming complexes with evident contribution from Wolf–Rayet (WR) stars are unveiled. We use publicly available templates of Galactic WR stars in conjunction with available photometric extinction measurements to quantify and classify the WR population in each star-forming region, on the basis of its nearly Solar oxygen abundance. The total estimated number of WR stars in the Antennae is 4053 ± 84, of which there are 2021 ± 60 WNL and 2032 ± 59 WC-types. Our analysis suggests a global WC to WN-type ratio of 1.01 ± 0.04, which is consistent with the predictions of the single star evolutionary scenario in the most recent bpass stellar population synthesis models.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2020-10-27
    Description: Motivation As genomic data becomes more abundant, efficient algorithms and data structures for sequence alignment become increasingly important. The suffix array is a widely used data structure to accelerate alignment, but the binary search algorithm used to query, it requires widespread memory accesses, causing a large number of cache misses on large datasets. Results Here, we present Sapling, an algorithm for sequence alignment, which uses a learned data model to augment the suffix array and enable faster queries. We investigate different types of data models, providing an analysis of different neural network models as well as providing an open-source aligner with a compact, practical piecewise linear model. We show that Sapling outperforms both an optimized binary search approach and multiple widely used read aligners on a diverse collection of genomes, including human, bacteria and plants, speeding up the algorithm by more than a factor of two while adding
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2020-12-01
    Print ISSN: 0886-6236
    Electronic ISSN: 1944-9224
    Topics: Biology , Chemistry and Pharmacology , Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2020-12-01
    Print ISSN: 0886-6236
    Electronic ISSN: 1944-9224
    Topics: Biology , Chemistry and Pharmacology , Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2020-12-01
    Print ISSN: 0886-6236
    Electronic ISSN: 1944-9224
    Topics: Biology , Chemistry and Pharmacology , Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2020-12-01
    Print ISSN: 0886-6236
    Electronic ISSN: 1944-9224
    Topics: Biology , Chemistry and Pharmacology , Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2020-10-29
    Description: The origin of fast radio bursts (FRBs) still remains a mystery, even with the increased number of discoveries in the last 3 yr. Growing evidence suggests that some FRBs may originate from magnetars. Large, single-dish telescopes such as Arecibo Observatory (AO) and Green Bank Telescope (GBT) have the sensitivity to detect FRB 121102-like bursts at gigaparsec distances. Here, we present searches using AO and GBT that aimed to find potential radio bursts at 11 sites of past gamma-ray bursts that show evidence for the birth of a magnetar. We also performed a search towards GW170817, which has a merger remnant whose nature remains uncertain. We place $10sigma$ fluence upper limits of ≈0.036 Jy ms at 1.4 GHz and ≈0.063 Jy ms at 4.5 GHz for the AO data and fluence upper limits of ≈0.085 Jy ms at 1.4 GHz and ≈0.098 Jy ms at 1.9 GHz for the GBT data, for a maximum pulse width of ≈42 ms. The AO observations had sufficient sensitivity to detect any FRB of similar luminosity to the one recently detected from the Galactic magnetar SGR 1935+2154. Assuming a Schechter function for the luminosity function of FRBs, we find that our non-detections favour a steep power-law index (α ≲ −1.1) and a large cut-off luminosity (L0 ≳ 1041 erg s−1).
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2020-10-28
    Description: We present the Emission Line Galaxy (ELG) sample of the extended Baryon Oscillation Spectroscopic Survey from the Sloan Digital Sky Survey IV Data Release 16. We describe the observations and redshift measurement for the 269 243 observed ELG spectra, and then present the large-scale structure catalogues, used for the cosmological analysis, and made of 173 736 reliable spectroscopic redshifts between 0.6 and 1.1. We perform a spherically averaged baryon acoustic oscillations (BAO) measurement in configuration space, with density field reconstruction: the data two-point correlation function shows a feature consistent with that of the BAO, the BAO model being only weakly preferred over a model without BAO (Δχ2 〈 1). Fitting a model constrained to have a BAO feature provides a 3.2 per cent measurement of the spherically averaged BAO distance DV(zeff)/rdrag = 18.23 ± 0.58 at the effective redshift zeff = 0.845.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2020-10-30
    Description: New Swift monitoring observations of the variable, radio-quiet quasar, PDS 456, are presented. A bright X-ray flare was captured in 2018 September, the flux increasing by a factor of 4 and with a doubling time-scale of 2 d. From the light crossing argument, the coronal size is inferred to be ≲30 gravitational radii for a black hole mass of 109 M⊙ and the total flare energy exceeds 1051 erg. A hardening of the X-ray emission accompanied the flare, with the photon index decreasing from Γ = 2.2 to Γ = 1.7 and back again. The flare is produced in the X-ray corona, the lack of any optical or UV variability being consistent with a constant accretion rate. Simultaneous XMM–Newton and NuSTAR observations were performed, 1–3 d after the flare peak and during the decline phase. These caught PDS 456 in a bright, bare state, where no disc wind absorption features are apparent. The hard X-ray spectrum shows a high energy roll-over, with an e-folding energy of $E_{ m fold}=51^{+11}_{-8}$ keV. The deduced coronal temperature, of kT = 13 keV, is one of the coolest measured in any AGN and PDS 456 lies well below the predicted pair annihilation line in X-ray corona. The spectral variability, becoming softer when fainter following the flare, is consistent with models of cooling X-ray coronae. Alternatively, an increase in a non-thermal component could contribute towards the hard X-ray flare spectrum.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2020-10-31
    Description: Massive galaxy clusters undergo strong evolution from z ∼ 1.6 to z ∼ 0.5, with overdense environments at high-z characterized by abundant dust-obscured star formation and stellar mass growth which rapidly give way to widespread quenching. Data spanning the near- to far-infrared (IR) can directly trace this transformation; however, such studies have largely been limited to the massive galaxy end of cluster populations. In this work, we present ‘total light’ stacking techniques spanning $3.4!-!500, mu$m aimed at revealing the total cluster emission, including low-mass members and potential intracluster dust. We detail our procedures for WISE, Spitzer, and Herschel imaging, including corrections to recover the total stacked emission in the case of high fractions of detected galaxies. We apply our techniques to 232 well-studied log$, M_{200}/mathrm{M}_{odot }sim 13.8$ clusters in multiple redshift bins, recovering extended cluster emission at all wavelengths. We measure the averaged IR radial profiles and spectral energy distributions (SEDs), quantifying the total stellar and dust content. The near-IR profiles are well described by an NFW model with a high (c ∼ 7) concentration. Dust emission is similarly concentrated, albeit suppressed at $rlesssim 0.3,$Mpc. The measured SEDs lack warm dust, consistent with the colder SEDs of low-mass galaxies. We derive total stellar masses consistent with the theoretical Mhalo−M⋆ relation and specific star formation rates that evolve strongly with redshift, echoing that of log$, M_{star }/mathrm{M}_{odot }gtrsim 10$ cluster galaxies. Separating out the massive population reveals the majority of cluster far-IR emission ($sim 70!-!80{{ m per cent}}$) is provided by the low-mass constituents, which differs from field galaxies. This effect may be a combination of mass-dependent quenching and excess dust in low-mass cluster galaxies.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2020-10-29
    Description: HD 38206 is an A0V star in the Columba association, hosting a debris disc first discovered by IRAS. Further observations by Spitzer and Herschel showed that the disc has two components, likely analogous to the asteroid and Kuiper belts of the Solar system. The young age of this star makes it a prime target for direct imaging planet searches. Possible planets in the system can be constrained using the debris disc. Here, we present the first ALMA observations of the system’s Kuiper belt and fit them using a forward modelling MCMC approach. We detect an extended disc of dust peaking at around 180 au with a width of 140 au. The disc is close to edge on and shows tentative signs of an asymmetry best fit by an eccentricity of $0.25^{+0.10}_{-0.09}$. We use the fitted parameters to determine limits on the masses of planets interior to the cold belt. We determine that a minimum of four planets are required, each with a minimum mass of 0.64 MJ, in order to clear the gap between the asteroid and Kuiper belts of the system. If we make the assumption that the outermost planet is responsible for the stirring of the disc, the location of its inner edge and the eccentricity of the disc, then we can more tightly predict its eccentricity, mass, and semimajor axis to be $e_{ m {p}}=0.34^{+0.20}_{-0.13}$, $m_{ m {p}}=0.7^{+0.5}_{-0.3}, m {it M}_{ m {J}}$, and $a_{ m {p}}=76^{+12}_{-13}, m {au}$.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2020-10-27
    Description: The size–mass galaxy distribution is a key diagnostic for galaxy evolution. Massive compact galaxies are potential surviving relics of a high-redshift phase of star formation. Some of these could be nearly unresolved in Sloan Digital Sky Survey (SDSS) imaging and thus not included in galaxy samples. To overcome this, a sample was selected from the combination of SDSS and UKIRT Infrared Deep Sky Survey (UKIDSS) photometry to r 〈 17.8. This was done using colour–colour selection, and then by obtaining accurate photometric redshifts (photo-z) using scaled flux matching (SFM). Compared to spectroscopic redshifts (spec-z), SFM obtained a 1σ scatter of 0.0125 with only 0.3 per cent outliers (|Δln (1 + z)| 〉 0.06). A sample of 163 186 galaxies was obtained with 0.04 〈 z 〈 0.15 over $2300, { m deg}^2$ using a combination of spec-z and photo-z. Following Barro et al. log Σ1.5 = log M* − 1.5log r50, maj was used to define compactness. The spectroscopic completeness was 76 per cent for compact galaxies (log Σ1.5 〉 10.5) compared to 92 per cent for normal-sized galaxies. This difference is primarily attributed to SDSS ‘fibre collisions’ and not the completeness of the main galaxy sample selection. Using environmental overdensities, this confirms that compact quiescent galaxies are significantly more likely to be found in high-density environments compared to normal-sized galaxies. By comparison with a high-redshift sample from 3D-HST, log Σ1.5 distribution functions show significant evolution, with this being a compelling way to compare with simulations such as EAGLE. The number density of compact quiescent galaxies drops by a factor of about 30 from z ∼ 2 to log (n/Mpc−3) = − 5.3 ± 0.4 in the SDSS–UKIDSS sample. The uncertainty is dominated by the steep cut off in log Σ1.5, which is demonstrated conclusively using this complete sample.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
  • 64
    Publication Date: 2020-10-29
    Description: We assess the robustness of the two highest rungs of the ‘cosmic distance ladder’ for Type Ia supernovae and the determination of the Hubble–Lemaître constant. In this analysis, we hold fixed Rung 1 as the distance to the LMC determined to 1 per cent using detached eclipsing binary stars. For Rung 2, we analyse two methods, the TRGB and Cepheid distances for the luminosity calibration of Type Ia supernovae in nearby galaxies. For Rung 3, we analyse various modern digital supernova samples in the Hubble flow, such as the Calán-Tololo, CfA, CSP, and Supercal data sets. This metadata analysis demonstrates that the TRGB calibration yields smaller H0 values than the Cepheid calibration, a direct consequence of the systematic difference in the distance moduli calibrated from these two methods. Selecting the three most independent possible methodologies/bandpasses (B, V, J), we obtain H0 = 69.9 ± 0.8 and H0= 73.5 ± 0.7 $, m km, s^{-1} , Mpc^{-1}$from the TRGB and Cepheid calibrations, respectively. Adding in quadrature the systematic uncertainty in the TRGB and Cepheid methods of 1.1 and 1.0 $, m km, s^{-1} , Mpc^{-1}$, respectively, this subset reveals a significant 2.0σ systematic difference in the calibration of Rung 2. If Rung 1 and Rung 2 are held fixed, the different formalisms developed for standardizing the supernova peak magnitudes yield consistent results, with a standard deviation of 1.5 $, m km, s^{-1} , Mpc^{-1}$, that is, Type Ia supernovae are able to anchor Rung 3 with 2 per cent precision. This study demonstrates that Type Ia supernovae have provided a remarkably robust calibration of R3 for over 25 yr.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2020-10-27
    Description: The Cepheid Leavitt Law (LL), also known as the Period–Luminosity relation, is a crucial tool for assembling the cosmic distance ladder. By combining data from the OGLE-IV catalogue with mid-infrared photometry from the Spitzer Space Telescope, we have determined the 3.6 and 4.5 $mu$m LLs for the Magellanic Clouds using ∼5000 fundamental-mode classical Cepheids. Mean magnitudes were determined using a Monte Carlo Markov Chain (MCMC) template fitting procedure, with template light curves constructed from a subsample of these Cepheids with fully phased, well-sampled light curves. The dependence of the Large Magellanic Cloud LL coefficients on various period cuts was tested, in addition to the linearity of the relationship. The zero-point of the LL was calibrated using the parallaxes of Milky Way Cepheids from the Hubble Space Telescope and Gaia Data Release 2. Our final calibrated relations are M[3.6] = −3.246(±0.008)(log (P) − 1.0) − 5.784(±0.030) and M[4.5] = −3.162(±0.008)(log (P) − 1.0) − 5.751(±0.030).
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2020-05-20
    Description: Whole exome sequencing (WES) is a powerful approach for discovering sequence variants in cancer cells but its time effectiveness is limited by the complexity and issues of WES data analysis. Here we present iWhale, a customizable pipeline based on Docker and SCons, reliably detecting somatic variants by three complementary callers (MuTect2, Strelka2 and VarScan2). The results are combined to obtain a single variant call format file for each sample and variants are annotated by integrating a wide range of information extracted from several reference databases, ultimately allowing variant and gene prioritization according to different criteria. iWhale allows users to conduct a complex series of WES analyses with a powerful yet customizable and easy-to-use tool, running on most operating systems (macOs, GNU/Linux and Windows). iWhale code is freely available at https://github.com/alexcoppe/iWhale and the docker image is downloadable from https://hub.docker.com/r/alexcoppe/iwhale.
    Print ISSN: 1467-5463
    Electronic ISSN: 1477-4054
    Topics: Biology , Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 125(6), (2020): e2019JB019239, doi:10.1029/2019JB019239.
    Description: P‐to‐S‐converted waves observed in controlled‐source multicomponent ocean bottom seismometer (OBS) records were used to derive the Vp/Vs structure of Cascadia Basin sediments. We used P‐to‐S waves converted at the basement to derive an empirical function describing the average Vp/Vs of Cascadia sediments as a function of sediment thickness. We derived one‐dimensional interval Vp/Vs functions from semblance velocity analysis of S‐converted intrasediment and basement reflections, which we used to define an empirical Vp/Vs versus burial depth compaction trend. We find that seaward from the Cascadia deformation front, Vp/Vs structure offshore northern Oregon and Washington shows little variability along strike, while the structure of incoming sediments offshore central Oregon is more heterogeneous and includes intermediate‐to‐deep sediment layers of anomalously elevated Vp/Vs. These zones with elevated Vp/Vs are likely due to elevated pore fluid pressures, although layers of high sand content intercalated within a more clayey sedimentary sequence, and/or a higher content of coarser‐grained clay minerals relative to finer‐grained smectite could be contributing factors. We find that the proto‐décollement offshore central Oregon develops within the incoming sediments at a low‐permeability boundary that traps fluids in a stratigraphic level where fluid overpressure exceeds 50% of the differential pressure between the hydrostatic pressure and the lithostatic pressure. Incoming sediments with the highest estimated fluid overpressures occur offshore central Oregon where deformation of the accretionary prism is seaward vergent. Conversely, landward vergence offshore northern Oregon and Washington correlates with more moderate pore pressures and laterally homogeneous Vp/Vs functions of Cascadia Basin sediments.
    Description: This research was funded by National Science Foundation (NSF) Grant OCE‐1657237 to J. P. C, OCE‐1657839 to A. F. A. and S. H., and OCE‐1657737 to S. M. C. Data used in this study were acquired with funding from NSF Grants OCE‐1029305 and OCE‐1249353. Data used in this research were provided by instruments from the Ocean Bottom Seismic Instrument Center (http://obsic.whoi.edu, formerly OBSIP), which is funded by the NSF. OBSIC/OBSIP data are archived at the IRIS Data Management Center (http://www.iris.edu) under network code X6 (https://doi.org/10.7914/SN/X6_2012). Data processing was conducted with Emerson‐Paradigm Software package Echos licensed to Woods Hole Oceanographic Institution under Paradigm Academic Software Program and MATLAB package SeismicLab of the University of Alberta, Canada (http://seismic-lab.physics.ualberta.ca), under GNU General Public License (MATLAB® is a registered trademark of MathWorks).
    Description: 2020-11-28
    Keywords: Vp/Vs ; sediments ; ocean bottom seismometer ; Juan de Fuca plate ; Cascadia
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 125(8), (2020): e2020JC016068, doi:10.1029/2020JC016068.
    Description: Labrador Sea Water (LSW) is a major component of the deep limb of the Atlantic Meridional Overturning Circulation, yet LSW transport pathways and their variability lack a complete description. A portion of the LSW exported from the subpolar gyre is advected eastward along the North Atlantic Current and must contend with the Mid‐Atlantic Ridge before reaching the eastern basins of the North Atlantic. Here, we analyze observations from a mooring array and satellite altimetry, together with outputs from a hindcast ocean model simulation, to estimate the mean transport of LSW across the Charlie‐Gibbs Fracture Zone (CGFZ), a primary gateway for the eastward transport of the water mass. The LSW transport estimated from the 25‐year altimetry record is 5.3 ± 2.9 Sv, where the error represents the combination of observational variability and the uncertainty in the projection of the surface velocities to the LSW layer. Current velocities modulate the interannual to higher‐frequency variability of the LSW transport at the CGFZ, while the LSW thickness becomes important on longer time scales. The modeled mean LSW transport for 1993–2012 is higher than the estimate from altimetry, at 8.2 ± 4.1 Sv. The modeled LSW thickness decreases substantially at the CGFZ between 1996 and 2009, consistent with an observed decline in LSW volume in the Labrador Sea after 1994. We suggest that satellite altimetry and continuous hydrographic measurements in the central Labrador Sea, supplemented by profiles from Argo floats, could be sufficient to quantify the LSW transport at the CGFZ.
    Description: A. G. N. appreciates conversations with Kathy Donohue, Tom Rossby and Lisa Beal, which helped to interpret the results. J. B. P. acknowledges support from NSF through Grant OCE‐1947829. The authors thank all colleagues and ship crew involved in the R/V Meteor cruise M‐82/2 and Maria S. Merian cruise MSM‐21/2. The mooring data presented in this paper were funded by NSF through Grant OCE‐0926656.
    Description: 2021-01-03
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 47(3), (2020): e2019GL086703, doi:10.1029/2019GL086703.
    Description: Salt marsh assessments focus on vertical metrics such as accretion or lateral metrics such as open‐water conversion, without exploration of how the dimensions are related. We exploited a novel geospatial data set to explore how elevation is related to the unvegetated‐vegetated marsh ratio (UVVR), a lateral metric, across individual marsh “units” within four estuarine‐marsh systems. We find that elevation scales consistently with the UVVR across systems, with lower elevation units demonstrating more open‐water conversion and higher UVVRs. A normalized elevation‐UVVR relationship converges across systems near the system‐mean elevation and a UVVR of 0.1, a critical threshold identified by prior studies. This indicates that open‐water conversion becomes a dominant lateral instability process at a relatively conservative elevation threshold. We then integrate the UVVR and elevation to yield lifespan estimates, which demonstrate that higher elevation marshes are more resilient to internal deterioration, with an order‐of‐magnitude longer lifespan than predicted for lower elevation marshes.
    Description: This study was supported by the USGS through the Coastal Marine Hazards/Resources Program, the National Park Service through the Natural Resource Preservation Program, and the U.S. Fish and Wildlife Service through the Science Support Partnership. Erika Lentz, Elizabeth Pendleton, Meagan Gonneea, Joel Carr, and two anonymous reviewers provided constructive advice on the study. S.F. was partly supported by US National Science Foundation award 1637630 (PIE LTER), 1832221 (VCR LTER). The geospatial data used in this study are published in the Coastal Wetlands Synthesis Products catalog on ScienceBase (https://www.sciencebase.gov/catalog/item/5b73325ee4b0f5d5787c5ff3).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research- Biogeosciences 125(4), (2020): e2019JG005158, doi:10.1029/2019JG005158.
    Description: Long‐term soil warming can decrease soil organic matter (SOM), resulting in self‐reinforcing feedback to the global climate system. We investigated additional consequences of SOM reduction for soil water holding capacity (WHC) and soil thermal and hydrological buffering. At a long‐term soil warming experiment in a temperate forest in the northeastern United States, we suspended the warming treatment for 104 days during the summer of 2017. The formerly heated plot remained warmer (+0.39 °C) and drier (−0.024 cm3 H2O cm−3 soil) than the control plot throughout the suspension. We measured decreased SOM content (−0.184 g SOM g−1 for O horizon soil, −0.010 g SOM g−1 for A horizon soil) and WHC (−0.82 g H2O g−1 for O horizon soil, −0.18 g H2O g−1 for A horizon soil) in the formerly heated plot relative to the control plot. Reduced SOM content accounted for 62% of the WHC reduction in the O horizon and 22% in the A horizon. We investigated differences in SOM composition as a possible explanation for the remaining reductions with Fourier transform infrared (FTIR) spectra. We found FTIR spectra that correlated more strongly with WHC than SOM, but those particular spectra did not differ between the heated and control plots, suggesting that SOM composition affects WHC but does not explain treatment differences in this study. We conclude that SOM reductions due to soil warming can reduce WHC and hydrological and thermal buffering, further warming soil and decreasing SOM. This feedback may operate in parallel, and perhaps synergistically, with carbon cycle feedbacks to climate change.
    Description: We would like to acknowledge Jeffery Blanchard, Priya Chowdhury, Kristen DeAngelis, Luiz Dominguez‐Horta, Kevin Geyer, Rachelle Lacroix, Xaiojun Liu, William Rodriguez, and Alexander Truchonand and for assistance with field sampling. We would like to acknowledge Michael Bernard for assistance with field sampling and lab work. We would like to acknowledge Aaron Ellison for statistical consultation. This research was financially supported by the U.S. National Science Foundation's Long Term Ecological Research Program (NSF‐DEB‐0620443 and NSF‐DEB‐1237491), the Long Term Research in Environmental Biology Program (NSF DEB‐1456528) , and the U.S. Department of Energy (DOE‐DE‐SC0005421 and DOE‐DE‐SC0010740). Data used in this study are available from the Harvard Forest Data Archive (Datasets HF018‐03, HF018‐04, and HF018‐13), accessible at https://harvardforest.fas.harvard.edu/harvard‐forest‐data‐archive.
    Description: 2020-10-04
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2022-05-25
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Carroll, E. L., Ott, P. H., McMillan, L. F., Galletti Vernazzani, B., Neveceralova, P., Vermeulen, E., Gaggiotti, O. E., Andriolo, A., Baker, C. S., Bamford, C., Best, P., Cabrera, E., Calderan, S., Chirife, A., Fewster, R. M., Flores, P. A. C., Frasier, T., Freitas, T. R. O., Groch, K., Hulva, P., Kennedy, A., Leaper, R., Leslie, M. S., Moore, M., Oliveira, L., Seger, J., Stepien, E. N., Valenzuela, L. O., Zerbini, A., & Jackson, J. A. Genetic diversity and connectivity of southern right whales (Eubalaena australis) found in the Brazil and Chile-Peru wintering grounds and the South Georgia (Islas Georgias del Sur) feeding ground. Journal of Heredity, 111(3), (2020): 263-276, doi:10.1093/jhered/esaa010.
    Description: As species recover from exploitation, continued assessments of connectivity and population structure are warranted to provide information for conservation and management. This is particularly true in species with high dispersal capacity, such as migratory whales, where patterns of connectivity could change rapidly. Here we build on a previous long-term, large-scale collaboration on southern right whales (Eubalaena australis) to combine new (nnew) and published (npub) mitochondrial (mtDNA) and microsatellite genetic data from all major wintering grounds and, uniquely, the South Georgia (Islas Georgias del Sur: SG) feeding grounds. Specifically, we include data from Argentina (npub mtDNA/microsatellite = 208/46), Brazil (nnew mtDNA/microsatellite = 50/50), South Africa (nnew mtDNA/microsatellite = 66/77, npub mtDNA/microsatellite = 350/47), Chile–Peru (nnew mtDNA/microsatellite = 1/1), the Indo-Pacific (npub mtDNA/microsatellite = 769/126), and SG (npub mtDNA/microsatellite = 8/0, nnew mtDNA/microsatellite = 3/11) to investigate the position of previously unstudied habitats in the migratory network: Brazil, SG, and Chile–Peru. These new genetic data show connectivity between Brazil and Argentina, exemplified by weak genetic differentiation and the movement of 1 genetically identified individual between the South American grounds. The single sample from Chile–Peru had an mtDNA haplotype previously only observed in the Indo-Pacific and had a nuclear genotype that appeared admixed between the Indo-Pacific and South Atlantic, based on genetic clustering and assignment algorithms. The SG samples were clearly South Atlantic and were more similar to the South American than the South African wintering grounds. This study highlights how international collaborations are critical to provide context for emerging or recovering regions, like the SG feeding ground, as well as those that remain critically endangered, such as Chile–Peru.
    Description: This work was supported by the EU BEST 2.0 medium grant 1594 and UK DARWIN PLUS grant 057 and additional funding from the World Wildlife Fund GB107301. The collection of the Chile–Peru sample was supported by the Global Greengrants Fund and the Pacific Whale Foundation. The collection of the Brazilian samples was supported through grants by the Brazilian National Research Council to Paulo H. Ott (CNPq proc. n° 144064/98-7) and Paulo A.C. Flores (CNPq proc. n° 146609/1999-9) and with support from the World Wildlife Fund (WWF-Brazil). The collection of the South African samples was supported by the Global Greengrants Fund, the Pacific Whale Foundation and Charles University Grant Agency (1140217). E.L.C. was partially supported by a Rutherford Discovery Fellowship from the Royal Society of New Zealand. This study forms part of the Ecosystems component of the British Antarctic Survey Polar Sciences for Planet Earth Programme, funded by the Natural Environment Research Council.
    Keywords: population structure ; connectivity ; migration ; gene flow
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 125(8), (2020): e2020JC016445, doi:10.1029/2020JC016445.
    Description: The Mid‐Atlantic Bight (MAB) Cold Pool is a bottom‐trapped, cold (temperature below 10°C) and fresh (practical salinity below 34) water mass that is isolated from the surface by the seasonal thermocline and is located over the midshelf and outer shelf of the MAB. The interannual variability of the Cold Pool with regard to its persistence time, volume, temperature, and seasonal along‐shelf propagation is investigated based on a long‐term (1958–2007) high‐resolution regional model of the northwest Atlantic Ocean. A Cold Pool Index is defined and computed in order to quantify the strength of the Cold Pool on the interannual timescale. Anomalous strong, weak, and normal years are categorized and compared based on the Cold Pool Index. A detailed quantitative study of the volume‐averaged heat budget of the Cold Pool region (CPR) has been examined on the interannual timescale. Results suggest that the initial temperature and abnormal warming/cooling due to advection are the primary drivers in the interannual variability of the near‐bottom CPR temperature anomaly during stratified seasons. The long persistence of temperature anomalies from winter to summer in the CPR also suggests a potential for seasonal predictability.
    Description: This work was funded by the National Oceanic and Atmospheric Administration through Awards NOAA‐NA‐15OAR4310133 and NOAA‐NA‐13OAR4830233 and the National Science Foundation Awards OCE‐1049088, OCE‐1419584, and OCE‐0961545.
    Description: 2021-02-03
    Keywords: Mid‐Atlantic Bight ; Cold Pool ; continental shelf ; temperature balance ; interannual variability ; near‐bottom temperature
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 125(8), (2020): e2020JC016197, doi:10.1029/2020JC016197.
    Description: Synoptic shipboard measurements, together with historical hydrographic data and satellite data, are used to elucidate the detailed structure of the Atlantic Water (AW) boundary current system in the southern Canada Basin and its connection to the upstream source of AW in the Chukchi Borderland. Nine high‐resolution occupations of a transect extending from the Beaufort shelf to the deep basin near 152°W, taken between 2003 and 2018, reveal that there are two branches of the AW boundary current that flow beneath and counter to the Beaufort Gyre. Each branch corresponds to a warm temperature core and transports comparable amounts of Fram Strait Branch Water between roughly 200–700 m depth, although they are characterized by a different temperature/salinity (T/S) structure. The mean volume flux of the combined branches is 0.87 ± 0.13 Sv. Using the historical hydrographic data, the two branches are tracked upstream by their temperature cores and T/S signatures. This sheds new light on how the AW negotiates the Chukchi Borderland and why two branches emerge from this region. Lastly, the propagation of warm temperature anomalies through the region is quantified and shown to be consistent with the deduced circulation scheme.
    Description: This work was funded by the following sources: National Science Foundation Grants PLR‐1504333, OPP‐1733564, and OPP‐1504394; National Oceanic and Atmospheric Administration Grant NA14OAR4320158; and National Aeronautics and Space Administration Grant NNX10AF42G.
    Description: 2021-01-27
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2023-10-26
    Description: This article has been accepted for publication in Geophysical Journal International ©:The Author(s) 2020. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.Uploaded in accordance with the publisher's self-archiving policy. All rights reserved
    Description: The application of a physics-based earthquake simulator to Central Italy allowed the compilation of a synthetic seismic catalogue spanning 100 000 yr, containing more than 300 000 M ≥ 4.0 simulated earthquakes, without the limitations that real catalogues suffer in terms of completeness, homogeneity and time duration. The seismogenic model upon which we applied the simulator code was derived from version 3.2.1 of the Database of Individual Seismogenic Sources (DISS; http://diss.rm.ingv.it/diss/), selecting, and modifying where appropriate, all the fault systems that are recognized in the portion of Central Italy considered in this study, with a total of 54 faults. Besides tectonic stress loading and static stress transfer as in the previous versions, the physical model on which the latest version of our simulation algorithm is based also includes the Rate and State constitutive law that helps to reproduce Omori’s law. One further improvement in our code was also the introduction of trapezoidalshaped faults that perform better than known faults. The resulting synthetic seismic catalogue exhibits typical magnitude, space and time features which are comparable to those in real observations. These features include the total seismic moment rate, the earthquake magnitude distribution, and the short- and medium-term earthquake clustering. A typical aspect of the observed seismicity in Central Italy, aswell as across thewhole Italian landmass and elsewhere, is the occurrence of earthquake sequences characterized by multiple main shocks of similar magnitude. These sequences are different from the usual earthquake clusters and aftershock sequences, since they have at least two main shocks of similar magnitude. Therefore, special attentionwas devoted to verifyingwhether the simulated catalogue includes this notable aspect. For this purpose, we developed a computer code especially for this work to count the number of multiple events contained in a seismic catalogue under a quantitative definition. We found that the last version of the simulator code produces a slightly larger number of multiple events than the previous versions, but not as large as in the real catalogue. A possible reason for this drawback is the lack of components such as pore-pressure changes due to fluid-diffusion in the adopted physical model.
    Description: Published
    Description: 526–542
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2023-03-08
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 125(5), (2020): e2019JC016007, doi:10.1029/2019JC016007.
    Description: Benthic inputs of nutrients help support primary production in the Chukchi Sea and produce nutrient‐rich water masses that ventilate the halocline of the western Arctic Ocean. However, the complex biological and redox cycling of nutrients and trace metals make it difficult to directly monitor their benthic fluxes. In this study, we use radium‐228, which is a soluble radionuclide produced in sediments, and a numerical model of an inert, generic sediment‐derived tracer to study variability in sediment inputs to the Chukchi Sea. The 228Ra observations and modeling results are in general agreement and provide evidence of strong benthic inputs to the southern Chukchi Sea during the winter, while the northern shelf receives higher concentrations of sediment‐sourced materials in the spring and summer due to continued sediment‐water exchange as the water mass traverses the shelf. The highest tracer concentrations are observed near the shelfbreak and southeast of Hanna Shoal, a region known for high biological productivity and enhanced benthic biomass.
    Description: This study presents data from multiple Arctic expeditions over the past two decades, and we are indebted to the captains, crews, and scientific parties that made this data collection possible. This work was funded by NSF awards OCE‐1458305 to M. Charette, OCE‐1458424 to W. Moore, OCE‐1434085 to D. Kadko, PLR‐1504333 to R. Pickart, and OPP‐1822334 to M. Spall. Funding was also provided by National Oceanic and Atmospheric Administration Grant NA14‐OAR4320158 to R. Pickart. L. Kipp was supported by an Ocean Frontier Institute Postdoctoral Fellowship. Radium data used in this manuscript are available in Table S1.
    Description: 2020-10-27
    Keywords: Chukchi Sea ; Benthic flux ; Radium‐228 ; GEOTRACES
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 125(2), (2020): e2019JC015400, doi:10.1029/2019JC015400.
    Description: One of the foci of the Forum for Artic Modeling and Observational Synthesis (FAMOS) project is improving Arctic regional ice‐ocean models and understanding of physical processes regulating variability of Arctic environmental conditions based on synthesis of observations and model results. The Beaufort Gyre, centered in the Canada Basin of the Arctic Ocean, is an ideal phenomenon and natural laboratory for application of FAMOS modeling capabilities to resolve numerous scientific questions related to the origin and variability of this climatologic freshwater reservoir and flywheel of the Arctic Ocean. The unprecedented volume of data collected in this region is nearly optimal to describe the state and changes in the Beaufort Gyre environmental system at synoptic, seasonal, and interannual time scales. The in situ and remote sensing data characterizing ocean hydrography, sea surface heights, ice drift, concentration and thickness, ocean circulation, and biogeochemistry have been used for model calibration and validation or assimilated for historic reconstructions and establishing initial conditions for numerical predictions. This special collection of studies contributes time series of the Beaufort Gyre data; new methodologies in observing, modeling, and analysis; interpretation of measurements and model output; and discussions and findings that shed light on the mechanisms regulating Beaufort Gyre dynamics as it transitions to a new state under different climate forcing.
    Description: We would like to thank all FAMOS participants (https://web.whoi.edu/famos/ and https://famosarctic.com/) and collaborators of the Beaufort Gyre Exploration project (https://www.whoi.edu/beaufortgyre) for their continued enthusiasm, creativity, and support during all stages of both projects. This research is supported by the National Science Foundation Office of Polar Programs (projects 1845877, 1719280, and 1604085). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. Arctic dynamic topography/geostrophic currents data were provided by the Centre for Polar Observation and Modelling, University College London (www.cpom.ucl.ac.uk/dynamic_topography; Armitage et al. (2016, 2017). The other data used in this paper are available at the NCAR/NCEP (https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html), NSIDC (https://nsidc.org/), NSF's Arctic data center (https://arcticdata.io/; Keywords for data search are “Beaufort Gyre”, “Krishfield” or “Proshutinsky”), and WHOI Beaufort Gyre exploration website (www.whoi.edu/beaufortgyre).
    Keywords: Beaufort Gyre ; Circulation ; Freshwater content ; Sea ice ; Ecosystems ; Hydrography
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Johnson, W. M., Alexander, H., Bier, R. L., Miller, D. R., Muscarella, M. E., Pitz, K. J., & Smith, H. Auxotrophic interactions: A stabilizing attribute of aquatic microbial communities? FEMS Microbiology Ecology, (2020): fiaa115, doi: 10.1093/femsec/fiaa115.
    Description: Auxotrophy, or an organism's requirement for an exogenous source of an organic molecule, is widespread throughout species and ecosystems. Auxotrophy can result in obligate interactions between organisms, influencing ecosystem structure and community composition. We explore how auxotrophy-induced interactions between aquatic microorganisms affect microbial community structure and stability. While some studies have documented auxotrophy in aquatic microorganisms, these studies are not widespread, and we therefore do not know the full extent of auxotrophic interactions in aquatic environments. Current theoretical and experimental work suggests that auxotrophy links microbial community members through a complex web of metabolic dependencies. We discuss the proposed ways in which auxotrophy may enhance or undermine the stability of aquatic microbial communities, highlighting areas where our limited understanding of these interactions prevents us from being able to predict the ecological implications of auxotrophy. Finally, we examine an example of auxotrophy in harmful algal blooms to place this often theoretical discussion in a field context where auxotrophy may have implications for the development and robustness of algal bloom communities. We seek to draw attention to the relationship between auxotrophy and community stability in an effort to encourage further field and theoretical work that explores the underlying principles of microbial interactions.
    Description: This work was supported by the National Science Foundation [OCE-1356192].
    Keywords: Auxotrophy ; Microbial community stability ; Microbial interactions ; Aquatic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 125(4), (2020): e2019JC016006, doi:10.1029/2019JC016006.
    Description: Equatorward flow of Middle Atlantic Bight (MAB) shelf waters meets poleward flowing South Atlantic Bight shelf waters over the continental shelf near Cape Hatteras, NC, leading to net export of shelf waters into the deep ocean. This export occurs in close proximity to the Gulf Stream, which separates from the continental margin near Cape Hatteras. Observations from sustained underwater glider surveys of the outer continental shelf and slope north of Cape Hatteras from spring 2017 to spring 2019 are used to examine the mean and variability of MAB shelf water export in the region. The 0.3 Sv (1 Sv = 106 m3 s−1) time‐mean export of MAB shelf water south of 37°N was dominated by discrete export events; 50% of export occurred during the 17% of the time during which transport was more than 1 standard deviation above the mean. These events typically occurred in late spring and summer of both years when equatorward flow into the region peaked. Export of MAB shelf water was correlated with equatorward flow into the region, which was itself correlated with the density gradient across the continental shelf break. Observations during specific time periods that capture extrema in MAB shelf water export are examined to highlight the variability in shelf‐deep ocean exchange scenarios in the Hatteras region. These include near‐surface export driven by hurricanes, subsurface export below the northern edge of the Gulf Stream, and a multi‐month near‐cessation of export.
    Description: Patrick Deane at WHOI and the Instrument Development Group at the Scripps Institution of Oceanography were key to the success of the Spray glider operations. Mike Muglia, Trip Taylor, and Nick DeSimone at the East Carolina University Coastal Studies Institute (CSI) provided support for glider deployments and recoveries. WHOI Summer Student Fellow Devon Gaynes assisted with analysis related to 2017 hurricanes. Spray glider observations used here are available from http://spraydata.ucsd.edu and should be cited using the following DOIs: 10.21238/S8SPRAY2675 (Todd & Owens, 2016) and 10.21238/S8SPRAY0880 (Todd, 2020). Buoy winds are available from the National Data Buoy Center (https://www.ndbc.noaa.gov). SST imagery was obtained from the Mid‐Atlantic Regional Association Coastal Ocean Observing System (MARACOOS) THREDDS server (http://tds.maracoos.org/thredds/ARCHIVE-SST.html). Automated Tropical Cyclone Forecast System data are available online (https://ftp.nhc.noaa.gov/atcf/). PEACH was funded by the National Science Foundation (OCE‐1558521). Colormaps are from Thyng et al. (2016).
    Description: 2020-09-17
    Keywords: Cape Hatteras ; Shelf-deep ocean exchange ; Underwater glider
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 125(5), (2020): e2020JC016123, doi:10.1029/2020JC016123.
    Description: The processes underlying the strong Kuroshio encountering a cape at the southernmost tip of Taiwan are examined with satellite‐derived chlorophyll and temperature maps, a drifter trajectory, and realistic model simulations. The interaction spurs the formation of submesoscale cyclonic eddies that trap cold and high‐chlorophyll water and the formation of frontal waves between the free stream and the wake flow. An observed train of eddies, which have relative vorticity about one to four times the planetary vorticity (f), is shed from the recirculation that occurs in the immediate lee of the cape as a result of flow separation. These propagate downstream at a speed of 0.5–0.6 m s−1. Farther downstream, the corotation and merging of two or three adjacent eddies are common owing to the topography‐induced slowdown of eddy propagation farther downstream. It is found that the relative vorticity of a corotating system (1.2f) is 70% weaker than that of a single eddy due to the increase of eddy diameter from ~16 to ~33 km, in agreement with Kelvin's circulation theorem. The shedding period of the submesoscale eddies is strongly modulated by either diurnal or semidiurnal tidal flows, which typically reach 0.2–0.5 m s−1, whereas its intrinsic shedding period is insignificant. The frontal waves predominate in the horizontal free shear layer emitted from the cape, as well as a density front. Energetics analysis suggests that the wavy features result primarily from the growth of barotropic instability in the free shear layer, which may play a secondary process in the headland wake.
    Description: Yu‐Hsin Cheng was supported by the CWB of Taiwan through Grant 1062076C. Ming‐Huei Chang was supported by the Ministry of Science and Technology of Taiwan (MOST) under Grants 103‐2611‐M‐002‐018, 105‐2611‐M‐002‐012, and 107‐2611‐M‐002‐015. Sen Jan was supported with MOST Grants 101‐2611‐M‐002‐018‐MY3, 103‐2611‐M‐002‐011, and 105‐2119‐M‐002‐042. Magdalena Andres was supported by the U.S. Office of Naval Research Grant N000141613069.
    Description: 2020-10-23
    Keywords: Kuroshio ; Submesoscale eddy ; Headland ; Recirculation ; Eddy corotation ; Barotropic instability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 21(6), (2020): e2020GC008957, doi:10.1029/2020GC008957.
    Description: At the Galapagos triple junction in the equatorial Pacific Ocean, the Cocos‐Nazca spreading center does not meet the East Pacific Rise (EPR) but, instead, rifts into 0.4 Myr‐old lithosphere on the EPR flank. Westward propagation of Cocos‐Nazca spreading forms the V‐shaped Galapagos gore. Since ~1.4 Ma, opening at the active gore tip has been within the Cocos‐Galapagos microplate spreading regime. In this paper, bathymetry, magnetic, and gravity data collected over the first 400 km east of the gore tip are used to examine rifting of young lithosphere and transition to magmatic spreading segments. From inception, the axis shows structural segmentation consisting of rifted basins whose bounding faults eventually mark the gore edges. Rifting progresses to magmatic spreading over the first three segments (s1–s3), which open between Cocos‐Galapagos microplate at the presently slow rates of ~19–29 mm/year. Segments s4–s9 originated in the faster‐spreading (~48 mm/year) Cocos‐Nazca regime, and well‐defined magnetic anomalies and abyssal hill fabric close to the gore edges show the transition to full magmatic spreading was more rapid than at present time. Magnetic lineations show a 20% increase in the Cocos‐Nazca spreading rate after 1.1 Ma. The near‐axis Mantle Bouguer gravity anomaly decreases eastward and becomes more circular, suggesting mantle upwelling, increasing temperatures, and perhaps progression to a developed melt supply beneath segments. Westward propagation of individual Cocos‐Nazca segments is common with rates ranging between 12 and 54 mm/year. Segment lengths and lateral offsets between segments increase, in general, with distance from the tip of the gore.
    Description: E. M. and H. S. are grateful to the National Science Foundation for funding this work and to InterRidge and the University of Leeds for providing support for a number of the international students and scholars who were able to participate on the cruise. We are also grateful for the extraordinary work of the Captain and crew of R/V Sally Ride , whose efficiency and good cheer made the cruise such a success. We thank M. Ligi and two anonymous reviewers for their comments which greatly improved the manuscript. Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.
    Description: 2020-11-11
    Keywords: Galapagos triple junction ; Mid‐ocean ridges ; Seafloor spreading ; Galapagos microplate ; Plate boundaries
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 47(1), (2020): e2019GL085455, doi:10.1029/2019GL085455.
    Description: The meridional coherence, connectivity, and regional inhomogeneity in long‐term sea surface temperature (SST) variability over the Northwest Atlantic continental shelf and slope from 1982–2018 are investigated using observational data sets. A meridionally concurrent large SST warming trend is identified as the dominant signal over the length of the continental shelf and slope between Cape Hatteras in North Carolina and Cape Chidley, Newfoundland and Labrador, Canada. The linear trends are 0.37 ± 0.06 and 0.39 ± 0.06 °C/decade for the shelf and slope regions, respectively. These meridionally averaged SST time series over the shelf and slope are consistent with each other and across multiple longer observational data sets with records dating back to 1900. The coherence between the long‐term meridionally averaged time series over the shelf and slope and basin‐wide averaged SST in the North Atlantic implies approximately two thirds of the warming trend during 1982–2018 may be attributed to natural climate variability and the rest to externally forced change including anthropogenic warming.
    Description: We are grateful to the Editor Dr. Kathleen Donohue and two anonymous reviewers. This work was supported by NOAA's Climate Program Office's Modeling, Analysis, Predictions, and Projections (MAPP) program (NA19OAR4320074). We acknowledge our participation in MAPP's Marine Prediction Task Force. The data of NOAA OISST used in this study are available at NOAA Earth System Research Laboratory (https://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.highres.html). The HadISST data set is available at Met Office, Hadley Centre (https://www.metoffice.gov.uk/hadobs/hadisst/). The COBE SST and NOAA ERSST data sets are available at NOAA Earth System Research Laboratory's Physical Sciences Division (https://www.esrl.noaa.gov/psd/data/gridded/data.cobe.html; https://www.esrl.noaa.gov/psd/data/gridded/data.noaa.ersst.v5.html). The near‐surface air temperature is available at Global Historical Climatology Network‐Monthly Database (https://www.ncdc.noaa.gov/data‐access/land‐based‐station‐data/land‐based‐datasets/global‐historical‐climatology‐network‐monthly‐version‐4). The data of SSH are available at Copernicus Marine Environment Monitoring Service (http://marine.copernicus.eu/services‐portfolio/access‐to‐products/?option=com_csw&view=details&product_id=SEALEVEL_GLO_PHY_ L4_REP_OBSERVATIONS_008_047).
    Description: 2020-07-06
    Keywords: Sea surface temperature ; Continental shelf ; Continental slope ; Long-term change ; Northwest Atlantic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Proshutinsky, A., Krishfield, R., Toole, J. M., Timmermans, M-L., Williams, W. J., Zimmermann, S., Yamamoto-Kawai, M., Armitage, T. W. K., Dukhovskoy, D., Golubeva, E., Manucharyan, G. E., Platov, G., Watanabe, E., Kikuchi, T., Nishino, S., Itoh, M., Kang, S-H., Cho, K-H., Tateyama, K., & Zhao, J. Analysis of the Beaufort Gyre freshwater content in 2003-2018. Journal of Geophysical Research-Oceans, 124(12), (2019): 9658-9689, doi:10.1029/2019JC015281.
    Description: Hydrographic data collected from research cruises, bottom‐anchored moorings, drifting Ice‐Tethered Profilers, and satellite altimetry in the Beaufort Gyre region of the Arctic Ocean document an increase of more than 6,400 km3 of liquid freshwater content from 2003 to 2018: a 40% growth relative to the climatology of the 1970s. This fresh water accumulation is shown to result from persistent anticyclonic atmospheric wind forcing (1997–2018) accompanied by sea ice melt, a wind‐forced redirection of Mackenzie River discharge from predominantly eastward to westward flow, and a contribution of low salinity waters of Pacific Ocean origin via Bering Strait. Despite significant uncertainties in the different observations, this study has demonstrated the synergistic value of having multiple diverse datasets to obtain a more comprehensive understanding of Beaufort Gyre freshwater content variability. For example, Beaufort Gyre Observational System (BGOS) surveys clearly show the interannual increase in freshwater content, but without satellite or Ice‐Tethered Profiler measurements, it is not possible to resolve the seasonal cycle of freshwater content, which in fact is larger than the year‐to‐year variability, or the more subtle interannual variations.
    Description: National Science Foundation. Grant Numbers: PLR‐1302884,OPP‐1719280, and OPP‐1845877, PLR‐1303644 and OPP‐1756100, OPP‐1756100, PLR‐1303644, OPP‐1845877, OPP‐1719280, PLR‐1302884 Key Program of National Natural Science Foundation of China. Grant Number: 41330960 Global Change Research Program of China. Grant Number: 2015CB953900 Ministry of Education, Korea Japan Aerospace Exploration Agency (JAXA) /Earth Observation Research Center (EORC) Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT) Stanback Postdoctoral Fellowship Russian Foundation for Basic Research. Grant Number: 17‐05‐00382 Presidium of Russian Academy of Sciences HYCOM NOPP. Grant Number: N00014‐15‐1‐2594 DOE. Grant Number: DE‐SC0014378 National Aeronautics and Space Administration Tokyo University of Marine Science and Technology Department of Fisheries and Oceans Canada Woods Hole Oceanographic Institution
    Keywords: Beaufort Gyre ; Arctic Ocean ; Freshwater balance ; Circulation ; Modeling ; Climate change
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 46(16), (2019): 9851-9860, doi:10.1029/2019GL083726.
    Description: Coral reef calcification is expected to decline due to climate change stressors such as ocean acidification and warming. Projections of future coral reef health are based on our understanding of the environmental drivers that affect calcification and dissolution. One such driver that may impact coral reef health is heterotrophy of oceanic‐sourced particulate organic matter, but its link to calcification has not been directly investigated in the field. In this study, we estimated net ecosystem calcification and oceanic particulate organic carbon (POCoc) uptake across the Kāne'ohe Bay barrier reef in Hawai'i. We show that higher rates of POCoc uptake correspond to greater net ecosystem calcification rates, even under low aragonite saturation states (Ωar). Hence, reductions in offshore productivity may negatively impact coral reefs by decreasing the food supply required to sustain calcification. Alternatively, coral reefs that receive ample inputs of POCoc may maintain higher calcification rates, despite a global decline in Ωar.
    Description: Data needed for calculations are available in the supporting information. Additional data can be provided upon request directly from the corresponding author or accessed by links provided in the supporting information. The authors declare no competing financial interests. We thank Texas Sea Grant for providing partial funding for this project to A. Kealoha through the Grants‐In‐Aid of Graduate Research Program. We also thank the NOAA Nancy Foster Scholarship for PhD program funding to A. Kealoha and Texas A&M University for funds awarded to Shamberger that supported this work. This research was also supported by funding from National Science Foundation Grant OCE‐1538628 to Rappé. The Hawaii Institute of Marine Biology (particularly the Rappé Lab and Jason Jones), NOAA's Coral Reef Ecosystem Program, Connie Previti, Serena Smith, and Chris Maupin were instrumental in sample collection and data analysis.
    Description: 2020-02-22
    Keywords: Coral reefs ; Ocean acidification ; Climate change ; Heterotrophy
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Atmospheres 124 (17-18), (2019): 9773-9795, doi: 10.1029/2018JD029933.
    Description: National Aeronautics and Space Administration's Orbiting Carbon Observatory‐2 (OCO‐2) satellite provides observations of total column‐averaged CO2 mole fractions (XCO2 ) at high spatial resolution that may enable novel constraints on surface‐atmosphere carbon fluxes. Atmospheric inverse modeling provides an approach to optimize surface fluxes at regional scales, but the accuracy of the fluxes from inversion frameworks depends on key inputs, including spatially and temporally dense CO2 observations and reliable representations of atmospheric transport. Since XCO2 observations are sensitive to both synoptic and mesoscale variations within the free troposphere, horizontal atmospheric transport imparts substantial variations in these data and must be either resolved explicitly by the atmospheric transport model or accounted for within the error covariance budget provided to inverse frameworks. Here, we used geostatistical techniques to quantify the imprint of atmospheric transport in along‐track OCO‐2 soundings. We compare high‐pass‐filtered (〈250 km, spatial scales that primarily isolate mesoscale or finer‐scale variations) along‐track spatial variability in XCO2 and XH2O from OCO‐2 tracks to temporal synoptic and mesoscale variability from ground‐based XCO2 and XH2O observed by nearby Total Carbon Column Observing Network sites. Mesoscale atmospheric transport is found to be the primary driver of along‐track, high‐frequency variability for OCO‐2 XH2O. For XCO2 , both mesoscale transport variability and spatially coherent bias associated with other elements of the OCO‐2 retrieval state vector are important drivers of the along‐track variance budget.
    Description: The authors thank the leadership and participants of the NASA OCO‐2 mission and acknowledge financial support from NASA Award NNX15AH13G. A.D. Torres also acknowledges support from the NASA Earth and Space Science Fellowship Award 80NSSC17K0382. We thank TCCON for providing observations. We thank A. Jacobson and the National Oceanographic and Atmospheric Administration Earth System Research Laboratory in Boulder, CO, for providing CarbonTracker CT2017 data, available online (http://carbontracker.noaa.gov). We thank S. Wofsy for providing HIPPO data, funded by the National Science Foundation and NOAA and available online (https://www.eol.ucar.edu/field_projects/hippo). The TCCON Principal Investigators acknowledge funding from their national funding organizations. TCCON data were obtained from the archive at the https://tccondata.org Web site. NARR data provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site (https://www.esrl.noaa.gov/psd/).
    Keywords: Atmospheric transport ; Greenhouse gases ; CO2 ; Mesoscale ; OCO‐2 ; TCCON
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Planets 124, (2019): 3095-3118, doi: 10.1029/2019JE005937.
    Description: We applied localized gravity/topography admittance and correlation analysis, as well as the Markov chain Monte Carlo method, to invert for loading and flexural parameters of 21 subregions on Mars with five distinct tectonic types. The loading styles of the five tectonic types are distinct: The surface and subsurface loading in the polar and plain regions can be assumed to be largely uncorrelated, in contrast to the correlated loading associated with the volcanic montes and Valles Marineris. For the impact basins, we consider the initial topographic depression and mantle plug before postimpact surface loading. Our analyses yield four main results: (1) The inverted effective lithospheric thickness (Te) is highly dependent on assumptions of loading type. (2) There is a trend of increasing Te from the Noachian southern highlands (20–60 km) to the Hesperian northern lowlands (〉90 km) and from the Hesperian Elysium Mons (〈55 km) to the Hesperian/Amazonian Olympus Mons (〉105 km). These Te estimates are consistent with the thermal states at the time of loading, corresponding to a global secular cooling history with decreasing heat flux. (3) Our analyses suggest high‐density basaltic surface loading at the volcanic montes and Isidis basin, in contrast to the low‐density sedimentary surface loading at the Utopia and Argyre basins. (4) We find some degree of correlation between the surface and subsurface loading for the northern polar cap and the northern plains, likely due to earlier, larger polar deposits and ancient buried features, respectively.
    Description: The gravity model JGMRO120d and topography model MarsTopo719 used in this paper were retrieved from the Geosciences Node of NASA's Planetary Data System (http://pds‐geosciences.wustl.edu/mro/mro‐m‐rss‐5‐sdp‐v1/mrors_1xxx/data/shadr/) and from the SHTOOLS package (http://sourceforge.net/projects/shtools/), respectively. The MATLAB codes to reproduce the data analysis, parameter estimation, and key figures are available in a github repository (https://github.com/MinaDing/marslithosphere/tree/v1.0.0, DOI: 10.5281/zenodo.3530057). We are grateful to Mark Wieczorek and Frederik Simons for sharing relevant software online. We thank Ken Tanaka for providing a digital map of Mars chronographic ages. We thank Brandon Johnson for consultation on the loading processes of impact basins. We also thank Editor Laurent Montesi and Steven A. Hauck, as well as Patrick McGovern and anonymous reviewers for their invaluable feedbacks. This work was supported by National Natural Science Foundation of China (41806067, 41890813, 91628301 and U1606401), Key Laboratory of Ocean and Marginal Sea Geology, Chinese Academy of Sciences (OMG18‐02), Chinese Academy of Sciences (Y4SL021001, QYZDY‐SSW‐DQC005 and 133244KYSB20180029), Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) (GML2019ZD0205), Radio Science Gravity investigation of the NASA Mars Reconnaissance Orbiter mission (M.T.Z.), and National Science Foundation (EAR 1220280) and Henry Bigelow Chair for Excellence in Oceanography (J.L.).
    Description: 2020-05-20
    Keywords: Mars ; Lithospheric flexure ; Tectonic loading styles ; Lithospheric strength ; Markov chain Monte Carlo method ; Inverse spectral method
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Spain, E. A., Johnson, S. C., Hutton, B., Whittaker, J. M., Lucieer, V., Watson, S. J., Fox, J. M., Lupton, J., Arculus, R., Bradney, A., & Coffin, M. F. Shallow seafloor gas emissions near Heard and McDonald Islands on the Kerguelen Plateau, Southern Indian Ocean. Earth and Space Science, 7(3), (2020): e2019EA000695, doi:10.1029/2019EA000695.
    Description: Bubble emission mechanisms from submerged large igneous provinces remains enigmatic. The Kerguelen Plateau, a large igneous province in the southern Indian Ocean, has a long sustained history of active volcanism and glacial/interglacial cycles of sedimentation, both of which may cause seafloor bubble production. We present the results of hydroacoustic flare observations around the underexplored volcanically active Heard Island and McDonald Islands on the Central Kerguelen Plateau. Flares were observed with a split‐beam echosounder and characterized using multifrequency decibel differencing. Deep‐tow camera footage, water properties, water column δ3He, subbottom profile, and sediment δ13C and δ34S data were analyzed to consider flare mechanisms. Excess δ3He near McDonald Islands seeps, indicating mantle‐derived input, suggests proximal hydrothermal activity; McDonald Islands flares may thus indicate CO2, methane, and other minor gas bubbles associated with shallow diffuse hydrothermal venting. The Heard Island seep environment, with subbottom acoustic blanking in thick sediment, muted 3He signal, and δ13C and δ34S fractionation factors, suggest that Heard Island seeps may either be methane gas (possibly both shallow biogenic methane and deeper‐sourced thermogenic methane related to geothermal heat from onshore volcanism) or a combination of methane and CO2, such as seen in sediment‐hosted geothermal systems. These data provide the first evidence of submarine gas escape on the Central Kerguelen Plateau and expand our understanding of seafloor processes and carbon cycling in the data‐poor southern Indian Ocean. Extensive sedimentation of the Kerguelen Plateau and additional zones of submarine volcanic activity mean additional seeps or vents may lie outside the small survey area proximal to the islands.
    Description: We thank the Australian Marine National Facility (MNF) for its support in the form of sea time on RV Investigator , support personnel, scientific equipment, and data management. We also thank the captain, crew, and fellow scientists of RV Investigator voyage IN2016_V01. We also thank specifically the following: T. Martin, F. Cooke, S. L. Sow, N. Bax, J. Ford, and F. Althaus, CSIRO (Commonwealth Scientific and Industrial Research Organisation); Echoview Software Pty. Ltd. (Hobart, Australia); C. Dietz and C. Cook, Central Science Laboratory, University of Tasmania; C. Wilkinson and T. Baumberger, National Oceanic and Atmospheric Administration; R. Carey, University of Tasmania; T. Holmes, Institute for Marine and Antarctic Studies, University of Tasmania; N. Polmear; and A. Post, Geoscience Australia. The overall science of the project is supported by Australian Antarctic Science Program (AASP) grant 4338. E.S.' PhD research is supported by the Australian Research Council's Special Research Initiative Antarctic Gateway Partnership (Project ID SR140300001) and by an Australian Government Research Training Program Scholarship. S.C.J. is supported by iCRAG under SFI, European Regional Development Fund, and industry partners, as well as ANZIC‐IODP. J.M.W. is supported by ARC grant DE140100376 and DP180102280. This is PMEL publication number 4910. All IN2016_V01 data and samples acquired on IN2016_V01 are made publicly available in accordance with MNF policy.
    Keywords: Large Igneous Province ; Hydroacoustic flares ; Cold methane seep ; Shallow hydrothermal ; Geothermal ; Gas bubbles
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Wang, J., Ma, Q., Wang, F., Lu, Y., & Pratt, L. J. Seasonal variation of the deep limb of the Pacific Meridional Overturning circulation at Yap-Mariana junction. Journal of Geophysical Research: Oceans, 125(7), (2020): e2019JC016017, doi:10.1029/2019JC016017.
    Description: This study reveals the seasonal variability of the lower and upper deep branches of the Pacific Meridional Overturning Circulation (L‐PMOC and U‐PMOC) in the Yap‐Mariana Junction (YMJ) channel, a major gateway for deep flow into the western Pacific. On the western side of the YMJ channel, mooring observations in 2017 and in 1997 show the seasonal phase of the L‐PMOC at depths of 3,800–4,400 m: strong northward flow with speed exceeding 20 cm s−1 and lasting from December to next May and weak flow during the following 6 months. On the eastern side of the channel, mooring observations during 2014–2017 show two southward deep flows with broadly seasonal phases, one being the return flow of L‐PMOC below ~4,000 m and with the same phase of L‐PMOC but reduced magnitude. The second, shallower, southward deep flow corresponds to the U‐PMOC observed within 3,000–3,800 m and with opposite phase of L‐PMOC, that is, strong (weak) southward flow appearing during June–November (December–May). Seasonal variations of the L‐PMOC and U‐PMOC are accompanied by the seasonal intrusions of the Lower and Upper Circumpolar Waters (LCPW and UCPW) in lower and upper deep layers, which change the isopycnal structure and the deep currents in a way consistent with geostrophic balance.
    Description: This study is supported by the National Natural Science Foundation of China (grants 91958204 and 41776022), the Strategic Priority Research Program of the Chinese Academy of Sciences (grant XDA22000000), the Key Research Program of Frontier Sciences, CAS (grant QYZDB‐SSW‐SYS034). F. Wang thanks the support from the Scientific and Technological Innovation Project by Qingdao National Laboratory for Marine Science and Technology (grant 2016ASKJ12), the National Program on Global Change and Air‐Sea Interaction (grant GASI‐IPOVAI‐01‐01), and the National Natural Science Foundation of China (grants 41730534 and 41421005). L. Pratt gratefully acknowledges the support by NSF (grant OCE‐1657870). Jianing Wang and Qiang Ma contributed equally to this work.
    Keywords: Seasonal variability ; Deep currents ; PMOC ; Mooring observation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Black, E. E., Kienast, S. S., Lemaitre, N., Lam, P. J., Anderson, R. F., Planquette, H., Planchon, F., & Buesseler, K. O. Ironing out Fe residence time in the dynamic upper ocean. Global Biogeochemical Cycles, 34(9), (2020): e2020GB006592, doi:10.1029/2020GB006592.
    Description: Although iron availability has been shown to limit ocean productivity and influence marine carbon cycling, the rates of processes driving iron's removal and retention in the upper ocean are poorly constrained. Using 234Th‐ and sediment‐trap data, most of which were collected through international GEOTRACES efforts, we perform an unprecedented observation‐based assessment of iron export from and residence time in the upper ocean. The majority of these new residence time estimates for total iron in the surface ocean (0–250 m) fall between 10 and 100 days. The upper ocean residence time of dissolved iron, on the other hand, varies and cycles on sub‐annual to annual timescales. Collectively, these residence times are shorter than previously thought, and the rates and timescales presented here will contribute to ongoing efforts to integrate iron into global biogeochemical models predicting climate and carbon dioxide sequestration in the ocean in the 21st century and beyond.
    Description: We would like to thank S. Albani for providing the dust model results (Community Atmosphere Model, C4fn) and the three anonymous reviewers for their constructive comments. The U.S. GEOTRACES work was supported by the National Science Foundation (OCE‐1232669 and OCE‐1518110) and E. Black was also funded by a NASA Earth and Space Science Graduate Fellowship (NNX13AP31H) and the Ocean Frontier Institute. The GEOVIDE work was funded by the Flanders Research Foundation (G071512N), the Vrije Universiteit Brussel (SRP‐2), the French ANR Blanc GEOVIDE (ANR‐13‐BS06‐0014), ANR RPDOC BITMAP (ANR‐12‐PDOC‐0025‐01), IFREMER, CNRS‐INSU (programme LEFE), INSU OPTIMISP, and Labex‐Mer (ANR‐10‐LABX‐19).
    Keywords: Thorium‐234 ; Iron ; Export ; GEOTRACES ; Residence time
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Planets 125(9), (2020): e2019JE006209, doi:10.1029/2019JE006209
    Description: Saturn's moon Enceladus has a global subsurface ocean and a porous rocky core in which water‐rock reactions likely occur; it is thus regarded as a potentially habitable environment. For icy moons like Enceladus, tidal heating is considered to be the main heating mechanism, which has generally been modeled using viscoelastic solid rheologies in existing studies. Here we provide a new framework for calculating tidal heating based on a poroviscoelastic model in which the porous solid and interstitial fluid deformation are coupled. We show that the total heating rate predicted for a poroviscoelastic core is significantly larger than that predicted using a classical viscoelastic model for intermediate to large (〉1014 Pa·s) rock viscosities. The periodic deformation of the porous rock matrix is accompanied by interstitial pore fluid flow, and the combined effects through viscous dissipation result in high heat fluxes particularly at the poles. The heat generated in the rock matrix is also enhanced due to the high compressibility of the porous matrix structure. For a sufficiently compressible core and high permeability, the total heat production can exceed 10 GW—a large fraction of the moon's total heat budget—without requiring unrealistically low solid viscosities. The partitioning of heating between rock and fluid constituents depends most sensitively on the viscosity of the rock matrix. As the core of Enceladus warms and weakens over time, pore fluid motion likely shifts from pressure‐driven local oscillations to buoyancy‐driven global hydrothermal convection, and the core transitions from fluid‐dominated to rock‐dominated heating.
    Description: 2021-01-28
    Keywords: Ocean worlds ; Enceladus ; Tidal heating
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Forsyth, J., Andres, M., & Gawarkiewicz, G. . Shelfreak jet structure and variability off New Jersey using ship of opportunity data from the CMV Oleander. Journal of Geophysical Research: Oceans, 125(9), (2020): e2020JC016455. doi:10.1029/2020JC016455.
    Description: Repeat measurements of velocity and temperature profiles from the Container Motor Vessel (CMV) Oleander provide an unprecedented look into the variability on the New Jersey Shelf and upper continental slope. Here 1362 acoustic Doppler current profiler (ADCP) velocity sections collected between 1994 and 2018 are analyzed in both Eulerian and stream coordinate reference frames to characterize the mean structure of the Shelfbreak Jet, as well as its seasonal to decadal variability. The Eulerian mean Shelfbreak Jet has a maximum jet velocity of 0.12 m s−1. The maximum jet velocity peaks in April and May and reaches its minimum in July and August. In a stream coordinate framework, the jet is only identified in 61% of transects, and the mean stream coordinate Shelfbreak Jet has a maximum jet velocity of 0.32 m s−1. Evidence is found that Warm Core Rings, originating from the Gulf Stream arriving in the Slope Sea adjacent to the New Jersey Shelf, shift the Shelfbreak Jet onshore of its mean position or entirely shutdown the Shelfbreak Jet's flow. At interannual timescales, variability in the Shelfbreak Jet velocity is correlated with the temperature on the New Jersey Shelf 2 months later. When considered in a stream coordinate framework, Shelfbreak Jet have decreased over the time period considered in the study.
    Description: J. F. and M. A. were supported by NSF OCE‐1634094 and OCE‐1924041. G. G was supported by NSF OCE‐1851261.
    Keywords: Shelfbreak Jet ; Middle Atlantic Bight ; Ship of opportunity ; Continental shelf processes ; Western Boundary Currents
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 47(7), (2020): e2020GL087405, doi:10.1029/2020GL087405.
    Description: The origin and distribution of the gabbroic bodies provide crucial information to understand the formation and evolution processes of the oceanic core complexes (OCCs). Nevertheless, images of the shape of the gabbroic bodies across the domes and gabbroic intrusion into the mantle have remained elusive. High‐resolution acoustic early‐arrival full waveform inversion tomography models obtained along and across the Kane OCC characterize the detailed lateral variability in structure and composition of the upper ~2 km of this well‐developed OCC. Reverse time migration images show the gabbroic plutons embedded in mantle rocks are seismically transparent, while more reflective sections correspond to the layered magmatic crust. Lithological interpretation shows heterogeneous distribution of gabbroic bodies within the Kane OCC, indicating strong spatial and temporal variability in magmatism during fault exhumation. Our results will also be of high value for future scientific ocean drilling efforts in the area.
    Description: Seismic data acquisition was funded by NSF Grant OCE99‐87004. Data files can be obtained from Interdisciplinary Earth Data Alliance (IEDA) (https://doi.org/10.1594/IEDA/314508) (Tucholke & Collins, 2014). The velocity models and migrated seismic sections shown in the paper are freely available for download from 4TU. Centre for Research Data (doi:10.4121/uuid:3ef55160-4a5a-4d1a-b734-fe2b8d2871ae). Full waveform inversion was performed with the software TomoPlus (GeoTomo LLC) licensed to SCSIO. This research was supported by the National Natural Science Foundation of China (41676044 and 91858207) and Special Foundation for National Science and Technology Basic Research Program of China (2018FY100505). M. X. acknowledges supports from Guangdong NSF research team project (2017A030312002), K. C. Wong Education Foundation (GJTD‐2018‐13), Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (GML2019ZD0205), and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA13010105). J. P. C. acknowledges support from the Independent Research and Development Program at WHOI. J. P. Wang and X. R. Mu from China University of Petroleum are thanked for helping with the RTM setup.
    Description: 2020-09-28
    Keywords: Oceanic core complex ; Detachment faulting ; Seismic structure ; Full waveform inversion ; Reverse time migration ; Lithology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 125(9), (2020): e2020JB019743, doi:10.1029/2020JB019743.
    Description: A multiscale magnetic survey of the northern basin of Yellowstone Lake was undertaken in 2016 as part of the Hydrothermal Dynamics of Yellowstone Lake Project (HD‐YLAKE)—a broad research effort to characterize the cause‐and‐effect relationships between geologic and environmental processes and hydrothermal activity on the lake floor. The magnetic survey includes lake surface, regional aeromagnetic, and near‐bottom autonomous underwater vehicle (AUV) data. The study reveals a strong contrast between the northeastern lake basin, characterized by a regional magnetic low punctuated by stronger local magnetic lows, many of which host hydrothermal vent activity, and the northwestern lake basin with higher‐amplitude magnetic anomalies and no obvious hydrothermal activity or punctuated magnetic lows. The boundary between these two regions is marked by a steep gradient in heat flow and magnetic values, likely reflecting a significant structure within the currently active ~20‐km‐long Eagle Bay‐Lake Hotel fault zone that may be related to the ~2.08‐Ma Huckleberry Ridge caldera rim. Modeling suggests that the broad northeastern magnetic low reflects both a shallower Curie isotherm and widespread hydrothermal activity that has demagnetized the rock. Along the western lake shoreline are sinuous‐shaped, high‐amplitude magnetic anomaly highs, interpreted as lava flow fronts of upper units of the West Thumb rhyolite. The AUV magnetic survey shows decreased magnetization at the periphery of the active Deep Hole hydrothermal vent. We postulate that lower magnetization in the outer zone results from enhanced hydrothermal alteration of rhyolite by hydrothermal condensates while the vapor‐dominated center of the vent is less altered.
    Description: The lake surface and AUV magnetic data were acquired under National Park Service research permit YELL‐2016‐SCI‐7018 and the 2016 aeromagnetic data under research permit YELL‐2016‐SCI‐7056. We thank Sarah Haas, Stacey Gunther, Erik Oberg, Annie Carlson, and Patricia Bigelow at the Yellowstone Center for Resources for assistance with permitting and logistics, Ranger Jackie Sene for assistance with logistics and safety at Bridge Bay, Bob Gresswell for providing us with the U.S. Geological Survey (USGS) boat Alamar, the boat pilot Nick Heredia, and Robert Harris and Shaul Hurwitz for fruitful discussions. We are very thankful to Ocean Floor Geophysics (Brian Claus and Steve Bloomer) who provided the magnetometer for the AUV survey and preprocessed the data, and to the REMUS 600 team (Greg Packard and Greg Kurras) for operating and optimizing the AUV during lake operations. Data from the Newport and Boulder observatories were used to process the survey data. We thank the USGS Geomagnetism Program for supporting their operation and INTERMAGNET for promoting high standards of magnetic observatory practice (www.intermagnet.org). This research was funded by the National Science Foundation's Integrated Earth Systems program EAR‐1516361 (HD‐YLAKE project), USGS Mineral Resource and Volcano Hazard Programs, and benefited from major in‐kind support from the USGS Yellowstone Volcano Observatory. Maurice Tivey was supported under National Science Foundation Grant OCE‐1557455. During the course of this study, Claire Bouligand was a visiting scientist at the USGS in Menlo Park, California, USA, benefited from a delegation to Centre National de la Recherche Scientifique (CNRS), and received funding from CNRS‐INSU program SYSTER. ISTerre is part of Labex OSUG@2020 (ANR10 LABX56). Any use of trade, firm, or product names is for descriptive purposes and does not imply endorsement by the U.S. Government.
    Description: 2021-01-27
    Keywords: Hydrothermal ; Magnetic anomalies ; Yellowstone
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Biogeosciences 125(10), (2020): e2020JG005664, doi:10.1029/2020JG005664.
    Description: Shallow ponds are expanding in many salt marshes with potential impacts on ecosystem functioning. Determining how pond characteristics change over time and scale with physical dimensions and other spatial predictors could facilitate incorporation of ponds into projections of ecosystem change. We evaluated scaling relationships across six differently sized ponds in three regions of the high marshes within the Plum Island Ecosystems‐Long Term Ecological Research site (MA, USA). We further characterized diel fluctuations in surface water chemistry in two ponds to understand short‐term processes that affect emergent properties (e.g., habitat suitability). Primary producers drove oxygen levels to supersaturation during the day, while nighttime respiration resulted in hypoxic to anoxic conditions. Diel swings in oxygen were mirrored by pH and resulted in successive shifts in redox‐sensitive metabolisms, as indicated by nitrate consumption at dusk followed by peaks in ammonium and then sulfide overnight. Abundances of macroalgae and Ruppia maritima correlated with whole‐pond oxygen metabolism rates, but not with surface area (SA), volume (V), or SA:V. Moreover, there were no clear patterns in primary producer abundances, surface water chemistry, or pond metabolism rates across marsh regions supplied by different tidal creeks or that differed in distance to upland borders or creekbanks. Comparisons with data from 2 years prior demonstrate that plant communities and biogeochemical processes are not in steady state. Factors contributing to variability between ponds and years are unclear but likely include infrequent tidal exchange. Temporal and spatial variability and the absence of scaling relationships complicate the integration of high marsh ponds into ecosystem biogeochemical models.
    Description: Thanks to S. McNichol, S. Jayne, E. Neel, and PIE‐LTER (NSF‐OCE1238212) for field assistance; I. Forbrich for meteorological data (Giblin & Forbrich, 2018); J. Jennings for dissolved nutrient analyses; J. Seewald for ion chromatograph access; and G. Mariotti for elevation data. C. Wilson and an anonymous reviewer provided comments that greatly improved our manuscript. A. C. S. was supported by NSF (OCE1233678), NOAA (NA14NOS4190145), and Sea Grant (NA14OAR4170104) awards, and A. D. by the MIT Undergraduate Research Opportunities Program.
    Description: 2021-03-15
    Keywords: Salt marsh ; Global change ; Biogeochemistry ; Metabolism ; Scaling ; Ecosystem function
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Solid Earth 125(2), (2020): e2019JB018203, doi:10.1029/2019JB018203.
    Description: Cold, low‐density diapirs arising from hydrated mantle and/or subducted sediments on the top of subducting slabs have been invoked to transport key chemical signatures to the source region of arc magmas. However, to date there have been few quantitative models to constrain melting in such diapirs. Here we use a two‐phase Darcy‐Stokes‐energy model to investigate thermal evolution, melting, and depletion in a buoyant sediment diapir ascending through the mantle wedge. Using a simplified 2‐D circular geometry, we investigate diapir evolution in three scenarios with increasing complexity. In the first two scenarios we consider instantaneous heating of a diapir by thermal diffusion with and without the effect of the latent heat of melting. Then, these simplified calculations are compared to numerical simulations that include melting, melt segregation, and the influence of depletion on the sediment solidus along pressure‐temperature‐time (P ‐T ‐t ) paths appropriate for ascent through the mantle wedge. The high boundary temperature induces a rim of high porosity, into which new melts are focused and then migrate upward. The rim thus acts like an annulus melt channel, while the effect of depletion buffers additional melt production. Solid matrix flow combined with recrystallization of melt pooled near the top of the diapir can result in large gradients in depletion across the diapir. These large depletion gradients can either be preserved if the diapir leaks melt during ascent, or rehomogenized in a sealed diapir. Overall our numerical simulations predict less melt production than the simplified thermal diffusion calculations. Specifically, we show that diapirs whose ascent paths favor melting beneath the volcanic arc will undergo no more than ~40–50% total melting.
    Description: We thank careful reviews by Juliane Dannberg, Harro Schmeling, and Bernhard steinberger. This work is supported by NSF‐1316333 (MB & NZ), NSF‐1551023 (MB), NSF‐1316310 (CK), and by China's Thousand Talents Plan (2015) and NSFC‐41674098 funding to NZ. The public data repository of Deal.ii (www.dealii.org) is thanked for distributing the software and examples that are used in this study. Computational work was conducted in High‐performance Computing Platform of Peking University, Kenny cluster of WHOI, and Pawsey Supercomputing Centre of Western Australia. We thank Timo Heister and Juliane Dannberg for deal.II technical assistance. The data of mantle wedge thermal structure and diapir trajectories, and the source code to compute the model results are available in the Mendeley data (http://dx.doi.org/10.17632/73n8zkc68s.1).
    Description: 2020-07-31
    Keywords: Sedimentary diapirs ; Subduction wedge ; Melt migration
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Biogeosciences 125(1), (2020): e2019JG005414, doi:10.1029/2019JG005414.
    Description: A survey of 25 coastal‐draining rivers across the Canadian Arctic Archipelago (CAA) shows that these systems are distinct from the largest Arctic rivers that drain watersheds extending far south of the Arctic circle. Observations collected from 2014 to 2016 illustrate the influences of seasonal hydrology, bedrock geology, and landscape physiography on each river's inorganic geochemical characteristics. Summertime data show the impact of coincident gradients in lake cover and surficial geology on river geochemical signatures. In the north and central CAA, drainage basins are generally smaller, underlain by sedimentary bedrock, and their hydrology is driven by seasonal precipitation pulses that undergo little modification before they enter the coastal ocean. In the southern CAA, a high density of lakes stores water longer within the terrestrial system, permitting more modification of water isotope and geochemical characteristics. Annual time‐series observations from two CAA rivers reveal that their concentration‐discharge relationships differ compared with those of the largest Arctic rivers, suggesting that future projections of dissolved ion fluxes from CAA rivers to the Arctic Ocean may not be reliably made based on compositions of the largest Arctic rivers alone, and that rivers draining the CAA region will likely follow different trajectories of change under a warming climate. Understanding how these small, coastal‐draining river systems will respond to climate change is essential to fully evaluate the impact of changing freshwater inputs to the Arctic marine system.
    Description: This work was only possible through a network of enthusiastic and devoted collaborators. Partners included Polar Knowledge Canada and the Canadian High Arctic Research Station, the Arctic Research Foundation, the Kugluktuk Angoniatit Association, and the Canadian Arctic GEOTRACES Program. We acknowledge support from the Department of Fisheries and Oceans Canada, the Woods Hole Oceanographic Institution Coastal Ocean Institute, The G. Unger Vetlesen Foundation, Jane and James Orr, and the Woods Hole Research Center. Many thanks go to Austin Maniyogena, Angulalik Pedersen, Adrian Schimnowski, JS Moore, Les Harris, Oksana Schimnowski, as well as Barbara Adjun, Amanda Dumond, and Johnny Nivingalok, and the captains and crew of the research vessels CCGS Amundsen and R/V Martin Bergmann, all of whom supported our research and helped with sample collection. Special thanks also go to Valier Galy, Zhaohui “Aleck” Wang, Marty Davelaar, Michiyo Yamamoto‐Kawai, Hugh McLean, Mike Dempsey, Baba Pedersen, Maureen Soon, Katherine Hoering, Sean Sylva, Ekaterina Bulygina, and Anya Suslova for their invaluable contributions during field program planning, preparations, and laboratory analyses. Robert Max Holmes is thanked for many fruitful discussions. We also thank several anonymous reviewers for their helpful comments on the paper's content and structure. All of the data presented in this paper can be found at https://doi.org/10.1594/PANGAEA.908497.
    Keywords: Arctic Rivers ; Geochemistry ; Major ion chemistry ; Stable isotopes ; Northern hydrology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Wang, P., Huang, C., Lin, J., Jian, Z., Sun, Z., & Zhao, M. The South China Sea is not a mini-Atlantic: plate-edge rifting vs intra-plate rifting. National Science Review, 6(5), (2019): 902-913, doi:10.1093/nsr/nwz135.
    Description: The South China Sea, as ‘a non-volcanic passive margin basin’ in the Pacific, has often been considered as a small-scale analogue of the Atlantic. The recent ocean drilling in the northern South China Sea margin found, however, that the Iberian model of non-volcanic rifted margin from the Atlantic does not apply to the South China Sea. In this paper, we review a variety of rifted basins and propose to discriminate two types of rifting basins: plate-edge type such as the South China Sea and intra-plate type like the Atlantic. They not only differ from each other in structure, formation process, lifespan and geographic size, but also occur at different stages of the Wilson cycle. The intra-plate rifting occurred in the Mesozoic and gave rise to large oceans, whereas the plate-edge rifting took place mainly in the mid-Cenozoic, with three-quarters of the basins concentrated in the Western Pacific. As a member of the Western Pacific system of marginal seas, the South China Sea should be studied not in isolation on its origin and evolution, but in a systematic context to include also its neighboring counterparts.
    Description: This work was supported by the National Natural Science Foundation of China as a part of the ‘South China Sea Deep’ Project (91128000).
    Keywords: Rifting ; Marginal basin ; Passive margin ; South China Sea ; Western Pacific ; Subduction
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2022-10-21
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Planets 125(10),(2020): e2020JE006394, doi:10.1029/2020JE006394.
    Description: Compositional heterogeneities within Europa's ice shell likely impact the dynamics and habitability of the ice and subsurface ocean, but the total inventory and distribution of impurities within the shell are unknown. In sea ice on Earth, the thermochemical environment at the ice‐ocean interface governs impurity entrainment into the ice. Here, we simulate Europa's ice‐ocean interface and bound the impurity load (1.053–14.72 g/kg [parts per thousand weight percent, or ppt] bulk ice shell salinity) and bulk salinity profile of the ice shell. We derive constitutive equations that predict ice composition as a function of the ice shell thermal gradient and ocean composition. We show that evolving solidification rates of the ocean and hydrologic features within the shell produce compositional variations (ice bulk salinities of 5–50% of the ocean salinity) that can affect the material properties of the ice. As the shell thickens, less salt is entrained at the ice‐ocean interface, which implies Europa's ice shell is compositionally homogeneous below ~1 km. Conversely, the solidification of water filled fractures or lenses introduces substantial compositional variations within the ice shell, creating gradients in mechanical and thermal properties within the ice shell that could help initiate and sustain geological activity. Our results suggest that ocean materials entrained within Europa's ice shell affect the formation of geologic terrain and that these structures could be confirmed by planned spacecraft observations.
    Description: This study was supported by the NASA Earth and Space Science Fellowship, grants NNX16AP43H S01 and NNX16AP43H S002. Britney Schmidt was additionally supported by the Europa Clipper Mission. Resources supporting this work were provided by the NASA High‐End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center.
    Description: 2021-03-20
    Keywords: Europa ; planetary ices ; ice‐ocean worlds
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2022-10-21
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Haumann, F. A., Moorman, R., Riser, S. C., Smedsrud, L. H., Maksym, T., Wong, A. P. S., Wilson, E. A., Drucker, R., Talley, L. D., Johnson, K. S., Key, R. M., & Sarmiento, J. L. Supercooled Southern Ocean waters. Geophysical Research Letters, 47(20), (2020): e2020GL090242, doi:10.1029/2020GL090242.
    Description: In cold polar waters, temperatures sometimes drop below the freezing point, a process referred to as supercooling. However, observational challenges in polar regions limit our understanding of the spatial and temporal extent of this phenomenon. We here provide observational evidence that supercooled waters are much more widespread in the seasonally ice‐covered Southern Ocean than previously reported. In 5.8% of all analyzed hydrographic profiles south of 55°S, we find temperatures below the surface freezing point (“potential” supercooling), and half of these have temperatures below the local freezing point (“in situ” supercooling). Their occurrence doubles when neglecting measurement uncertainties. We attribute deep coastal‐ocean supercooling to melting of Antarctic ice shelves and surface‐induced supercooling in the seasonal sea‐ice region to wintertime sea‐ice formation. The latter supercooling type can extend down to the permanent pycnocline due to convective sinking plumes—an important mechanism for vertical tracer transport and water‐mass structure in the polar ocean.
    Description: F. A. H. was supported by the Swiss National Science Foundation (SNSF; Schweizerischer Nationalfonds zur Förderung der wissenschaftlichen Forschung) grant numbers P2EZP2_175162 and P400P2_186681. This work was supported by the National Science Foundation (NSF) Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) Project under the NSF Award PLR‐1425989. R. M. would like to thank the National Oceanic and Atmospheric Administration (NOAA) GFDL for mentorship and computational support. S. R. was also supported by the U.S. Argo grant and NOAA grant NA15OAR4320063 to the University of Washington. L. H. S. thanks the Fulbright Foundation for the U.S.‐Norway Arctic Chair grant. We are deeply thankful to the large number of scientists, technicians, and funding agencies contributing to these databases, being responsible for the collection and quality control of the high‐quality data that form the basis of this work. We thank Josh Plant for his initial notification on very low temperatures observed in some of the float profiles. We would also like to thank the students, teachers, and schools who are participating in the SOCCOM Adopt‐a‐Float program. Four of the floats used in this study were adopted and have a clear signal of supercooling. These participants are listed in Table S1.
    Keywords: Southern Ocean ; Supercooling ; Sea ice ; Ice shelf ; Observations ; Convection
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2022-10-27
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ruppel, C. D., & Waite, W. F. Timescales and processes of methane hydrate formation and breakdown, with application to geologic systems. Journal of Geophysical Research: Solid Earth, 125(8), (2020): e2018JB016459, doi:10.1029/2018JB016459.
    Description: Gas hydrate is an ice‐like form of water and low molecular weight gas stable at temperatures of roughly −10°C to 25°C and pressures of ~3 to 30 MPa in geologic systems. Natural gas hydrates sequester an estimated one sixth of Earth's methane and are found primarily in deepwater marine sediments on continental margins, but also in permafrost areas and under continental ice sheets. When gas hydrate is removed from its stability field, its breakdown has implications for the global carbon cycle, ocean chemistry, marine geohazards, and interactions between the geosphere and the ocean‐atmosphere system. Gas hydrate breakdown can also be artificially driven as a component of studies assessing the resource potential of these deposits. Furthermore, geologic processes and perturbations to the ocean‐atmosphere system (e.g., warming temperatures) can cause not only dissociation, but also more widespread dissolution of hydrate or even formation of new hydrate in reservoirs. Linkages between gas hydrate and disparate aspects of Earth's near‐surface physical, chemical, and biological systems render an assessment of the rates and processes affecting the persistence of gas hydrate an appropriate Centennial Grand Challenge. This paper reviews the thermodynamic controls on methane hydrate stability and then describes the relative importance of kinetic, mass transfer, and heat transfer processes in the formation and breakdown (dissociation and dissolution) of gas hydrate. Results from numerical modeling, laboratory, and some field studies are used to summarize the rates of hydrate formation and breakdown, followed by an extensive treatment of hydrate dynamics in marine and cryospheric gas hydrate systems.
    Description: Both authors have received nearly two decades of support from the U.S. Geological Survey's (USGS's) Energy Resources Program and the Coastal/Marine Hazards and Resources Program and from numerous DOE‐USGS Interagency Agreements, most recently DE‐FE0023495. C. R. acknowledges support from NOAA's Office of Ocean Exploration and Research (OER) under NOAA‐USGS Interagency Agreement 16‐01118.
    Keywords: Gas hydrate ; Hydrate breakdown ; Hydrate formation ; Permafrost hydrate ; Geologic systems ; Marine hydrate
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Lasek-Nesselquist, E., & Johnson, M. D. A phylogenomic approach to clarifying the relationship of Mesodinium within the Ciliophora: a case study in the complexity of mixed-species transcriptome analyses. Genome Biology and Evolution, 11(11), (2019): 3218–3232, doi:10.1093/gbe/evz233.
    Description: Recent high-throughput sequencing endeavors have yielded multigene/protein phylogenies that confidently resolve several inter- and intra-class relationships within the phylum Ciliophora. We leverage the massive sequencing efforts from the Marine Microbial Eukaryote Transcriptome Sequencing Project, other SRA submissions, and available genome data with our own sequencing efforts to determine the phylogenetic position of Mesodinium and to generate the most taxonomically rich phylogenomic ciliate tree to date. Regardless of the data mining strategy, the multiprotein data set, or the molecular models of evolution employed, we consistently recovered the same well-supported relationships among ciliate classes, confirming many of the higher-level relationships previously identified. Mesodinium always formed a monophyletic group with members of the Litostomatea, with mixotrophic species of Mesodinium—M. rubrum, M. major, and M. chamaeleon—being more closely related to each other than to the heterotrophic member, M. pulex. The well-supported position of Mesodinium as sister to other litostomes contrasts with previous molecular analyses including those from phylogenomic studies that exploited the same transcriptomic databases. These topological discrepancies illustrate the need for caution when mining mixed-species transcriptomes and indicate that identifying ciliate sequences among prey contamination—particularly for Mesodinium species where expression from stolen prey nuclei appears to dominate—requires thorough and iterative vetting with phylogenies that incorporate sequences from a large outgroup of prey.
    Description: We thank David Beaudoin and Holly V. Moeller for their assistance in collecting cells and extracting RNA. We thank the Josephine Bay Paul Center for Comparative Molecular Biology and Evolution at the Marine Biological Laboratory for the generous use of their servers. This work was supported in part by a National Science Foundation grant to both authors (IOS 1354773).
    Keywords: Mesodinium ; Litostomatea ; ciliate phylogenomics ; mixed-species transcriptomes ; sequence contamination
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...