ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 12 (1991), S. 81-88 
    ISSN: 1432-0789
    Keywords: Fertilization experiment ; Soil organic matter ; Soil particle-size fractions ; Pyrolysis-field ionization mass spectrometry ; Nitrogen
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The influence of more than 100 years of fertilization with farmyard manure on soil organic matter in comparison to unfertilized soil was studied in particle-size fractions using elemental (C and N) analyses and pyrolysis-field ionization mass spectrometry. Distinct differences in C and N concentrations and distribution and in the quality of organic matter between the size fractions and the fertilization treatments were observed. Clay-associated C and N were relatively higher in the unfertilized treatment, whereas the application of farmyard manure preferentially increased soil organic matter associated with the fine and medium silt fractions. Pyrolysis-field ionization mass spectrometry of soil fractions 〈20 μm showed increasing values for lignin monomers and dimers and fatty acids with larger equivalent diameters, whereas the proportion of N compounds, mono- and polysaccharides and phenolics decreased in the larger size fractions. Sand fractions were particularly rich in lignin fragments, mono- and polysaccharides, and alkanes/alkenes. These relationships seemed to be independent of management practices. In the same size fractions of the different treatments, however, a higher relative abundance of N-compounds, mono- and polysaccharides, phenolics, lignin monomers, and alkanes/alkenes was observed in the unfertilized variant. Lignin dimers and fatty acids were more abundant in the farmyard manure treatment. Both trends together imply that soil enrichment in organic matter due to the application of farmyard manure largely reflects an increase in lignin building blocks and partly reflects an increase in lipids such as fatty acids in the silt fractions. Therefore these constituents are of particular importance in assessing the positive effects of farmyard manure on soil fertility.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 30 (2000), S. 399-432 
    ISSN: 1432-0789
    Keywords: Key words Analytical pyrolysis ; Computational chemistry ; Molecular modelling ; Soil organic-mineral particles ; Xenobiotic complexes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  Organic-mineral soil particles are formed and altered as a result of pedogenic processes and anthropogenic impacts on soils. They can be isolated from bulk soil samples by physical disaggregation followed by particle size and/or density fractionation. This review summarizes methodological advances and the characteristic features of the chemical composition of organic matter in these different fractions. It is demonstrated how soil texture and soil genesis determine the contents of organic C (Corg) in size-separates and their distribution in typical profiles of four important major soil groups. Data from numerous field studies were compiled to show that the proportions of Corg bound in clay fractions increased under soil uses which reduce the soil organic matter (SOM) content. Coarser and lighter particles are relatively enriched in native or manured soils. Contents of humic substances, lignin oxidation products, carbohydrates, lipids, and forms of organic N determined by wet-chemical methods indicate that the chemical composition results from specific functions of the organic-mineral particles in the turnover of SOM. This is also reflected by 13C-nuclear magnetic resonance and analytical pyrolysis, the applications of which to the study of organic-mineral particles are summarized and compared for the first time. The summarized chemical characteristics of organic-mineral particles have direct effects on other properties such as soil aggregation and the resulting physical behaviour of soil. Moreover, the adsorption and distribution of plant nutrients, as well as the binding capacity for a wide range of pollutants, clearly show that the organic matter is a key factor for the physicochemical reactions at organic-mineral surfaces. Along with evidence for the different mineralizability of Corg and organic N, and enzymatic properties, the accumulated knowledge of their composition, structure and properties provides a basis from which to develop molecular models of organic-mineral particles. Molecular modelling and visualization of humic colloids, SOM and its complexes (organic-mineral particles) with biological substances, metals and xenobiotics are discussed. These model complexes offer a basis for the conceptual development of SOM macromolecules, mineral soil particles and the computer-assisted design of organic-mineral particles. Molecular-mechanics calculations and geometrical optimization are employed to obtain energy minimized, stable conformations which allow the determination of atomic distances, bonds, angles, torsions, stretches, etc., at nanochemical level. As a result, exact descriptions of three-dimensional structures can be proposed. The total (potential) energy of the organic matter complexes and macromolecules can be determined simultaneously, and energy derivatives for bond-, angle-, dihedral-, van der Waals′, stretch-bend, and electrostatic energies calculated. Moreover, quantitative structure-activity relationship software is employed to calculate relevant molecular properties such as surface, volume, atomic charges, polarizability, refractivity, etc. It is this combination of atomic/molecular structural data and energy derivatives that opens up new insights into binding sites and transport forms between biological and/or xenobiotic substances and SOM. The resulting potential, and limits, for modelling of organic (humic) macromolecules, organic-mineral particles and mineral surfaces are delineated.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0789
    Keywords: Long-term experiment ; Organic fertilization ; Soil organic matter ; Particle-size fractions
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The concentrations of organic C and total N in five different particle-size fractions were studied under different mineral and organic fertilizer regimens by examining soil samples from the 34-year-old soil-formation pot experiment Hu 3 in Rostock. The C and N concentrations were generally highest in the clay fraction and decreased in the order medium silt 〉fine silt 〉coarse silt and sand. For nearly all years and size fractions the following order was obtained for C and N concentrations under the various fertilizer regimens: Compost 〉farmyard manure 〉straw + mineral fertilizer 〉mineral fertilizer. The various particle-size fractions and fertilizer regimens differed in the development of soil organic matter levels. Consequently, characteristic redistributions were found in the proportions of C and N in the various particle-size fractions, particularly after organic fertilizer was no longer applied (years 20–34). This experimental phase was characterized by decreased organic C and increased total N concentrations, and increased proportions of C and N in the clay-size at the expense of the sand fractions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 20 (1995), S. 17-23 
    ISSN: 1432-0789
    Keywords: Soil organic matter ; Hot water extract ; Field experiment ; Soil biomass ; Temporal variations ; Soil fertility ; NMR ; Analytical pyrolysis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Hot water-soluble organic matter was extracted from soil samples collected weekly between April and October in untreated and NPK+farmyard manure-fertilized plots in the 88-year-old Static Experiment (Loess Chernozem) at Bad Lauchstädt, Germany. As shown by solid-state 13C-nuclear magnetic resonance spectroscopy (13C-NMR) combined with pyrolysis-field ionization mass spectrometry this organic matter fraction was largely composed of carbohydrates and N-containing compounds, in particular amino-N species and amides. This composition and the low pyrolysis temperatures (mainly between 300 and 500°C) indicated its origin from soil biomass and root exudates and lysates, and its presence in the soil solution or weakly adsorbed by soil minerals and humic macromolecules. Long-term fertilization with NPK+farmyard manure resulted in larger mean concentrations of hot water-extracted C and N (0.933 and 0.094 g kg-1) than soil management without fertilization (0.511 and 0.056 g kg-1). The C and N extracted by hot water were in the range of 3–5% of total soil C and N. In the two treatments distinct temporal changes were observed, which appeared to be related to population dynamics of soil organisms, root growth and decomposition, and climatic influences on soil.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-0789
    Keywords: Key words Phosphorus forms ; P fractionations ; NMR spectroscopy ; Animal manures ; P esters ; Clay size separates
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The solubility and forms of phosphorus (P) were investigated in manures from chicken and pigs, eight whole soil samples and clay-, silt-, and sand-size separates from an arable and a grassland soil. Total P (Pt) in liquid pig manure (16.2 g kg–1) and dry chicken manure (26.2 g kg–1) was distributed between residual P (39–41% Pt), H2SO4–P (17–27% Pt), labile resin- and NaHCO3–P (24–39% Pt), and NaOH-P (3–10% Pt). Most soils had larger proportions of NaOH-P and residual P, indicating reactions of manure-derived P compounds with pedogenic oxides and humic substances. Clay-size separates had the highest P-concentrations in all fractions and were particularly enriched in exchangeable and labile P forms. Solution 31P-nuclear magnetic resonance (NMR) spectra of 0.5 M NaOH extracts from manures and some soil samples showed greater signal intensities for orthophosphate and monoester P than 0.1 M NaOH extracts. This can be explained by alkaline hydrolysis phosphate diesters at higher NaOH concentrations and/or by preferential extraction of diesters at lower concentrations. The 31P-NMR spectra showed differences between the two manures and confirmed that increasing proportions of ester-P can be expected if they are spread to soils. The NaOH extracts of soil samples were characterized by large proportions of orthophosphate-P (mean 77% of assigned P compounds), which seemed to be slightly enriched in clay fractions whereas the extracts from silt contained more ester-P. Sequential extractions and 31P-NMR spectroscopy both showed that these excessively manured soils are likely to lose large amounts of P.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Soil use and management 13 (1997), S. 0 
    ISSN: 1475-2743
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract. Soils in areas with high livestock density contribute to the eutrophication of aquatic ecosystems through loss of nutrients, especially phosphorus (P). In order to identify the potential for P loss from such soils we determined phosphorus extracted by water (H2O-P), by double lactate (DL-P), and P sorption capacity (PSC) and degree of P saturation (DPS) in soil samples from two counties, one with low (Harle-catchment) and the other with very high livestock density (Vechta). Both catchments are hydrologically connected with the tidal areas of the North Sea.The mean concentrations of H2O-P (0.4mmol/kg) and DL-P (3.9 mmol/kg) were lower in the Harle-catchment than in the Vechta area (1.2 mmol/kg, 6.8mmol/kg). Although oxalate-extractable Al (Alox) and Fe (Feox) and the derived PSCs varied according to soil type and to land use, the livestock density and the resulting high concentrations of oxalate-extractable P (Pox) were shown to be the main reason for the very high DPS of up to 179% in the county of Vechta. These values exceeded DPS reported from other intensive pig feeding areas in western Europe and indicate the potential for significant P loss. Less than 40% of the variation in Pox could be explained by the routinely determined H2O-Por DL-P. Geostatistical analyses indicated that the spatial variability of Pox depended on manurial history of fields and Alox, showed still smaller-scale variability. These were the major constraints for regional assessments of P losses and eutrophication risk from agricultural soils using available soil P-test values, digital maps and geostatistical methods.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    European journal of soil science 50 (1999), S. 0 
    ISSN: 1365-2389
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    European journal of soil science 50 (1999), S. 0 
    ISSN: 1365-2389
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: We should know the effects of soil use and management on the contents and forms of soil phosphorus (P) and the resulting potential for leaching losses of P to prevent eutrophication of surface water. We determined P test values, amounts of sequentially extracted forms of P, P sorption capacities and degrees of P saturation in 20 differently treated soils and compared these data with leaching losses in lysimeters. One-way analyses of variance indicated that most fractions of P were significantly influenced by soil texture, land use (grassland, arable or fallow or reafforestation), mineral fertilization and intensity of soil management. Generally, sandy soils under grass and given large amounts of P fertilizer contained the most labile P and showed the largest P test values. Fallow and reafforestation led to smallest labile P fractions and relative increases of P extractable by H2SO4 and residual P. Arable soils with organic and mineral P fertilization given to crop rotations had the largest amounts of total P, labile P fractions and P test values. The mean annual concentrations of P in the lysimeter leachates varied from 0 to 0.81 mg l–1 (mean 0.16 mg l–1) and the corresponding leaching losses of P from 〈 0.01 to 3.2 kg ha–1 year–1 (mean 0.3 kg P ha–1 year–1). These two sets of data were correlated and a significant exponential function (R2 = 0.676) described this relation. Different soil textures, land uses and management practices resulted in similar values for P leaching losses as those for the amounts of labile P fractions. Surprisingly, larger rates of mineral P fertilizer did not necessarily result in greater leaching losses. The contents of P extracted by NaHCO3 and acid oxalate and the degrees of P saturation were positively correlated with the concentrations of P in leachates and leaching losses. As the P sorption capacity and degree of P saturation predicted leaching losses of P better than did routinely determined soil P tests, they possibly can be developed as novel P tests that meet the requirements of plant nutrition and of water protection.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    European journal of soil science 50 (1999), S. 0 
    ISSN: 1365-2389
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Heavy density fractions of soil contain organic matter tightly bound to the surface of soil minerals. The chemical composition and ecological meaning of non-metabolic decomposition products and microbial metabolites in organic–mineral bonds is poorly understood. Therefore, we investigated the heavy fraction (density 〉 2 g cm–3) from the topsoil of a Gleysol (Bainsville, Ottawa, Canada). It accounted for 952 g kg–1 of soil and contained 19 g kg–1 of organic C. Pyrolysis-field ionization mass spectra showed intensive signals of carbohydrates, and phenols and lignin monomers, alkylaromatics (mostly aromatic) N-containing compounds, and peptides. These classes of compound have been proposed as structural building blocks of soil organic matter. In comparison, the light fraction (density 〉 2 g cm–3) was richer in lignin dimers, lipids, sterols, suberin and fatty acids which clearly indicate residues of plants and biota. To confirm the composition and stability of mineral-bound organic matter, we also investigated the heavy fraction (density 〉 2.2 g cm–3) from clay-, silt- and sand-sized separates of the topsoil of a Chernozem (Bad Lauchstädt, Germany). These heavy size separates differed in their mass spectra but were generally characterized by volatilization maxima of alkylaromatics, lipids and sterols at about 500°C. We think that the observed high-temperature volatilization of these structural building blocks of soil organic matter is indicative of the organic–mineral bonds. Some unexpected low-temperature volatilization of carbohydrates, N-containing compounds, peptides, and phenols and lignin monomers was assigned to hot-water-extractable organic matter which accounted for 7–27% of the carbon and nitrogen in the heavy fractions. As this material is known to be mineralizable, our study indicates that these constituents of the heavy density fractions are degradable by micro-organisms and involved in the turnover of soil organic matter.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Oxford, UK; Malden, USA : Blackwell Publishing Ltd/Inc.
    European journal of soil science 55 (2004), S. 0 
    ISSN: 1365-2389
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Fatty acids, the most abundant class of soil lipids, indicate pedogenetic processes and soil management. However, their quantitative distribution in organo-mineral particle-size fractions is unknown. The concentrations of n-C10:0 to n-C34:0 fatty acids both in whole soil samples and in the organo-mineral particle-size fractions of the Ap horizon of a Chernozem were determined (i) to evaluate the effects of long-term fertilization and (ii) to investigate their influence on the aggregation of organo-mineral primary particles. Quantification by gas chromatography/mass spectrometry (GC/MS) showed that long-term fertilization with nitrogen, phosphorus and potassium (NPK) and farmyard manure (FYM) led to larger concentrations (25.8 µg g−1) of fatty acids than in the unfertilized sample (22.0 µg g−1). For particle-size fractions of the unfertilized soil, the fatty acid concentrations increased from the coarse silt to the clay fractions (except for fine silt). Fertilization with NPK and FYM resulted in absolute enrichments of n-C21:0 to n-C34:0 fatty acids with a maximum at n-C28:0 in clay (×2.2), medium silt (×2.0), coarse silt (×1.8) and sand (×2.9) compared with the unfertilized treatment (the factors of enrichment are given in parentheses). New evidence for the aggregate stabilizing function of n-C21:0 to n-C34:0 fatty acids was shown by the characteristic pattern in size-fractionated, disaggregated and aggregated samples. Highly significant correlations of fatty acid concentrations with organic C concentrations and specific surface areas are interpreted as indicators of (i) trapping of fatty acids in organic matter macromolecules and (ii) direct bonding to mineral surfaces. This interpretation was supported by the thermal volatilization and determination of fatty acids by pyrolysis-field ionization mass spectrometry (Py-FIMS).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...