ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Microbial ecology 19 (1990), S. 149-161 
    ISSN: 1432-184X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The hypothesis that the population size of introduced bacteria is affected by habitable pore space was studied by varying moisture content and bulk density in sterilized, as well as in natural loamy sand and silt loam. The soils were inoculated withRhizobium leguminosarum biovartrifolii and established and maintained at soil water potentials between −5 and −20 kPa (pF 1.7 and 2.3). Rhizobial cells were enumerated when population sizes were expected to be more or less stable. In sterilized soils, the rhizobial numbers were not affected or decreased only slightly when water potentials increased from −20 to −5 kPa. In natural soils, the decrease in rhizobial numbers with increasing water potentials was more pronounced. Bulk density had only minor effects on the population sizes of rhizobia or total bacteria. Soil water retention curves of both soils were used to calculate volume and surface area of pores from different diameter classes, and an estimation of the habitable pore space was made. Combining these values of the theoretical habitable pore space with the measured rhizobial numbers showed that only 0.37 and 0.44% of the habitable pore space was occupied in the sterilized loamy sand and silt loam, respectively. The situation in natural soil is more complicated, since a whole variety of microorganisms is present. Nevertheless, it was suggested that, in general, pore space does not limit proliferation and growth of soil microorganisms.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 12 (1991), S. 100-106 
    ISSN: 1432-0789
    Keywords: Azospirillum ; 15N-isotope dilution ; Nitrogen fixation ; Acetylene reduction activity ; ARA ; Rhizosphere ; Mineral nitrogen ; Oxygen tension
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Acetylene reduction activity by Azospirillum brasilense, either free-living in soils or associated with wheat roots, was determined in a sterilised root environment at controlled levels of O2 tension and with different concentrations of mineral N. In an unplanted, inoculated soil nitrogenase activity remained low, at approximately 40 nmol C2H4 h-1 per 2kg fresh soil, increasing to 300 nmol C2H4 h-1 when malic acid was added as a C source via a dialyse tubing system. The N2 fixation by A. brasilense in the rhizosphere of an actively growing plant was much less sensitive to the repressing influence of free O2 than the free-living bacteria were. An optimum nitrogenase activity was observed at 10 kPa O2, with a relatively high level of activity remaining even at an O2 concentration of 20 kPa. Both NO inf3 sup- and NH inf4 sup+ repressed nitrogenase activity, which was less pronounced in the presence than in the absence of plants. The highest survival rates of inoculated A. brasilense and the highest rates of acetylene reduction were found in plants treated with azospirilli immediately after seedling emergence. Plants inoculated at a later stage of growth showed a lower bacterial density in the rhizosphere and, as a consequence, a lower N2-fixing potential. Subsequent inoculations with A. brasilense during plant development did not increase root colonisation and did not stimulate the associated acetylene reduction. By using the 15N dilution method, the affect of inoculation with A. brasilense in terms of plant N was calculated as 0.067 mg N2 fixed per plant, i.e., 3.3% of the N in the root and 1.6% in the plant shoot were of atmospheric origin. This 15N dilution was comparable to that seen in plants inoculated with non-N2-fixing Psudomonas fluorescens.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 5 (1987), S. 126-132 
    ISSN: 1432-0789
    Keywords: Residual soil 14C ; Microbial biomass ; Root-derived organic matter ; Fluorescent pseudomonads ; Rhizosphere ; Nutrient levels
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Maize plants were grown for 42 days in a sandy soil at two different mineral nutrient levels, in an atmosphere containing 14CO2. The 14C and total carbon contents of shoots, roots, soil and soil microbial biomass were measured 28, 35 and 42 days after germination. Relative growth rates of shoots and roots decreased after 35 days at the lower nutrient level, but were relatively constant at the higher nutrient level. In the former treatment, 2% of the total 14C fixed was retained as a residue in soil at all harvests while at the higher nutrient level up to 4% was retained after 42 days. Incorporation of 14C into the soil microbial biomass was close to its maximum after 35 days at the lower nutrient level, but continued to increase at the higher level. Generally a good agreement existed between microbial biomass, 14C contents and numbers of fluorescent pseudomonads in the rhizosphere. Numbers of fluorescent pseudomonads in the rhizosphere were maximal after 35 days at the lower nutrient level and continued to increase at the higher nutrient level. The proportions of the residual 14C in soil, incorporated in the soil microbial biomass, were 28% to 41% at the lower nutrient level and 20%6 – 30% at the higher nutrient level. From the lower nutrient soil 18%6 – 52%6 of the residual soil 14C could be extracted with 0.5 N K2SO4, versus 14%6 – 16% from the higher nutrient soil. Microbial growth in the rhizosphere seemed directly affected by the depletion of mineral nutrients while plant growth and the related production of root-derived materials continued.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 28 (1999), S. 285-291 
    ISSN: 1432-0789
    Keywords: Key words Chrysanthemum ; Rhizosphere ; Rhizobacteria ; Root age ; Reference unit
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  The number of bacteria was determined during the growth of chrysanthemum plants on young (tip) and old (base) root parts. We assessed if the same conclusions could be drawn on the dynamics of bacterial populations during plant development when different reference units were used to express the bacterial counts. The results indicated that the total number of bacteria on the base decreased significantly during plant development, when expressed per root length, per root fresh weight or per root surface. The number of bacteria on the tip only decreased significantly when expressed per root length. Using the unit of dry weight of adhering soil, contradictory results were obtained for both base and tip; in general, the number of bacteria increased significantly during plant development. Thus, different reference units may lead to different conclusions. Root surface seemed to be the best unit to use, but the use of this unit requires time-consuming measurements. Regression analyses indicated that the reference unit "root surface" was highly correlated with root fresh weight (R 2=93%). Thus, once this relation is determined, the less time-consuming unit can be measured in the experimental work. To analyse the data, the colony-forming units should be expressed per root surface. Besides bacterial numbers during plant development, we assessed whether the bacterial populations collected showed different growth rates on agar plates. The growth rates of bacteria from the tip and base and different development stages of the plants showed differences, indicating differences in the metabolic state of the collected populations.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 8 (1989), S. 13-18 
    ISSN: 1432-0789
    Keywords: Bacteria ; Protozoa ; Predation ; Nitrogen ; Mineralization ; Plant uptake ; Soil
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Microbial N from 15N-labelled bacterial biomass was investigated in a microcosm experiment, in order to determine its availability to wheat plants. Sterilized soil was inoculated with either bacteria (Pseudomonas aeruginosa alone or with a suspension of a natural bacterial population from the soil) or bacteria and protozoa to examine the impact of protozoa. Plant biomass, plant N, soil inorganic N and bacterial and protozoan numbers were determined after 14 and 35 days of incubation. The protozoa reduced bacterial numbers in soil by a factor of 8, and higher contents of soil inorganic N were found in their presence. Plant uptake of N increased by 20010 in the presence of protozoa. Even though the total plant biomass production was not affected, the shoot: root ratios increased in the presence of protozoa, which is considered to indicate an improved plant nutrient supply. The presence of protozoa resulted in a 65010 increase in mineralization and uptake of bacterial 15N by plants. This effect was more pronounced than the protozoan effect on N derived from soil organic matter. It is concluded that grazing by protozoa strongly stimulates the mineralization and turnover of bacterial N. The mineralization of soil organic N was also shown to be promoted by protozoa.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 94 (1990), S. 5275-5282 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 95 (1991), S. 123-134 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 94 (1990), S. 5282-5285 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 92 (1988), S. 4961-4964 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...