ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Life and Medical Sciences  (661)
  • Astrophysics  (448)
  • Aircraft Propulsion and Power
  • Analytical Chemistry and Spectroscopy
  • 1995-1999  (1,549)
  • 1955-1959
  • 1950-1954
  • 1935-1939
  • 1999  (536)
  • 1998  (1,013)
Collection
Publisher
Years
  • 1995-1999  (1,549)
  • 1955-1959
  • 1950-1954
  • 1935-1939
Year
  • 1
    Publication Date: 2004-12-03
    Description: Fe, Ni, and Cr abundances in Type I cosmic spherules recovered from the deep sea, and also the isotopic fractionation of these elements during passage of the spherules through the terrestrial atmosphere was determined. Isotopic fractionation for all three elements is typically large, approx. 16%o/amu, corresponding to evaporative mass losses of approx. 80-85%, assuming Rayleigh distillation from an open system. The corrected, pre-atmospheric, Cr/Ni and Fe/Ni ratios are shown, where they are compared to these ratios in bulk chondrites and chondritic metal. Although the calculated pre-atmospheric Fe/Ni ratio for the spherules is relatively constant at 19 plus or minus 4 (sigma (sub mean)), the calculated pre-atmospheric Cr/Ni ratios vary by about two orders of magnitude. The Cr/Ni ratios are thus powerful discriminators for possible modes of origin of the spherules. For example, iron meteorites typically have low Cr contents and low Cr/Ni ratios, less than or equal to 3 x 10(exp -4). Thus, Type I spherules do not appear to be ablation products of iron meteorites, in contrast to an earlier suggestion..
    Keywords: Astrophysics
    Type: Workshop on Extraterrestrial Materials from Cold and Hot Deserts; 65-66; LPI-Contrib-997
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-12-03
    Description: Digital Particle Imaging Velocimetry (DPIV) is a powerful measurement technique, which can be used as an alternative or complementary approach to Laser Doppler Velocimetry (LDV) in a wide range of research applications. The instantaneous planar velocity measurements obtained with PIV make it an attractive technique for use in the study of the complex flow fields encountered in turbomachinery. Many of the same issues encountered in the application of LDV to rotating machinery apply in the application of PIV. Techniques for optical access, light sheet delivery, CCD camera technology and particulate seeding are discussed. Results from the successful application of the PIV technique to both the blade passage region of a transonic axial compressor and the diffuser region of a high speed centrifugal compressor are presented. Both instantaneous and time-averaged flow fields were obtained. The 95% confidence intervals for the time-averaged velocity estimates were also determined. Results from the use of PIV to study surge in a centrifugal compressor are discussed. In addition, combined correlation/particle tracking results yielding super-resolution velocity measurements are presented.
    Keywords: Aircraft Propulsion and Power
    Type: Planar Optical Measurement Methods for Gas Turbine Components; 2-1 - 2-33; RTO-EN-6
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2004-12-03
    Description: Thermal analysis in both simple and complex models can require calculating the propagation of radiant energy to and from multiple surfaces. This can be accomplished through simple estimation techniques or complex computationally intense computer modeling simulations. Currently there are a variety of computer analysis techniques used to simulate the propagation of radiant energy, each having advantages and disadvantages. The major objective of this effort was to compare two ray tracing radiation propagation analysis programs (NEVADA and TSS) Net Energy Verification and Determination Analyzer and Thermal Synthesizer System with experimental data. Results from a non-flowing, electrically heated test rig was used to verify the calculated radiant energy propagation from a nozzle geometry that represents an aircraft propulsion nozzle system. In general the programs produced comparable overall results, and results slightly higher then the experimental data. Upon inspection of individual radiation interchange factors, differences were evident and would have been magnified if a more radical model temperature profile was analyzed. Bidirectional reflectivity data (BRDF) was not used do to modeling limitations in TSS. For code comparison purposes, this nozzle geometry represents only one case for one set of analysis conditions. Since each computer code has advantages and disadvantages bases on scope, requirements, and desired accuracy, the usefulness of this single case study may be limiting.
    Keywords: Aircraft Propulsion and Power
    Type: Ninth Thermal and Fluids Analysis Workshop Proceedings; 49-67; NASA/CP-1999-208695
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: The conceptual basis of reference frames defined by extragalactic objects is straightforwaxd: that the universe as a whole does not rotate so very distant objects cannot have an overall rotational motion. Experimentally, the global rotation of the universe is less than 10(exp -12) arcsecond/yr as inferred from the 3K microwave background radiation. At the distance of 10(exp 8) parsecs, even if an object were moving transversely at the speed of light, its angular velocity would be less than 0.6 x 10(exp -3) arcsecond/yr, while an object moving at a physically more reasonable speed comparable to the Sun would show a motion of 10(exp -6) arcsecond/yr, entirely undetectable by current technology. Since neither systematic universal motion nor random motion at such great distance is measurable, it is reasonable to construct a static celestial reference frame on the basis that such objects axe fixed in the sky.
    Keywords: Astrophysics
    Type: International VLBI Service for Geodesy and Astrometry: 1999 Annual Report; 18-22; NASA/TP-1999-209243
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2004-12-03
    Description: Through the NASA/Industry Cooperative Effort (NICE) agreement, NASA Lewis and industry partners are developing a new engine simulation, called the National Cycle Program (NCP), which is the initial framework of NPSS. NCP is the first phase toward achieving the goal of NPSS. This new software supports the aerothermodynamic system simulation process for the full life cycle of an engine. The National Cycle Program (NCP) was written following the Object Oriented Paradigm (C++, CORBA). The software development process used was also based on the Object Oriented paradigm. Software reviews, configuration management, test plans, requirements, design were all apart of the process used in developing NCP. Due to the many contributors to NCP, the stated software process was mandatory for building a common tool intended for use by so many organizations. The U.S. aircraft and airframe companies recognize NCP as the future industry standard for propulsion system modeling.
    Keywords: Aircraft Propulsion and Power
    Type: HPCCP/CAS Workshop Proceedings 1998; 177-181; NASA/CP-1999-208757
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2004-12-03
    Description: Halide and sulfate efflorescences are common on meteorite finds, especially those from cold deserts. Meanwhile, the late-stage sulfate veins in Orgueil are universally accepted as having originated by the action of late-stage high fO2 aqueous alteration on an asteroid. I suggest here that these phenomena have essentially the same origin.
    Keywords: Astrophysics
    Type: Workshop on Extraterrestrial Materials from Cold and Hot Deserts; 95; LPI-Contrib-997
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2004-12-03
    Description: The ten HED polymict breccias EET82600, EET87503, EET87509, EET87510, EET87512, EET87513, EET87518, EET87528, EET87531, and EET92022 were found over a broad area in the Elephant Moraine collecting region of Antarctica. Locations are scattered among the Main (Elephant Moraine), Meteorite City, and Texas Bowl icefields and the Northern Ice Patch. It was previously suggested that these polymict breccias are paired. However, degree of terrestrial alteration among these meteorites varies from relatively pristine (type A) to extensively altered (type B/C) and there are textural, mineralogical, and compositional differences. This study is a reevaluation of the pairing of these meteorites.
    Keywords: Astrophysics
    Type: Workshop on Extraterrestrial Materials from Cold and Hot Deserts; 21-24; LPI-Contrib-997
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2004-12-03
    Description: The crack propagation life of tested specimens has been repeatedly shown to strongly depend on the loading history. Overloads and extended stress holds at temperature can either retard or accelerate the crack growth rate. Therefore, to accurately predict the crack propagation life of an actual component, it is essential to approximate the true loading history. In military rotorcraft engine applications, the loading profile (stress amplitudes, temperature, and number of excursions) can vary significantly depending on the type of mission flown. To accurately assess the durability of a fleet of engines, the crack propagation life distribution of a specific component should account for the variability in the missions performed (proportion of missions flown and sequence). In this report, analytical and experimental studies are described that calibrate/validate the crack propagation prediction capability for a disk alloy under variable amplitude loading. A crack closure based model was adopted to analytically predict the load interaction effects. Furthermore, a methodology has been developed to realistically simulate the actual mission mix loading on a fleet of engines over their lifetime. A sequence of missions is randomly selected and the number of repeats of each mission in the sequence is determined assuming a Poisson distributed random variable with a given mean occurrence rate. Multiple realizations of random mission histories are generated in this manner and are used to produce stress, temperature, and time points for fracture mechanics calculations. The result is a cumulative distribution of crack propagation lives for a given, life limiting, component location. This information can be used to determine a safe retirement life or inspection interval for the given location.
    Keywords: Aircraft Propulsion and Power
    Type: Design Principles and Methods for Aircraft Gas Turbine Engines; 38-1 - 38-8; RTO-MP-8
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2004-12-03
    Description: Unsteady blade row interactions in turbomachines generate discrete-frequency tones at blade pass frequency and its harmonics. Specific circumferential acoustic modes are generated. However, only certain of these modes propagate upstream and downstream to the far field, with these the discrete frequency noise received by an observer. This paper is directed at experimentally demonstrating the viability of active noise control utilizing active airfoils to generate propagating spatial modes that interact with and simultaneously cancel the upstream and downstream propagating acoustic modes. This is accomplished by means of fundamental experiments performed in the Purdue Annular Cascade Research Facility configured with 16 rotor blades and 18 stator vanes. At blade pass frequency, only the k(sub 0) = -2 spatial mode propagates. Significant simultaneous noise reductions are achieved for these upstream and downstream propagating spatial modes over a wide range of operating conditions.
    Keywords: Aircraft Propulsion and Power
    Type: Design Principles and Methods for Aircraft Gas Turbine Engines; 15-1 - 15-11; RTO-MP-8
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2004-12-03
    Description: A comprehensive assessment is made of the predictive capability of the average passage flow model as applied to multi-stage axial flow compressors. The average passage flow model describes the time average flow field within a typical passage of a blade row embedded in a multi-stage configuration. In this work data taken within a four and one-half stage large low speed compressor will be used to assess the weakness and strengths of the predictive capabilities of the average passage flow model. The low speed compressor blading is of modern design and employs stators with end-bends. Measurements were made with slow and high response instrumentation. The high response measurements revealed the velocity components of both the rotor and stator wakes. Based on the measured wake profiles it will be argued that blade boundary layer transition is playing an important role in setting compressor performance. A model which mimics the effects of blade boundary layer transition within the frame work of the average passage model will be presented. Simulations which incorporated this model showed a dramatic improvement in agreement with data.
    Keywords: Aircraft Propulsion and Power
    Type: Design Principles and Methods for Aircraft Gas Turbine Engines; 21-1 - 21-25; RTO-MP-8
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2004-12-03
    Description: Cycle studies have shown the benefits of increasing engine pressure ratios and cycle temperatures to decrease engine weight and improve performance in next generation turbine engines. Advanced seals have been identified as critical in meeting engine goals for specific fuel consumption, thrust-to-weight, emissions, durability and operating costs. NASA and the industry are identifying and developing engine and sealing technologies that will result in dramatic improvements and address the goals for engines entering service in the 2005-2007 time frame. This paper provides an overview of advanced seal technology requirements and highlights the results of a preliminary design effort to implement advanced seals into a regional aircraft turbine engine. This study examines in great detail the benefits of applying advanced seals in the high pressure turbine region of the engine. Low leakage film-riding seals can cut in half the estimated 4% cycle air currently used to purge the high pressure turbine cavities. These savings can be applied in one of several ways. Holding rotor inlet temperature (RIT) constant the engine specific fuel consumption can be reduced 0.9%, or thrust could be increased 2.5%, or mission fuel burn could be reduced 1.3%. Alternatively, RIT could be lowered 20 'F resulting in a 50% increase in turbine blade life reducing overall regional aircraft maintenance and fuel bum direct operating costs by nearly 1%. Thermal, structural, secondary-air systems, safety (seal failure and effect), and emissions analyses have shown the proposed design is feasible.
    Keywords: Aircraft Propulsion and Power
    Type: Design Principles and Methods for Aircraft Gas Turbine Engines; 11-1 - 11-13; RTO-MP-8
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2004-12-03
    Description: This paper presents a coupled analysis of the interaction between mainpath and secondary flowpaths in gas turbines using transient simulations. Some of the topics include: 1) Need for Coupled Analysis; 2) Primary-Secondary Coupling Schematic; 3) Secondary Flow Requirement; 4) Objectives of Present Methodology; 5) Current Methodologies Recap; 6) Proposed Coupled Code Methodology; 7) Description of SCISEAL Code; 8) Description of Turbo Code; 9) Code Coupling/Interface Issues; and 10) Current Interface Strategy. This paper is presented in viewgraph form.
    Keywords: Aircraft Propulsion and Power
    Type: 1998 NASA Seal/Secondary Air System Workshop; Volume 1; 309-343; NASA/CP-1999-208916/VOL1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: NASA's General Aviation Propulsion (GAP) program is a cooperative program between government and industry. NASA's strategic direction is described by the "Three Pillars" and their Objectives as set forth by NASA Administrator Daniel S. Goldin. NASA's Three Pillars are: 1) Global Civil Aviation, 2) Revolutionary Technology Leaps, and 3) Access To Space.
    Keywords: Aircraft Propulsion and Power
    Type: 1998 NASA Seal/Secondary Air System Workshop; Volume 1; 55-77; NASA/CP-1999-208916/VOL1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2004-12-03
    Description: A formal method is described to quantify structural damage tolerance and reliability in the presence of multitude of uncertainties in turbine engine components. The method is based at the materials behaviour level where primitive variables with their respective scatters are used to describe the behavior. Computational simulation is then used to propagate those uncertainties to the structural scale where damage tolerance and reliability are usually specified. Several sample cases are described to illustrate the effectiveness, versatility, and maturity of the method. Typical results from these methods demonstrate that the methods are mature and that they can be used for future strategic projections and planning to assure better, cheaper, faster, products for competitive advantages in world markets. These results also indicate that the methods are suitable for predicting remaining life in aging or deteriorating structures.
    Keywords: Aircraft Propulsion and Power
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2009-11-16
    Description: These are exciting times in the study of planetary system formation with a steadily expanding inventory of exo-planet detections, and imaging of dust disks around nearby young and main sequence stars. While these discoveries imply that our Solar System is far from unique, linking the data for the protoplanetary and debris disks to mature planetary systems requires a demonstration that disk evolution proceeds via planetesimal production and growth to the formation of planets. Theoretical studies of planet formation indicate that planetesimals grow, via runaway accretion, to lunar-sized (approx. = 2000 km) embryos in 10(exp 5) years. Recent gas giant planet formation studies have suggested that most of the action in planet formation occurs over 1-16 Myr, with formation of planets similar to Jupiter in t less than 10 Myr, within the time interval that infrared (IR) and optical emission line studies have demonstrated that circumstellar material remains detectable around both solar mass and intermediate mass stars. Direct imaging of exo-planetesimals is not feasible with current and foreseeable technology, since such bodies have substantially less surface area than micron-sized grains distributed in a disk, and thus are inefficient IR emitters. However, such bodies may be indirectly detectable.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2011-08-23
    Description: Young supernova remnants (SNRs) are often assumed to be the source of cosmic rays up to energies approaching the slight steepening in the cosmic ray spectrum at around 1000 TeV, known as the "knee." We show that the observed X-ray emission of 14 radio-bright shell remnants, including all five historical shells, can be used to put limits on E(sub max), the energy at which the electron energy distribution must steepen from its slope at radio-emitting energies. Most of the remnants show thermal spectra, so any synchrotron component must fall below the observed X-ray fluxes. We obtain upper limits on E(sub max) by considering the most rapid physically plausible cutoff in the relativistic electron distribution, an exponential, which is as sharp or sharper than found in any more elaborate models. This maximally curved model then gives us the highest possible E(sub max) consistent with not exceeding observed X-rays. Our results are thus independent of particular models for the electron spectrum in SNRs. Assuming homogeneous emitting volumes with a constant magnetic field strength of 10 uG, no object could reach 1000 TeV, and only one, Kes 73, has an upper limit on E(sub max), above 100 TeV. All the other remnants have limits at or below 80 TeV. E(sub max) is probably set by the finite remnant lifetime rather than by synchrotron losses for remnants younger than a few thousand years, so that an observed electron steepening should be accompanied by steepening at the same energy for protons. More complicated, inhomogeneous models could allow higher values of E(sub max) in parts of the remnant, but the emission-weighted average value, that characteristic of typical electrons, should obey these limits. The young remnants are not expected to improve much over their remaining lives at producing the highest energy Galactic cosmic rays; if they cannot, this picture of cosmic-ray origin may need major alteration.
    Keywords: Astrophysics
    Type: Astrophysical Journal; Volume 525; 368-374
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2011-08-23
    Description: By comparing positions on a spectral color-color diagram from 10 black hole candidates (BHCS) observed with Ginga (1354-64, 1826-24, 1630-47, LMC X-1, LMC X-3, GS 2000+25, GS 2023+33, GS 1124-68, Cyg X-1, and GX 339-4) with the observed broadband noise (BBN) (0.001-64 Hz) and quasi-periodic oscillation (QPO) variability, we find that the "very high state" is spectrally intermediate to the soft/high state and hard/low state. We find a transition point in spectral hardness where the dependence of the BHC QPO centroid frequency (of GS 1124-68 and GX 339-4) on spectral hardness switches from a correlation to an anticorrelation; where the BBN variability switches from high state to low state; and where the spectral hardness of the QPO relative to that of the BBN variability is a maximum. This coincidence of changing behavior in both the QPO and the broadband variability leads us to hypothesize that the QPO is due to interaction between the physical components which dominate the behaviors of BHCs when they occupy the hard/low and soft/high states. We conclude that these QPOs should be observed from BHCs during transition between these two states. Comparison with QPO and BBN behavior observed during the 1996 transition of Cyg X-1 supports this hypothesis. We also report 1-3 Hz QPOs observed in GS 2000+25 and Cyg X-1 in the hard/low state, and we compare these to the QPOs observed in GS 1124-68 and GX 339-4.
    Keywords: Astrophysics
    Type: Astrophysical Journal Supplement Series; Volume 124; 265-283
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2011-08-23
    Description: Infrared spectroscopy of pre-main sequence stars with dusty protostellar disks provide information about the evolution of refractory materials in such systems. These systems exhibit varying degrees of strength and structure in the silicate emission band situated at 10 microns wavelength. Band strength is affected by the mean grain size, while band structure is determined by the chemical composition and degree of crystallinity. In some objects, the silicate band is strong and featureless, similar to that seen in the interstellar medium. In others, the band is often weaker, and exhibits structure consistent with the presence of crystalline olivine. In these latter objects, the band is similar to that of some solar system comets. The strength and structure of the silicate band may be related to the processing history of the system.
    Keywords: Astrophysics
    Type: Formulation and Evolution of Solids in Space; 513-520
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2011-08-23
    Description: The debris disks surrounding the pre-main-sequence stars HD 31648 and HD 163296 were observed spectroscopically between 3 and 14 microns. Both stars possess a silicate emission feature at 10 Am that resembles that of the star P Pictoris and those observed in solar system comets. The structure of the band is consistent with a mixture of olivine and pyroxene material, plus an underlying continuum of unspecified origin. The similarity in both size and structure of the silicate band suggests that the material in these systems had a processing history similar to that in our own solar system prior to the time that the grains were incorporated into comets.
    Keywords: Astrophysics
    Type: Astrophysical Journal; Volume 510; 408-412
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2013-08-31
    Description: Trajectory design of the orbit phase of the NEAR mission involves a new process that departs significantly from those procedures used in previous missions. In most cases, a precise spacecraft ephemeris is designed well in advance of arrival at the target body. For NEAR, the uncertainty in the dynamic environment around Eros does not allow the luxury of a precise spacecraft trajectory to be defined in advance. The principal cause of this uncertainty is the limited knowledge oi' the gravity field a,-id rotational state of Eros. As a result, the concept for the NEAR trajectory design is to define a number of rules for satisfying spacecraft, mission, and science constraints, and then apply these rules to various assumptions for the model of Eros. Nominal, high, and low Eros mass models are used for testing the trajectory design strategy and to bracket the ranges of parameter variations that are expected upon arrival at the asteroid. The final design is completed after arrival at Eros and determination of the actual gravity field and rotational state. As a result of the unplanned termination of the deep space rendezvous maneuver on December 20, 1998, the NEAR spacecraft passed within 3830 km of Eros on December 23, 1998. This flyby provided a brief glimpse of Eros, and allowed for a more accurate model of the rotational parameters and gravity field uncertainty. Furthermore, after the termination of the deep space rendezvous burn, contact with the spacecraft was lost and the NEAR spacecraft lost attitude control. During the subsequent gyrations of the spacecraft, hydrazine thruster firings were used to regain attitude control. This unplanned thruster activity used Much of the fuel margin allocated for the orbit phase. Consequently, minimizing fuel consumption is now even more important.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2016-06-07
    Description: This presentation highlights the activities that researchers at the NASA Lewis Research Center (LeRC) have been and will be involved in to assess integrated nozzle performance. Three different test activities are discussed. First, the results of the Propulsion Airframe Integration for High Speed Research 1 (PAIHSR1) study are presented. The PAIHSR1 experiment was conducted in the LeRC 9 ft x l5 ft wind tunnel from December 1991 to January 1992. Second, an overview of the proposed Mixer/ejector Inlet Distortion Study (MIDIS-E) is presented. The objective of MIDIS-E is to assess the effects of applying discrete disturbances to the ejector inlet flow on the acoustic and aero-performance of a mixer/ejector nozzle. Finally, an overview of the High-Lift Engine Aero-acoustic Technology (HEAT) test is presented. The HEAT test is a cooperative effort between the propulsion system and high-lift device research communities to assess wing/nozzle integration effects. The experiment is scheduled for FY94 in the NASA Ames Research Center (ARC) 40 ft x 80 ft Low Speed Wind Tunnel (LSWT).
    Keywords: Aircraft Propulsion and Power
    Type: First NASA/Industry High Speed Research Program Nozzle Symposium; 33-1 - 33-19; NASA/CP-1999-209423
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2016-06-07
    Description: Interest in developing a new generation supersonic transport has increased in the past several years. Current projections indicate this aircraft would cruise at approximately Mach 2.4, have a range of 5000 nautical miles and carry at least 250 passengers. A large market for such an aircraft will exist in the next century due to a predicted doubling of the demand for long range air transportation by the end of the century and the growing influence of the Pacific Rim nations. Such a proposed aircraft could more than halve the flying time from Los Angeles to Tokyo. However, before a new economically feasible supersonic transport can be built, many key technologies must be developed. Among these technologies is noise suppression. Propulsion systems for a supersonic transport using current technology would exceed acceptable noise levels. All new aircraft must satisfy FAR 36 Stage III noise regulations. The largest area of concern is the noise generated during takeoff. A concerted effort under NASA's High Speed Research (HSR) program has begun to address the problem of noise suppression. One of the most promising concepts being studied in the area of noise suppression is the mixer/ejector nozzle. This study analyzes a typical noise suppressing mixer ejector nozzle at take off conditions, using a Full Navier-Stokes (FNS) computational fluid dynamics (CFD) code.
    Keywords: Aircraft Propulsion and Power
    Type: First NASA/Industry High Speed Research Program Nozzle Symposium; 16-1 - 16-32; NASA/CP-1999-209423
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2016-06-07
    Description: Outline of presentation are: (1) Review of experimental apparatus. (2) Effect of natural screech of jet mixing; converging nozzle, underexpanded jet and converging-diverging nozzle, design pressure.(3) Effect of induced screech on jet mixing: produced by paddles in shear layers, similar to edge tones, and converging-diverging nozzle, design pressure. (4) Effect of paddles on near-field jet noise. and (5) Concluding remarks.
    Keywords: Aircraft Propulsion and Power
    Type: First NASA/Industry High Speed Research Program Nozzle Symposium; 9-1 - 9-15; NASA/CP-1999-209423
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2016-06-07
    Description: The motivation of the testing was to reduce noise generated by eddy Mach wave emission via enhanced mixing in the jet plume. This was to be accomplished through the use of an ejector shroud, which would bring in cooler ambient fluid to mix with the hotter jet flow. In addition, the contour of the mixer, with its chutes and lobes, would accentuate the merging of the outer and inner flows. The objective of the focused schlieren work was to characterize the mixing performance inside of the ejector. Using flow visualization allowed this to be accomplished in a non-intrusive manner.
    Keywords: Aircraft Propulsion and Power
    Type: First NASA/Industry High Speed Research Program Nozzle Symposium; 15-1 - 15-14; NASA/CP-1999-209423
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Description: Only recently has computational fluid dynamics (CFD) been relied upon to predict the flow details of advanced nozzle concepts. Computer hardware technology and flow solving techniques are advancing rapidly and CFD is now being used to analyze such complex flows. Validation studies are needed to assess the accuracy, reliability, and cost of such CFD analyses. At NASA Lewis, the PARC2D/3D full Navier-Stokes (FNS) codes are being applied to HSR-type nozzles. This report presents the results of two such PARC FNS analyses. The first is an analysis of the Pratt and Whitney 2D mixer-ejector nozzle, conducted by Dr. Yunho Choi (formerly of Sverdrup Technology-NASA Lewis Group). The second is an analysis of NASA-Langley's axisymmetric single flow plug nozzle, conducted by the author.
    Keywords: Aircraft Propulsion and Power
    Type: First NASA/Industry High Speed Research Program Nozzle Symposium; 18-1 - 18-21; NASA/CP-1999-209423
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2016-06-07
    Description: The investigation includes carry out fundamental experiments studying mechanisms of effect: (1) experiments on subsonic and supersonic jets to assess influence of compressibility, (2) parametric study on tab geometry to optimize effect for given flow blockage (this effort led to "delta-tab"), (3) quantify mixing enhancement in the jet, and (4) analyze mechanism of streamwise vorticity generation.
    Keywords: Aircraft Propulsion and Power
    Type: First NASA/Industry High Speed Research Program Nozzle Symposium; 10-1 - 10-19; NASA/CP-1999-209423
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2016-06-07
    Description: The theory of mixer-ejectors for noise suppression is illustrated in this cartoon. Since jet noise SPL scales as velocity to the eighth power and diameter squared, increasing the jet diameter while lowering its velocity and keeping thrust constant decreases the noise. However, in supersonic craft, the drag penalty for increasing diameter at supersonic cruise makes this option very expensive. One would like to have a large engine during takeoff which could be shrunk during cruise. The retractable ejector is such an expandable engine. If the mixer flow can be expanded to the size of the ejector exit, the noise generated downstream of the ejector will be much less than the small diameter mixer nozzle alone. Of course, this also requires that the noise created in expanding the flow to fill the ejector be absorbed by a liner in the ejector walls so that none of this noise is heard. Since this mixing of internal hot gas and external cold air must take place in as short a distance as possible, the mixer must be very effective and therefore probably much noisier than a simple nozzle.
    Keywords: Aircraft Propulsion and Power
    Type: First NASA/Industry High Speed Research Program Nozzle Symposium; 7-1 - 7-21; NASA/CP-1999-209423
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2013-08-29
    Description: Established analyses of conventional ramjet/scramjet performance characteristics indicate that a considerable decrease in efficiency can be expected at off-design flight conditions. This can be explained, in large part, by the deterioration of intake mass flow and limited inlet compression at low flight speeds and by the onset of thrust degradation effects associated with increased burner entry temperature at high flight speeds. In combination, these effects tend to impose lower and upper Mach number limits for practical flight. It has been noted, however, that Magnetohydrodynamic (MHD) energy management techniques represent a possible means for extending the flight Mach number envelope of conventional engines. By transferring enthalpy between different stages of the engine cycle, it appears that the onset of thrust degradation may be delayed to higher flight speeds. Obviously, the introduction of additional process inefficiencies is inevitable with this approach, but it is believed that these losses are more than compensated through optimization of the combustion process. The fundamental idea is to use MHD energy conversion processes to extract and bypass a portion of the intake kinetic energy around the burner. We refer to this general class of propulsion system as an MHD-bypass engine. In this paper, we quantitatively assess the performance potential and scientific feasibility of MHD-bypass airbreathing hypersonic engines using ideal gasdynamics and fundamental thermodynamic principles.
    Keywords: Aircraft Propulsion and Power
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-29
    Description: This paper describes The Cosmic Background Explorer Satellite Mission that was lost. It also describes the author's experiences as a youth, his college years, and employment with NASA.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2013-08-29
    Description: We have developed a new numerical approach to the dynamics of minor bodies and dust particles, which enables us to increase, without using a supercomputer, the number of employed particle positions in each model up to 10(exp 10) - 10(exp 11), a factor of 10(exp 6) - 10(exp 7) higher than existing numerical simulations. We apply this powerful approach to the high-resolution modeling of the structure and emission of circumstellar dust disks, incorporating all relevant physical processes. In this Letter, we examine the resonant structure of a dusty disk induced by the presence of one planet of mass in the range of (5 x 10(exp -5) - 5 x 10(exp -3))M. It is shown that the planet, via resonances and gravitational scattering, produces (i) a central cavity void of dust; (ii) a trailing (sometimes leading) off-center cavity; and (iii) an asymmetric resonant dust belt with one, two, or more clumps. These features can serve as indicators of planet(s) embedded in the circumstellar dust disk and, moreover, can be used to determine the mass of the planet and even some of its orbital parameters. The results of our study reveal a remarkable similarity with various types of highly asymmetric circumstellar disks observed with the JCMT around Epsilon Eridani and Vega.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2013-08-29
    Description: A recent X-ray observation of the cluster 1E 0657-56 (z = 0.296) with ASC,4 implied an unusually high temperature of approx. 17 keV. Such a high temperature would make it the hottest known cluster and severely constrain cosmological models since, in a Universe with critical density (Omega = 1) the probability of observing such a cluster is only approx. 4 x 10(exp -5). Here we test the robustness of this observational result since it has such important implications. We analysed the data using a variety of different data analysis methods and spectral analysis assumptions and find a temperature of approx. 11 - 12 keV in all cases, except for one class of spectral fits. These are fits in which the absorbing column density is fixed at the Galactic value. Using simulated data for a 12 keV cluster, we show that a high temperature of approx. 17 keV is artificially obtained if the true spectrum has a stronger low-energy cut-off than that for Galactic absorption only. The apparent extra absorption may be astrophysical in origin, (either intrinsic or line-of-sight), or it may be a problem with the low-energy CCD efficiency. Although significantly lower than previous measurements, this temperature of kT approx. 11 - 12 keV is still relatively high since only a few clusters have been found to have temperatures higher than 10 keV and the data therefore still present some difficulty for an Omega = 1 Universe. Our results will also be useful to anyone who wants to estimate the systematic errors involved in different methods of background subtraction of ASCA data for sources with similar signal-to-noise to that of the IE 0657-56 data reported here.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2013-08-29
    Description: Experimental data have shown that combustor temperature non-uniformities can lead to the excessive heating of first-stage rotor blades in turbines. This heating of the rotor blades can lead to thermal fatigue and degrade turbine performance. The results of recent studies have shown that variations in the circumferential location (clocking) of the hot streak relative to the first-stage vane airfoils can be used to minimize the adverse effects of the hot streak. The effects of the hot streak/airfoil count ratio on the heating patterns of turbine airfoils have also been evaluated. In the present investigation, three-dimensional unsteady Navier-Stokes simulations have been performed for a single-stage high-pressure turbine operating in high subsonic flow. In addition to a simulation of the baseline turbine, simulations have been performed for circular and elliptical hot streaks of varying sizes in an effort to represent different combustor designs. The predicted results for the baseline simulation show good agreement with the available experimental data. The results of the hot streak simulations indicate: that a) elliptical hot streaks mix more rapidly than circular hot streaks, b) for small hot streak surface area the average rotor temperature is not a strong function of hot streak temperature ratio or shape, and c) hot streaks with larger surface area interact with the secondary flows at the rotor hub endwall, generating an additional high temperature region.
    Keywords: Aircraft Propulsion and Power
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2013-08-29
    Description: A list of the interplanetary (IP) shocks observed by WIND from its launch (in November 1994) to May 1997 is presented. Forty two shocks were identified. The magnetohydrodynamic nature of the shocks is investigated, and the associated shock parameters and their uncertainties are accurately computed using a practical scheme which combines two techniques. These techniques are a combination of the "pre-averaged" magnetic-coplanarity, velocity-coplanarity, and the Abraham-Schrauner-mixed methods, on the one hand, and the Vinas and Scudder [1986] technique for solving the non-linear least-squares Rankine-Hugoniot shock equations, on the other. Within acceptable limits these two techniques generally gave the same results, with some exceptions. The reasons for the exceptions are discussed. It is found that the mean strength and rate of occurrence of the shocks appears to correlated with the solar cycle. Both showed a decrease in 1996 coincident with the time of the lowest ultraviolet solar radiance, indicative of solar minimum and start of solar cycle 23, which began around June 1996. Eighteen shocks appeared to be associated with corotating interaction regions (CIRs). The distribution of their shock normals showed a mean direction peaking in the ecliptic plane and with a longitude (phi(sub n)) in that plane between perpendicular to the Parker spiral and radial from the Sun. When grouped according to the sense of the direction of propagation of the shocks the mean azimuthal (longitude) angle in GSE coordinates was approximately 194 deg for the fast-forward and approximately 20 deg for the fast-reverse shocks. Another 16 shocks were determined to be driven by solar transients, including magnetic clouds. These shocks had a broader distribution of normal directions than those of the CIR cases with a mean direction close to the Sun-Earth line. Eight shocks of unknown origin had normal orientation well off the ecliptic plane. No shock propagated with longitude phi(sub n) 〉= 220 +/- 10 deg, this would suggest strong hindrance to the propagation of shocks contra a rather tightly winding Parker spiral. Examination of the obliquity angle theta(sub Bn) (that between the shock normal and the upstream interplanetary magnetic field) for the full set of shocks revealed that about 58% was quasi-perpendicular, and some were very nearly perpendicular. About 32% of the shocks were oblique, and the rest (only 10%) were quasi-parallel, with one on Dec. 9, 1996 that showed field pulsations. Small uncertainty in the estimated angle theta(sub Bn) was obtained for about 10 shocks with magnetosonic Mach numbers between 1 and 2, hopefully significantly contributing to studies researching particle acceleration mechanisms at IP shocks, and to investigations where accurate values of theta(sub Bn) are crucial.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2013-08-29
    Description: Interior layers of stars that have been exposed by surface mass loss reveal aspects of their chemical and convective histories that are otherwise inaccessible to observation. It must be significant that the surface hydrogen abundances of luminous blue variables (LBVs) show a remarkable uniformity, specifically X(sub surf) = 0.3 - 0.4, while those of hydrogen-poor Wolf-Rayet (WN) stars fall, almost without exception, below these values, ranging down to X(sub surf) = 0. According to our stellar model calculations, most LBVs are post-red-supergiant objects in a late blue phase of dynamical instability, and most hydrogen-poor WN stars are their immediate descendants. If this is so, stellar models constructed with the Schwarzschild (temperature-gradient) criterion for convection account well for the observed hydrogen abundances, whereas models built with the Ledoux (density-gradient) criterion fail. At the brightest luminosities, the observed hydrogen abundances of LBVs are too large to be explained by any of our highly evolved stellar models, but these LBVs may occupy transient blue loops that exist during an earlier phase of dynamical instability when the star first becomes a yellow supergiant. Independent evidence concerning the criterion for convection, which is based mostly on traditional color distributions of less massive supergiants on the Hertzsprung-Russell diagram, tends to favor the Ledoux criterion. It is quite possible that the true criterion for convection changes over from something like the Ledoux criterion to something like the Schwarzschild criterion as the stellar mass increases.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2016-06-07
    Description: The United States has embarked on a national effort to develop the technology necessary to produce a Mach 2.4 High Speed Civil Transport (HSCT) for entry into service by the year 2005. The viability of this aircraft is contingent upon its meeting both economic and environmental requirements. Two engine components have been identified as critical to the environmental acceptability of the HSCT. These include a combustor with significantly lower emissions than are feasible with current technology, and a lightweight exhaust nozzle that meets community noise standards. The Enabling Propulsion Materials (EPM) program will develop the advanced structural materials, materials fabrication processes, structural analysis and life prediction tools for the HSCT combustor and low noise exhaust nozzle. This is being accomplished through the coordinated efforts of the NASA Lewis Research Center, General Electric Aircraft Engines and Pratt & Whitney. The mission of the EPM Exhaust Nozzle Team is to develop and demonstrate this technology by the year 1999 to enable its timely incorporation into HSCT propulsion systems.
    Keywords: Aircraft Propulsion and Power
    Type: First NASA/Industry High Speed Research Program Nozzle Symposium; 35-1 - 35-21; NASA/CP-1999-209423
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2016-06-07
    Description: This paper describes work currently in progress at Langley on liner concepts that employ structures that may be suitable for broadband exhaust noise attenuation in high speed flow environments and at elevated temperatures characteristic of HSCT applications. Because such liners will need to provide about 10 dB suppression over a 2 to 3 octave frequency range, conventional single-degree-of-freedom resonant structures will not suffice. Bulk absorbers have the needed broadband absorption characteristic; however, at lower frequencies they tend to be inefficient.
    Keywords: Aircraft Propulsion and Power
    Type: First NASA/Industry High Speed Research Program Nozzle Symposium; 34-1 - 34-17; NASA/CP-1999-209423
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2016-06-07
    Description: Based on extensive work performed by Dr. Thomas H. Sobota (Advanced Projects Research Incorporated (APRI)) on swirling flows in circular-to-rectangular transition sections, a model assembly was designed and fabricated in support of a Phase 1 Small Business Innovation Research Contract between the NASA-Langley Research Center and APRI. This assembly was acoustically tested as part of this Phase 1 effort, the goal being to determine whether the controlled introduction of axial vorticity could affect the various noise generation mechanisms present in an underexpanded supersonic rectangular jet.
    Keywords: Aircraft Propulsion and Power
    Type: First NASA/Industry High Speed Research Program Nozzle Symposium; 14-1 - 14-15; NASA/CP-1999-209423
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2016-06-07
    Description: This paper discusses a test that was conducted jointly by Pratt & Whitney Aircraft Engines and NASA Lewis Research Center. The test was conducted in NASA's 9- by 15-Foot Low Speed Wind Tunnel (9x15 LSWT). The test setup, methods, and aerodynamic results of this test are discussed. Acoustical results are discussed in a separate paper by J. Bridges and J. Marino.
    Keywords: Aircraft Propulsion and Power
    Type: First NASA/Industry High Speed Research Program Nozzle Symposium; 6-1 - 6-19; NASA/CP-1999-209423
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2018-06-08
    Description: Millimeter CO (1-〉0) interferometry and high resolution, Hubble Space Telescope (HST) 1.1, 1.6, and 2.2 meu imaging of the radio compact galaxy PKS 1345+12 are presented.
    Keywords: Astrophysics
    Type: Astrophysical Journal
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2018-06-08
    Description: We report the discovery of four field methane (T-type) brown dwarfs using 2MASS survey data. One additional methane dwarf, previously discovered by SDSS, was also identified.
    Keywords: Astrophysics
    Type: Astrophysical Journal Letters
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2018-06-08
    Description: We report extensive observations of striation patterns in the dust tail of comet Hale-Bopp (C/1995 O1) over a period of more than 10 weeks, from mid-february until early May 1997.
    Keywords: Astrophysics
    Type: Astronomy and Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2018-06-08
    Description: Dust plays a key role in the optical, thermodynamic and gas dynamical behavior of collapsing molecular cores. Because of relative velocities of the individual dust grains, coagulation and shattering can modify the grain size distribution and due to corresponding changes in the medium's opacity significantly influence the evolution during early phase of star formation.
    Keywords: Astrophysics
    Type: Astrophysical Journal
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2018-06-08
    Description: We report the detection of emission from methanol in a compact source coincident with the position of the L1157 infrared source, which we attribute to molecules in the disk surrounding this young, class 0 protostellar object.
    Keywords: Astrophysics
    Type: Astrophysical Journal Letters
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2018-06-08
    Description: WL16 is unique among the members of the young, forming star cluster embedded in the nearby p Oph cloud core in exhibiting an extended, high surface brightness disk in the emission features originating from solid-state aromatic hydrocarbons.
    Keywords: Astrophysics
    Type: Astrophysical Journal Letters
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2018-06-08
    Description: We present thirty VLBI images of the Tev blazar Markarian 421 (1101+384) at fifteen epochs spanning the time range from 1994 to 1997, and at six different frequencies form 2.3 to 43 GHz.
    Keywords: Astrophysics
    Type: Astrophysical Journal
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2018-06-08
    Description: Ground-based, equal-arm-length laser interferometers are being built to measure high-frequency astrophysical graviatational waves. Because of the arm-length equality, laser light experiences the same delay in each arm and thus phase or frequency noise from the laser itself precisely cancels at the photodetector.
    Keywords: Astrophysics
    Type: Astrophysical Journal
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2018-06-08
    Description: Long thought by some researchers to be an oddity, GD 165B has instead proven to be the first example of a class of very cool objects (the L dwarfs) which, due to dust formation in their photosphere, lack the dominant bands of TiO seen in warmer M dwarfs.
    Keywords: Astrophysics
    Type: The Astrophysical Journal
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2018-06-08
    Description: In an attempt to use Cepheid variables to determine the distance to the Centaurus cluster, we have obtained images of NGC 4603 with the Hubble Space Telescope for 9 epochs (totalling 24 orbits) over 14 months in the F555W filter and 2 epochs (totalling 6 orbits) in the F814W filter.
    Keywords: Astrophysics
    Type: The Astrophysical Journal
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2018-06-08
    Description: We report Hubble Space Telescope observations of variability within the reflection nebulosity of HH 30, a compact bipolar nebula which is a nearly edge-on accretion disk system.
    Keywords: Astrophysics
    Type: Astrophysical Journal Letters
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2018-06-08
    Description: We present the discovery of a widely separated (258.3+/-0.4) T dwarf companion to the G1 570ABC system.
    Keywords: Astrophysics
    Type: Astrophysical Journal Letters
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2018-06-08
    Description: We report on the determination of the visual orbit of the double-lined spectroscopic binary system 64 Piscum with data obtained by the Palomar Testbed Interferometer in 1997 and 1998.
    Keywords: Astrophysics
    Type: Astrophysical Journal
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2018-06-08
    Description: Spatially resolved profiles of the H (alpha), [N II] 6584 A and [O III] 5007 A nebular emission lines, obtained with the Manchester echelle spectrometer combined with the 2.1 m San Pedro Martir telescope have revealed the velocity structure of the nebular core and of one of the three (A,B and C) inner haloes of the high excitation planetary nebula NGC 3242.
    Keywords: Astrophysics
    Type: Astrophysical Journal
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2018-06-08
    Description: Dust plays a key role in the optical, thermodynamic and gas dynamical behavior of collapsing molecular cores. Because of relative velocities of the individual dust grains, coagulation and shattering can modify the grain size distribution and -- due to corresponding changes in the medium's opacity significantly -- influence the evolution during early phases of star formation.
    Keywords: Astrophysics
    Type: Astrophysical Journal
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2018-06-08
    Description: We report the discovery of three proplyd-like structures in the giant HII region NGC 3603.
    Keywords: Astrophysics
    Type: Astrophysical Journal
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2018-06-08
    Description: The structure of AGN accretion disks on sub-parsec scales can be probed through free-free absorption of synchrotron emission from the base of symmetric radio jets.
    Keywords: Astrophysics
    Type: Astrophysical Journal
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2018-06-08
    Description: Evidence of a north-south asymmetry in the global heliosphere, first inferred from Ulysses cosmic ray observations, is investigated using simultaneous Ulysses and WIND magnetic field observations.
    Keywords: Astrophysics
    Type: The Astrophysical Journal
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2018-06-08
    Description: Measurements of the abundances of cosmic-ray (sup 59)Ni and (sup 59)Co are reported form the Cosmic Ray Isotope Spectrometer (CRIS) on the Advanced Composition Explorer (ACE).
    Keywords: Astrophysics
    Type: Astrophysical Journal Letters
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2018-06-05
    Description: The NASA Lewis Research Center is capitalizing on breakthroughs in foil air bearing performance, tribological coatings, and computer analyses to formulate the Oil-free Turbomachinery Program. The program s long-term goal is to develop an innovative, yet practical, oil-free aeropropulsion gas turbine engine that floats on advanced air bearings. This type of engine would operate at higher speeds and temperatures with lower weight and friction than conventional oil-lubricated engines. During startup and shutdown, solid lubricant coatings are required to prevent wear in such engines before the self-generating air-lubrication film develops. NASA s Tribology Branch has created PS304, a chrome-oxide-based plasma spray coating specifically tailored for shafts run against foil bearings. PS304 contains silver and barium fluoride/calcium fluoride eutectic (BaF2/CaF2) lubricant additives that, together, provide lubrication from cold start temperatures to over 650 C, the maximum use temperature for foil bearings. Recent lab tests show that bearings lubricated with PS304 survive over 100 000 start-stop cycles without experiencing any degradation in performance due to wear. The accompanying photograph shows a test bearing after it was run at 650 C. The rubbing process created a "polished" surface that enhances bearing load capacity.
    Keywords: Aircraft Propulsion and Power
    Type: Research and Technology 1998; NASA/TM-1999-208815
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2018-06-05
    Description: Field measurement of noise radiated from flight vehicles is an important element of aircraft noise research programs. At NASA Langley, a dedicated effort that spans over two decades was devoted to the development of acoustic measurement systems to support the NASA noise research programs. The new challenge for vehicle operational noise reduction through varying glide slope and flight path require noise measurement to be made over a very large area under the vehicle flight path. Such a challenge can be met through the digital remote system currently under final development at NASA Langley.
    Keywords: Aircraft Propulsion and Power
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2018-06-05
    Description: The spread of a flame over solid fuel is not only a fundamental textbook combustion phenomenon, but also the central element of destructive fires that cause tragic loss of life and property each year. Throughout history, practical measures to prevent and fight fires have been developed, but these have often been based on lessons learned in a costly fire. Since the 1960 s, scientists and engineers have employed powerful tools of scientific research to understand the details of flame spread and how a material can be rendered nonflammable. High-speed computers have enabled complex flame simulations, whereasand lasers have provided measurements of the chemical composition, temperature, and air velocities inside flames. The microgravity environment has emerged as the third great tool for these studies. Spreading flames are complex combinations of chemical reactions and several physical processes including the transport of oxygen and fuel vapor to the flame and the transfer of heat from the flame to fresh fuel and to the surroundings. Depending on its speed, air motion in the vicinity of the flame can affect the flame in substantially different ways. For example, consider the difference between blowing on a campfire and blowing out a match. On Earth, gravity induces air motion because of buoyancy (the familiar rising hot gases); this process cannot be controlled experimentally. For theoreticians, buoyant air motion complicates the problem modeling of flame spread beyond the capacity of modern computers to simulate. The microgravity environment provides experimental control of air motion near spreading flames, with results that can be compared with detailed theory. The Solid Surface Combustion Experiment (SSCE) was designed to obtain benchmark flame spreading data in quiescent test atmospheres--the limiting case of flames spreading. Professor Robert Altenkirch, Vice President for Research at Mississippi State University, proposed the experiment concept, and the NASA Lewis Research Center designed, built, and tested the SSCE hardware. It was the first microgravity science experiment built by Lewis for the space shuttle and the first combustion science experiment flown in space.
    Keywords: Aircraft Propulsion and Power
    Type: Research and Technology 1998; NASA/TM-1999-208815
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2018-06-05
    Description: With the advent of new, more stringent noise regulations in the next century, aircraft engine manufacturers are investigating new technologies to make the current generation of aircraft engines as well as the next generation of advanced engines quieter without sacrificing operating performance. A current NASA initiative called the Advanced Subsonic Technology (AST) Program has set as a goal a 6-EPNdB (effective perceived noise) reduction in aircraft engine noise relative to 1992 technology levels by the year 2000. As part of this noise program, and in cooperation with the Allison Engine Company, an advanced, low-noise, high-bypass-ratio fan stage design and several advanced technology stator vane designs were recently tested in NASA Lewis Research Center's 9- by 15-Foot Low-Speed Wind Tunnel (an anechoic facility). The project was called the NASA/Allison Low Noise Fan.
    Keywords: Aircraft Propulsion and Power
    Type: Research and Technology 1998; NASA/TM-1999-208815
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2018-06-05
    Description: A Two-Dimensional Bifurcated (2DB) Inlet was successfully tested in NASA Lewis Research Center s 10- by 10-Foot Supersonic Wind Tunnel. These tests were the culmination of a collaborative effort between the Boeing Company, General Electric, Pratt & Whitney, and Lewis. Extensive support in-house at Lewis contributed significantly to the progress and accomplishment of this test. The results, which met or exceeded many of the High-Speed Research (HSR) Program goals, were used to revise system studies within the HSR Program. The HSR Program is focused on developing low-noise, low-polluting, high-efficiency supersonic commercial aircraft. A supersonic inlet is an important component of an efficient, low-noise vehicle.
    Keywords: Aircraft Propulsion and Power
    Type: Research and Technology 1998; NASA/TM-1999-208815
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2018-06-05
    Description: NASA s Advanced Subsonic Technology (AST) Program seeks to develop new technologies to increase the fuel efficiency of commercial aircraft engines, improve the safety of engine operation, and reduce emissions and engine noise. For new designs of ducted fans, compressors, and turbines to achieve these goals, a basic aeroelastic requirement is that there should be no flutter or high resonant blade stresses in the operating regime. For verifying the aeroelastic soundness of the design, an accurate prediction/analysis code is required. Such a three-dimensional viscous propulsion aeroelastic code, named TURBO-AE, is being developed at the NASA Lewis Research Center. The development and verification of the flutter version of the TURBO-AE code (version 4) has been completed. Validation of the code is partially complete.
    Keywords: Aircraft Propulsion and Power
    Type: Research and Technology 1998; NASA/TM-1999-208815
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2018-06-05
    Description: The NASA Lewis Research Center is developing an environment for analyzing and designing aircraft engines-the Numerical Propulsion System Simulation (NPSS). NPSS will integrate multiple disciplines, such as aerodynamics, structure, and heat transfer, and will make use of numerical "zooming" on component codes. Zooming is the coupling of analyses at various levels of detail. NPSS uses the latest computing and communication technologies to capture complex physical processes in a timely, cost-effective manner. The vision of NPSS is to create a "numerical test cell" enabling full engine simulations overnight on cost-effective computing platforms. Through the NASA/Industry Cooperative Effort agreement, NASA Lewis and industry partners are developing a new engine simulation called the National Cycle Program (NCP). NCP, which is the first step toward NPSS and is its initial framework, supports the aerothermodynamic system simulation process for the full life cycle of an engine. U.S. aircraft and airframe companies recognize NCP as the future industry standard common analysis tool for aeropropulsion system modeling. The estimated potential payoff for NCP is a $50 million/yr savings to industry through improved engineering productivity.
    Keywords: Aircraft Propulsion and Power
    Type: Research and Technology 1998; NASA/TM-1999-208815
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2018-06-02
    Description: Efforts to improve the performance of modern gas turbine engines have imposed increasing service temperature demands on structural materials. Through active cooling, the useful temperature range of nickel-base superalloys in current gas turbine engines has been extended, but the margin for further improvement appears modest. Because of their low density, high-temperature strength, and high thermal conductivity, in situ toughened silicon nitride ceramics have received a great deal of attention for cooled structures. However, high processing costs have proven to be a major obstacle to their widespread application. Advanced rapid prototyping technology, which is developing rapidly, offers the possibility of an affordable manufacturing approach.
    Keywords: Aircraft Propulsion and Power
    Type: Research and Technology 1998; NASA/TM-1999-208815
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-05
    Description: The objective of this task was to create and validate a three-dimensional model of the GE90 turbofan engine (General Electric) using the APNASA (average passage) flow code. This was a joint effort between GE Aircraft Engines and the NASA Lewis Research Center. The goal was to perform an aerodynamic analysis of the engine primary flow path, in under 24 hours of CPU time, on a parallel distributed workstation system. Enhancements were made to the APNASA Navier-Stokes code to make it faster and more robust and to allow for the analysis of more arbitrary geometry. The resulting simulation exploited the use of parallel computations by using two levels of parallelism, with extremely high efficiency.The primary flow path of the GE90 turbofan consists of a nacelle and inlet, 49 blade rows of turbomachinery, and an exhaust nozzle. Secondary flows entering and exiting the primary flow path-such as bleed, purge, and cooling flows-were modeled macroscopically as source terms to accurately simulate the engine. The information on these source terms came from detailed descriptions of the cooling flow and from thermodynamic cycle system simulations. These provided boundary condition data to the three-dimensional analysis. A simplified combustor was used to feed boundary conditions to the turbomachinery. Flow simulations of the fan, high-pressure compressor, and high- and low-pressure turbines were completed with the APNASA code.
    Keywords: Aircraft Propulsion and Power
    Type: Research and Technology 1998; NASA/TM-1999-208815
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2018-06-05
    Description: The Low Cost Booster Technology Program is an initiative to minimize the cost of future liquid engines by using advanced materials and innovative designs, and by reducing engine complexity. NASA Marshall Space Flight Center s 60K FASTRAC Engine is one example where these design philosophies have been put into practice. This engine burns a liquid kerosene/oxygen mixture. It uses a one-piece, polymer composite thrust chamber/nozzle that is constructed of a tape-wrapped silica phenolic liner, a metallic injector interface ring, and a filament-wound epoxy overwrap. A cooperative effort between NASA Lewis Research Center s Structures Division and Marshall is underway to perform a finite element analysis of the FASTRAC chamber/nozzle under all the loading and environmental conditions that it will experience during its lifetime. The chamber/nozzle is a complex composite structure. Of its three different materials, the two composite components have distinctly different fiber architectures and, consequently, require separate material model descriptions. Since the liner is tape wrapped, it is orthotropic in the nozzle global coordinates; and since the overwrap is filament wound, it is treated as a monoclinic material. Furthermore, the wind angle on the overwrap varies continuously along the length of the chamber/nozzle.
    Keywords: Aircraft Propulsion and Power
    Type: Research and Technology 1998; NASA/TM-1999-208815
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2018-06-05
    Description: Future aircraft turbine engines, both commercial and military, will have to be able to successfully accommodate expected increased levels of steady-state and dynamic engine-face distortion. Advanced tactical aircraft are likely to use thrust vectoring for enhanced aircraft maneuverability. As a result, the engines will see more extreme distortion levels than currently encountered with present-day aircraft. Also, the mixed-compression inlets needed for the High-Speed Civil Transport (HSCT) will likely encounter disturbances similar to those seen by tactical aircraft, in addition to planar pulse, inlet buzz, and high distortion levels at low flight speed and off-design operation. The current approach of incorporating sufficient component design stall margin to tolerate these expected levels of distortion would result in significant performance penalties. The objectives of NASA's High Stability Engine Control (HISTEC) program, which has reached a highly successful conclusion, were to design, develop, and flight demonstrate an advanced, high-stability, integrated engine control system that uses measurement-based real-time estimates of distortion to enhance engine stability. The resulting distortion tolerant control adjusts the stall margin requirement online in real time. This reduces the design stall margin requirement, with a corresponding increase in performance and decrease in fuel burn.
    Keywords: Aircraft Propulsion and Power
    Type: Research and Technology 1998; NASA/TM-1999-208815
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2018-06-08
    Description: We present ground-based images of the z=1.824 radio galaxy 3C 256 in the standard BVRIJHK filters and an interference filter centered at 8800 A, a Hubble Space Telescope image in a filter dominated by Ly alpha emission (F336W), and spectra covering rest-frame wavelengths from Ly alpha to [O III} lambda 5007.
    Keywords: Astrophysics
    Type: Astrophysical Journal
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2018-06-08
    Description: New data are presented and analyzed, and are combined with the results from the earlier sample to address the properties of this class of circumstellar disk.
    Keywords: Astrophysics
    Type: Astrophysical Journal
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2018-06-08
    Keywords: Astrophysics
    Type: The Solar System and Circumstellar Disks Prospects for SIRTF; Dana Point, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2018-06-08
    Keywords: Astrophysics
    Type: The Astrophysical Journal
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2018-06-08
    Description: Absolute measurements have been made of single electron charge exchange cross sections of H(sup +), He(sup +) and He(sup 2+) in H(sub 2)O and CO(sub 2) in the energy range 0.3 - 7.5 keV/amu.
    Keywords: Astrophysics
    Type: Astrophysical Journal
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2018-06-08
    Description: We use Python I, II, and III cosmic microwave background anisotropy data to constrain cosmogonies.
    Keywords: Astrophysics
    Type: Astrophysical Journal
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2018-06-08
    Description: We have carried out K-band speckle observations of a sample of 114 X-ray selected weak-line T Tauri stars in the nearby Scorpius-Centaurus OB association.
    Keywords: Astrophysics
    Type: Astrophysical Journal
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-08
    Keywords: Astrophysics
    Type: International Space Science Institute, The Astrophysics of Cosmic Rays; Bern; Switzerland
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2018-06-08
    Description: We present color-magnitude diagrams and luminosity functions or stars in two halo regions of the irregular galaxy in M82, based on F555W and F814W photometry taken with the Hubble Space Telescope and Wide Field Planetary Camera 2.
    Keywords: Astrophysics
    Type: Astrophysical Journal
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2018-06-08
    Description: A causality connection between molecular outflows and the optical proto-stellar jets is becoming stronger as the number of objects with a consistent set of radio, IR and optical observations has grown.
    Keywords: Astrophysics
    Type: Astrophysical Journal
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2018-06-08
    Keywords: Astrophysics
    Type: 35th Liege International Astrophysic Meeting; Munich; Germany
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2018-06-08
    Description: Nonlinear evolution equation for Alfven waves, propagating in streaming plasmas with nonuniform densities and inhomogeneous magnetic fields, is obtained by using the reductive perturbation technique.
    Keywords: Astrophysics
    Type: Astrophysical Journal
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2018-06-08
    Keywords: Astrophysics
    Type: Astrophysical Journal
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2018-06-08
    Description: The CO morphology shows two molecular gas components associated with the stellar nuclei of the progenitors, consistent with the idea that the molecular disks are gravitationally bound by the dense bulges of the progenitor galaxies as the interaction proceeds.
    Keywords: Astrophysics
    Type: Astrophysical Journal Letters
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2018-06-08
    Description: Our goal is to test predictions of models attributing the IEFs to polycyclic aromatic hydrocarbons (PAHs). Interstellar models predict PAHs change from singly ionized to neutral as the UV intensity, Go, decreases.
    Keywords: Astrophysics
    Type: Astrophysical Journal
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2018-06-08
    Description: The physical properties of the grains, as evidenced by their infrared emission, correlated with the morphology.
    Keywords: Astrophysics
    Type: Astrophysical Journal
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2018-06-08
    Description: In the experimental approach, use is made of the electron energy-loss method with merged electron and ion beams.
    Keywords: Astrophysics
    Type: The Astrophysical Journal
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2018-06-08
    Description: Herein we report the determination of the 12 Boo visual orbit from near-infrared, long-baseline interferometric measurements taken with the Palomar Testbed Interferometer (PTI). We further add photometric and spectroscopic measurements in an attempt to understand the fundamental stellar parameters and evolution of the 12 Boo components.
    Keywords: Astrophysics
    Type: Astrophysical Journal
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2018-06-08
    Description: Experimental and theoretical collisional excitation cross sections are reported for the 3s square 3p- 3s3p cube 5S to the zero spin-forbidden transition in S square+.
    Keywords: Astrophysics
    Type: The Astrophysical Journal
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2018-06-08
    Description: We show that cosmic rays air showers resulting from primaries with energies above 10(sup 19) eV should be straightforward to detect with radar ranging techniques, where the radar echoes are produced by scattering from the column of ionized air produced by the shower.
    Keywords: Astrophysics
    Type: Astroparticle Physics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-08
    Description: In the terrestrial atmosphere clouds are familiar as vast collections of small water drops or ice cyrstals suspended in the air. The study of clouds touches on many facets of armospheric science. The chemistry of clouds is tied to the chemistry of the surrounding atmosphere.
    Keywords: Astrophysics
    Type: Encyclopedia of Astronomy and Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2018-06-08
    Description: The evolution and appearance of protostellar disks can be significantly altered by their UV environment. We follow the evolution after the external UV radiation source has been turned on.
    Keywords: Astrophysics
    Type: Astrophysical Journal
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2018-06-08
    Description: We present the results of X-ray observations of GX301-2 with instruments aboard the ASCA and RXTE spacecraft, as well as analysis of archival data from BATSE/CGRO and the All-Sky Monitor on RXTE.
    Keywords: Astrophysics
    Type: Astrophysical Journal
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2018-06-08
    Description: We present here new multiwavelength observations with 1.5 and 4x the spatial resolution of previous ground-based observations at optical and near-infrared wavelengths; despite being ground-based, they allow us to isolate interesting features such as the star-forming knots detected in the warm ULIG sample.
    Keywords: Astrophysics
    Type: The Astrophysical Journal
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2018-06-08
    Description: We report results from a Hubble Space Telescope (HST) and Near-Infrared Camera and Multiobject Spectrometer (NICMOS) program to study the distribution of hot neutral (molecular hydrogen) and ionized circumstellar material in the young planetary nebulae NGC 7027.
    Keywords: Astrophysics
    Type: Astrophysical Journal
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2018-06-08
    Description: Most planetary nebulae (PN) show significant departures from sperical symmetry, whereas the circumstellar envelopes (CSEs) of their progenitor AGB stars appear spherically symmetric.
    Keywords: Astrophysics
    Type: Astrophysical Journal
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2018-06-08
    Description: In order to facilitate further studies of water in the interstellar medium , the envelopes of late type stars, jets, and shocked regions, the frequencies of 17 newly measured H(sub 2) (sup 16)O translations between 0.841 and 1.575 THz are reported.
    Keywords: Astrophysics
    Type: Astrophysical Journal
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2018-06-08
    Description: We have used the James Clerk Maxwell Telescope (JCMT) in Hawaii to search at submillimeter wavelengths for continuum emission from dust, and spectral line emission from carbon monoxide (CO) gas, in the neighborhood of HR 4796A.
    Keywords: Astrophysics
    Type: ICARUS
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2018-06-08
    Keywords: Astrophysics
    Type: Black Holes in Binaries and Galactic Nuclei; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-07-27
    Description: Robust system design is the best protection against meteoroid damage. Impacts by small meteoroids are common on satellite surfaces, but impacts by meteoroids large enough to damage well designed systems are very rare. Estimating the threat from the normal meteoroid environment is difficult. Estimates for the occasional "storm" are even more uncertain. Common sense precautions are in order for the 1999 Leonids, but wide-spread catastrophic damage is highly unlikely. Strong Leonid showers are also expected in 2000 and 2001, but these pose much less threat than 1999.
    Keywords: Astrophysics
    Type: VISTA User''s Conference; 18-21 Aprl. 1999; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-07-18
    Description: The interstellar medium of galaxies is the reservoir out of which stars are born and into which stars inject newly created elements as they age. The physical properties of the interstellar medium are governed in part by the radiation emitted by these stars. Far-ultraviolet (6 eV less than h(nu) less than 13.6 eV) photons from massive stars dominate the heating and influence the chemistry of the neutral atomic gas and much of the molecular gas in galaxies. Predominantly neutral regions of the interstellar medium in which the heating and chemistry are regulated by far ultraviolet photons are termed Photo-Dissociation Regions (PDRs). These regions are the origin of most of the non-stellar infrared (IR) and the millimeter and submillimeter CO emission from galaxies. The importance of PDRs has become increasingly apparent with advances in IR and submillimeter astronomy. The IR emission from PDRs includes fine structure lines of C, C+, and O; rovibrational lines of H2, rotational lines of CO; broad middle features of polycyclic aromatic hydrocarbons; and a luminous underlying IR continuum from interstellar dust. The transition of H to H2 and C+ to CO occurs within PDRs. Comparison of observations with theoretical models of PDRs enables one to determine the density and temperature structure, the elemental abundances, the level of ionization, and the radiation field. PDR models have been applied to interstellar clouds near massive stars, planetary nebulae, red giant outflows, photoevaporating planetary disks around newly formed stars, diffuse clouds, the neutral intercloud medium, and molecular clouds in the interstellar radiation field-in summary, much of the interstellar medium in galaxies. Theoretical PDR models explain the observed correlations of the [CII] 158 microns with the COJ = 1-0 emission, the COJ = 1-0 luminosity with the interstellar molecular mass, and the [CII] 158 microns plus [OI] 63 microns luminosity with the IR continuum luminosity. On a more global scale, MR models predict the existence of two stable neutral phases of the interstellar medium, elucidate the formation and destruction of star-forming molecular clouds, and suggest radiation-induced feedback mechanisms that may regulate star formation rates and the column density of gas through giant molecular clouds.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-07-18
    Description: An overview of current theories of star and planet formation is presented. These models are based upon observations of the Solar System and of young stars and their environments. They predict that rocky planets should form around most single stars, although it is possible that in some cases such planets are lost to orbital decay within the protoplanetary disk. The frequency of formation of gas giant planets is more difficult to predict theoretically. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth like terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. Specific issues to be discussed include: (1) how large a solid core is needed to initiate rapid accumulation of gas? (2) can giant planets form very close to stars? (3) could a giant impact leading to lunar formation have occurred approximately 100 million years after the condensation of the oldest meteorites?
    Keywords: Astrophysics
    Type: Colloquium at NYU and 1st talk at Dark Matter in the Solar System Conference; May 05, 1999 - May 27, 1999; Paris; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...