ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Journals
  • Articles  (242)
  • Nitrogen
  • Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition  (211)
  • Computer Science  (31)
Collection
  • Journals
  • Articles  (242)
Topic
  • 1
    Publication Date: 2015-04-18
    Description: Human-driven environmental changes may simultaneously affect the biodiversity, productivity, and stability of Earth's ecosystems, but there is no consensus on the causal relationships linking these variables. Data from 12 multiyear experiments that manipulate important anthropogenic drivers, including plant diversity, nitrogen, carbon dioxide, fire, herbivory, and water, show that each driver influences ecosystem productivity. However, the stability of ecosystem productivity is only changed by those drivers that alter biodiversity, with a given decrease in plant species numbers leading to a quantitatively similar decrease in ecosystem stability regardless of which driver caused the biodiversity loss. These results suggest that changes in biodiversity caused by drivers of environmental change may be a major factor determining how global environmental changes affect ecosystem stability.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hautier, Yann -- Tilman, David -- Isbell, Forest -- Seabloom, Eric W -- Borer, Elizabeth T -- Reich, Peter B -- New York, N.Y. -- Science. 2015 Apr 17;348(6232):336-40. doi: 10.1126/science.aaa1788.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK. Department of Ecology, Evolution and Behavior, University of Minnesota Twin Cities, Saint Paul, MN 55108, USA. Ecology and Biodiversity Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands. yann.hautier@plants.ox.ac.uk. ; Department of Ecology, Evolution and Behavior, University of Minnesota Twin Cities, Saint Paul, MN 55108, USA. Bren School of the Environment, University of California, Santa Barbara, CA 93106, USA. ; Department of Ecology, Evolution and Behavior, University of Minnesota Twin Cities, Saint Paul, MN 55108, USA. ; Department of Forest Resources, University of Minnesota, Saint Paul, MN 55108, USA. Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, NSW 2753, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25883357" target="_blank"〉PubMed〈/a〉
    Keywords: *Biodiversity ; Carbon Dioxide ; Fires ; Herbivory ; *Human Activities ; Humans ; Nitrogen ; *Plants ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-05-09
    Description: Human security has and will continue to rely on Earth's diverse soil resources. Yet we have now exploited the planet's most productive soils. Soil erosion greatly exceeds rates of production in many agricultural regions. Nitrogen produced by fossil fuel and geological reservoirs of other fertilizers are headed toward possible scarcity, increased cost, and/or geopolitical conflict. Climate change is accelerating the microbial release of greenhouse gases from soil organic matter and will likely play a large role in our near-term climate future. In this Review, we highlight challenges facing Earth's soil resources in the coming century. The direct and indirect response of soils to past and future human activities will play a major role in human prosperity and survival.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Amundson, Ronald -- Berhe, Asmeret Asefaw -- Hopmans, Jan W -- Olson, Carolyn -- Sztein, A Ester -- Sparks, Donald L -- New York, N.Y. -- Science. 2015 May 8;348(6235):1261071. doi: 10.1126/science.1261071. Epub 2015 May 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720, USA. earthy@berkeley.edu. ; Life and Environmental Sciences Unit, University of California, Merced, CA 95343, USA. ; Land, Air, and Water Resources, One Shields Avenue, Davis, CA 95616, USA. ; Climate Change Program Office, Office of the Chief Economist, U.S. Department of Agriculture (USDA), 14th and Independence SW, Washington, DC 20013, USA. ; Board on International Scientific Organizations, National Academy of Sciences, 500 Fifth Street NW, Washington, DC 20001, USA. ; Plant and Soil Science, Chemistry and Biochemistry, Civil and Environmental Engineering, and Marine Science and Policy, University of Delaware, Newark, DE 19716, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25954014" target="_blank"〉PubMed〈/a〉
    Keywords: Agriculture/trends ; Climate Change ; *Conservation of Natural Resources ; Fertilizers ; Food Supply ; Fossil Fuels ; Humans ; Nitrogen ; *Soil ; *Survival
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-04-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Austin, A T -- Bustamante, M M C -- Nardoto, G B -- Mitre, S K -- Perez, T -- Ometto, J P H B -- Ascarrunz, N L -- Forti, M C -- Longo, K -- Gavito, M E -- Enrich-Prast, A -- Martinelli, L A -- New York, N.Y. -- Science. 2013 Apr 12;340(6129):149. doi: 10.1126/science.1231679.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Universidad de Buenos Aires, IFEVA-CONICET, Buenos Aires, Argentina.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23580515" target="_blank"〉PubMed〈/a〉
    Keywords: Agriculture ; Biomass ; *Conservation of Natural Resources ; *Ecosystem ; *Environment ; Human Activities ; Humans ; Latin America ; Nitrogen ; *Nitrogen Cycle ; Politics ; Public Health ; Public Policy
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-05-05
    Description: Plant diversity generally promotes biomass production, but how the shape of the response curve changes with time remains unclear. This is a critical knowledge gap because the shape of this relationship indicates the extent to which loss of the first few species will influence biomass production. Using two long-term (〉/=13 years) biodiversity experiments, we show that the effects of diversity on biomass productivity increased and became less saturating over time. Our analyses suggest that effects of diversity-dependent ecosystem feedbacks and interspecific complementarity accumulate over time, causing high-diversity species combinations that appeared functionally redundant during early years to become more functionally unique through time. Consequently, simplification of diverse ecosystems will likely have greater negative impacts on ecosystem functioning than has been suggested by short-term experiments.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reich, Peter B -- Tilman, David -- Isbell, Forest -- Mueller, Kevin -- Hobbie, Sarah E -- Flynn, Dan F B -- Eisenhauer, Nico -- New York, N.Y. -- Science. 2012 May 4;336(6081):589-92. doi: 10.1126/science.1217909.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Forest Resources, University of Minnesota, St. Paul, MN 55108, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22556253" target="_blank"〉PubMed〈/a〉
    Keywords: *Biodiversity ; Biomass ; *Ecosystem ; Fabaceae/growth & development ; Minnesota ; Nitrogen ; Nitrogen Cycle ; Plant Development ; *Plants ; *Poaceae/growth & development ; Soil/chemistry ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-10-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brookes, Justin D -- Carey, Cayelan C -- New York, N.Y. -- Science. 2011 Oct 7;334(6052):46-7. doi: 10.1126/science.1207349.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Earth and Environmental Science, University of Adelaide, Adelaide 5005, Australia. justin.brookes@adelaide.edu.au〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21980099" target="_blank"〉PubMed〈/a〉
    Keywords: Biomass ; Climate Change ; Cyanobacteria/*growth & development ; *Ecosystem ; *Eutrophication ; Fresh Water/*microbiology ; Nitrogen ; Phosphorus ; Phytoplankton/growth & development ; Temperature ; *Water Microbiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-03-20
    Description: The Cassini spacecraft has been in orbit around Saturn since 30 June 2004, yielding a wealth of data about the Saturn system. This review focuses on the atmosphere and magnetosphere and briefly outlines the state of our knowledge after the Cassini prime mission. The mission has addressed a host of fundamental questions: What processes control the physics, chemistry, and dynamics of the atmosphere? Where does the magnetospheric plasma come from? What are the physical processes coupling the ionosphere and magnetosphere? And, what are the rotation rates of Saturn's atmosphere and magnetosphere?〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gombosi, Tamas I -- Ingersoll, Andrew P -- New York, N.Y. -- Science. 2010 Mar 19;327(5972):1476-9. doi: 10.1126/science.1179119.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, MI 48109, USA. tamas@umich.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20299587" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere ; Hydrocarbons ; Light ; Magnetics ; Nitrogen ; Oxygen ; Protons ; *Saturn ; Spacecraft ; Temperature ; Tritium ; Wind
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2010-02-13
    Description: Soil acidification is a major problem in soils of intensive Chinese agricultural systems. We used two nationwide surveys, paired comparisons in numerous individual sites, and several long-term monitoring-field data sets to evaluate changes in soil acidity. Soil pH declined significantly (P 〈 0.001) from the 1980s to the 2000s in the major Chinese crop-production areas. Processes related to nitrogen cycling released 20 to 221 kilomoles of hydrogen ion (H+) per hectare per year, and base cations uptake contributed a further 15 to 20 kilomoles of H+ per hectare per year to soil acidification in four widespread cropping systems. In comparison, acid deposition (0.4 to 2.0 kilomoles of H+ per hectare per year) made a small contribution to the acidification of agricultural soils across China.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guo, J H -- Liu, X J -- Zhang, Y -- Shen, J L -- Han, W X -- Zhang, W F -- Christie, P -- Goulding, K W T -- Vitousek, P M -- Zhang, F S -- New York, N.Y. -- Science. 2010 Feb 19;327(5968):1008-10. doi: 10.1126/science.1182570. Epub 2010 Feb 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20150447" target="_blank"〉PubMed〈/a〉
    Keywords: *Agriculture ; Cations ; China ; Crops, Agricultural/*growth & development/metabolism ; Fertilizers ; Hydrogen-Ion Concentration ; Nitrogen ; *Soil ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2009-06-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vitousek, P M -- Naylor, R -- Crews, T -- David, M B -- Drinkwater, L E -- Holland, E -- Johnes, P J -- Katzenberger, J -- Martinelli, L A -- Matson, P A -- Nziguheba, G -- Ojima, D -- Palm, C A -- Robertson, G P -- Sanchez, P A -- Townsend, A R -- Zhang, F S -- New York, N.Y. -- Science. 2009 Jun 19;324(5934):1519-20. doi: 10.1126/science.1170261.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Stanford University, Stanford, CA 94305, USA. vitousek@stanford.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19541981" target="_blank"〉PubMed〈/a〉
    Keywords: *Agriculture/methods ; China ; Environmental Pollution ; Fertilizers ; Kenya ; Nitrogen ; Phosphorus ; *Soil ; United States ; *Zea mays/growth & development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2009-11-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Deluca, Thomas H -- New York, N.Y. -- Science. 2009 Oct 30;326(5953):665; author reply 665-6. doi: 10.1126/science.326_665a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19900917" target="_blank"〉PubMed〈/a〉
    Keywords: Agriculture ; China ; Humans ; Kenya ; Nitrogen ; *Soil ; United States ; *Waste Products
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-06-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kieffer, Susan W -- Jakosky, Bruce M -- New York, N.Y. -- Science. 2008 Jun 13;320(5882):1432-3. doi: 10.1126/science.1159702.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Geology, University of Illinois, Urbana, IL 61802, USA. skieffer@uiuc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18556539" target="_blank"〉PubMed〈/a〉
    Keywords: Carbon ; Elements ; *Exobiology ; Extraterrestrial Environment ; Hydrogen ; Ice ; *Life ; Nitrogen ; Oxygen ; *Saturn ; *Solar System ; Temperature ; *Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-11-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kintisch, Eli -- New York, N.Y. -- Science. 2008 Nov 7;322(5903):835. doi: 10.1126/science.322.5903.835.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18988814" target="_blank"〉PubMed〈/a〉
    Keywords: Ecosystem ; *Eutrophication ; *Greenhouse Effect ; International Cooperation ; Iron ; Nitrogen ; Oceans and Seas ; Plankton/*growth & development ; *Research ; *Seawater
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2006-06-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Muller-Wodarg, Ingo C F -- New York, N.Y. -- Science. 2006 Jun 2;312(5778):1319-20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Space and Atmospheric Physics Group, Imperial College London, London SW7 2BW, UK. i.mueller-wodarg@imperial.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16741101" target="_blank"〉PubMed〈/a〉
    Keywords: *Atmosphere ; Carbon Dioxide ; Earth (Planet) ; Environment ; *Extraterrestrial Environment ; Mars ; Nitrogen ; Oxygen ; *Solar System
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2006-12-16
    Description: We hypothesize that active tectonic processes in the south polar terrain of Enceladus, the 500-kilometer-diameter moon of Saturn, are creating fractures that cause degassing of a clathrate reservoir to produce the plume documented by the instruments on the Cassini spacecraft. Advection of gas and ice transports energy, supplied at depth as latent heat of clathrate decomposition, to shallower levels, where it reappears as latent heat of condensation of ice. The plume itself, which has a discharge rate comparable to Old Faithful Geyser in Yellowstone National Park, probably represents small leaks from this massive advective system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kieffer, Susan W -- Lu, Xinli -- Bethke, Craig M -- Spencer, John R -- Marshak, Stephen -- Navrotsky, Alexandra -- New York, N.Y. -- Science. 2006 Dec 15;314(5806):1764-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Geology, University of Illinois at Urbana-Champaign, 1301 West Green Street, Urbana, IL 61801, USA. skieffer@uiuc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17170301" target="_blank"〉PubMed〈/a〉
    Keywords: Carbon Dioxide ; Extraterrestrial Environment ; Gases ; *Ice ; Mathematics ; Methane ; Models, Theoretical ; Nitrogen ; Pressure ; *Saturn ; Spacecraft ; Temperature ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2006-07-01
    Description: Model projections suggest that although increased temperature and decreased soil moisture will act to reduce global crop yields by 2050, the direct fertilization effect of rising carbon dioxide concentration ([CO2]) will offset these losses. The CO2 fertilization factors used in models to project future yields were derived from enclosure studies conducted approximately 20 years ago. Free-air concentration enrichment (FACE) technology has now facilitated large-scale trials of the major grain crops at elevated [CO2] under fully open-air field conditions. In those trials, elevated [CO2] enhanced yield by approximately 50% less than in enclosure studies. This casts serious doubt on projections that rising [CO2] will fully offset losses due to climate change.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Long, Stephen P -- Ainsworth, Elizabeth A -- Leakey, Andrew D B -- Nosberger, Josef -- Ort, Donald R -- New York, N.Y. -- Science. 2006 Jun 30;312(5782):1918-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Biology, University of Illinois at Urbana Champaign, 1201 West Gregory Drive, Urbana, IL 61801, USA. stevel@life.uiuc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16809532" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere ; Biomass ; *Carbon Dioxide ; Crops, Agricultural/*growth & development/metabolism ; Fertilizers ; Forecasting ; Meta-Analysis as Topic ; Nitrogen ; Ozone ; Photosynthesis ; Poaceae/growth & development/metabolism ; Sorghum/growth & development/metabolism ; Soybeans/growth & development/metabolism ; Temperature ; Triticum/growth & development/metabolism ; Water ; Zea mays/growth & development/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2005-02-26
    Description: Since the Cassini spacecraft reached Saturn's orbit in 2004, its instruments have been sending back a wealth of data on the planet's magnetosphere (the region dominated by the magnetic field of the planet). In this Viewpoint, we discuss some of these results, which are reported in a collection of reports in this issue. The magnetosphere is shown to be highly variable and influenced by the planet's rotation, sources of plasma within the planetary system, and the solar wind. New insights are also gained into the chemical composition of the magnetosphere, with surprising results. These early results from Cassini's first orbit around Saturn bode well for the future as the spacecraft continues to orbit the planet.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gombosi, Tamas I -- Hansen, Kenneth C -- New York, N.Y. -- Science. 2005 Feb 25;307(5713):1224-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Space Environment Modeling, Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI 48109, USA. tamas@umich.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15731438" target="_blank"〉PubMed〈/a〉
    Keywords: Extraterrestrial Environment ; Hydrogen ; Ions ; *Magnetics ; Nitrogen ; *Saturn ; Spacecraft ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2005-03-05
    Description: The role of diatoms as key food for copepods at the base of pelagic food chains has been questioned recently on the grounds of toxicity. We show, using unialgal versus mixed algal diets of different nutritional status (i.e., nitrogen:carbon ratio) fed to Acartia tonsa, that diatoms per se are not toxic but that single-diatom diets are inadequate. Additionally, the nutritional state of the phytoplankton has a profound effect on copepod growth and growth efficiency. The ecological significance of laboratory demonstrations of diatom toxicity needs to be reconsidered.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jones, Ruth H -- Flynn, Kevin J -- New York, N.Y. -- Science. 2005 Mar 4;307(5714):1457-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Environmental Sustainability, University of Wales, Swansea, SA2 8PP, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15746424" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Carbon ; Copepoda/growth & development/*physiology ; *Diatoms ; Diet ; Feeding Behavior ; *Food Chain ; Nitrogen ; Phytoplankton
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2005-05-14
    Description: The Cassini Orbiter spacecraft first skimmed through the tenuous upper atmosphere of Titan on 26 October 2004. This moon of Saturn is unique in our solar system, with a dense nitrogen atmosphere that is cold enough in places to rain methane, the feedstock for the atmospheric chemistry that produces hydrocarbons, nitrile compounds, and Titan's orange haze. The data returned from this flyby supply new information on the magnetic field and plasma environment around Titan, expose new facets of the dynamics and chemistry of Titan's atmosphere, and provide the first glimpses of what appears to be a complex, fluid-processed, geologically young Titan surface.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mahaffy, Paul R -- New York, N.Y. -- Science. 2005 May 13;308(5724):969-70.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Solar System Exploration Division, NASA, Goddard Space Flight Center, Greenbelt, MD 20771, USA. paul.r.mahaffy@nasa.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15890870" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere ; Evolution, Planetary ; Extraterrestrial Environment ; Hydrocarbons ; Hydrogen Cyanide ; Methane ; Nitriles ; Nitrogen ; *Saturn ; Space Flight ; *Spacecraft ; Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2005-02-01
    Description: We detected light emissions in the nightside martian atmosphere with the SPICAM (spectroscopy for the investigation of the characteristics of the atmosphere of Mars) ultraviolet (UV) spectrometer on board the Mars Express. The UV spectrum of this nightglow is composed of hydrogen Lyman alpha emission (121.6 nanometers) and the gamma and delta bands of nitric oxide (NO) (190 to 270 nanometers) produced when N and O atoms combine to produce the NO molecule. N and O atoms are produced by extreme UV photodissociation of O2, CO2, and N2 in the dayside upper atmosphere and transported to the night side. The NO emission is brightest in the winter south polar night because of continuous downward transport of air in this region at night during winter and because of freezing at ground level.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bertaux, Jean-Loup -- Leblanc, Francois -- Perrier, Severine -- Quemerais, E -- Korablev, Oleg -- Dimarellis, E -- Reberac, A -- Forget, F -- Simon, P C -- Stern, S A -- Sandel, Bill -- SPICAM Team -- New York, N.Y. -- Science. 2005 Jan 28;307(5709):566-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Service d'Aeronomie du CNRS/Institut Pierre-Simon Laplace (IPSL), BP.3, 91371, Verrieres-le-Buisson, France. bertaux@aerov.jussieu.fr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15681381" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere ; Carbon Dioxide ; Extraterrestrial Environment ; Hydrogen ; *Mars ; *Nitric Oxide ; Nitrogen ; Oxygen ; Seasons ; Spacecraft ; Spectrophotometry, Ultraviolet ; Temperature ; Ultraviolet Rays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2005-02-26
    Description: The Magnetospheric Imaging Instrument (MIMI) onboard the Cassini spacecraft observed the saturnian magnetosphere from January 2004 until Saturn orbit insertion (SOI) on 1 July 2004. The MIMI sensors observed frequent energetic particle activity in interplanetary space for several months before SOI. When the imaging sensor was switched to its energetic neutral atom (ENA) operating mode on 20 February 2004, at approximately 10(3) times Saturn's radius RS (0.43 astronomical units), a weak but persistent signal was observed from the magnetosphere. About 10 days before SOI, the magnetosphere exhibited a day-night asymmetry that varied with an approximately 11-hour periodicity. Once Cassini entered the magnetosphere, in situ measurements showed high concentrations of H+, H2+, O+, OH+, and H2O+ and low concentrations of N+. The radial dependence of ion intensity profiles implies neutral gas densities sufficient to produce high loss rates of trapped ions from the middle and inner magnetosphere. ENA imaging has revealed a radiation belt that resides inward of the D ring and is probably the result of double charge exchange between the main radiation belt and the upper layers of Saturn's exosphere.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Krimigis, S M -- Mitchell, D G -- Hamilton, D C -- Krupp, N -- Livi, S -- Roelof, E C -- Dandouras, J -- Armstrong, T P -- Mauk, B H -- Paranicas, C -- Brandt, P C -- Bolton, S -- Cheng, A F -- Choo, T -- Gloeckler, G -- Hayes, J -- Hsieh, K C -- Ip, W-H -- Jaskulek, S -- Keath, E P -- Kirsch, E -- Kusterer, M -- Lagg, A -- Lanzerotti, L J -- Lavallee, D -- Manweiler, J -- McEntire, R W -- Rasmuss, W -- Saur, J -- Turner, F S -- Williams, D J -- Woch, J -- New York, N.Y. -- Science. 2005 Feb 25;307(5713):1270-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Applied Physics Laboratory, Johns Hopkins University, Laurel, MD 20723, USA. tom.krimigis@jhuapl.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15731445" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere ; Extraterrestrial Environment ; *Gases ; Hydrogen ; *Ions ; *Magnetics ; Nitrogen ; Oxygen ; *Saturn ; Spacecraft ; Spectrum Analysis ; *Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2005-02-26
    Description: During Cassini's approach to Saturn, the Cosmic Dust Analyser (CDA) discovered streams of tiny (less than 20 nanometers) high-velocity (approximately 100 kilometers per second) dust particles escaping from the saturnian system. A fraction of these impactors originated from the outskirts of Saturn's dense A ring. The CDA time-of-flight mass spectrometer recorded 584 mass spectra from the stream particles. The particles consist predominantly of oxygen, silicon, and iron, with some evidence of water ice, ammonium, and perhaps carbon. The stream particles primarily consist of silicate materials, and this implies that the particles are impurities from the icy ring material rather than the ice particles themselves.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kempf, Sascha -- Srama, Ralf -- Postberg, Frank -- Burton, Marcia -- Green, Simon F -- Helfert, Stefan -- Hillier, Jon K -- McBride, Neil -- McDonnell, J Anthony M -- Moragas-Klostermeyer, Georg -- Roy, Mou -- Grun, Eberhard -- New York, N.Y. -- Science. 2005 Feb 25;307(5713):1274-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max-Planck-Institut fur Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany. Sascha.Kempf@mpi-hd.mpg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15731446" target="_blank"〉PubMed〈/a〉
    Keywords: Carbon ; Extraterrestrial Environment ; Hydrogen ; Ice ; Iron ; Mass Spectrometry ; Nitrogen ; Oxygen ; Quaternary Ammonium Compounds ; *Saturn ; Silicon ; Spacecraft
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2005-08-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, Elizabeth -- New York, N.Y. -- Science. 2005 Aug 12;309(5737):1006-8.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16099961" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arctic Regions ; Budgets ; *Climate ; *Cold Climate ; *Ecosystem ; Fertilizers ; *Fresh Water ; Greenhouse Effect ; Nitrogen ; Phosphorus ; Plant Development ; Research Support as Topic ; Seasons ; Soil/analysis ; Trees/growth & development ; United States ; United States Government Agencies
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2005-05-14
    Description: The Cassini Ion Neutral Mass Spectrometer (INMS) has obtained the first in situ composition measurements of the neutral densities of molecular nitrogen, methane, molecular hydrogen, argon, and a host of stable carbon-nitrile compounds in Titan's upper atmosphere. INMS in situ mass spectrometry has also provided evidence for atmospheric waves in the upper atmosphere and the first direct measurements of isotopes of nitrogen, carbon, and argon, which reveal interesting clues about the evolution of the atmosphere. The bulk composition and thermal structure of the moon's upper atmosphere do not appear to have changed considerably since the Voyager 1 flyby.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Waite, J Hunter Jr -- Niemann, Hasso -- Yelle, Roger V -- Kasprzak, Wayne T -- Cravens, Thomas E -- Luhmann, Janet G -- McNutt, Ralph L -- Ip, Wing-Huen -- Gell, David -- De La Haye, Virginie -- Muller-Wordag, Ingo -- Magee, Brian -- Borggren, Nathan -- Ledvina, Steve -- Fletcher, Greg -- Walter, Erin -- Miller, Ryan -- Scherer, Stefan -- Thorpe, Rob -- Xu, Jing -- Block, Bruce -- Arnett, Ken -- New York, N.Y. -- Science. 2005 May 13;308(5724):982-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, MI 48109-2143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15890873" target="_blank"〉PubMed〈/a〉
    Keywords: Argon ; Atmosphere ; Carbon Isotopes ; *Elements ; Evolution, Planetary ; Extraterrestrial Environment ; *Hydrocarbons ; Hydrogen ; Isotopes ; Mass Spectrometry ; Methane ; Nitriles ; Nitrogen ; Nitrogen Isotopes ; *Saturn ; Spacecraft ; Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2003-03-22
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mitchell, Charles E -- Reich, Peter B -- New York, N.Y. -- Science. 2003 Mar 21;299(5614):1844-5; author reply 1844-5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12649464" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere ; Biomass ; California ; *Carbon Dioxide ; Climate ; *Ecosystem ; Fungi/pathogenicity ; Nitrogen ; *Plant Diseases ; Plant Roots/growth & development ; Poaceae/*growth & development/*microbiology ; Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-03-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sanchez, Pedro A -- New York, N.Y. -- Science. 2002 Mar 15;295(5562):2019-20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉International Center for Research in Agroforestry, Post Office Box 30677, Nairobi, Kenya. P.sanchez@cgiar.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11896257" target="_blank"〉PubMed〈/a〉
    Keywords: Africa South of the Sahara ; Agriculture/*methods ; Biomass ; Crops, Agricultural/*growth & development ; *Ecosystem ; Fertilizers ; *Food Supply ; Forestry ; Humans ; Hunger ; Nitrogen ; Nitrogen Fixation ; Phosphates ; Plant Development ; Public Policy ; *Soil ; Trees/growth & development ; United Nations ; Zea mays/growth & development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-05-31
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Snyder, C S -- New York, N.Y. -- Science. 2001 May 25;292(5521):1485-6.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11379622" target="_blank"〉PubMed〈/a〉
    Keywords: *Agriculture ; Conservation of Natural Resources ; *Fertilizers ; Nitrogen ; *Oxygen ; United States ; *Water Pollutants, Chemical
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-03-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ferber, D -- New York, N.Y. -- Science. 2001 Feb 9;291(5506):968-73.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11232575" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Conservation of Natural Resources ; *Ecosystem ; Eutrophication ; *Fertilizers ; Nitrogen ; *Oxygen ; Phytoplankton/physiology ; United States ; *Water Pollutants, Chemical ; Zooplankton/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2001-04-17
    Description: During the next 50 years, which is likely to be the final period of rapid agricultural expansion, demand for food by a wealthier and 50% larger global population will be a major driver of global environmental change. Should past dependences of the global environmental impacts of agriculture on human population and consumption continue, 10(9) hectares of natural ecosystems would be converted to agriculture by 2050. This would be accompanied by 2.4- to 2.7-fold increases in nitrogen- and phosphorus-driven eutrophication of terrestrial, freshwater, and near-shore marine ecosystems, and comparable increases in pesticide use. This eutrophication and habitat destruction would cause unprecedented ecosystem simplification, loss of ecosystem services, and species extinctions. Significant scientific advances and regulatory, technological, and policy changes are needed to control the environmental impacts of agricultural expansion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tilman, D -- Fargione, J -- Wolff, B -- D'Antonio, C -- Dobson, A -- Howarth, R -- Schindler, D -- Schlesinger, W H -- Simberloff, D -- Swackhamer, D -- New York, N.Y. -- Science. 2001 Apr 13;292(5515):281-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology, Evolution and Behavior, University of Minnesota, 1987 Upper Buford Circle, St. Paul, MN 55108, USA. tilman@lter.umn.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11303102" target="_blank"〉PubMed〈/a〉
    Keywords: *Agriculture ; *Ecosystem ; *Environment ; Eutrophication ; Fertilizers ; Forecasting ; Fresh Water ; Nitrogen ; Pesticides ; Phosphorus ; Regression Analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 31 (2000), S. 470-477 
    ISSN: 1432-0789
    Keywords: Key words Cover crop ; Nitrogen ; Corn ; Available N
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  This study was conducted to determine effects of long-term winter cover cropping with hairy vetch, cereal rye and annual ryegrass on soil N availability and corn productivity. From 1987 to 1995, with the exception of the first year of the study, the cover crops were seeded each year in late September or early October after the corn harvest and incorporated into the soil in late April or early May. Corn was seeded 10 days to 2 weeks after the cover crop residues had been incorporated, and N fertilizer was applied as a side-dressing at rates of 0, 67, 134, or 201 kg N ha–1 each year. While the average annual total N input from the above-ground biomass of the cover crops was highest for hairy vetch (72.4 kg N ha–1), the average annual total C input was highest for cereal rye (1043 kg C ha–1) compared with the other cover crops. Hairy vetch was the only cover crop that significantly increased pre-side-dressed NO3 –-N (Ni) corn biomass and N uptake at 0 N. At an N fertilizer rate of 134 kg N ha–1 or higher, the cover crops had a minimal effect on corn biomass. This indicated that even after 9 years of winter cover cropping, the effect of the cover crops on corn growth resulted primarily from their influence on soil N availability. The amount of available N estimated from the cover crops (Nac) was significantly correlated with relative corn biomass production (r 2=0.707, P〈0.001). The total amount of available N, comprising Nac and N added from fertilizer (Nf), was strongly correlated (r 2=0.820, P〈0.001)) with relative corn biomass production. The correlation was also high for the available N comprising Ni and Nf (r 2=0.775, P〈0.001). Although cereal rye and annual ryegrass did not improve corn biomass production in the short term, they benefited soil organic N accumulation and gradually improved corn biomass production compared with the control over the long term.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Electronic Resource
    Electronic Resource
    Springer
    Sciences of soils 5 (2000), S. 10-21 
    ISSN: 1432-9492
    Keywords: Soil temperature ; Triticum aestivum ; Stubble retention ; Nitrogen ; Early growth
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Early growth and development are often lower when wheat is sown into standing stubble. A study was conducted to determine whether this difference in early growth could be explained by the effects of stubble on soil temperature in the vicinity of the young plant. The roles of nitrogen nutrition and soil strength were also assessed. Three crops were monitored (1990–1992), with the wheat being sown into either standing wheat stubble after a no-till fallow (NT), or into no-tilled plots from which the stubble had been removed by burning (NB). Measurements were made of wheat growth and development, soil and plant N, soil temperature and penetration resistance. The site was on a black earth near Warialda in the northern wheatbelt of New South Wales, Australia. In 1992 wheat was also grown under simulated stubble to isolate the shading and soil temperature effects of stubble from other factors. A significant (P〈0.05) relationship was found between average soil temperature and above ground dry matter (DM) at 65 days after sowing (DAS) but not at 107 DAS. This relationship accounted for differences in DM production at 65 DAS between NT and NB treatments in 1991 and 1992, but not in 1990. In that year the lower DM production in NT plots was associated with poorer N nutrition, and possibly disease. Laboratory incubations indicate that immobilisation of N as stubble decomposed could have contributed to this. Burning stubble produced no immediate increase in soil N availability, so that it is unlikely that N contained in stubble contributed to the difference. Soil strength differences between treatments and phytotoxic effects are unlikely to have contributed to growth differences in this soil.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-03-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaiser, J -- New York, N.Y. -- Science. 2000 Mar 3;287(5458):1581.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10733421" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chlamydomonas reinhardtii/*metabolism ; Hydrogen/*metabolism ; Nitrogen ; Oxygen/metabolism ; Photosynthesis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2000-03-10
    Description: Scenarios of changes in biodiversity for the year 2100 can now be developed based on scenarios of changes in atmospheric carbon dioxide, climate, vegetation, and land use and the known sensitivity of biodiversity to these changes. This study identified a ranking of the importance of drivers of change, a ranking of the biomes with respect to expected changes, and the major sources of uncertainties. For terrestrial ecosystems, land-use change probably will have the largest effect, followed by climate change, nitrogen deposition, biotic exchange, and elevated carbon dioxide concentration. For freshwater ecosystems, biotic exchange is much more important. Mediterranean climate and grassland ecosystems likely will experience the greatest proportional change in biodiversity because of the substantial influence of all drivers of biodiversity change. Northern temperate ecosystems are estimated to experience the least biodiversity change because major land-use change has already occurred. Plausible changes in biodiversity in other biomes depend on interactions among the causes of biodiversity change. These interactions represent one of the largest uncertainties in projections of future biodiversity change.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sala, O E -- Chapin, F S 3rd -- Armesto, J J -- Berlow, E -- Bloomfield, J -- Dirzo, R -- Huber-Sanwald, E -- Huenneke, L F -- Jackson, R B -- Kinzig, A -- Leemans, R -- Lodge, D M -- Mooney, H A -- Oesterheld, M -- Poff, N L -- Sykes, M T -- Walker, B H -- Walker, M -- Wall, D H -- New York, N.Y. -- Science. 2000 Mar 10;287(5459):1770-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology and Instituto de Investigaciones Fisiologicas y Ecologicas vinculadas a la Agricultura, Faculty of Agronomy, University of Buenos Aires, Avenida San Martin 4453, Buenos Aires 1417, Argentina. sala@ifeva.edu.ar〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10710299" target="_blank"〉PubMed〈/a〉
    Keywords: Agriculture ; Animals ; Atmosphere ; Carbon Dioxide ; Climate ; *Ecosystem ; Fresh Water ; Models, Biological ; Nitrogen
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    ISSN: 1432-0789
    Keywords: Key words Grasslands ; Management ; Microbial biomass ; Bacteria ; Fungi ; Nitrogen
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  There is much interest in the development of agricultural land management strategies aimed at enhancing reliance on ecosystem self-regulation rather than on artificial inputs such as fertilisers and pesticides. This study tested the usefulness of measures of soil microbial biomass and fungal:bacterial biomass ratios as indicators of effective conversion from an intensive grassland system, reliant mainly on fertilisers for crop nutrition, to a low-input system reliant mainly on self-regulation through soil biological pathways of nutrient turnover. Analysis of soils from a wide range of meadow grassland sites in northern England, along a gradient of long-term management intensity, showed that fungal:bacterial biomass ratios (measured by phospholipid fatty acid analysis; PLFA) were consistently and significantly higher in the unfertilised than the fertilised grasslands. There was also some evidence that microbial biomass, measured by chloroform fumigation and total PLFA, was higher in the unfertilised than in the fertilised grasslands. It was also found that levels of inorganic nitrogen (N), in particular nitrate-N, were significantly higher in the fertilised than in the unfertilised grasslands. However, microbial activity, measured as basal respiration, did not differ between the sites. A field manipulation trial was conducted to determine whether the reinstatement of traditional management on an improved mesotrophic grassland, for 6 years, resulted in similar changes in the soil microbial community. It was found that neither the cessation of fertiliser applications nor changes in cutting and grazing management significantly affected soil microbial biomass or the fungal:bacterial biomass ratio. It is suggested that the lack of effects on the soil microbial community may be related to high residual fertility caused by retention of fertiliser N in the soil. On the basis of these results it is recommended that following the reinstatement of low-input management, the measurement of a significant increase in the soil fungal:bacterial biomass ratio, and perhaps total microbial biomass, may be an indicator of successful conversion to a grassland system reliant of self-regulation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 29 (1999), S. 430-433 
    ISSN: 1432-0789
    Keywords: Key words Carbon ; Nitrogen ; Microbial biomass ; Mineralization ; Respiration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  The effects of acetate additions to northern hardwood forest soils on microbial biomass carbon (C) and nitrogen (N) content, soil inorganic N levels, respirable C and potential net N mineralization and nitrification were evaluated. The experiment was relevant to a potential watershed-scale calcium (Ca) addition that aims to replace Ca depleted by long-term exposure to acid rain. One option for this addition is to use calcium-magnesium (Mg) acetate, a compound that is inexpensive and much more readily soluble than the Ca carbonate that is generally used for large-scale liming. Field plots were treated with sodium (NA) acetate, Na bicarbonate or water (control) and were sampled (forest floor – Oe and Oa combined) 2, 10 and 58 days following application. It was expected that the addition of C would lead to an increase in biomass C and N and a decrease in inorganic N. Instead, we observed no effect on biomass C, a decline in biomass N and an increase in N availability. One possible explanation for our surprising results is that the C addition stimulated microbial activity but not growth. A second, and more likely, explanation for our results is that the C addition did stimulate microbial growth and activity, but there was no increase in microbial biomass due to predation of the new biomass by soil fauna. The results confirm the emerging realization that the effects of increases in the flow of C to soils, either by deliberate addition or from changes in atmospheric CO2, are more complex than would be expected from a simple C : N ratio analysis. Evaluations of large-scale manipulations of forest soils to ameliorate effects of atmospheric deposition or to dispose of wastes should consider microbial and faunal dynamics in considerable detail.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 28 (1999), S. 204-211 
    ISSN: 1432-0789
    Keywords: Key words Alley cropping ; Calcium ; Magnesium ; Nitrogen ; Phosphorus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  Balances between nutrients applied or mineralized and nutrients removed in maize grain and stover were calculated in a hedgerow intercropping experiment in which Leucaena leucocephala and L. pallida prunings and cattle manure were applied. Hedgerow intercropping (also called alley cropping) is an agroforestry system in which trees are grown in dense hedges between alleys where short-cycle crops are grown. The hedges are pruned periodically during the cropping period and the prunings are added to the soil as green manure. In control treatments, nutrient depletion per season was in the order of 7–19 kg N ha–1, 4–12 kg P ha–1, 10–26 kg K ha–1, 0–2 kg Ca ha–1 and 3–6 kg Mg ha–1. N fertilizer reversed the depletion of N, but it accelerated the depletion of the other nutrients. Manure and at least two applications of leucaena prunings resulted in net positive balances of N, K, and Ca between amounts applied or mineralized and amounts removed by maize. The amounts of P and Mg applied with, or mineralized from, prunings or manure were insufficient to offset the negative balances of these nutrients.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 28 (1999), S. 182-195 
    ISSN: 1432-0789
    Keywords: Key words Alley cropping ; Calcium ; Magnesium ; Nitrogen ; Phosphorus ; Intercropping
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  A litter bag technique was used to study the decomposition and release of N, P, K, Ca, and Mg from Leucaena leucocephala and L. pallida prunings and cattle manure in a hedgerow intercropping trial conducted in the Ethiopian highlands. Hedgerow intercropping (also called alley cropping or alley farming) is an agroforestry system in which trees are grown in dense hedges between alleys where short-cycle crops are grown. The hedges are pruned periodically during the cropping period and the prunings are added to the soil as green manure. Manure was the most resistant to decomposition, losing only 15% of its dry matter (DM) in 15 weeks, compared to 41–57% lost by leucaena prunings. Large quantities of K (up to 104 kg ha–1) were mineralized from prunings and manure, but Ca and Mg were mostly immobilized. More N and P were released from prunings than from manure, which resulted in net immobilization of these nutrients in the initial stages of decomposition and net mineralization in later stages. Between the leucaenas more N was mineralized and less Ca and Mg were immobilized when L. leucocephala prunings were applied than when L. pallida prunings were applied. Fertilizer N increased DM decomposition and N mineralization. Mineralization of the nutrients was constrained by lignin and polyphenol contents. It is concluded that leucaena mulch and cattle manure may be significant sources of N and K for crop growth, but external sources of P, Ca and Mg may be required, particularly in acid soils which have low contents of these nutrients. However, this fertility effect has to be evaluated against the competition effect of trees to predict crop response.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    ISSN: 1432-0789
    Keywords: Key words Alley cropping ; Calcium ; Magnesium ; Nitrogen ; Phosphorus ; Leaf pruning
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  The effects of Leucaena leucocephala and L. pallida prunings and cattle manure on maize nutrient uptake and yield were investigated in a hedgerow intercropping trial in the Ethiopian highlands. Hedgerow intercropping (also called alley cropping) is an agroforestry system in which trees are grown in dense hedges between alleys where short-cycle crops are grown. The hedges are pruned periodically during the cropping period and the prunings are added to the soil as green manure. For each leucaena species, the experiment had 16 treatments resulting from a factorial combination of four levels of leucaena leaf prunings (no prunings applied; first prunings applied; first and second prunings applied; first, second and third prunings applied), two levels of air-dried cattle manure (0 and 3 t dry matter ha–1) and two levels of N fertilizer (0 and 40 kg N ha–1 as urea). Uptake of N, P and K increased significantly with application of the three nutrient sources, but uptake of Ca and Mg either did not respond or decreased with application of prunings and manure. All the three factors increased maize grain and stover yields significantly, usually with no significant interactions between the factors. At least two applications of prunings were required to significantly increase nutrient uptake and maize yield. Maize in the row closest to the hedge did not respond to these nutrient inputs. It is concluded that hedgerow intercropping, with or without manure application, can increase crop yields moderately (to 2–3 t ha–1 maize grain yields) in the highlands, but P, Ca and Mg may have to be supplied from external sources if they are deficient in the soil. Additional N is still required for higher yields (〉4 t ha–1 maize grain yields). However, quantification of the competition effects of the trees is also required to confirm these results.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 29 (1999), S. 38-45 
    ISSN: 1432-0789
    Keywords: Key words Grassland ; Nitrogen ; Mineralization ; Macro-organic matter ; Soil particles
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  A study was conducted to determine mineralization rates in the field and in different soil layers under three grassland managements (viz. a reseeded sward, a permanent sward with a conventional N management, and a long-term grass sward with 0 N (0-N) input). Potential mineralization rates of soil particles (sand, silt and clay) and macro-organic matter fractions of different sizes (i.e. 0.2–0.5, 0.5–2.0 and 〉2 mm) were also determined in the laboratory. In the reseeded plots, net mineralization was unchanged down to 40 cm depth. In the undisturbed conventional-N swards, mineralization rates were substantially higher in the top layer (0–10 cm) than in the deeper layers. In plots which had received no fertilizer N, mineralization was consistently low in all the layers. There was more macro-organic matter (MOM) in the 0-N plots (equivalent to 23 g kg–1 soil for 0–40 cm) than in the two fertilized plots (i.e. conventional-N and reseeded) which contained similar amounts (ca. 15 g kg–1 soil). C and N contents of separated soil particles did not differ amongst the treatments, but there were large differences with depth. Potential mineralization in the bulk soil was greatest in the 0–10 cm layers and gradually decreased with depth in all the treatments. Separated sand particles had negligible rates of potential mineralization and the clay component had the highest rates in the subsurface layers (10–40 cm). MOMs had high potential rate of mineralization in the surface layer and decreased with soil depth, but there was no clear pattern in the differences between different size fractions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    ISSN: 0931-1890
    Keywords: Key words Picea abies ; Photosynthesis ; Nitrogen ; Temperature ; Shoot growth
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  Branches of 30-year-old Norway spruce [Picea abies (L.) Karst.] trees were enclosed in ventilated, transparent plastic bags and flushed with air containing ambient (A≈370 μmol CO2 mol–1) or ambient plus 340 μmol CO2 mol–1 (EL). Light-saturated photosynthesis was on average 56% higher in EL compared to A. Branch phenology and morphology were strongly related to nitrogen concentration (mg g–1 dry mass) in the foliage and to elevated temperatures in the bags, but no direct effect of EL was found. In 1995, budbreak occurred on average 4 days earlier in the bags compared to the control branches, which was partly explained by the temperature elevation in the bags. No nutrient or EL effect on budbreak was found. Increases in temperature and nitrogen supply increased shoot growth: together they explained 76% of the variation in the extension rate, 63% of the variation in extension duration and 65% of the variation in final length of leading shoots. Shoot morphology was altered both by increased nitrogen availability and by the enclosure induced environmental changes inside the bags, leading to reduced mutual shading between needles. Specific needle area (SNA) was lower in EL, but this was related to lower nitrogen concentrations. Total dry mass of the branches was unaffected by EL. It is concluded that treating individual branches of Norway spruce with elevated CO2 does not increase branch growth. The nutrient status of the branch and climate determine its growth, i.e. its sink strength for carbon. Increased export of carbohydrates to the rest of the tree is probable in EL treated branches.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 216 (1999), S. 83-91 
    ISSN: 1573-5036
    Keywords: Cunninghamia lanceolata ; Fertilization ; Nutrient loading ; Nitrogen ; Retranslocation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Nutrient loaded and non-loaded Chinese fir (Cunninghamia lanceolata (Lamb) Hook) seedlings were transplanted in a pot trial to examine effects of exponential nutrient loading and fertilization treatments on first season growth and N nutrition. The treatments tested four rates of N (0, 30, 60, and 90 mg tree-1) as a mixed NPK fertilizer applied before planting to create a soil fertility gradient, and two topdressings applied only to non-loaded seedlings later in the season. Nutrient loading alone consistently enhanced seedling growth on the four soil fertility classes, increasing respective biomass and N uptake 42, 45, 20 and 8%, and 65, 67, 29 and 18% more than non-loaded seedlings. The positive response was attributed to increased N retranslocation from higher nutrient reserves built up by loading during nursery culture. Net retranslocation from old shoots to new growth was highest soon after planting when nutrient stress was most severe. Pre-plant soil fertilization and post-plant topdressings were also effective in promoting seedling productivity, but equivalent additions yielded less biomass than that from nutrient loading alone. Implications are that exponential nutrient loading may be more efficient in improving early growth performance of Chinese fir seedlings than traditional field fertilization practices at plantation establishment, and may on competitive sites avoid problems of stimulating surrounding vegetation rather than trees.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 26 (1998), S. 243-249 
    ISSN: 1432-0789
    Keywords: Key words Earthworm middens ; Soil ; Carbon ; Nitrogen ; Microbial activity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Earthworm activity may be an important cause of spatial and temporal heterogeneity of soil properties in agroecosystems. Structures known as “earthworm middens,” formed at the soil surface by the feeding and casting activities of some earthworms, may contribute significantly to this heterogeneity. We compared the temporal dynamics of carbon (C), nitrogen (N), and microbial acitivity in Lumbricus terrestris middens and in surrounding non-midden (bulk) soil during the spring, when seasonal earthworm activity was high. We sampled soil from middens and bulk soil in a no-till cornfield on four dates during May and June 1995. Soil water content and the weight of coarse organic litter (〉2mm) were consistently higher in middens than in bulk soil. Total C and N concentrations, C:N ratios, and microbial activity also were greatest in midden soil. Concentrations of ammonium-nitrogen and dissolved organic N were greater in middens than in bulk soil on most dates, suggesting accelerated decomposition and mineralization in middens. However, concentrations of nitrate were usually lower in middens, indicating reduced nitrification or increased leaching and denitrification losses from middens, relative to bulk soil. Fungal activity, as well as total microbial activity, was consistently greater in middens. The contribution of fungae to overall microbial activity differed significantly between middens and bulk soil only on one date when both soils were very dry; the contribution of fungae to microbial activity was lower in the middens on this date. We conclude that the midden-forming activity of L. terrestris can be a major determinant of spatial heterogeneity in some agricultural soils, and that this can potentially affect overall rates of soil processes such as organic matter decomposition, N mineralization, denitrification, and leaching.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 26 (1998), S. 258-267 
    ISSN: 1432-0789
    Keywords: Key words Decomposition ; Deposition ; Nitrogen ; saturation ; Pinus sylvestris ; Soil biota
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Wekerom forest shows a high nitrogen (N) load, and the first signs of N saturation. This characterization is based on the high N content of the needles, the high nitrate-N (NO3-N) mobilization and low cation mobilization from the organic horizon. The N cycle in this forest has been transformed into an „open flow” system, in which the ammonium-N, deposited in large quantities from the atmosphere, is transformed into NO3-N, which is leached into the groundwater. Decomposition of deeper organic layers, such as the fragmented litter and humus layers, is thought to provide additional NH4-N, which explains the high NO3-N output. Together with a reduction in the number and vitality of the pine trees, there is an increase in the number of nitrophilous plants, such as Deschampsia flexuosa and Rumex acetosella. The ectomycorrhizal and litter-decaying fungi are specific, N-resistant species. Soil fauna are classified as common inhabitants of dry, acid, nutrient poor forests.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    ISSN: 1432-0789
    Keywords: Key words Collembola ; Acari ; Araneae ; Nitrogen ; Stratification
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract This paper addresses the abundance, biomass and microstratification of functional groups of micro- and mesoarthropods inhabiting the organic layers of a Scots pine forest (Pinus sylvestris L.). An experiment using stratified litterbags, containing organic material of four degradation stages, i.e., freshly fallen litter, litter, fragmented litter and humus, was performed over a period of 2.5 years. Statistical data analysis revealed that each organic layer had a different, characteristic species composition that changed with time following successive degradation stages. Species of Acari, Araneae and Collembola were assigned to different functional groups based on taxonomy, microstratification, food type or feeding mode. The abundance and biomass carbon of functional groups were dependent on the organic layer and most functional groups showed a particular preference for one of the upper organic layers. Temporal and spatial differences in density and biomass carbon of functional groups could partly be related to fluctuations in the soil climate, although effects of trophic interactions could not be ruled out. A general decline in abundance and biomass, especially in populations of fungal feeders, during the last year of the study could not be explained by a reduction in litterbag volume, changed litter chemistry or soil climate, but was attributed to an indirect effect of a remarkable increase in soil coverage by wavy hair grass, Deschampsia flexuosa (L.). The analysis demonstrated that species diversity, microhabitat specification, soil fauna succession, and degradation stages of organic material are interrelated. The results obtained indicate that both the chemistry of organic matter and decomposition rates have an important effect on trophic relationships and community structure.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 26 (1998), S. 313-322 
    ISSN: 1432-0789
    Keywords: Key words Fungi ; Bacteria ; Nitrogen ; Scots pine ; Stratification
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The abundance and micro-stratification of bacteria and fungi inhabiting the organic layers of a Scots pine forest (Pinus sylvestris L.) were investigated. An experiment using stratified litterbags, containing organic material of four degradation stages (fresh litter, litter, fragmented litter and humus) was performed over a period of 2.5 years. Dynamics and stratification of fluorescent stained bacteria and fungi, ratios between bacterial and fungal biomass, and relationships with moisture and temperature are described. Average bacterial counts in litter and fragmented litter were similar, i.e., approximately 5×109 bacteriag–1 (dry weight) organic matter, and significantly exceeded those in humus. The mean bacterial biomass ranged from 0.338 to 0.252mg carbon (C) g–1 (dry weight) organic matter. Lengths of mycelia were significantly below the usually recorded amounts for comparable temperate coniferous forests. The highest average hyphal length, 53mg–1 (dry weight) organic matter, was recorded in litter and decreased significantly with depth. The corresponding mean fungal biomass ranged from 0.050 to 0.009mg Cg–1 (dry weight). The abundance of bacteria and fungi was influenced by water content, that of fungi also by temperature. A litterbag series with freshly fallen litter of standard quality, renewed bimonthly, revealed a clear seasonal pattern with microbial biomass peaks in winter. The mean hyphal length was 104mg–1 (dry weight) and mean number of bacteria, 2.40×109 bacteria g–1 (dry weight). Comparable bacterial and fungal biomass C were found in the freshly fallen litter [0.154 and 0.132mgCg–1 (dry weight) organic material, respectively]. The ratio of bacterial-to-fungal biomass C increased from 1.2 in fresh litter to 28.0 in humus. The results indicate the existence of an environmental stress factor affecting the abundance of fungi in the second phase of decomposition. High atmospheric nitrogen deposition is discussed as a prime factor to explain low fungal biomass and the relatively short lengths of fungal hyphae in some of the forest soil layers under study.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 28 (1998), S. 56-63 
    ISSN: 1432-0789
    Keywords: Key words Animal manure ; Immobilization ; Mineralization ; Nitrogen ; Slurry distribution
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  An improved understanding of the cycling of animal manure N is a prerequisite for making better use of this N source. A sheep was fed 15N-labelled grass in order to study the fate of 15N-labelled ruminant manure N in the plant-soil system. The uniformity of labelling was found to be satisfactory when an appropriate feeding strategy was used. The mineralization of labelled faecal N was compared to the mineralization of labelled feed N and indigestible feed N by measuring residual labelled organic N in unplanted topsoil in the field. After 18 months, 61% of both faecal N and feed N was recovered in organic form in the topsoil, while 94% of the indigestible feed N was still present in the soil. The influence of slurry distribution in soil on the crop uptake of labelled faecal N in slurry was studied in a sandy and a sandy loam soil. The crop uptake of labelled faecal N was compared with the uptake of 15N-labelled mineral fertilizer in a reference treatment. The uptake was 28–32% of that of the reference treatment with simulated slurry injection, 13–25% with incorporated slurry and 18–19% with slurry on the soil surface. The mineralization of faecal N in the autumn after application in spring was low irrespective of the slurry distribution in soil. The results demonstrate that the contact between animal manure and the soil matrix significantly influences the short-term turnover and availability of faecal and ammonium N in slurry, especially in fine-textured soils.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    ISSN: 1432-0789
    Keywords: Key words Methane oxidation ; Nitrogen ; Fertilizer ; Soils ; Isotopic dilution
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  The short-term effects of N addition on CH4 oxidation were studied in two soils. Both sites are unfertilized, one has been under long-term arable rotation, the other is a grassland that has been cut for hay for the past 125 years. The sites showed clear differences in their capacity to oxidise CH4, the arable soil oxidised CH4 at a rate of 0.013 μg CH4 kg–1 h–1 and the grassland soil approximately an order of magnitude quicker. In both sites the addition of (NH4)2SO4 caused an immediate reduction in the rate of atmospheric CH4 oxidation approximately in inverse proportion to the amount of NH4 + added. The addition of KNO3 caused no change in the rate of CH4 oxidation in the arable soil, but in the grassland soil after 9 days the rate of CH4 oxidation had decreased from 0.22 μg CH4 kg–1 h–1 to 0.13 μg CH4 kg–1 h–1 in soil treated with the equivalent of 192 kg N ha–1. A 15N isotopic dilution technique was used to investigate the role of nitrifiers in regulating CH4 oxidation. The arable soil showed a low rate of gross N mineralisation (0.67 mg N kg–1 day–1), but a relatively high proportion of the mineralised N was nitrified. The grassland soil had a high rate of gross N mineralisation (18.28 mg N kg–1 day–1), but negligible nitrification activity. It is hypothesised that since there was virtually no nitrification in the grassland soil then CH4 oxidation at this site must be methanotroph mediated.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 27 (1998), S. 279-283 
    ISSN: 1432-0789
    Keywords: Key words Peats ; Methane ; Nitrogen ; Land use ; Agriculture
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  Rates of methane uptake were measured in incubation studies with intact cores from adjacent fenland peats that have been under arable management and woodland management for at least the past 30 years. On two separate occasions the woodland peat showed greater rates of uptake than the arable peat. These rates ranged from 23.1 to 223.3 μg CH4 m–2 day–1 for the woodland peat and from 29.6 to 157.6 μg CH4 m–2 day–1 for the arable peat. When the peats were artificially flooded there was a decrease in the rate of methane oxidation, but neither site showed any net efflux of methane. 15N isotopic dilution was used to characterise nitrogen cycling within the two peats. Both showed similar rates of gross nitrogen mineralisation (3.58 mg N kg–1 day–1, arable peat; 3.54 N kg–1 day–1, woodland peat) and ammonium consumption (4.19 arable peat and 4.70 mg N kg–1 day–1 woodland peat). There were significant differences in their inorganic ammonium and nitrate pool sizes, and the rate of gross nitrification was significantly higher in the woodland peat (4.90 mg N kg–1 day–1) compared to the arable peat (1.90 mg N kg–1 day–1). These results are discussed in the light of high atmospheric nitrogen deposition.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    ISSN: 1573-143X
    Keywords: Cage culture ; Dietary lipid ; Dietary water ; Feeding frequency ; Moist diets ; Nitrogen ; Phosphorus ; Rainbow trout (Oncorhynchus mykiss)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The nutrient losses into the water from rainbow trout (Oncorhynchus mykiss) cage culture using locally caught low-fat Baltic herring, herring-based moist diets and fishmeal-based dry diets were estimated. Feeding with herring led to nitrogen and phosphorus losses into the water twice as high as those feeding with dry pellets (78–162 versus 37–39 g N and 15–39 versus 7–18 g P per kg growth). This was supported by direct measurements of ammonia and phosphate excretion. Increasing feeding frequencies resulted in increased nutrient losses irrespective of diet. Increasing dietary lipid level had a more pronounced effect in reducing the expected nutrient losses in dry pellets than herring. The reduction within the herring was approximately 18% on average for nitrogen and 25% for phosphorus losses. Dietary water content did not affect the nutrient losses. © Rapid Science Ltd. 1998
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 25 (1997), S. 296-301 
    ISSN: 1432-0789
    Keywords: Key words Methane ; Forest soil ; pH ; Liming ; Nitrogen
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Methane uptake to soil was examined in individual chambers at three small forest catchments with different treatments, Control, Limed and Nitrex sites, where N-deposition was experimentally increased. The catchments consisted of both well-drained forest and wet sphagnum areas, and showed uptake of CH4 from the ambient air. The lowest CH4 uptakes were observed in the wet areas, where the different treatments did not influence the uptake rate. In the well-drained areas the CH4 uptakes were 1.6, 1.4 and 0.6 kg ha–1 year–1 for the Limed, Control and Nitrex sites, respectively. The uptake of methane at the well-drained Nitrex site was statistically smaller than at the other well-drained catchments. Both acidification and increase in nitrogen in the soil, caused by the air-borne deposition, are the probable cause for the reduction in the methane uptake potential. Uptake of methane was correlated to soil water content or temperature for individual chambers at the well-drained sites. The uptake rate of methane in soil cores was largest in the 0- to 10-cm upper soil layer. The concentration of CH4 in the soil was lower than the atmospheric concentration up to 30 cm depth, where methane production occurred. Besides acting as a sink for atmospheric methane, the oxidizing process in soil prevents the release of produced methane from deeper soil layers reaching the atmosphere.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 25 (1997), S. 366-371 
    ISSN: 1432-0789
    Keywords: Key words Water addition ; Nitrogen ; Glucose ; O2 content ; Temperature ; Closed-chamber method
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Emission of N2O from cultivated and fertilised soils may contribute significantly to the total global N2O emission. This study included laboratory and field investigations of the N2O production from a dry stubble field as influenced by addition of water, nitrogen and glucose. N2O fluxes were measured using a closed-chamber technique, and the O2 content in the soil was measured using soil probes. Results from a laboratory soil core technique were correlated to the relative N2O emission observed in the field. When the soil water content in the field increased from 14% to 60% water-filled pore space, the N2O emission increased from non-significant to a constant emission of 30 μg N m–2 h–1. At this soil water content the production of N2O was limited by the availability of nitrogen and carbon. Application of nitrogen at soil temperatures of 13 and 21°C in a pre-wetted soil increased the N2O emission 3.1- and 3.7-fold, respectively, whereas nitrogen plus carbon application increased the N2O emission 13.3- and 7.3-fold, respectively. In both treatments the N2O emission rates were affected by fluctuations in soil temperature and O2 content. The results indicate that even in a soil producing very little N2O under dry conditions, the soil microbial community maintains a potential to produce N2O when favourable conditions occur in terms of availability of water, nitrogen and carbon.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    ISSN: 0931-1890
    Keywords: Key words Pinus leucodermis ; Photosynthesis ; Respiration ; Nitrogen ; Chlorophyll
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  Pinus heldreichii Christ is a long-lived, slow-growing Tertiary relict from the Balkans. In this study we evaluated the physiological characteristics of eight needle-age classes of P. heldreichii grown at the Arboretum of the Institute of Dendrology in Kórnik, Poland. At the end of the growing season, current-year foliage had the highest rates of mass-based light-saturated net photosynthesis (Asat) of 33.5 nmol CO2· g–1· s–1. Asat decreased with needle age, but older needle classes retained from approximately 62 to 26% of the current needles’ rate. The relationship between leaf N and chlorophyll a concentration among all needle-age classes was highly significant (r = 0.96, P = 0.0006). The variation in Asat of 1- to 7-year-old needles was linearly related to needle N concentration (r = 0.98, P = 0.0001). Needle dark respiration rates among these needle age classes ranged from 0.8 to 2.2 nmol · g–1· s–1 and decreased with needle age and nitrogen concentration. Total phenols and glucose concentrations increased linearly with needle age. A similar pattern was observed in acid buffering capacity and the pH of tissue homogenates. The water content ranged from 62% for the current needles to 51% for the 6-year-old needles. Greater investment in leaf structural tissue and increased chemical defense is associated with higher structural cost of older needles and may reduce their photosynthetic activity. Significant declines in water and nitrogen content with needle age and an increase in content of phenolics is most likely a defense adaptation of P. heldreichii related to the species’ long-lived leaves.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    ISSN: 1432-0789
    Keywords: Carbon ; Coffee pulp ; Eisenia fetida ; Nitrogen ; Nutrients ; Vermicomposting
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract In Colombia, more than 1 million tons of coffee pulp are produced every year. Its transformation into compost by means of turned piles has led to a final product with poor physical and chemical characteristics and vermicomposting has been suggested as an alternative method of transforming these wastes into a useful organic fertilizer. The ability of the earthworm Eisenia fetida to transform coffee pulp into a valuable compost was evaluated. The influence of bed depth and time on different C fractions, N content and availability of nutrients was studied. The results showed that the C and N contents were not affected by the depth of the bed, whereas time affected both. An increase in the fractionation ratio, determined by calculating the C in the fraction smaller than 100 μm as a percentage of C in the samples as a whole, and low values of humic-like substances were recorded during vermicomposting. After ingestion of the pulp by the earthworms, an increase in available P, Ca, and Mg but a decrease in K were detected.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 22 (1996), S. 184-190 
    ISSN: 1432-0789
    Keywords: Cropping systems ; Soil organic matter ; Nitrogen ; Phosphorus ; Potassium
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The effects of up to 23 years of agricultural cropping of a boreal forest soil on soil organic carbon (SOC) and N, P, and K pools were studied. The cropping systems studied were: (a) continuous barley, (b) continuous forage bromegrass, (c) continuous forage legume, and (d) barley/grass-legume forage rotation. Continuous bromegrass increased while other cropping systems decreased SOC in the surface soil. Kjeldahl N in soil approximately followed the trend in SOC. The net gain in N under continuous grass was attributed mostly to nonsymbiotic N fixation. Changes in SOC content appeared to be also influenced by cropping and tillage frequencies. Changes in fixed (intercalary) ammonium were small. There was no measurable change in total P, in part, because input was only slightly higher than crop offtake. Organic P increased under continuous bromegrass, and tended to decrease under continuous legume. The C/N and C/P ratios of soil organic matter decreased slightly with cropping. Exchangeable K (Kex) was decreased by cropping systems containing a legume crop to a greater extent than those without a legume crop. Most of the decrease occurred in the 0–15 cm depth. Nitric acid extractable K was not affected by cropping. Since net loss of Kex to 30 cm depth was substantially less than crop offtake, it is suggested that subsoil K reserves and matrix K were supplying a major portion of the crops' K requirement. It is concluded that the effects of cropping systems on SOC, N, P and K are influenced by crop type, and cropping and tillage frequencies.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 22 (1996), S. 1-9 
    ISSN: 1432-0789
    Keywords: Key words Microbial Biomass ; Carbon ; Nitrogen ; Chloroform-fumigation extraction ; Temperature
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Laboratory studies were conducted to determine C and N dynamics during the decomposition of ryegrass straw under mesophilic and thermophilic conditions. A KC of 0.61 was developed for the chloroform-fumigation extraction method to estimate microbial biomass C. These estimates showed that the C and N requirement of the thermophilic biomass was approximately 50% of the mesophilic biomass. There was no relationship between chloroform-fumigation microbial biomass estimates and plating of microorganisms from straw on specific media. Mineralized C was measured as 185 and 210 g kg–1 straw in the 25°C and 50°C treatments, respectively. The efficiency of microbial substrate use, on a total straw basis, was 34 and 28% in the 25°C and 50°C incubations, respectively. The level of soluble C declined more slowly than total C mineralization at both temperatures, indicating that a portion of the labile C was not readily biodegradable. The addition of N decreased the rate of C mineralization at both temperatures. The reduced N requirement of the thermophiles explains why rapid degradation of the high C:N residue occurred without additional N or the need for the addition of a low C:N ratio substrate. Additional inoculum did not affect the decomposition process. We conclude that the promotion of thermophilic biomass activities, through composting for example, may prove useful in upgrading agricultural wastes for introduction into sustainable cropping systems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 23 (1996), S. 399-404 
    ISSN: 1432-0789
    Keywords: Key words Snails ; Nitrogen ; Desert ; Mineralization ; Nitrification ; Respiration ; Feces ; N cycling processes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Snail grazing and feces production have been shown to be major components of the nitrogen (N) budget of Negev Desert ecosystems. However, the movement of N from feces into soil N cycling processes has not been studied. In this study, we measured immediate N release from different types of snail feces following wetting of dry desert soils, and characterized potential net N mineralization and nitrification and soil respiration over a 12-day incubation under laboratory conditions. The dynamics of inorganic N exhibited two distinct phases during the 12-day incubation: (1) immediate release of inorganic N following wetting of the soil and (2) decline of inorganic N from day 1 to day 12 of the incubation. The immediate pulse of N release from this one wetting event (6–25 mg N m–2) was larger than annual atmospheric inputs of N to Negev Desert ecosystems (〈2 mg N m–2); however, from 50 to 80% of the N released upon wetting was consumed by the end of the incubation. There were differences in inorganic N release and respiration from feces from different kinds of snails, and from feces from the same species of snail fed different plants. The results suggest that while snail feces contribute significant amounts of plant available N to Negev ecosystems, plants must compete with other “sinks” for this N.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 23 (1996), S. 399-404 
    ISSN: 1432-0789
    Keywords: Snails ; Nitrogen ; Desert ; Mineralization ; Nitrification ; Respiration ; Feces ; N cycling processes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Snail grazing and feces production have been shown to be major components of the nitrogen (N) budget of Negev Desert ecosystems. However, the movement of N from feces into soil N cycling processes has not been studied. In this study, we measured immediate N release from different types of snail feces following wetting of dry desert soils, and characterized potential net N mineralization and nitrification and soil respiration over a 12-day incubation under laboratory conditions. The dynamics of morganic N exhibited two distinct phases during the 12-day incubation: (1) immediate release of inorganic N following wetting of the soil and (2) decline of inorganic N from day 1 today 12 of the incubation. The immediate pulse of N release from this one wetting event (6–25 mg N m-2) was larger than annual atmospheric inputs of N to Negev Desert ecosystems (〈2 mg N m-2); however, from 50 to 80% of the N released upon wetting was consumed by the end of the incubation. There were differences in inorganic N release and respiration from feces from different kinds of snails, and from feces from the same species of snail fed different plants. The results suggest that while snail feces contribute significant amounts of plant available N to Negev ecosystems, plants must compete with other “sinks” for this N.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 22 (1996), S. 40-44 
    ISSN: 1432-0789
    Keywords: Key words Northern hardwoods ; Disturbance in soil ; Nitrogen ; Soil warming
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Installation of heating cables for warming soil was used to evaluate the effect of disturbance on soil solution chemistry within a northern hardwood forest (Adirondack Mountains, New York). Differences in response among treatments suggested the importance of both the depth and timing of cable installation. There were increases (p〉0.05) in many solutes within pilot study plots in which “surrogate cable” was installed at 15 cm depth. Most notably, mean nitrate concentrations for the 1st year following disturbance were 744 μeq l–1 at 15 cm depth compared to 7 μeq l–1 for the non-disturbed control. A comparison of pilot plots with 5 cm cable depth and an unheated soil-warming control plot with the same cable disturbance showed that the seasonality of soil disturbance may have a key role in response to disturbance. The soil solution response was diminished if installation occurred during the spring, a period of rapid uptake of nitrogen by vegetation. Mean nitrate concentrations were 176 μeq l–1 for 5-cm pilot plots (installed in fall 1991) versus 6 μeq l–1 for 5-cm, unheated soil-warming control plots (installed in spring 1992). Disturbance effects were attenuated over time and not generally apparent 1 year after installation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 22 (1996), S. 1-9 
    ISSN: 1432-0789
    Keywords: Microbial Biomass ; Carbon ; Nitrogen ; Chloroform-fumigation extraction ; Temperature
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Laboratory studies were conducted to determine C and N dynamics during the decomposition of ryegrass straw under mesophilic and thermophilic conditions. A KC of 0.61 was developed for the chloroform-fumigation extraction method to estimate microbial biomass C. These estimates showed that the C and N requirement of the thermophilic biomass was approximately 50% of the mesophilic biomass. There was no relationship between chloroform-fumigation microbial biomass estimates and plating of microorganisms from straw on specific media. Mineralized C was measured as 185 and 210 g kg-1 straw in the 25°C and 50°C treatments, respectively. The efficiency of microbial substrate use, on a total straw basis, was 34 and 28% in the 25°C and 50°C incubations, respectively. The level of soluble C declined more slowly than total C mineralization at both temperatures, indicating that a portion of the labile C was not readily biodegradable. The addition of N decreased the rate of C mineralization at both temperatures. The reduced N requirement of the thermophiles explains why rapid degradation of the high C:N residue occurred without additional N or the need for the addition of a low C:N ratio substrate. Additional inoculum did not affect the decomposition process. We conclude that the promotion of thermophilic biomass activities, through composting for example, may prove useful in upgrading agricultural wastes for introduction into sustainable cropping systems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    ISSN: 1432-0789
    Keywords: Key words Carbon ; Coffee pulp ; Eisenia fetida ; Nitrogen ; Nutrients ; Vermicomposting
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract In Colombia, more than 1 million tons of coffee pulp are produced every year. Its transformation into compost by means of turned piles has led to a final product with poor physical and chemical characteristics and vermicomposting has been suggested as an alternative method of transforming these wastes into a useful organic fertilizer. The ability of the earthworm Eisenia fetida to transform coffee pulp into a valuable compost was evaluated. The influence of bed depth and time on different C fractions, N content and availability of nutrients was studied. The results showed that the C and N contents were not affected by the depth of the bed, whereas time affected both. An increase in the fractionation ratio, determined by calculating the C in the fraction smaller than 100 μm as a percentage of C in the samples as a whole, and low values of humic-like substances were recorded during vermicomposting. After ingestion of the pulp by the earthworms, an increase in available P, Ca, and Mg but a decrease in K were detected.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 22 (1996), S. 40-44 
    ISSN: 1432-0789
    Keywords: Northern hardwoods ; Disturbance in soil ; Nitrogen ; Soil warming
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Installation of heating cables for warming soil was used to evaluate the effect of disturbance on soil solution chemistry within a northern hardwood forest (Adirondack Mountains, New York). Differences in response among treatments suggested the importance of both the depth and timing of cable installation. There were increases (p〉0.05) in many solutes within pilot study plots in which “surrogate cable” was installed at 15 cm depth. Most notably, mean nitrate concentrations for the 1st year following disturbance were 744 μeq l-1 at 15 cm depth compared to 7 μeq l-1 for the non-disturbed control. A comparison of pilot plots with 5 cm cable depth and an unheated soil-warming control plot with the same cable disturbance showed that the seasonality of soil disturbance may have a key role in response to disturbance. The soil solution response was diminished if installation occurred during the spring, a period of rapid uptake of nitrogen by vegetation. Mean nitrate concentrations were 176 μeq l-1 for 5-cm pilot plots (installed in fall 1991) versus 6 μeq l-1 for 5-cm, unheated soil-warming control plots (installed in spring 1992). Disturbance effects were attenuated over time and not generally apparent 1 year after installation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 22 (1996), S. 184-190 
    ISSN: 1432-0789
    Keywords: Key words Cropping systems ; Soil organic matter ; Nitrogen ; Phosphorus ; Potassium
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The effects of up to 23 years of agricultural cropping of a boreal forest soil on soil organic carbon (SOC) and N, P, and K pools were studied. The cropping systems studied were: (a) continuous barley, (b) continuous forage bromegrass, (c) continuous forage legume, and (d) barley/grass-legume forage rotation. Continuous bromegrass increased while other cropping systems decreased SOC in the surface soil. Kjeldahl N in soil approximately followed the trend in SOC. The net gain in N under continuous grass was attributed mostly to nonsymbiotic N fixation. Changes in SOC content appeared to be also influenced by cropping and tillage frequencies. Changes in fixed (intercalary) ammonium were small. There was no measurable change in total P, in part, because input was only slightly higher than crop offtake. Organic P increased under continuous bromegrass, and tended to decrease under continuous legume. The C/N and C/P ratios of soil organic matter decreased slightly with cropping. Exchangeable K (Kex) was decreased by cropping systems containing a legume crop to a greater extent than those without a legume crop. Most of the decrease occurred in the 0–15 cm depth. Nitric acid extractable K was not affected by cropping. Since net loss of Kex to 30 cm depth was substantially less than crop offtake, it is suggested that subsoil K reserves and matrix K were supplying a major portion of the crops‘ K requirement. It is concluded that the effects of cropping systems on SOC, N, P and K are influenced by crop type, and cropping and tillage frequencies.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    ISSN: 1432-2285
    Keywords: Conifer ; Fluoride ; Nitrogen ; Sulphur dioxide ; Ultrastructure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Effects of SO2, aqueous fluoride (NaF) and a solution of nitrogen compounds (NH4NO3) on the visible symptoms, pollutant accumulation and ultrastructure of Scots pine (Pinus sylvestris L.) and Norway spruce [Picea abies (L.) Karst.] seedlings were studied in an open-air experiment lasting for 3 consecutive years. Visible injury symptoms were most pronounced in combination exposures and whenever F was applied. Visible symptoms correlated well with needle pollutant concentrations. Exposure to NaF increased needle F contents particularly when F was applied with SO2 or NH4NO3. This suggests that a reduction in N or SO2 emissions, in F polluted areas, could improve the condition of conifers via decreased accumulation of phytotoxic F in the needles. Norway spruce needles accumulated 2–10 times as much S and F as those of Scots pine. Microscopic observations showed various changes in the needle mesophyll cell ultrastructure. In both species, exposure to SO2 increased significantly the amount of cytoplasmic vacuoles, suggesting detoxification of excess sulphate or low pH. F treatments resulted in a significant enlargement of plastoglobuli in Scots pine and a darkening of plastoglobuli in Norway spruce. All exposures enhanced the accumulation of lipid bodies. An increased portion of translucent plastoglobuli was most pronounced in N treatments. Many of the ultrastructural changes and visible symptoms appeared only as number of years exposed increased, indicating that long-term experiments are needed. Both visible symptoms and ultrastructural changes pointed to the more pronounced sensitivity of Norway spruce compared to Scots pine. Ultrastructural results mostly supported earlier qualitative observations of F, N and SO2 effects on needle mesophyll cell ultrastructure. However, no reduction of thylakoids in SO2 containing exposure or curling of thylakoids in F exposure could be detected in the present study.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    ISSN: 1432-2285
    Keywords: Nitrogen ; Picea sitchensis ; Relative growth rates ; Thuja plicata ; Tsuga heterophylla
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Seedlings ofPicea sitchensis, Thuja plicata andTsuga heterophylla were supplied N hydroponically at one of four exponentially increasing rates of addition (0.09, 0.07, 0.05, or 0.025 gN-1 day-1) for up to 3 months in a naturally illuminated glasshouse. Relative growth rates (RGR) were analyzed as a function of N uptake, the allocation of assimilated N to foliage (LNFR), foliar N concentrations (Nla) and met assimilation rates (NAR), which were combined to estimate N productivity (RGR per unit whole-plant N concentration). Nitrogen accumulation, biomass and N partitioning and RGR and its components varied with species in response to the different N regimes.T. heterophylla had the lowest maximum wholeplant N concentrations (wpN) and specific absorption rates for N and exhibited the least plasticity in root: shoot ratios as wpN increased from 11–21 mg g-1. In all species, RGR increased linearly with wpN, while LNFR increased curvilinearly. Foliar N (Nla) increased linearly with wpN and NAR increased linearly with Nla. The RGRs ofT. heterophylla were highest at wpNs up to 18 mg g-1, a result of higher foliar N use efficiencies (NAR/Nla). However, RGR increased more with wpN inT. plicata andP. sitchensis. Although LNFR increased with wpN in all species, foliar N use efficiency declined, possibly due to an increased partitioning of foliar soluble N to non-photosynthetic compounds. Thus, in each species, N productivity did not increase above intermediate levels of wpN: 14 mg g-1 inT. heterophylla, 16 mg g-1 inP. sitchensis and 17 mg g-1 inT. plicata.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    ISSN: 1432-2285
    Keywords: Nitrogen ; Photosynthesis ; Picea sitchensis ; Thuja plicata ; Tsuga heterophylla
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The effects of differing, exponentially increasing rates of N addition (0.025, 0.05, 0.07 and 0.09 gN gN-1day-1) on photosynthesis, discrimination against13C and partitioning of foliar N to chlorophyll and major photosynthetic proteins were compared in seedlings of the evergreen conifersPicea sitchensis, Thuja plicata andTsuga heterophylla. T. heterophylla had the lowest range of foliar N concentrations (Nlm). Across species, photosynthetic rates (A) increased linearly with Nlm to a maximum at 21 mg g-1 and declined at higher Nlms. Species differences inA resulted from differences in Nlm, not from differences in photosynthetic N use efficiency. Self-shading may have causedA to decline at a high Nlm inP. sitchensis andT. plicata. Measurements of gas exchange and δ13C suggested that carboxylation capacity increased more than did stomatal conductance as Nlm increased. The responses were small and confined to Nlms associated with the lesser rates of N addition. Concentrations of total protein, ribulose 1,5-bisphosphate carboxylase (RUBISCO) and the light harvesting chlorophyll a/b protein complex (LHC) increased with Nlm, but the fraction of foliar N allocated to RUBISCO and LHC increased with Nlm only inP. sitchensis and only between the 0.025 and 0.05N regimes. The responsiveness ofA and concentrations of RUBISCO to Nlm were less than reported for deciduous C3 species.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    ISSN: 0931-1890
    Keywords: Keywords Amino-acids ; Carbohydrates ; Cell compounds ; Nitrogen ; Rhododendron ferrugineum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  This study evaluates the utility of cell compounds as indicators of nutrition status of plant populations. An overview of the soluble free amino-acids, carbohydrates and P-compounds in the two year classes of leaves from Rhododendron ferrugineum populations showing variable biological performances, was drawn up using carbon-13 and phosphorus-31 nuclear magnetic resonance spectroscopy (NMR). The results showed differences between the age of leaves and the degree of population closure. The open population, which has the smallest growth rate and net primary productivity, had generally lower levels of amino-acids but higher levels of carbohydrates and P-compounds. Neither the amounts of mineral nitrogen produced by the soils nor the total nitrogen concentrations in leaves differed significantly. Still we hypothesize that the nitrogen availability could be largely responsible for the variations observed between the populations, as phosphorus analyses showed that the two populations did not suffer significant P deficiencies. Differences in vitality of R. ferrugineum may be explained by the fact that in an open population R. ferrugineum is forced into a situation of sharing nutrients with other species while in a closed population it is the sole species to exploit a specific pool of nutrients. Finally we observed that the 13C- and 31P-NMR approach is more suitable for studying the nutrition status of plant populations under field conditions than the determination of the total amounts of different elementary nutrients.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    ISSN: 0931-1890
    Keywords: Key words Conifer ; Fluoride ; Nitrogen ; Sulphur dioxide ; Ultrastructure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  Effects of SO2, aqueous fluoride (NaF) and a solution of nitrogen compounds (NH4NO3) on the visible symptoms, pollutant accumulation and ultrastructure of Scots pine (Pinus sylvestris L.) and Norway spruce [Picea abies (L.) Karst.] seedlings were studied in an open-air experiment lasting for 3 consecutive years. Visible injury symptoms were most pronounced in combination exposures and whenever F was applied. Visible symptoms correlated well with needle pollutant concentrations. Exposure to NaF increased needle F contents particularly when F was applied with SO2 or NH4NO3. This suggests that a reduction in N or SO2 emissions, in F polluted areas, could improve the condition of conifers via decreased accumulation of phytotoxic F in the needles. Norway spruce needles accumulated 2 – 10 times as much S and F as those of Scots pine. Microscopic observations showed various changes in the needle mesophyll cell ultrastructure. In both species, exposure to SO2 increased significantly the amount of cytoplasmic vacuoles, suggesting detoxification of excess sulphate or low pH. F treatments resulted in a significant enlargement of plastoglobuli in Scots pine and a darkening of plastoglobuli in Norway spruce. All exposures enhanced the accumulation of lipid bodies. An increased portion of translucent plastoglobuli was most pronounced in N treatments. Many of the ultrastructural changes and visible symptoms appeared only as number of years exposed increased, indicating that long-term experiments are needed. Both visible symptoms and ultrastructural changes pointed to the more pronounced sensitivity of Norway spruce compared to Scots pine. Ultrastructural results mostly supported earlier qualitative observations of F, N and SO2 effects on needle mesophyll cell ultrastructure. However, no reduction of thylakoids in SO2 containing exposure or curling of thylakoids in F exposure could be detected in the present study.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 21 (1996), S. 114-120 
    ISSN: 1432-0789
    Keywords: Statistical methods ; Mineralization ; Nitrogen ; First-order kinetics ; Incubation experiment ; Model for N mineralization
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Potentially mineralizable soil N was determined after incubation for 2, 4, 8, 12, 16, 22, and 30 weeks, according to the Stanford and Smith method. A first-order kinetics model was used, and a simulation study was performed using three different statistical methods to estimate potentially mineralizable N and the rate constant k. The first method was based on the maximum-likelihood approach. The second one relied on nonlinear least square data fitting. The third method was based on linear of logarithmically transformed data. The results of the simulation study suggested that the non-linear least square method was preferable to the others. This method was then applied to real data from 30 different Italian soils. The values obtained for potentially mineralizable N were, on average, 10% of total N (mean standard error=0.9). The estimated value of k was 0.050 (mean standard error=0.005). Finally, from the values obtained for k and the results of the simulation, the results indicated that significantly less reliable estimates of potentially mineralizable N were obtained by using data for up to only 22 weeks of incubation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    ISSN: 1573-0867
    Keywords: China ; Loess Plateau ; maize ; 15N ; Nitrogen ; urea ; wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Field trials were carried out to study the fate of15N-labelled urea applied to summer maize and winter wheat in loess soils in Shaanxi Province, north-west China. In the maize experiment, nitrogen was applied at rates of 0 or 210 kg N ha−1, either as a surface application, mixed uniformly with the top 0.15 m of soil, or placed in holes 0.1 m deep adjacent to each plant and then covered with soil. In the wheat experiment, nitrogen was applied at rates of 0, 75 or 150 kg N ha−1, either to the surface, or incorporated by mixing with the top 0.15 m, or placed in a band at 0.15 m depth. Measurements were made of crop N uptake, residual fertilizer N and soil mineral N. The total above-ground dry matter yield of maize varied between 7.6 and 11.9 t ha−1. The crop recovery of fertilizer N following point placement was 25% of that applied, which was higher than that from the surface application (18%) or incorporation by mixing (18%). The total grain yield of wheat varied between 4.3 and 4.7 t ha−1. In the surface applications, the recovery of fertilizer-derived nitrogen (25%) was considerably lower than that from the mixing treatments and banded placements (33 and 36%). The fertilizer N application rate had a significant effect on grain and total dry matter yield, as well as on total N uptake and grain N contents. The main mechanism for loss of N appeared to be by ammonia volatilization, rather than leaching. High mineral N concentrations remained in the soil at harvest, following both crops, demonstrating a potential for significant reductions in N application rates without associated loss in yield.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Electronic Resource
    Electronic Resource
    Springer
    Journal of plant growth regulation 15 (1996), S. 159-165 
    ISSN: 1435-8107
    Keywords: Germination ; Gibberellin ; Imbibition ; Lettuce ; Nitrogen ; Phytochrome ; Skotodormant
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Skotodormant seeds of Lactuca sativa Grand Rapids imbibed in darkness for 10 days (10-day DS) germinated poorly upon terminal treatment with red light (R) or gibberellin A3 (GA3). Inorganic nitrogen salts in the imbibition solutions reduced seed skotodormancy. Ten-day DS seeds, imbibed in 25 mm salt solutions followed by terminal R, germinated 99% if imbibed in NH4NO3, 70% if imbibed in KNO3 or NH4Cl, and 55% if imbibed in NaNO3. Seeds imbibed in higher salt concentrations germinated fully upon terminal R treatment. Seeds imbibed in 25 mm NH4Cl or in 50 mm NH4NO3 germinated completely upon GA3 treatment. Osmotic effects of imbibition media accounted for only part of the effect, since seeds imbibed in 50 mm CaCl2 or NaCl germinated poorly following R or GA3 treatment. Seeds imbibed in 500 mm polyethylene glycol (PEG) 1000 or mannitol solutions for 10 days still exhibited skotodormancy. Treatments of R or GA3 did not stimulate germination in seeds imbibed in mannitol, but germination was complete if seeds were given 1-h acid immersion plus a water rinse before the terminal R or GA3 treatment. Seeds imbibed in 50–500 mm PEG during 10-day DS germinated significantly better in response to terminal R. Terminal GA3 significantly improved germination only in seeds imbibed at 500 mm PEG. Pfr appeared to function in mannitol-imbibed seed only after an acid treatment. Seed exposure to inorganic nitrogen salts during the 10-day DS maintained seed sensitivity to terminal R or GA3 treatment. The depth of seed skotodormancy was related to the availability of inorganic nitrogen and also involved the levels of Pfr or endogenous GA3.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    ISSN: 1432-0789
    Keywords: Excreta ; Fertiliser ; Microbial biomass ; Nitrogen ; Silvopastoral
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract This paper describes a field study to assess the effect of increasing the frequency of split applications of N fertiliser on the pattern of plant uptake, soil N availability, and microbial biomass C and N. Measurements were taken during the growing season in different positions relative to young trees (Prunus avium L.) in an upland silvopastoral system in its first year after establishment. At fertiliser rates of 72 and 144 kg ha-1 N applied as NH4NO3, increasing the number of split applications increased N uptake by the pasture. Mineral forms of soil N measured 2 weeks after application indicated that residual NH inf4 sup+ -N and total mineral N were also greater in this treatment on certain dates. Soil NO inf3 sup- -N was positively correlated with the soil moisture content, and nitrification reached a maximum in early May and declined rapidly thereafter except within the herbicide-treated areas around the trees where soil moisture had been conserved. Results of the study suggest that high NO inf3 sup- -N in herbicide-treated areas was probably caused by mineralisation of grass residues and low uptake by the tree rather than by preferential urine excretion by sheep sheltering beside the trees. Mean microbial biomass C and N values of 894 and 213 kg ha-1, respectively, were obtained. Microbial C was slightly increased by the higher frequency of split applications at 144 kg ha-1 N and was probably related to the greater herbage production with this treatment. Microbial N was not significantly affected by the N treatments. Both microbial biomass C and N increased during the growing season, resulting in the net immobilisation of at least 45 kg ha-1 N which was later released during the autumn.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 20 (1995), S. 237-242 
    ISSN: 1432-0789
    Keywords: Mineralization capacity ; Nitrogen ; Soil incubation ; Time of incubation ; Temperate humid-zone soils
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The N mineralization rate in 11 soils was studied by aerobic incubation at 28°C and at a moisture content of 75% of field capacity for 2 weeks (short term) and 6 weeks (medium term). Relationships between the N mineralization indices for each period were evaluated. Ammonification largely predominated during the first 2 weeks of incubation, whereas nitrification was the predominant process between weeks 2 and 6. The net N mineralized in the different soils varied from 0 to 2.85% of the organic N after 2 weeks of incubation and from 0.32 to 3.36% of the organic N after 6 weeks of incubation, the mean values for each period being 0.82 and 1.51% of the organic N, respectively. The quantities of NH inf4 sup+ -N, NO inf3 sup- -N, and total inorganic N produced and the percentage of organic N mineralized after 2 weeks of incubation were highly and positively correlated with the coresponding values after 6 weeks of incubation. These results showed that either length of incubation could be used to determine the potential N mineralization capacity of the soils. Information obtained from two incubation periods was largely supplementary for the kinetic study of N mineralization, ammonification, and nitrification; therefore a medium-term incubation with intermediate measurements of N mineralization over a short term may be more useful than a single measurement using either of the two incubation periods.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    ISSN: 1432-2285
    Keywords: Amino acids ; Arginine ; Eucalyptus ; Foliage ; Nitrogen
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Rates of growth of seedlings of E. globulus, E. regnans and E. nitens were related to phosphorus supply in two soils but concentrations of total nitrogen and total phosphorus in most plant tissues did not vary significantly among soil or phosphorus treatments. Differences in concentrations of nitrogen and phosphorus and in the composition of the pool of free amino-acids among leaves at different stages of development were far greater than differences between treatments. The most significant of these differences were several-fold greater concentrations of arginine in the oldest leaves and these are most likely due to protein degradation and/or in situ synthesis since arginine is not generally phloem mobile. The concentration of reduced nitrogen in xylem sap was inversely related to growth and glutamine was by far the dominant nitrogenous solute. We suggest that specific nitrogenous solutes may be useful indices of the nitrogen status of eucalypt tissues for insect herbivores.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 17 (1994), S. 159-166 
    ISSN: 1432-0789
    Keywords: Eucalypt forest ; Litter decomposition ; Fertilizer ; Nitrogen ; Phosphorus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The decomposition and nutrient content of litter was studied for 2 years in regrowth Eucalyptus diversicolor forest to which N (0, 200 kg ha-1 year-1) and P (0, 30, 200 kg ha-1) had been applied. The P addition increased, and the N addition decreased, the rate of dry weight loss of decomposing litter. Analysis of the coefficients of a double exponential decay model with components describing the release of labile and resistant fractions indicated that decomposition of the resistant component of litter was most affected by the fertilizer additions. Treatment with N reduced the rate of loss of this component and increased its half-life by approximately 30%, whereas P treatment increased its rate of decay and decreased its half-life by approximately 30%. P accumulated in litter during decomposition. P uptake and retention was greater in P-treated than untreated plots. The application of N reduced P accumulation in litter. An accumulation of N also occurred during decomposition, the amount of N imported into litter being greater on plots treated with N fertilizer. Treatment with N affected the amount of S in decomposing litter. Litter on N-treated plots either accumulated more S or released it more slowly than litter on plots not treated with N. The application of N as NH4NO3 decreased forest-floor litter pH, increased litter layer mass (by 15%), and increased the amount of N (by 34%) and S (by 32%) stored in the forest floor. Treatment with P reduced the amount of N (by 22%) stored in the litter layer. The application of 200 kg P ha-1 in the absence of N increased the store of P in the litter layer by 80%, but when N and P were applied together the amount of P in the litter was not significantly different between P treatments.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 17 (1994), S. 173-176 
    ISSN: 1432-0789
    Keywords: Ammonification ; Cyfluthrin ; Nitrification ; Nitrogen ; N mineralization ; N transformations ; Pesticides
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Laboratory incubation experiments were conducted in soil to study the influence of the insecticide Baythroid on immobilization-remineralization of added inorganic N, mineralization of organic N, and nitrification of added NH inf4 su+ -N. Baythroid was applied at 0, 0.4, 0.8, 1.6, 3.2, and 6.4 μg g-1 soil (active ingredient basis). The treated soils were incubated at 30°C for different time intervals depending upon the experiment. The immobilization and mineralization of N were significantly increased in the presence of Baythroid, the effect being greater with higher doses of the insecticide. Conversely, nitrification was retarded at lower doses of Baythroid and significantly inhibited at higher doses. The results of these studies suggest that excessive amonts of insecticide residues affect different microbial populations differently, leading to changes in nutrient cycling.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Electronic Resource
    Electronic Resource
    Springer
    Plant foods for human nutrition 46 (1994), S. 1-11 
    ISSN: 1573-9104
    Keywords: Chemical composition ; Cultivar ; Harvest data ; Lactuca sativa L. ; Lettuce ; Nitrate ; Nitrogen ; Plant age ; Tipburn ; Quality ; Vitamin C
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The marketable and nutritional quality of crisphead lettuce as affected by nitrogen supply, cultivar, and plant age at harvest was investigated in six plantings during 1989 and 1990. The optimum yield of marketable heads was obtained at a total nitrogen supply of 150 kg N per ha although only small differences were observed to the yield at 100 and 200 kg total N per ha. The total nitrogen supply included the amount of mineral nitrogen within the rhizosphere. The incidence of dry tipburn in older leaves was clearly decreased by an increased nitrogen supply, especially at late planting. The content of nitrate was increased and the content of dry matter and vitamin C decreased with increased nitrogen supply. The vitamin C content was higher for the cultivar ‘Marius’ than for ‘Saladin’. As plants got older, the nutritional quality of crisphead lettuce decreased because the content of nutrients, especially vitamin C, decreased with increased plant age at harvest.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Electronic Resource
    Electronic Resource
    Springer
    Trees 7 (1993), S. 86-91 
    ISSN: 1432-2285
    Keywords: Pinus radiata ; Stem deformation ; Nitrogen ; Stem form ; Elasticity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Seedlings from nine families of Pinus radiata were grown in a glasshouse under conditions of high and low nitrate nitrogen availability to investigate effects on anatomical and strength characteristics of stems. Families were classified into groups dependent upon their previously determined susceptibility to stem deformation prevalent in plantations established on fertile ex-pasture. Nitrogen treatments significantly affected seedling form in terms of both branch production and stem slenderness. The high N treatment resulted in shorter seedlings, a proportion of which were obviously stunted. Stem strength of seedlings, physically supported throughout the experiment, was assessed as stem lean at harvest as well as the bending strength of the fresh stem at 50% stem height. These two variables were found not to be correlated. Stem lean at harvest was greatest in families known to be susceptible to stem deformation. These families produced stems that were also more slender than families of low susceptibility. Increased stem lean was associated mostly with increased stem slenderness while elasticity was more influenced by pith diameter, stem density and wood radius.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 15 (1993), S. 153-159 
    ISSN: 1432-0789
    Keywords: Calcium ; Maize ; Nitrogen ; Brazilian Amazon ; Cation leaching ; Canavalia ensiformes ; Mucuna aterrima
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary This work investigated the effectsof amendments of fertilizer N and lime on subsoil acidity and maize rooting depth in an acid soil of the central Amazon basin. A split-plot designed field experiment was conducted on a clayey Oxisol (Typic Acrudox) during a 16-month period. Main plots received 0 or 4 Mt ha-1 of lime. Subplots were four crop sequences: (1) Maize-green manure (Canavalia ensiformes); (2) maize-green manure (Mucuna aterrima); (3) maize-bare fallow, with the maize receiving 300 kg ha-1 of urea-N; and (4) bare fallow, with an application of 300 kg ha-1 of urea-N at the same time as sequence 3. Plots were periodically sampled to 1.2 m. The experimental site received 4265 mm of precipitation during 16 months; approximately 60%–90% of this rain percolated through the profile. Substantial amounts of Ca were leached from the 0–30 cm horizon during the experimental period, but only limited amounts accumulated in the subsoil. Base saturation below 45 cm was less than 50% at the end of the experiment regardless of lime treatment. Roots of maize were concentrated in the 0–30 cm layers in limed plots and the 0–20 cm layers in unlimed plots. In all treatments less than 5% of the roots was found below 50 cm. An acidity balance indicated that considerable acidity was leached below the plow layer and out of the profile.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 155-156 (1993), S. 391-394 
    ISSN: 1573-5036
    Keywords: Nitrogen ; rice ; simulation ; model
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Yield potential of modern rice varieties and implications for N management were evaluated in a series of field studies that provided data for validation of an eco-physiological simulation model for rice. We tested the hypothesis that N was the major factor limiting yield potential of irrigated rice. The simulation model ORYZA1 was used to evaluate the observed yield differences between varieties grown with different N management and in different environments. The model explained differences in yield of the treatments resonably well on the basis of differences in radiation, temperature, leaf N content and variety coefficients for phenological development. It was demonstrated by the model and experimental data that yield levels of 6 t ha-1 in the wet season and 10 t ha-1 in the dry season can be obtained in the tropics with the current short duration varieties only when the N supply from soil and fertilizer is adequately maintained at key growth stages. Yield probabilities for rice crops were simulated for different environments using long term weather data at two Philippine sites.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    ISSN: 1432-2285
    Keywords: Nitrogen ; Photon flux density ; Growth ; Betula
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Small birch plants (Betula pendula Roth.) were grown in a climate chamber at different, exponentially increasing rates of nitrogen supply and at different photon flux densities. This resulted in treatments with relative growth rate equal to the relative rate of increase in nitrogen supply and with different equilibrium values of plant nitrogen concentration. Nitrogen productivity (rate of dry matter increase per plant nitrogen) was largely independent of nitrogen supply and was greater at higher photon flux density. Leaf weight ratio, average specific leaf area (and thus leaf area ratio) were all greater at better nitrogen supply and at lower values of photon flux density. The dependencies were such that the ratio of total projected leaf area to plant nitrogen at a given photon flux density was similar at all rates of nitrogen supply. The ratio was greater at lower values of photon flux density. At a given value of photon flux density, net assimilation rate and net photosynthetic rate per shoot area (measured at the growth climate) were only slightly greater at better rates of nitrogen supply. Values were greater at higher photon flux densities. Acclimation of the total leaf area to plant nitrogen ratio and of net assimilation rate was such that nitrogen productivity was largely saturated with respect to photon flux density at values greater than 230 μmol m-2 s-1. At higher photon flux densities, any potential gain in nitrogen productivity associated with higher net assimilation rates was apparently offset by lower ratios of total leaf area to plant nitrogen.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 32 (1992), S. 259-267 
    ISSN: 1573-0867
    Keywords: Nitrogen ; phosphorus ; timber increment ; fertilization ; Pinus radiata
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Two trials inPinus radiata growing on different sites in N.S.W. allowed consideration of fertilizer applications after 2nd or 3rd thinning. The trials included factorial applications of N and P at a single thinning intensity plus a further treatment which allowed assessment of different thinning intensities. The most significant growth responses were obtained by application of N and P in combination. The largest response (additional productivity compared with the unfertilized control) occurred 4 years after application and after 7 years there was no additional absolute response for either of the two sites. The largest fertilizer response was 70 m3 ha−1 over 7 years on one site and 36 m3 ha−1 on the other, indicating differences in absolute responses between sites. It was concluded that in planning treatments the most responsive sites near the end of the rotation should be selected to maximise economic returns. Foliage analyses indicated differences between sites at the commencement of the study. It was concluded that either a single year of foliage analyses at study commencement is of value, or sampling every year of the study should be used to analyse responses, but a single year of analysis during or at the end of the study would not be of value.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 12 (1992), S. 241-252 
    ISSN: 1432-0789
    Keywords: Decomposition ; Litter ; Microarthropods ; Nitrogen ; 15N ; Litterbags ; Cornus florida ; Quercus prinus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Surface additions of (15NH4)2SO4 were used to measure the immobilization and subsequent movement of exogenous N added to two litter types of contrasting quality (Cornus florida and Quercus prinus). Litterbaskets were used to measure the litter mass loss and N dynamics and to follow the movement of the 15N label through litter, F layer, and soil pools. Half of the litterbaskets of each species were treated with naphthalene to reduce microarthropod densities. The faster decomposing C. florida litter maintained a higher excess atom % 15N, and a greater relative concentration of the labeled input (μg 15N g−1) than did Q. prinus litter. In both litter types the excess atom % 15N, relative concentration (μg 15N g−1), and absolute amount of label recovered in the litter declined over time. This occurred during a period of net accumulation of total litter N, implying simultaneous release of the initial input and immobilization of N from other sources. The concentration of 15N in the soil increased over time, while the F layer apparently acted as an intermediary in the transfer of 15N from litter to soil. Naphthalene effectively reduced microarthropod numbers in all horizons of the litterbaskets and significantly reduced the decay rates of Q. prinus, but not C. florida litter. Naphthalene did not appear to affect total N dynamics in the litter. However, with all horizons taken together, the naphthalene-treated litterbaskets retained more total 15N than the control litterbaskets. Naphthalene also changed the vertical distribution of 15N within litterbaskets, so that the litter retained less of the 15N-labeled input and the F layer and soil horizons retained more of the labeled input than in control litterbaskets. Our major conclusions are: (1) the N pool of decomposing litter is dynamic, with simultaneous N release and immobilization activating N turnover even during the net accumulation phase; (2) litter quality is an important determinant of immobilization and retention of exogenous N inputs and, therefore, turnover of the litter N pool; and (3) microarthropod activity can significantly affect the incorporation and retention of exogenous N inputs in decomposing litter, although these changes are apparently not reflected in net N accumulation or release during the 1st year of decomposition. However, the naphthalene may have affected microbially mediated N dynamics and this possibility needs to be considered in interpreting the results.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 13 (1992), S. 92-95 
    ISSN: 1432-0789
    Keywords: Ammonia volatilization ; Grassland ; Nitrogen ; Soil enzymes ; Urea ; Urine
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The volatilization of ammonia from simulated urine applied to small columns of soil was reduced by the presence of ryegrass growing in the soil. The ryegrass had been sown 18 weeks previously and had been cut on seven occasions to a height of 5–6 cm with the cut herbage removed. Cumulative volatilization over 8 days amounted to 39% of the urinary N from bare soil, and 23% in the presence of the ryegrass. In contrast, the volatilization of ammonia was increased by dead leaf litter placed on the soil surface, apparently due to the increase in surface area for urease activity and volatilization. Differences in the C:N ratio of the leaf litter over the range 13:1–29:1 had little effect on the extent of ammonia volatilization. When living ryegrass and dead leaf litter were examined together, the reduction in volatilization due to the ryegrass was the dominant effect.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 14 (1992), S. 135-139 
    ISSN: 1432-0789
    Keywords: Nitrogen ; Mineralization ; Soil pretreatment ; Incubation experiment ; Freezing/thawing ; Long term field experiment ; Farmyard manure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary We studied the effects of pretreating soil samples (field-fresh, drying at 40° and 105°C, freezing/thawing) on N mineralization in an incubation experiment and on the dynamics of the organic N fraction extracted by K2SO4 solution. The soil samples were collected from plots in a long-term field experiment with the application of mineral fertilizer and farmyard manure. Compared with the field-fresh soil samples, freezing/thawing resulted in higher NO 3 − -N contents while the NH 4 + -N and the organic N content were increased by drying at 105°C. During the incubation period N mineralization was highest after the samples were dried at 105°C and a little lower in those dried at 40°C. After freezing/thawing the order of magnitude of N mineralization remained the same. The difference in organic N between the beginning and the end of the incubation experiment and the mineral N content at the end of the experiment were correlated significantly. Despite this correlation, however, the change in the organic N content underestimated the N mineralization rates.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    ISSN: 1573-0867
    Keywords: Nitrogen ; modelling ; management ; winter wheat ; soil ; crop
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract A model that simulates changes in mineral N in the soil and N uptake by crops has been adapted to require as little detailed information as possible so that it is useful as an aid to management. The adapted model, which was developed in the UK, was tested against data from six experiments on winter wheat in the Netherlands. It proved reasonably successful in simulating the amounts of mineral N found in the soil in early spring and the changes that resulted from applying small amounts of fertilizer N in February. It was much less successful in simulating the effects of later, larger applications of N, mainly because the mineral N measured in the soil did not seem to respond to these applications. The uptake of N by the crops and their production of dry matter were simulated very well in some cases and rather less so in others.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 29 (1991), S. 21-33 
    ISSN: 1573-0867
    Keywords: Nitrogen ; urea ; calcium ammonium nitrate ; cropping density ; N use efficiency ; slow release ; urease inhibitors ; West Africa
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract An overview is provided of the N efficiency research conducted within the West African Fertilizer Management and Evaluation Network (WAFMEN). Factors such as N rate, mode of N fertilizer application and choice of N sources for different agroecological zones of West Africa are discussed in relation to crop yield response. The interactive effects of cropping density and rainfall on N efficiency and yield are examined with particular emphasis on production of millet in Niger. The potential role of new, slow-release fertilizers as well as urea amended with urease inhibitors is mentioned in relation to present and future fertilizer N requirements in West Africa.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 10 (1991), S. 227-232 
    ISSN: 1432-0789
    Keywords: Carbon ; Nitrogen ; Cellulos ; N immobilization ; N mineralization
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The mass loss and N dynamics of barley stems and leaves, placed on the soil surface or buried, were examined over two summers. There was little difference in mass loss or N dynamics in straw placed 7.5 or 15 cm deep. However, the surface straw lost mass much more slowly and immobilized more N for a longer time than the buried straw. Filter paper had a slow rate of mass loss initially, but once started, lost mass much more rapidly than either the barley stems or leaves. Loss of mass was closely correlated with the cellulose loss in straw, whether buried or placed on the soil surface. The sustained rate of mass loss was 6.3 and 7.0% month-1, respectively, for surface and incorporated leaves compared with 3.5 and 4.3% month-1, for surface and incorporated stems. The greater loss sustained by the leaves was attributed to a lower lignin content rather than a higher N content, because the addition of N to the straw after 30 days in the field failed to increase CO2 evolution. Maximum net N immobilization occurred within 30 days for all the barley straw, except for the stems placed on the ground surface, which did not reach maximum N immobilization until the second summer. Immobilization and mineralization of N were estimated for a 3000 kg ha-1 grain crop. Surface straw immobilized 3.8 kg N ha-1 in the 1st year and 9 kg N ha-1 in the 2nd year, whereas incorporated straw immobilixed 3.5 kg N hs-1 in the 1st year and mineralized 4.5 kg N ha-1 in the 2nd year. Thus, in Alaska, residue management does not affect N fertilizer requirements in the 1st year, but an additional 13.5 kg N ha-1 is required for surface residues in the 2nd year.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 11 (1991), S. 221-227 
    ISSN: 1432-0789
    Keywords: Straw ; Green manure ; Decomposition ; Particle size ; Soil ; Nitrogen ; Carbon mineralization ; CO2 evolution
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary A study was conducted to determine the effects of grinding, added N, and the absence of soil on C mineralization from agricultural plant residues with a high C:N ratio. The evolution of CO2 from ground and unground wheat straw, lentil straw, and lentil green manure, with C:N ratios of 80, 36, and 9, respectively, was determined over a period of 98 days. Treatments with added N were included with the wheat and lentil straw. Although the CO2 evolution was initially much faster from the lentil green manure than from the lentil or wheat straw, by 98 days similar amounts of CO2 had evolved from all residues incubated in soil with no added N. Incubation of plant residues in the absence of soil had little effect on CO2 evolution from the lentil green manure or lentil straw but strongly reduced CO2 evolution from the wheat straw. Grinding did not affect CO2 evolution from the lentil green manure but increased CO2 evolution from the lentil straw with no added N and from the wheat straw. The addition of N increased the rate of CO2 evolution from ground wheat straw between days 4 and 14 but not from unground wheat straw, and only slightly increased the rate of CO2 evolution from lentil straw during the initial decomposition. Over 98 days, the added N reduced the amounts of CO2 evolved from both lentil and wheat straw, due to reduced rates of CO2 evolution after ca. 17 days. The lack of an N response during the early stages of decomposition may be attributed to the low C:N ratio of the soluble straw component and to microbial adaptations to an N deficiency, while the inhibitory effect of N on CO2 evolution during the later stages of decomposition may be attributed to effects of high mineral N concentrations on lignocellulolytic microorganisms and enzymes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 11 (1991), S. 279-284 
    ISSN: 1432-0789
    Keywords: Ammonia volatilization ; Nitrogen ; Soil enzymes ; Urea ; Urine
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The proportion of the N that was volatilized as ammonia during 8 days, following the application of simulated livestock urine to soil, increased from 25 to 38% as the temperature of incubation was increased from 4° to 20°C in a system with a continuous flow of air at 70% relative humidity. However, volatilization was reduced if the application was followed by simulated rain; the reduction was greater as the amount of rain increased (up to at least 16 mm) and became less with an increasing length of time (up to 2–3 days) after the application of the urine. The effects of the soil water content before application of the urine, and of the relative humidity of the air, were generally small but volatilization was reduced by a combination of air-dry soil with a low relative humidity. Volatilization was slight (7%) when the flow of air was restricted to 0.5 h in every 12 h but, with an air flow for 12 h in every 24 h, the volatilization was much closer to that with a continuous flow for the whole 8-day period. When cool or dry conditions were imposed for 8 days and then more favourable conditions were instituted for a second period of 8 days, there was a substantial increase in volatilization following the change.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 12 (1991), S. 81-88 
    ISSN: 1432-0789
    Keywords: Fertilization experiment ; Soil organic matter ; Soil particle-size fractions ; Pyrolysis-field ionization mass spectrometry ; Nitrogen
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The influence of more than 100 years of fertilization with farmyard manure on soil organic matter in comparison to unfertilized soil was studied in particle-size fractions using elemental (C and N) analyses and pyrolysis-field ionization mass spectrometry. Distinct differences in C and N concentrations and distribution and in the quality of organic matter between the size fractions and the fertilization treatments were observed. Clay-associated C and N were relatively higher in the unfertilized treatment, whereas the application of farmyard manure preferentially increased soil organic matter associated with the fine and medium silt fractions. Pyrolysis-field ionization mass spectrometry of soil fractions 〈20 μm showed increasing values for lignin monomers and dimers and fatty acids with larger equivalent diameters, whereas the proportion of N compounds, mono- and polysaccharides and phenolics decreased in the larger size fractions. Sand fractions were particularly rich in lignin fragments, mono- and polysaccharides, and alkanes/alkenes. These relationships seemed to be independent of management practices. In the same size fractions of the different treatments, however, a higher relative abundance of N-compounds, mono- and polysaccharides, phenolics, lignin monomers, and alkanes/alkenes was observed in the unfertilized variant. Lignin dimers and fatty acids were more abundant in the farmyard manure treatment. Both trends together imply that soil enrichment in organic matter due to the application of farmyard manure largely reflects an increase in lignin building blocks and partly reflects an increase in lipids such as fatty acids in the silt fractions. Therefore these constituents are of particular importance in assessing the positive effects of farmyard manure on soil fertility.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    ISSN: 1432-0789
    Keywords: Nitrogen ; urea ; crop residues ; particle-size fractionation ; ferrallitic soil
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The fate of N when incorporated in a ferrallitic soil was investigated during a 3-month incubation, using either 15N-labelled urea or 15N-labelled crop residues (sugarcane roots and leaves). The organic matter was characterized by particle-size fractionation. The urea-derived organic 15N was mainly found in the clay-sized fractions and was ascribed to biological activity. The plant-derived 15N was observed both in the sand-sized and in the clay-sized fractions; the former pool was ascribed to the persistence of crops residues, the latter to biological immobilization. The relative proportions of organic 15N recovered in the various clay fractions (coarse, fine, and very fine) were similar, irrespective of the nature of the added 15N. The very fine clay fraction (F〈0.05 μm) showed the highest isotopic excess, and thus gave rise to the highest turnover rate.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    ISSN: 1573-0867
    Keywords: Nitrogen ; computer model ; organic matter turnover ; winter wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract A computer model is described that simulates leaching, organic matter turnover and nitrogen uptake by a winter wheat crop. The model is assessed against a data set from the Netherlands where winter wheat was grown in two seasons (1982–3 and 1983–4) on three different soils in two different parts of the country. The model satisfactorily simulated the growth, N uptake and production of grain. It also simulated the dynamics of indigenous soil N well but it did not always account for the fate of applied fertilizer N. Some possible reasons for this and ways of improving the model are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 9 (1990), S. 1-13 
    ISSN: 1432-0789
    Keywords: Denitrification ; Flooded soil ; 15N ; Nitrogen ; Oryza sativa L. ; Wetland rice ; Urea
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Although denitrification has long been considered a major loss mechanism for N fertilizer applied to lowland rice (Oryza sativa L.) soils, direct field measurements of denitrification losses from puddled rice soils in the tropics have only been made recently. This paper summarizes the results of direct measurement and indirect estimation of denitrification losses from puddled rice fields and reviews the status of research methodology for measurement of denitrification in rice fields. The direct recovery of (N2+N2O)-15N from 15N-enriched urea has recently been measured at sites in the Philippines, Thailand, and Indonesia. In all 12 studies, recoveries of (N2+N2O)-15N ranged from less than 0.1 to 2.2% of the applied N. Total gaseous N losses, estimated by the 15N-balance technique, were much greater, ranging from 10 to 56% of the applied urea-N. Denitrification was limited by the nitrate supply rather than by available C, as indicated by the values for water-soluble soil organic C, floodwater (nitrate+nitrite)-N, and evolved (N2+N2O)-15N from added nitrate. In the absence of runoff and leaching losses, the amount of (N2+N2O)-15N evolved from 15N-labeled nitrate was consistently less than the unrecovered 15N in 15N balances with labeled nitrate, which presumably represented total denitrification losses. This finding indicates that the measured recoveries of (N2+N2O)-15N had underestimated the denitrification losses from urea. Even with a probable two-or threefold underestimation, direct measurements of (N2+N2O)-15N failed to confirm the appreciable denitrification losses often estimated by the indirect difference method. This method, which determines denitrification losses by the difference between total 15N loss and determined ammonia loss, is prone to high variability. Measurements of nitrate disappearance and 15N-balance studies suggest that nitrification-denitrification occurs under alternate soil drying and wetting conditions both during the rice cropping period and between rice crops. Research is needed to determine the magnitude of denitrification losses when soils are flooded and puddled for production of rice.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 9 (1990), S. 159-162 
    ISSN: 1432-0789
    Keywords: Soil animals ; Enchytraeidae ; Nitrogen ; Mineralization ; Soil moisture ; Temperature ; Cognettia sphagnetorum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The influence of the enchytraeid species Cognettia sphagnetorum on N mineralization in homogenized mor humus was examined in a laboratory study. The mor humus was incubated in containers (150 ml) for 8 months at various temperatures and with different moisture levels. Two series were used, one with C. sphagnetorum and one without. The presence of enchytraeids in the cultures increased the level of NH4 + and NO3 - by about 18% compared with the cultures without enchytraeids. Almost 40% of this difference was explained by the decomposition of dead enchytraeids. Temperature and soil moisture were the most important factors controlling the mineralization rate. The optimum moisture for N mineralization was between pF 1.6 and 1.1.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 26 (1990), S. 243-248 
    ISSN: 1573-0867
    Keywords: Nitrogen ; sulfur ; boron ; upland and lowland crops
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Asian agriculture has made enormous gains in food production despite rapid population growth and a shortage of land. This paper reviews the role of fertilizer in agricultural production and the results of recent research on fertilizers and plant nutrition in the region. Fertilizer use has contributed greatly to the increase in food production which has occurred largely in the high potential areas. In these areas research has shown that losses reduce the efficiency of broadcast urea and that the use of high analysis fertilizers is inducing sulfur deficiency in some areas. In upland areas, research has highlighted a major problem of boron deficiency in Thailand. Research progress is being made in understanding the magnitude of nitrogen fixation inputs and the role of shrub legumes in upland systems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 26 (1990), S. 253-269 
    ISSN: 1573-0867
    Keywords: Nitrogen ; phosphorus ; sulphur ; nutrient balances ; surface waters ; North Sea ; Baltic Sea ; eutrophication ; hypertrophication ; primary production
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Dissolved inorganic nitrogen and phosphorus, their relationship to each other (DIN/DIP) as predisposing (nutrient) factors, as well as prevailing weather as a triggering factor all work together to induce the primary production and hence the eutrophication (hypertrophication) process in surface waters. Sulfate likewise is a decisive predisposing factor influencing the eutrophication process by reducing N availability but increasing P availability and thus acting towards an N limitation of the primary production. This is one of the reasons why marine (coastal) waters and estuaries often exhibit N limitation with respect to primary production, while freshwater ecosystems often tend to exhibit P limitation. Within the N and P balance of agriculture of some countries of Western Europe (Netherlands, Denmark, Switzerland, FRG, UK and Sweden for N, resp. Netherlands, FRG and GDR for P) more the level than the efficiency of the N and P applications indicates the extent of the nutrient surplus. Despite 59–73% N utilization in plant production, the rate of 13–23% for agriculture as a whole equals to the 12–21% efficiency of N use in animal production. The varying N surplus in agriculture in the separate countries of 124 to 465 kg N ha−1 a−1 is determined almost exclusively by the level of the N application and not by its efficiency. The situation is similar for P: In spite of P utilization in plant production of 59–76%, P utilization in total agriculture is only 11–38%, or comparable to the P efficiency within animal production of 10–34%. The differing P excess balance of 55 to 88 kg P2O5 ha−1 a−1 is influenced by the level of the P application. The N and P efficacy of total agriculture hence is determined almost completely by that of animal production, since 83–95% (N basis) and 76–94% (P basis) of the total plant production (on top of the nationally varying levels of N and P use via imported feeds) are fed to animals — with the low N and P utilization cited above. Agriculture's share of the N and P emissions into surface water of several countries/regions in Western Europe (FRG, Netherlands, Italy, Denmark, Switzerland, Norway) ranges from 37 to 82% resp. 27 to 38%. Its share in the flus into the North Sea catchment basin will be about 60% for N and 25% for P related only to the anthropogenic material carried by the rivers. Agriculture's share in the atmospheric N emissions into the North and Baltic Seas can be estimated at about 65% or 55%, resp. while the remaining approx. 35% or 45%, resp. are traceable primarily to anthropogenic burning processes. For agriculture the priority lies in limiting N emissions into surface water caused by leaching, erosion and NH3 emissions, and reducing P emissions mainly through soil conservation (protection against erosion) and water protection. As regards N this means a demand for comprehensive protection of groundwater and atmosphere differentiated according to the potential for losses or the risk of losses on a site, also outside the protection zones. As regards P only those areas can be included in the demand for reduction of emissions that are actually threatened by erosion or surface runoff. Plenty of short-term and long-term measures are available to agriculture to reduce N and P emissions. Especially the long-range measures (such as creating nutrient balances on farms and fields, the integration of animal and plant production, maintaining maximum livestock densities according to the ability of areas to absorb nutrients, altered feeding programs in animal nutrition, changes in livestock keeping (slurry→deep litter), increasing the internal and external recycling of N and P) are capable of bringing about a satisfactory degree of success within the next 20 to 30 years.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 10 (1990), S. 35-44 
    ISSN: 1432-0789
    Keywords: Pinus edulis ; Juniperus osteosperma ; Carbon ; Nitrogen ; Nitrification ; Microbial N ; N immobilization ; Fire ecology ; Nitrifying bacteria
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Forest floor litter, duff, and underlying soils were assembled in laboratory microcosms representing pinyon, juniper, and interspace field conditions. Burning removed more than 95% of both N and C from the litter, with losses from the duff dependent on soil moisture conditions. No significant changes in total N or C were noted in the soil. Immediate increases were observed in soil NH inf4 sup+ , decreasing with depth and related to soil heating. The greatest increases were noted in both the pinyon and juniper soils that were dry at the time of the burn, with interspace soils exhibiting the least changes. Soil NH inf4 sup+ closely approximated the controls on day 90 after the burns in all treatments. Ninety days after the burn microbial biomass N was highest in the controls, followed by the wet and then the dry-burned soils, in both the pinyon and juniper microcosms. This was inversely related to the levels of accumulated NO inf3 sup- . Nitrifying bacteria populations were indirectly correlated to soil temperatures during the burn. Population levels 90 days after the burn showed increases in both the wet- and the dry-burn treatments, with those in the pinyon treatments exceeding those found in the nitial controls of pinyon soils.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 26 (1990), S. 89-98 
    ISSN: 1573-0867
    Keywords: Nitrogen ; phosphorus ; potassium ; sugarcane ; fertilizer use
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The amounts of N and K fertilizers used in the South African sugar industry have increased dramatically in the past four decades, due partly to an increase in the area under sugarcane but also to large increases in the amounts of N and K fertilizers applied per hectare. There has also been an increase in the amount of P fertilizer used but this has been more gradual. The main fertilizer carriers for cane and their relative efficiency are discussed. During this period there has been considerable research into the nutrient requirements of sugarcane. Correlations established between soil and leaf analysis and crop responses to N, P and K fertilizers, and their effects on cane quality, are reviewed. While fertilizer recommendations based on soil and leaf analysis have provided a useful guide for determining the nutrient requirements of cane, they are continually being modified in the light of current research.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 8 (1989), S. 189-190 
    ISSN: 1432-0789
    Keywords: Nitrogen ; Ammonium ; Nitrate ; Nitrogen extraction ; Soils ; Nitrogen mineralization
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary A roller bed and rotary end-over-end shaker were compared for the extraction of mineral N from a variety of soil types; both were equally efficient with an optimum extraction time of 30 min. However, the roller bed permitted a greater operational capacity, a faster throughput of samples, and easier identification of sample bottles compared with the end-over-end shaker. More NH4 +-N and NO3 −-N (P〈0.001) was recovered from soil by 2 M KCl than by any other extractant, in a soil: extractant ratio of 1 to 5 (w:v), except water, which was equally efficient at removing NO3 −-N from soils.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 8 (1989), S. 13-18 
    ISSN: 1432-0789
    Keywords: Bacteria ; Protozoa ; Predation ; Nitrogen ; Mineralization ; Plant uptake ; Soil
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Microbial N from 15N-labelled bacterial biomass was investigated in a microcosm experiment, in order to determine its availability to wheat plants. Sterilized soil was inoculated with either bacteria (Pseudomonas aeruginosa alone or with a suspension of a natural bacterial population from the soil) or bacteria and protozoa to examine the impact of protozoa. Plant biomass, plant N, soil inorganic N and bacterial and protozoan numbers were determined after 14 and 35 days of incubation. The protozoa reduced bacterial numbers in soil by a factor of 8, and higher contents of soil inorganic N were found in their presence. Plant uptake of N increased by 20010 in the presence of protozoa. Even though the total plant biomass production was not affected, the shoot: root ratios increased in the presence of protozoa, which is considered to indicate an improved plant nutrient supply. The presence of protozoa resulted in a 65010 increase in mineralization and uptake of bacterial 15N by plants. This effect was more pronounced than the protozoan effect on N derived from soil organic matter. It is concluded that grazing by protozoa strongly stimulates the mineralization and turnover of bacterial N. The mineralization of soil organic N was also shown to be promoted by protozoa.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 20 (1989), S. 11-15 
    ISSN: 1573-0867
    Keywords: Nitrogen ; nitrogen isotopes ; fertilizers ; 15N balance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Calculations in nitrogen (N) balance research using15N involve several steps that require care to avoid errors. The objective of this paper is to provide examples of these calculations using established procedures and to present shortened alternative calculations that give the same result. The calculations examined include determination of the amount of N to apply, determination of the atom %15N abundance needed in the labeled fertilizer, preparation of the labeled fertilizer, and calculation of the fertilizer N recovered. Calculations needed in the preparation of the labeled fertilizer using established procedures include the determination of the mean atomic weight of the enriched source from which the labeled fertilizer is prepared. This determination is not needed in the shortened alternative calculations, because the procedure places the calculations on a mole basis rather than a mass basis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Electronic Resource
    Electronic Resource
    Springer
    Agroforestry systems 8 (1989), S. 257-265 
    ISSN: 1572-9680
    Keywords: Nitrogen ; phosphorus ; potassium ; rooting density ; root biomass
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Nutrient competition between interplanted species is investigated using mechanistic modelling. Though tree and crop plant roots may occupy the same soil volume, nutrient competition is seen to be dependent on soil supply mechanisms. Model simulations illustrate the effects of nutrient diffusion rate, mobility/soil interaction, root diameter, soil moisture content, and rooting density on nutrient concentration gradients governing uptake adjacent to plant roots. These factors, unique for each nutrient and soil, combine to determine the potential for competition in agroforestry plantings. Nutrient competition is most likely for the more mobile nutrients and mechanistic modelling can be used to select tree and crop species with superior rooting and physiological characteristics for interplantings to better manage below-ground competition.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...