ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Entomologia experimentalis et applicata 92 (1999), S. 205-216 
    ISSN: 1570-7458
    Keywords: Samea multiplicalis ; Spodoptera pectinicornis ; Pistia stratiotes ; waterlettuce ; nitrogen utilization efficiency ; compensatory feeding ; nitrogen ; biological control of weeds
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Compensatory responses of caterpillars fed low quality food include increased consumption and utilization of essential nutrients. Information about an insect's responses to nutritional challenges from their host plants could benefit weed biological control efforts in the selection and establishment of new agents. The target weed, Pistia stratiotes L. (Araceae) is a floating aquatic plant that has relatively low nitrogen levels which are further diluted with high water content. Efforts to establish the insect Spodoptera pectinicornis (Hampson) (Lepidoptera: Noctuidae) for biological control of P. stratiotes could benefit by examining the nutritional responses of a similar widely established lepidopteran species, Samea multiplicalis (Guenèe) (Lepidoptera: Pyralidae). Larvae of this species were fed leaves of P. stratiotes plants that had been fertilized (NPK) at high and low rates. The leaves of the fertilized plants had a 4.3-fold increase in nitrogen (dry weight) and a 1.6-fold increase in water content. The results suggest that no compensatory increases occurred in larvae fed leaves from the low fertilized plants as no changes were found in fresh mass consumption or nitrogen utilization efficiency. Consequently, development time from second-third instars to pupation was delayed about 3 days compared with larvae fed the high nitrogen leaves. Furthermore, consumption of nitrogen was only 30% and its accumulation into larval tissues was only 60% compared with the larvae fed the high fertilized leaves. The resulting larvae had both a final biomass and a growth rate that were reduced by 40%. Regardless of plant fertilizer level, the larvae fed at a rate 5–10 times greater than that of similar lepidopteran species consuming either low or high quality diets, suggesting that the S. multiplicalis larvae may be functioning at their biological limit for ingesting food.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Entomologia experimentalis et applicata 93 (1999), S. 227-230 
    ISSN: 1570-7458
    Keywords: Rhopalosiphum padi ; cereal aphids ; wheat ; induced responses ; feeding site
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Entomologia experimentalis et applicata 92 (1999), S. 157-164 
    ISSN: 1570-7458
    Keywords: plant resistance ; antibiosis ; tolerance ; antixenosis ; Russian wheat aphid ; wheat ; Homoptera ; Aphididae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The Russian wheat aphid, Diuraphis noxia (Mordvilko), is one of the most important aphid pests of wheat, Triticum aestivum L., worldwide. Among the various pest management options, plant resistance is an economical management tactic to control D. noxia in cereal crops such as wheat. Researchers have identified D. noxia resistant germplasm and it has been incorporated into wheat. This study compared D. noxia resistance between the ‘Betta’ wheat isolines Betta-Dn1, Betta-Dn2, and Betta-Dn5 and their corresponding donor gene plant introduction (PI) lines PI 137739 (Dn1), PI 262660 (Dn2), and PI 294994 (Dn5). Although the Betta isolines and PI lines showed D. noxia resistance when compared with Betta wheat, the degree of resistance in the isolines to D. noxia was different from their corresponding PI donors. Aphid number, aphid fecundity, and biomass per aphid were not different between Betta-Dn1 and PI 137739 or Betta-Dn2 and PI 262660; however, the same parameters were significantly lower on PI 294994 compared with Betta-Dn5. This indicated that aphid resistance in PI 137739 and PI 262660 was probably governed by a single dominant gene, while the resistance in PI 294994 was controlled by more than one gene. Additionally, plant biomass reduction was aphid density dependent, which suggested that use of appropriate aphid infestation level is important when using plant biomass reduction as an indicator of resistance. Plant resistance categorization showed that there was no detectable difference in antixenosis among the seven lines evaluated. However, the higher aphid fecundity observed on PI 262660 compared with PI 137739 and PI 294994, in addition to no significant differences among the three PIs in plant biomass reduction, suggested PI 262660 was a tolerant line, while PI 137739 and PI 294994 were antibiotic lines. Plant tolerance could not be elucidated among the three Betta isolines using aphid fecundity and plant biomass reduction as indicators.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Entomologia experimentalis et applicata 92 (1999), S. 165-177 
    ISSN: 1570-7458
    Keywords: Chrysomelidae ; herbivory ; Asteraceae ; life history ; nitrogen ; plant quality ; season
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Phytophagous insects which feed on the leaves of herbaceous host plants have to adapt their life histories to the fact that protein nitrogen is usually highest in growing tissues in spring. We monitored field populations of larvae and adults of three chrysomelid species (Galeruca tanaceti (L.) (main host Achillea millefolium (L.) Yarrow), Cassida rubiginosa (Mueller) (main host Cirsium arvense (L.) Scop.) and Oreina luctuosa (Suffrian) (host Centaurea scabiosa (L.)) together with the amount of protein nitrogen of their food resources and host plant biomass. As expected, the development of host quality, measured as concentration of protein nitrogen, and host plant biomass showed inverse trends during the season. The euryphagous G. tanaceti attacks Achillea early and profits from high nitrogen concentrations in the leaves. Occasional overexploitations of local populations of Achillea are compensated by the capacity to move to other host species. In C. rubiginosa, a species with a host range restricted to the Cardueae, the main larval feeding activity is postponed to a period when the nitrogen content of the host leaves had dropped to 50% of its initial value, but when host plant biomass had increased by 30%. In the monophagous O. luctuosa the larval development is synchronized with a still later phase of host phenology, at which the nitrogen content is below 50% but plant biomass has reached its maximum. There seem to be selection factors, which oppose the use of high quality food in spring and which force the latter two species to postpone their larval development to a later time in the year. This could be caused by numerous factors like, for example, mean daytime temperature. Later in the season the larvae have to cope with the low quality of their host plants. They have, however, the advantage of large quantities of food available. A laboratory study with adults and mature larvae of O. luctuosa shows that this species can overcome low levels of protein nitrogen either by selecting younger leaves with higher nitrogen concentrations or by increasing the daily food consumption rate (RCR) on leaves with a low level of nitrogen and by a prolongation of the feeding period. In this way the larvae compensate the effect of lower daily growth rates (RGR) and a lower food conversion index (ECI) on poor food quality: Regardless of the level of protein nitrogen there was no statistically significant difference in total gain of weight during the third-instar feeding period and in the weight at the end of the third larval stage. The three investigated chrysomelids show that there exists a broad spectrum of adaptations to overcome the dilemma of variable food quality.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1570-7458
    Keywords: sieve element ; salivation ; aphid ; plant resistance ; wheat ; Sitobion fragariae ; Triticum aestivum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Extended sieve element salivation (E1 waveform in the electrical penetration graph) is a characteristic activity during early sieve element punctures, particularly in resistant plants. In order to explore a chemically-mediated mechanism of resistance associated with sieve element salivation, we compared the pattern of feeding behaviour of the aphid, Sitobion fragariae (Walker), on two cultivars of the wheat Triticum aestivum L., with different concentrations of hydroxamic acids (Hx). During 24 h of electronic monitoring, aphids dedicated over 50% of the total time to phloem ingestion from the sieve elements. Total time allocated to E1 in the experiment, time to first E1 within the experiment, time allocated to E1 before a sustained phloem ingestion (E2) and the contribution of sieve element salivation to the phloem phase (E1/[E1+E2]) were significantly higher in the high-Hx cultivar. The increased salivation in plants with higher contents of Hx suggests the existence, at least in this system, of a chemically-mediated sieve element constraint.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1572-879X
    Keywords: adsorption ; adsorption isotherms ; dinitrogen ; FTIR spectroscopy ; geminal species ; NaY ; nitrogen ; zeolites
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Adsorption of N2 on NaY zeolites at 85 K and equilibrium pressures higher than 1 kPa results in the formation of geminal dinitrogen complexes characterized by an IR band at 2333.5 cm−1 (2255.4 cm−1 after adsorption of 15N2). With decreasing equilibrium pressure the complexes tend to loose one N2 ligand, thus forming linear species characterized by an IR band at 2336.8 cm−1 (2258.7 cm−1 after adsorption of 15N2). All species disappear completely after evacuation. Co-adsorption of N2 and CO revealed that the dinitrogen complexes are formed on Na+ cations. The changes in the concentrations of the linear and geminal N2 species with the changes in the equilibrium pressure are excellently described by equations of adsorption isotherms proposed earlier for mono- and di-carbonyls.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1572-8757
    Keywords: kinetics ; isotope-exchange ; nitrogen ; adsorption ; methane ; zeolite ; equilibria
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Physics , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract The Isotope Exchange Technique (IET) was used to simultaneously measure pure and binary gas adsorption equilibria and kinetics (self-diffusivities) of CH4 and N2 on pelletized 4A zeolite. The experiment was carried out isothermally without disturbing the adsorbed phase. CH4 was selectively adsorbed over N2 by the zeolite because of its higher polarizability. The multi-site Langmuir model described the pure gas and binary adsorption equilibria fairly well at three different temperatures. The selectivity of adsorption of CH4 over N2 increased with increasing pressure at constant gas phase composition and temperature. This curious behavior was caused by the differences in the sizes of the adsorbates. The diffusion of CH4 and N2 into the zeolite was an activated process and the Fickian diffusion model described the uptake of both pure gases and their mixtures. The self-diffusivity of N2 was an order of magnitude larger than that for CH4. The pure gas self-diffusivities for both components were constants over a large range of surface coverages (0 〈 θ 〈 0.5). The self-diffusivities of CH4 and N2 from their binary mixtures were not affected by the presence of each other, compared to their pure gas self-diffusivities at identical surface coverages.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Plant molecular biology reporter 17 (1999), S. 323-331 
    ISSN: 1572-9818
    Keywords: Agrobacterium ; modular vector ; transformation ; wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Wheat (cv Chinese Spring) tissues were transformed using Agrobacterium tumefasciens and a new plasmid modular vector, pMVTBP. We constructed pMVTBP with unique restriction sites connecting (1) the CaMV 35S promoter, (2) a Kozak sequence, (3) the FLAG epitope, (4) the (His)6 epitope, (5) a coding region (for wheat TATA Binding Protein, wTBP) and (6) the CaMV 35S 3′UTR. This vector thus allows easy exchange of different regulatory or coding sequences. Explants of either germinating mature seeds, or immature embryos, were induced to callus for up to two weeks, treated with virulence-induced bacteria for one hour, then regenerated into plantlets. Transient expression of a GUS reporter gene, assayed at about one week, occurred in 10–12% of calluses. Expression of the FLAG-tagged wTBP was also detected, by immunostaining. Stable expression, by selective growth on geneticin, and by GUS expression at about six weeks, occurred in 1–2% of calluses, quite comparable to that achieved by other methods.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 53 (1999), S. 139-146 
    ISSN: 1573-0867
    Keywords: critical levels of Mn ; soil extractants ; Mn-deficiency ; wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Seven chemical extractants were tested for their relative performance to predict the response of wheat to Mn application in coarse textured alkaline soils of semi-arid region. Five out of the seven extractants were found to be promising for the estimation of critical level of available Mn in these soils, as the amount of Mn extracted by these extractants was positively and significantly correlated with relative grain yield as well as Mn uptake. The critical deficiency level of soil available Mn with 0.005 M DTPA, 0.02% hydroquinone, 0.02 N sodium pyrophosphate, 0.1N H3PO4 and 0.05N HCl+0.025N H2SO4 was 3.1, 13.8, 23.5, 5.3 and 17.8 mg kg-1 soil, respectively. The 1N ammonium acetate and 0.01M CaCl2 were found to be unsuitable extractants for these soils. Further field trials at eight locations with varying levels of Mn deficiency showed successive increase in the grain yield of wheat with foliar Mn application, emphasizing the need for Mn fertilization when wheat is grown on Mn deficient soils.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 53 (1999), S. 209-218 
    ISSN: 1573-0867
    Keywords: cattle slurry ; fertilizer splitting ; nitrogen ; recovery ; residual nitrogen ; Zea mays L
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The recovery of soil mineral nitrogen (N) by crops, and its subsequent utilisation for dry matter (DM) production may be increased when the application of N is postponed until after crop emergence. The significance of this strategy for silage maize was studied in nine field experiments on Dutch sandy soils from 1983 to 1988. In five experiments the effect of slurry applied before planting at a rate of circa 66 m3 ha-1, was compared to the effect of a similar rate of which half was applied before planting and half at the 4–6 leaf stage. In the 4-6 leaf stage slurry was either injected or banded. In four other experiments the effect of mineral fertilizer-N splitting was studied. In these experiments, 30 m3 ha-1 cattle slurry, applied before planting, was supplemented with mineral fertilizer-N at rates ranging from 40 to 160 kg ha-1, either fully applied before crop emergence or split. When split, 40 kg ha-1 of the mineral fertilizer-N rate was banded at the 4–6 leaf stage. According to balance sheet calculations, substantial losses of slurry N and mineral fertilizer-N occurred during the growing season. Losses were compensated for, however, by apparent mineralization, ranging from 0.34 to 0.77 kg N ha-1 day-1. Split applications of cattle slurry had a significant positive effect on the DM yield in two out of five experiments compared to the conventional non-split application, but only when the post-emergence slurry application was banded which is no longer in accordance with present legislation. Split applications of mineral fertilizer-N had a significant positive effect in one experiment where rainfall was excessive but not in the others. The results provide insufficient evidence to recommend farmers to split applications. Soil mineral N sampling at the 4–6 leaf stage should hence be considered a control on the appropriateness of early N applications after exceptional weather conditions rather than a routine observation on which the post-emergence N dressing is to be based in a deliberate splitting strategy. Our data suggest that the financial return of a 40 kg ha-1 supplementation with mineral fertilizer-N, was questionable when more than 175 kg N ha-1 were found in the upper 0.6 m soil layer at the 4–6 leaf stage.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 53 (1999), S. 259-267 
    ISSN: 1573-0867
    Keywords: farming systems ; nitrogen ; nitrogen budgets ; sustainability
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Three approaches to nitrogen budgeting were developed and their ability to quantitatively describe nitrogen cycling in a fertilizer based and a grass–clover based beef system tested. Budgets ranged in complexity from the Economic Input:Output (EIO) budget, which accounted simply for purchases and sales of nitrogen over the farmgate, through the Biological Input:Output (BIO) budget, which included estimates of biological nitrogen fixation and attempted to partition losses into leaching and gaseous forms, to the Transfer:Recycle:Input:Output (TRIO) budget, which also accounted for key soil processes. Nitrogen unaccounted for in the fertilized system decreased with increasing budget complexity (285, 212 and 188 kg ha-1 yr-1 unaccounted for by the EIO, BIO and TRIO budgets, respectively). In the legume based grass–clover system, the EIO budget did not accurately describe total nitrogen inputs as it did not include 146 kg ha-1 yr-1 from symbiotic nitrogen fixation. In the grass–clover system, nitrogen unaccounted for was again greater using the BIO than the TRIO budget (103 and 79 kg ha-1 yr-1, respectively). In conclusion, the most complex budgeting approach (TRIO) was able to account for the fate of a greater proportion of nitrogen inputs than the simpler approaches. However, the perceived success of the different approaches was strongly dependent on the precise objective.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 55 (1999), S. 1-6 
    ISSN: 1573-0867
    Keywords: chlorophyll meter ; irrigation ; LAI ; nitrogen ; Spring Wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract A Spring Wheat crop was grown using three irrigation levels and nitrogen rate applications to evaluate chlorophyll meter measurements as a possible nitrogen nutrition index for modelling. These measurements yielded the most reliable indications at Zadoks GS45. The lower limit indicating severe nitrogen deficiency in the leaves was approximately 35 SPAD units while the upper limit of 45 SPAD units, indicated an excess consumption.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 55 (1999), S. 89-94 
    ISSN: 1573-0867
    Keywords: algae ; flooded soils ; N cycling ; nitrogen ; 15N ; rice
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Algal N labelled with 15N added to a flooded soil in laboratory columns without plants was studied to determine the changes over time in the fate of N assimilated by algae and to study how its fate is affected by (a) exclusion of light simulating complete closure of the rice canopy, and (b) addition of fertilizer-NH4 *. In the light but with no added fertilizer-N there was little net mineralization of the added algal N during the first 4 weeks, but after 8 weeks 42% had been mineralized, of which 95% was denitrified. Exclusion of light caused net mineralization to proceed more rapidly in the first 4 weeks due to the death of algal cells and lowered reassimilation. After 8 weeks 51% had been mineralized, of which 54% was denitrified, 16% volatilized and 30% was present as KCl exchangeable NH4 +-N. Application of fertilizer-NH4 + apparently caused mineralization of 25% of the algal N within one week but the results were probably affected by pool substitution in which labelled N mineralized to NH4 +-N was diluted with fertilizer – NH+ 4 and then immobilized leaving more labelled NH4–N in the mineral pool. After 8 weeks, 42% of algal N had been mineralized, of which 69% was estimated to have been denitrified, 19% lost through NH3 volatilization and 12% remained as extracted NH4 ++NO- 3. Uptake of N by a rice crop would reduce the gaseous losses. Algal N was mineralized quickly enough to be available during the growing season of a rice crop and, depending on field conditions, algae may have a role in assimilating N and protecting it from loss as well as being a major driving force for NH3 volatilization through diurnal increases in pH.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    ISSN: 1572-9702
    Keywords: tomato plants ; susceptibility ; mite ; tridecan-2-one ; nitrogen ; potasium
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The objective of this work was to study the effect of NK fertilization levels and canopy height on the resistance of Lycopersicon hirsutum and Lycopersicon esculentum to Aculops lycopersici (Acari: Eriophydae). The effects of NK fertilization levels and canopy height in the leaf size and density of trichomes and their effects on tridecan-2-one (2-TD) and undecan-2-one (2-UD) limiting the attack of A. lycopersici on tomato plants were assessed. Different NK fertilization levels had no effect on the resistance of L. hirsutum to A. lycopersici. No significant differences were found in attack rates of this mite on leaves of the top and median parts of L. hirsutum canopy. The type and density of trichomes were the main determining factor of A. lycopersici attack on tomato plants. High trichome densities and type VI glandular trichomes which produce tridecan-2-one are important resistance factors on tomato plants. L. hirsutum showed a high resistance level to A. lycopersici due to high densities of type VI glandular trichomes and consequently higher levels of tridecan-2-one in its leaves.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    ISSN: 1572-9761
    Keywords: Coccinellidae ; Aphididae ; wheat ; spatial scale ; species diversity ; numerical response
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The influence of prey density, within-field vegetation, and the composition and patchiness of the surrounding landscape on the abundance of insect predators of cereal aphids was studied in wheat fields in eastern South Dakota, USA. Cereal aphids, aphid predators, and within-field vegetation were sampled in 104 fields over a three year period (1988–1990). The composition and patchiness of the landscape surrounding each field were determined from high altitude aerial photographs. Five landscape variables, aggregated at three spatial scales ranging from 2.6 km2 to 581 km2, were measured from aerial photographs. Regression models incorporating within-field and landscape variables accounted for 27–49% of the variance in aphid predator abundance in wheat fields. Aphid predator species richness and species diversity were also related to within-field and landscape variables. Some predators were strongly influenced by variability in the composition and patchiness of the landscape surrounding a field at a particular spatial scale while others responded to variability at all scales. Overall, predator abundance, species richness, and species diversity increased with increasing vegetational diversity in wheat fields and with increasing amounts of non-cultivated lands and increasing patchiness in the surrounding landscape.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Electronic Resource
    Electronic Resource
    Springer
    Integrated pest management reviews 4 (1999), S. 127-143 
    ISSN: 1572-9745
    Keywords: wheat ; stored-grain ; integrated pest management ; aeration ; biological control ; grain sampling ; insect monitoring ; modeling ; area-wide IPM
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Management of stored-grain insect pests by farmers or elevator managers should be based upon a knowledge of the grain storage environment and the ecology of insect pests. Grain storage facilities and practices, geographical location, government policies, and marketing demands for grain quality are discussed as factors influencing stored-grain insect pest management decisions in the United States. Typical practices include a small number of grain samples designed to provide grain quality information for segregation, blending and marketing. This low sampling rate results in subjective evaluation and inconsistent penalties for insect-related quality factors. Information on the efficacy of insect pest management practices in the United States, mainly for farm-stored wheat, is discussed, and stored-grain integrated pest management (IPM) is compared to field-crop IPM. The transition from traditional stored-grain insect pest control to IPM will require greater emphasis on sampling to estimate insect densities, the development of sound economic thresholds and decision-making strategies, more selective use of pesticides, and greater use of nonchemical methods such as aeration. New developments in insect monitoring, predictive computer models, grain cooling by aeration, biological control, and fumigation are reviewed, their potential for improving insect pest management is discussed, and future research needs are examined.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials synthesis and processing 7 (1999), S. 311-319 
    ISSN: 1573-4870
    Keywords: Iron ; carbon ; nitrogen ; microstructure ; characterization ; HIP-drip
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract A new processing technique makes nitrogen alloying possible by adding nitrogen under elevated nitrogen pressure to prealloyed Fe-C ingots during continuous casting, producing a whole new class of precipitation-free, iron–carbon–nitrogen alloys. When both carbon and nitrogen bulk concentration levels exceeded 0.5 wt%, a duplex fcc-/(bcc-bct-) Fe microstructure resulted that is iron carbide- and nitride-free. With increasing carbon and nitrogen concentrations, there was an increase in the retained fcc-Fe phase. In cooling rate studies, increasing carbon and nitrogen concentrations shifted the knee of the fcc-Fe-to-bcc-Fe phase time–temperature–transformation (T–T–T) curve to longer times. Hardness, compression strength, and wear resistance increased with increasing carbon and nitrogen concentrations and were superior to iron–carbon alloys without the nitrogen addition.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Electronic Resource
    Electronic Resource
    Springer
    Potato research 42 (1999), S. 559-568 
    ISSN: 1871-4528
    Keywords: plastic mulch ; transplanting ; nitrogen ; planting depth ; seed tuber weight ; physiological age ; radiation conversion efficiency ; harvest index
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary In many seed potato producing areas, micro- and minitubers are too small for direct planting as seed tubers in the field. Such use of these propagules can, however, be feasible if the crop's growth and development can be advanced. Increasing light interception, harvest index and yield of useable progeny tubers has been proved possible with plastic mulch and pre-planting of small tubers in a greenhouse. High amounts of nitrogen (up to 180 kg ha−1) or deep planting (up to 9 cm) were less effective. Using older or pre-sprouted micro- or minitubers may be beneficial, because this might increase the number of sprouts per mother tuber (and thus stems per plant) or advance the growth of sprouts or stems. However, this would require even more careful management, due to the weakness of these sprouts and stems. Micro- and minitubers should be as large as feasible when used for direct planting in the field.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    ISSN: 1573-5125
    Keywords: denitrification ; nature restoration ; nitrogen ; phosphorus ; riparian areas ; sedimentation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In Denmark, as in many other European countries, the diffuse losses of nitrogen (N) and phosphorus (P) from the rural landscape are the major causes of surface water eutrophication and groundwater pollution. The export of total N and total P from the Gjern river basin amounted to 18.2 kg ha−1 and 0.63 kg P ha−1 during June 1994 to May 1995. Diffuse losses of N and P from agricultural areas were the main nutrient source in the river basin contributing 76% and 51%, respectively, of the total export. Investigations of nutrient cycling in the Gjern river basin have revealed the importance of permanent nutrient sinks (denitrification and overbank sedimentation) and temporary nutrient storage in watercourses. Temporary retention of N and P in the watercourses thus amounted to 7.2–16.1 g N m−2 yr−1 and 3.7–8.3 g P m−2 yr−1 during low-flow periods. Deposition of P on temporarily flooded riparian areas amounted from 0.16 to 6.50 g P m−2 during single irrigation and overbank flood events, whereas denitrification of nitrate amounted on average to 7.96 kg N yr−1 per running metre watercourse in a minerotrophic fen and 1.53 kg N yr−1 per linear metre watercourse in a wet meadow. On average, annual retention of N and P in 18 Danish shallow lakes amounted to 32.5 g N m−2 yr−1 and 0.30 g P m−2 yr−1, respectively, during the period 1989–1995. The results indicate that permanent nutrient sinks and temporary nutrient storage in river systems represent an important component of river basin nutrient budgets. Model estimates of the natural retention potential of the Gjern river basin revealed an increase from 38.8 to 81.4 tonnes yr−1 and that P-retention increased from −0.80 to 0.90 tonnes yr−1 following restoration of the water courses, riparian areas and a shallow lake. Catchment management measures such as nature restoration at the river basin scale can thus help to combat diffuse nutrient pollution.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    ISSN: 1573-5052
    Keywords: mineralization ; nitrogen ; phosphorus ; salinity ; stress
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Plant zonation patterns across New England salt marshes have been investigated for years, but how nutrient availability differs between zones has received little attention. We investigated how N availability, P availability, and plant N status varied across Juncus gerardii, Spartina patens, and mixed forb zones of a Northern New England high salt marsh. We also investigated relationships between several edaphic factors and community production and diversity across the high marsh. P availability, soil salinity, and soil moisture were higher in the mixed forb zone than in the two graminoid zones. NH+ 4-N availability was highest in the J. gerardii zone, but NO− 3-N availability and mid season net N mineralization rates did not vary among zones. Plant tissue N concentrations were highest in the mixed forb zone and lowest in the S. patens zone, reflecting plant physiologies more so than soil N availability. Community production was highest in the J. gerardii zone and was positively correlated with N availability and negatively correlated with soil moisture. Plant species diversity was highest in the mixed forb zone and was positively correlated with P availability and soil salinity. Thus, nutrient availability, plant N status, and plant species diversity varied across zones of this high marsh. Further investigation is needed to ascertain if soil nutrient availability influences or is a result of the production and diversity differences that exist between vegetation zones of New England high salt marshes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    ISSN: 1573-5125
    Keywords: denitrification ; eutrophication ; estuary ; nitrogen ; sediment-water exchange
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In this review of sediment denitrification in estuaries and coastal ecosystems, we examine current denitrification measurement methodologies and the dominant biogeochemical controls on denitrification rates in coastal sediments. Integrated estimates of denitrification in coastal ecosystems are confounded by methodological difficulties, a lack of systematic understanding of the effects of changing environmental conditions, and inadequate attention to spatial and temporal variability to provide both seasonal and annual rates. Recent improvements in measurement techniques involving 15 N techniques and direct N2 concentration changes appear to provide realistic rates of sediment denitrification. Controlling factors in coastal systems include concentrations of water column NO 3 − , overall rates of sediment carbon metabolism, overlying water oxygen concentrations, the depth of oxygen penetration, and the presence/absence of aquatic vegetation and macrofauna. In systems experiencing environmental change, either degradation or improvement, the importance of denitrification can change. With the eutrophication of the Chesapeake Bay, the overall rates of denitrification relative to N loading terms have decreased, with factors such as loss of benthic habitat via anoxia and loss of submerged aquatic vegetation driving such effects.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Electronic Resource
    Electronic Resource
    Springer
    Aquatic ecology 33 (1999), S. 55-64 
    ISSN: 1573-5125
    Keywords: estuaries ; nitrogen ; oxygen depletion ; phosphorus ; regression model ; vertical mixing
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In a detailed analysis of oxygen saturation in a shallow Danish estuary it was possible to separate the effect of meteorological forcings (i.e. wind and solar radiation) and nutrient loads on oxygen depletion in bottom water. Regression analysis showed that oxygen saturation tied to nitrogen load rather than to phosphorus load. During summer periods of stratification the oxygen saturation could be attributed to the time elapsed after the onset of stratification and the accumulated nitrogen loading 10 month prior to measurement. Using a 10-year meteorological database and an empirical model it was calculated that a 25% reduction in nitrogen loading would reduce the number of days with severe oxygen depletion (i.e. 〈15% of saturation) by more than 50%.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Electronic Resource
    Electronic Resource
    Springer
    Molecular breeding 5 (1999), S. 561-568 
    ISSN: 1572-9788
    Keywords: wheat ; milling yield ; QTL mapping ; RFLP ; microsatellite
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract A partial genetic linkage map constructed using 150 single seed descent (SSD) lines generated from a cross between the hexaploid wheat varieties ‘Schomburgk’ and ‘Yarralinka’ was used to identify loci controlling milling yield. Milling yield data were obtained using seed collected from field trials conducted at different sites over two seasons. The estimated broad-sense heritability of milling yield in this population was calculated as 0.48. In the preliminary analysis, two regions were identified on chromosomes 3A and 7D, which were significantly associated with milling yield and accounted for 22% and 19% of the genetic variation, respectively. Bulked segregant analysis in combination with AFLP identified other markers linked to these loci, as well as an additional region on chromosome 5A, which accounted for 19% of the genetic variation. The applicability of these markers as selection tools for breeding purposes is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    ISSN: 1572-9788
    Keywords: insect resistance ; aphids ; GNA ; lectins ; transgenic plants ; wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Transgenic wheat plants containing the gene encoding snowdrop lectin (Galanthus nivalis agglutinin; GNA) under the control of constitutive and phloem-specific promoters were generated through the particle bombardment method. Thirty-two independently derived plants were subjected to molecular and biochemical analyses. Transgene integration varied from one to twelve estimated copies per haploid genome, and levels of GNA expression from 0 to ca. 0.2% of total soluble protein were observed in different transgenic plants. Seven transgenic plants were selected for further study. Progeny plants from these parental transformants were selected for transgene expression, and tested for enhanced resistance to the grain aphid (Sitobion avenae) by exposing the plants to nymphal insects under glasshouse conditions. Bioassay results show that transgenic wheat plants from lines expressing GNA at levels greater than ca. 0.04% of total soluble protein decrease the fecundity, but not the survival, of grain aphids. We propose that transgenic approaches using insecticidal genes such as gna in combination with integrated pest management present promising opportunities for the control of damaging wheat pests.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    ISSN: 1572-9788
    Keywords: wheat ; DNA markers ; yellow rust resistance ; Yr17
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The Yr17 gene, which is present in many European wheat cultivars, displays yellow rust resistance at the seedling stage. The gene introduced into chromosome 2A from Aegilops ventricosa was previously found to be closely linked (0.5 cM) to leaf and stem rust resistance genes Lr37 and Sr38, respectively. The objective of this study was to identify molecular markers linked to the Yr17 gene. We screened with RAPD primers, for polymorphism, the DNAs of cv. Thatcher and the leaf rust-resistant near-isogenic line (NIL) RL 6081 of cv. Thatcher carrying the Lr37 gene. Using a F2 progeny of the cross between VPM1 (resistant) and Thésée (susceptible), the RAPD marker OP-Y15580 was found to be closely linked to the Yr17 gene. We converted the OP- Y15580 RAPD marker into a sequence characterized amplified region (SCAR). This SCAR marker (SC-Y15) was linked at 0.8 ± 0.7 cM to the Yr17 resistance gene. We tested the SC-Y15 marker over a survey of 37 wheat cultivars in order to verify its consistency in different genetic backgrounds and to explain the resistance of some cultivars against yellow rust. Moreover, we showed that the Xpsr150-2Mv locus marker of Lr gene described by Bonhomme et al. [6] which possesses A. ventricosa introgression on the 2A chromosome was also closely linked to the Yr17 gene. Both the SCAR SC-Y15 and Xpsr150-2Mv markers should be used in breeding programmes in order to detect the cluster of the three genes Yr17, Lr37 and Sr38 in cross progenies.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Electronic Resource
    Electronic Resource
    Springer
    European journal of plant pathology 105 (1999), S. 61-76 
    ISSN: 1573-8469
    Keywords: core sampling ; foliar nutrient concentrations ; minirhizotrons ; nitrogen ; phosphorus ; potassium ; Rhizolab
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Potato-cyst nematodes (Globodera pallida) cause severe yield losses in potato. Plants infected with potato-cyst nematodes generally have reduced concentrations of nitrogen, phosphorus and potassium in the foliage. This study investigated whether reduced growth of nematode-infected potato is caused by nutrient limitation. Experiments in the field and in containers showed that phosphorus concentration correlated best with total crop biomass at early stages of growth. The role of phosphorus in nematode damage was further investigated in the field and in the Wageningen Rhizolab. The experimental field was infested with potato-cyst nematodes and two levels of nematode density were established by fumigation with a nematicide. Prior applications of calcium carbonate resulted in pHKCl levels of 4.8 and 6.1. Two levels of phosphorus fertiliser were applied: either 0 or 225 kg P ha−1. In the Wageningen Rhizolab, soil of both pH levels from the field was used after treatment with 1 MRad gamma irradiation to kill the nematodes. Subsequently, half of the soil was inoculated with cysts to give a nematode density of 30 viable juveniles per gram of soil. In the field, nine weeks after planting, the total crop biomass ranged from 107 g m−2 for the treatment with nematodes at pHKCl 6.1 without phosphorus fertiliser to 289 g m−2 for the fumigated treatment at pHKCl 4.8 with phosphorus fertiliser. The differences in total biomass for the various treatments were explained by differences in foliar phosphorus concentration. Nematodes induced or aggravated P deficiency and reduced total biomass. This was not the only damage mechanism as at high, non-limiting levels of foliar phosphorus concentration, nematodes still reduced total biomass. In the Wageningen Rhizolab, directly after planting, the number of roots visible against minirhizotrons was reduced by nematodes. However, the increase of root number in the nematode treatment continued longer than in the control, until root number was higher than that of the control. The compensary root growth of the nematode treatment was restricted to the top 30 cm and nematodes reduced rooting depth. High soil pH reduced growth, mainly by reducing the availability of phosphate. Both nematodes and high soil pH reduced nutrient uptake per unit root length. Our results lead us to suggest an interaction between nematodes and soil pH, with nematode damage being higher at pHKCl 6.1 than at pHKCl 4.8.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Electronic Resource
    Electronic Resource
    Springer
    European journal of plant pathology 105 (1999), S. 629-641 
    ISSN: 1573-8469
    Keywords: wheat ; Triticum spp. ; Septoria tritici ; septoria tritici blotch of wheat Stagonospora nodorum ; stagonospora nodorum blotch of wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    ISSN: 1573-868X
    Keywords: Osaka Bay ; sediment ; carbon ; nitrogen ; organic matter ; stable isotope ratio ; terrestrial organic matter ; TOC ; POC
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Carbon and nitrogen stable isotope ratios (δ13C and δ15N) of surface sediments were measured within Osaka Bay, in the Seto Inland Sea in Japan, in order to better understand the sedimentation processes operating on both terrestrial and marine organic matter in the Bay. The δ13C and δ15N of surface sediments in the estuary of the Yodo River were less than −23‰ and 5‰ respectively, but increased in the area up to about 10 km from the river mouth. At greater distances they became constant (giving δ13C of about −20‰ and δ15N about 6‰). It can be concluded that large amounts of terrestrial organic matter exist near the mouth of the Yodo River. Stable isotope ratios in the estuary of the Yodo River within 10 km of the river mouth were useful indicators allowing study of the movement of terrestrial organic matter. Deposition rates for total organic carbon (TOC) and total nitrogen (TN) over the whole of the Bay were estimated to be 63,100 ton C/year and 7,590 ton N/year, respectively. The deposition rate of terrestrial organic carbon was estimated to be 13,200 (range 2,000–21,500) ton C/year for the whole of Osaka Bay, and terrestrial organic carbon was estimated to be about 21% (range 3–34) of the TOC deposition rate. The ratio of the deposition rate of terrestrial organic carbon to the rate inflow of riverine TOC and particulate organic carbon (POC) were estimated to be 19% (range 3–31) and 76% (range 12–100), respectively.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Electronic Resource
    Electronic Resource
    Springer
    Water resources management 13 (1999), S. 303-314 
    ISSN: 1573-1650
    Keywords: economics ; irrigation ; nitrogen ; nutrients ; wastewater
    Source: Springer Online Journal Archives 1860-2000
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Notes: Abstract The optimal wastewater treatment level is affected by costs, hazards and benefits. Lowering the wastewater treatment level decreases fertilization costs because of the increased levels of available nutrients left in the water, and irrigation costs decrease if water prices reflect the lower treatment costs. Agricultural yields and/or prices may decrease according to differences between levels of nutrients needed by crops and those available in wastewater. The present article focuses on determination of monthly optimal treatment levels and of the mix of crops calculated to maximize agricultural incomes, according to farmers' point of view. It does not reflect the national point-view focusing on maximization of net national benefits considering also environmental hazards. The methodology appears in Haruvy (1994) and application will be presented in another article (Haruvy et al., 1999).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    ISSN: 1573-515X
    Keywords: Baltic Sea ; cyanobacteria ; estuaries ; grazing ; iron ; lakes ; molybdenum ; nitrogen ; nitrogen fixation ; nitrogen limitation ; Zooplankton
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Explaining the nearly ubiquitous absence of nitrogen fixation by planktonic organisms in strongly nitrogen-limited estuaries presents a major challenge to aquatic ecologists. In freshwater lakes of moderate productivity, nitrogen limitation is seldom maintained for long since heterocystic, nitrogen-fixing cyanobacteria bloom, fix nitrogen, and alleviate the nitrogen limitation. In marked contrast to lakes, this behavior occurs in only a few estuaries worldwide. Primary production is limited by nitrogen in most temperate estuaries, yet no measurable planktonic nitrogen fixation occurs. In this paper, we present the hypothesis that the absence of planktonic nitrogen fixers from most estuaries is due to an interaction of bottom-up and top-down controls. The availability of Mo, a trace metal required for nitrogen fixation, is lower in estuaries than in freshwater lakes. This is not an absolute physiological constraint against the occurrence of nitrogen-fixing organisms, but the lower Mo availability may slow the growth rate of these organisms. The slower growth rate makes nitrogen-fixing cyanobacteria in estuaries more sensitive to mortality from grazing by Zooplankton and benthic organisms. We use a simple, mechanistically based simulation model to explore this hypothesis. The model correctly predicts the timing of the formation of heterocystic, cyanobacterial blooms in freshwater lakes and the magnitude of the rate of nitrogen fixation. The model also correctly predicts that high Zooplankton biomasses in freshwaters can partially suppress blooms of nitrogen-fixing cyanobacteria, even in strongly nitrogen-limited lakes. Further, the model indicates that a relatively small and environmentally realistic decrease in Mo availability, such as that which may occur in seawater compared to freshwaters due to sulfate inhibition of Mo assimilation, can suppress blooms of heterocystic cyanobacteria and prevent planktonic nitrogen fixation. For example, the model predicts that at a Zooplankton biomass of 0.2 mg l−1, cyanobacteria will bloom and fix nitrogen in lakes but not in estuaries of full-strength seawater salinity because of the lower Mo availability. Thus, the model provides strong support for our hypothesis that bottom-up and top-down controls may interact to cause the absence of planktonic nitrogen fixation in most estuaries. The model also provides a basis for further exploration of this hypothesis in individual estuarine systems and correctly predicts that planktonic nitrogen fixation can occur in low salinity estuaries, such as the Baltic Sea, where Mo availability is greater than in higher salinity estuaries.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    ISSN: 1573-515X
    Keywords: N15 ; nitrogen ; nutrient cycling ; plants ; stable isotopes ; soil ; temperate forest ; tropical forest
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Several lines of evidence suggest that nitrogen in most tropical forests is relatively more available than N in most temperate forests, and even that it may function as an excess nutrient in many tropical forests. If this is correct, tropical forests should have more open N cycles than temperate forests, with both inputs and outputs of N large relative to N cycling within systems. Consequent differences in both the magnitude and the pathways of N loss imply that tropical forests should in general be more 15N enriched than are most temperate forests. In order to test this hypothesis, we compared the nitrogen stable isotopic composition of tree leaves and soils from a variety of tropical and temperate forests. Foliar δ15N values from tropical forests averaged 6.5‰ higher than from temperate forests. Within the tropics, ecosystems with relatively low N availability (montane forests, forests on sandy soils) were significantly more depleted in 15N than other tropical forests. The average δ15N values for tropical forest soils, either for surface or for depth samples, were almost 8‰ higher than temperate forest soils. These results provide another line of evidence that N is relatively abundant in many tropical forest ecosystems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    ISSN: 1573-515X
    Keywords: estuaries ; lakes ; marine ; nitrogen ; phosphorus ; rivers ; streams ; temperate ; tropics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Published data and analyses from temperate and tropical aquatic systems are used to summarize knowledge about the potential impact of land-use alteration on the nitrogen biogeochemistry of tropical aquatic ecosystems, identify important patterns and recommend key needs for research. The tropical N-cycle is traced from pre-disturbance conditions through the phases of disturbance, highlighting major differences between tropical and temperate systems that might influence development strategies in the tropics. Analyses suggest that tropical freshwaters are more frequently N-limited than temperate zones, while tropical marine systems may show more frequent P limitation. These analyses indicate that disturbances to pristine tropical lands will lead to greatly increased primary production in freshwaters and large changes in tropical freshwater communities. Increased freshwater nutrient flux will also lead to an expansion of the high production, N- and light-limited zones around river deltas, a switch from P- to N-limitation in calcareous marine systems, with large changes in the community composition of fragile mangrove and reef systems. Key information gaps are highlighted, including data on mechanisms of nutrient transport and atmospheric deposition in the tropics, nutrient and material retention capacities of tropical impoundments, and N/P coupling and stoichiometric impacts of nutrient supplies on tropical aquatic communities. The current base of biogeochemical data suggests that alterations in the N-cycle will have greater impacts on tropical aquatic ecosystems than those already observed in the temperate zone.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    ISSN: 1573-515X
    Keywords: Baltic Sea ; cyanobacteria ; estuaries ; grazing ; iron ; lakes ; molybdenum ; nitrogen ; nitrogen fixation ; nitrogen limitation ; zooplankton
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Explaining the nearly ubiquitous absence of nitrogen fixation by planktonic organisms in strongly nitrogen-limited estuaries presents a major challenge to aquatic ecologists. In freshwater lakes of moderate productivity, nitrogen limitation is seldom maintained for long since heterocystic, nitrogen-fixing cyanobacteria bloom, fix nitrogen, and alleviate the nitrogen limitation. In marked contrast to lakes, this behavior occurs in only a few estuaries worldwide. Primary production is limited by nitrogen in most temperate estuaries, yet no measurable planktonic nitrogen fixation occurs. In this paper, we present the hypothesis that the absence of planktonic nitrogen fixers from most estuaries is due to an interaction of bottom-up and top-down controls. The availability of Mo, a trace metal required for nitrogen fixation, is lower in estuaries than in freshwater lakes. This is not an absolute physiological constraint against the occurrence of nitrogen-fixing organisms, but the lower Mo availability may slow the growth rate of these organisms. The slower growth rate makes nitrogen-fixing cyanobacteria in estuaries more sensitive to mortality from grazing by zooplankton and benthic organisms. We use a simple, mechanistically based simulation model to explore this hypothesis. The model correctly predicts the timing of the formation of heterocystic, cyanobacterial blooms in freshwater lakes and the magnitude of the rate of nitrogen fixation. The model also correctly predicts that high zooplankton biomasses in freshwaters can partially suppress blooms of nitrogen-fixing cyanobacteria, even in strongly nitrogen-limited lakes. Further, the model indicates that a relatively small and environmentally realistic decrease in Mo availability, such as that which may occur in seawater compared to freshwaters due to sulfate inhibition of Mo assimilation, can suppress blooms of heterocystic cyanobacteria and prevent planktonic nitrogen fixation. For example, the model predicts that at a zooplankton biomass of 0.2 mg l−1, cyanobacteria will bloom and fix nitrogen in lakes but not in estuaries of full-strength seawater salinity because of the lower Mo availability. Thus, the model provides strong support for our hypothesis that bottom-up and top-down controls may interact to cause the absence of planktonic nitrogen fixation in most estuaries. The model also provides a basis for further exploration of this hypothesis in individual estuarine systems and correctly predicts that planktonic nitrogen fixation can occur in low salinity estuaries, such as the Baltic Sea, where Mo availability is greater than in higher salinity estuaries.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Electronic Resource
    Electronic Resource
    Springer
    Plant molecular biology 39 (1999), S. 915-926 
    ISSN: 1573-5028
    Keywords: programmed cell death ; wheat ; endosperm ; ethylene ; nucleases
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Although maize endosperm undergoes programmed cell death during its development, it is not known whether this developmental feature is common to cereals or whether it arose inadvertently from the selection process that resulted in the enlarged endosperm of modern maize. Examination of wheat endosperm during its development revealed that this tissue undergoes a programmed cell death that shares features with the maize program but differs in some aspects of its execution. Cell death initiated and progressed stochastically in wheat endosperm in contrast to maize where cell death initiates within the upper central endosperm and expands outward. After a peak of ethylene production during early development, wheat endosperm DNA underwent internucleosomal fragmentation that was detectable from mid to late development. The developmental onset and progression of DNA degradation was regulated by the level of ethylene production and perception. These observations suggest that programmed cell death of the endosperm and regulation of this program by ethylene is not unique to maize but that differences in the execution of the program appear to exist among cereals.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    ISSN: 1573-5036
    Keywords: 2 ; 4-D ; germination ; growth ; salinity-tolerance ; seed treatment ; wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Experiments were conducted under laboratory and greenhouse conditions to study the effect of 2,4-D on rooting and salinity tolerance of wheat. Seeds of one commercial wheat (Inqalab-91) and three salt-tolerant wheat lines (WL-41, WL-359, and WL-1073 developed through wide hybridization) were included in the study. Preliminary and short-term experiments were conducted to determine the level of 2,4-D (administered through seed soaking for 24.5 h. at 25 °C in the dark) at which the maximum number of roots emerged. Under hydroponic conditions, 2,4-D treatment of seeds caused an increase of 60 to 100% in the number of primary roots. The maximum increase in the number of roots was observed in one of the salt tolerant wheat lines (WL-41). The roots appeared in bunches but showed stunted growth at higher levels of 2,4-D. Dry matter accumulation decreased markedly; the effect was more pronounced in Inqalab-91 which is less tolerant to stress than other wheat lines. In all wheat types, allocation of dry matter to roots relative to shoot increased due to 2,4-D treatment. In soil, seeds treated with different levels of 2,4-D showed a germination delay of 1–3 days. Although the number of primary roots increased, 2,4-D treatment caused a decrease in total dry matter accumulation by plants grown for 40 days. In another experiment, conducted under greenhouse conditions, seed germination and growth of seedlings was significantly retarded in saline compared to that in non-saline (normal) soil. Initially, the pace of germination of treated seeds as well as seedling growth was slower in both soils, but after six weeks, the leaf area of seedlings raised from treated seeds was greater than those raised from untreated seeds. Towards maturity, plants arising from treated seeds developed wider and longer flag leaves leading to enhanced yield. Root biomass decreased in saline soil as compared to normal soil. However, 2,4-D treatment caused a substantial increase in root biomass in saline soil and the roots were harder in texture in wheats other than Inqalab-91. Seed treatment with 2,4-D led to a significant improvement in the number of productive tillers, yield of straw and grain, and grain protein content of all wheats grown in saline soil. Plants grown in normal soil did not show any marked effect of seed treatment on grain yield and other agronomic parameters. The four wheats showed substantial differences for different parameters but the salt tolerant wheat lines performed better compared to the commercial variety Inqalab-91.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 209 (1999), S. 283-295 
    ISSN: 1573-5036
    Keywords: leaf emergence ; phosphorus ; photosynthesis ; tillering ; wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Phosphorus (P) deficiency limits the yield of wheat, particularly by reducing the number of ears per unit of area because of a poor tiller emergence. The objectives of this work were to (i) determine whether tiller emergence under low phosphorus availability is a function of the availability of assimilates for growth or a direct result of low P availability, (ii) attempt to establish a quantitative relation between an index of the availability of P in the plant and the effects of P deficiency on tiller emergence, and (iii) to provide a better understanding of the mechanisms involved in tiller emergence in field-grown wheat. Wheat (Triticum aestivum L., cv. INTA Oasis), was grown in the field under drip irrigation on a typic Argiudol, low in P (5.5 μg P g-1 soil Bray & Kurtz I) in Balcarce, Argentina. Treatments consisted of the combination of three levels of P fertilization 0, 60 and 200 kg P2O5 ha-1, and two levels of assimilate availability, a control (non-shaded) and 65% of reduction in incident irradiance from seedling emergence until the end of tillering (shaded). Phosphorus treatments significantly modified the pattern of growth and development of the plants. Shading reduced the growth and concentration of water-soluble carbohydrates in leaves and stems. Leaf photosynthetic rate at saturating irradiance was reduced by P deficiency, but was not affected by shading. At shoot P concentrations less than 4.2 g P kg-1 the heterogeneity in the plant population increased with respect to the number of plants bearing a certain tiller. At a shoot P concentration of 1.7 g P kg-1 tillering ceased completely. Phosphorus deficiency directly altered the normal pattern of tiller emergence by slowing the emergence of leaves on the main stem (i.e. increasing the phyllochron), and by reducing the maximum rate of tiller emergence for each tiller.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    ISSN: 1573-5036
    Keywords: ectomycorrhizae ; Eucalyptus regnans ; forest burns ; nitrogen ; phosphorus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract This study was conducted to compare the effects on the growth of Eucalyptus regnans seedlings of unheated soil and soil heated to different extents (as indicated by soil colour–bright red or black) in burnt logging coupes, and to separate the effects of heating of the soil on direct nutrient availability and on morphotypes and effectiveness of ectomycorrhizae. Burnt soils were collected from three logging coupes burnt 2, 14 and 25 months previously and unbumt soil from adjacent regrowth forests. Compared to unburnt soil, the early seedling growth was stimulated in black burnt soil from all coupes (burnt 2, 14 and 25 months previously). Seedling growth was generally poor in red burnt soil, especially in soil collected 2 months after burning. However, the concentration of extractable P was extremely high in red burnt soil, especially in soil collected 2 months after burning. In black burnt soil, extractable P was increased in soil 2 months after burning, but not in the soils collected 14 or 25 months after burning. However, both total P content and concentration in seedlings were increased in all collections of black burnt soil. Frequency of ectomycorrhizae was high in seedlings grown in all black burnt soils, but the mycorrhizal mantles were poorly developed in seedlings in black burnt soil collected 2 months after burning. Seedlings were also ectomycorrhizal in red burnt soil, except in soil collected 2 months after burning. Fine root inocula from seedlings grown in black burnt soils collected 14 and 25 months after burning significantly stimulated both seedling growth and P uptake compared with the uninoculated control, whereas the fine root inocula from the seedlings grown in all the other soils did not. These results suggest that, in black burnt soil, both direct nutritional changes and changes in the ectomycorrhizae may contribute to seedling growth promotion after regeneration burns. The generally poor seedling growth in red burnt soils is likely to have been due to N deficiency as the seedlings in these soils were yellow-green and the tissue concentrations of N were significantly lower than in other treatments.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Electronic Resource
    Electronic Resource
    Springer
    Euphytica 107 (1999), S. 51-59 
    ISSN: 1573-5060
    Keywords: wheat ; plant breeding ; yield stability ; environmental index
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The effect of plant breeding on yield and their physiological determinants has been widely studied in wheat. However, it is poorly understood how, and to what extent, yield stability has been modified. To attempt a direct analysis of changes in absolute and relative yield stability, data of yield of cultivars released in different eras in different environments were obtained from records from our lab and from the literature. Depending on the availability of data, effects of plant breeding on yield stability of cultivars released in Argentina, Australia, Italy and the United Kingdom were evaluated using a quantitative approach. In this paper it was assumed that the slope of yield vs. environmental index estimates the instability of the cultivars. In addition, a more qualitative approach for Mexico, and the former USSR complemented this analysis. There was a clear decrease in yield stability assessed in absolute terms as a consequence of wheat breeding. In Argentina, Australia, Italy and the UK this decrease was related to the magnitude of yield increases. However, the decrease in yield stability in Argentina and Australia was less than for Italy and the UK, particularly so during the last 30 years. Modern cultivars released in Argentina and Australia showed a trend to maintain yield stability as a percentage of their yield similar to that of their predecessors, while the two European countries analysed tended to a slight decrease in yield stability even in relative terms. The complementary, less quantitative evaluation of Mexico and the former USSR appeared to confirm the quantitative trends described for the other countries, i.e. a general decrease in yield stability (assessed in absolute terms) with genetic gains in yield potential.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    ISSN: 1573-5060
    Keywords: chromatin ; breeding ; gel electrophoresis ; in situ hybridization ; rye ; rye-specific probes ; wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Chromosome arm 1RS of rye ( Secale cereale L.), when transferred to wheat ( Triticum sp.), significantly influences variety performance, because it carries genes for resistance to disease and insect pathogens. Inserted into wheat, 1RS also promotes haploid production, affects end-product quality, and sometimes affects yield. Therefore, its detection by breeders and geneticists is important. The entire 1RS arm is present in chromosome substitutions and in Robertsonian translocations involving chromosomes 1A, 1B, or 1D of wheat. In recombinant lines, a segment of 1RS has been exchanged with a segment of a group-1 wheat chromosome. Determining the wheat chromosome arm involved in a translocation, the source of rye chromatin, and the amount of 1RS chromatin introduced is necessary for a complete characterization of the introgressed segment. Biochemical, molecular, and cytogenetic technologies are described which enable such a characterization of 1RS in wheat. Examples of using gel electrophoresis, high-performance liquid chromatography, monoclonal antibodies, rye-specific molecular probes, RFLP and PCR assays, chromosome banding, in situ hybridization, and flow cytometry are provided. A comparison of these technologies is made and the advantages and disadvantages of each technology are discussed relative to modern wheat breeding efforts.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Electronic Resource
    Electronic Resource
    Springer
    Plant molecular biology 40 (1999), S. 921-933 
    ISSN: 1573-5028
    Keywords: A23187 ; calcium ; elicitor ; MAP kinase ; Typhula ishikariensis ; wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Wheat cultured cells were used to study the role of Ca2+ in regulating protein kinases during the induction of defense-related genes by fungal elicitor treatments. Manipulation of intracellular Ca2+ concentrations by treatment with calcium ionophore A23187 in the presence of high extracellular Ca2+ resulted in the induction of mRNA expression of WCK-1, a gene encoding mitogen-activated protein (MAP) kinase. The induction of WCK-1 mRNA by A23187 did not occur when extracellular Ca2+ was chelated by 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA). The WCK-1 mRNA was also induced by Typhula ishikariensis-derived elicitors, suggesting a possible involvement of WCK-1 in the plant defense response against pathogens. BAPTA and a calcium channel blocker, La3+, inhibited the elicitor-induced expression of the WCK-1 mRNA. A recombinant fusion protein of WCK-1 (GST-WCK-1) autophosphorylated at the Tyr residue and exhibited an autophosphorylation-dependent protein kinase activity towards myelin basic protein. Alteration of Tyr-196 in the conserved ‘TEY’ motif in GST-WCK-1 to Phe by site-directed mutagenesis abolished the autophosphorylation. The GST-WCK-1 protein was activated by elicitor-treated wheat cell extracts but not by the control extract. These results suggest that fungal elicitors activate WCK-1, a specific MAP kinase in wheat. Furthermore, the results suggest a possible involvement of Ca2+ in enhancing the MAP kinase signaling cascade in plants by controlling the levels of the MAP kinase transcripts.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    ISSN: 1573-5028
    Keywords: alternative splicing ; starch biosynthesis ; starch-branching enzyme ; transit peptide ; wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A wheat gene, denoted Sbe1, encoding a type I starch-branching enzyme (SBEI) was isolated from a genomic library and shown to comprise 14 exons distributed over a 5.7 kb DNA region. Analyses of kernel RNA by 5′ rapid amplification of cDNA ends (5′-RACE) and reverse transcription-polymerase chain reaction (RT-PCR) demonstrated a considerable sequence variation at the 5′ ends of SBEI gene transcripts. DNA sequence alignments between the 5′-RACE products and the Sbe1 genomic DNA indicated that the first two exons and first intron were differentially processed to generate three classes of the mature transcript. One form of the SBEI gene transcript in 12-day old kernels contained the exon I+II+III combination at the 5′ end, whereas other forms differed by inclusion of intron 1 or exclusion of exon II sequences. RT-PCR analysis of Sbe1-uidA::nptII chimeric mRNA produced in transgenic wheat cultured cells confirmed that the isolated Sbe1 was able to produce all three forms of SBEI gene transcripts by alternative splicing of the primary mRNA. The variants of processed Sbe1 mRNA were potentially translated into N-terminal variants of the SBEI precursor with different transit peptide sequences.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 208 (1999), S. 149-159 
    ISSN: 1573-5036
    Keywords: abscisic acid ; drought ; soil water content ; water potential ; wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract In order to investigate the effects of soil texture on possible non-hydraulic signals under field conditions, spring wheat plants (Triticum aestivum L. cv. Cadensa) grown in sand and loam soils and with a well developed root system were exposed to slow soil drying in the late vegetative stage of growth. Soil water potential and content were measured daily at different depths and plant responses were measured in flag leaves. When the average soil water potential in the top soil layers (0–25 cm depth in sand and 0–45 cm depth in loam) dropped to –60 or –70 kPa and the lower soil layers were still at field capacity, morning xylem [ABA] (0.03–0.04 vs. 0.06–0.08 mmol m-3) and midday leaf ABA concentration increased (250–300 vs. 400–450 ng/g DW) and leaf conductance decreased relatively to well-watered (control) plants (0.75–0.88 vs. 0.64–0.70 mol m-2 s-1). These responses took place before any decrease in leaf water potential occurred as compared with control plants, indicating that they were triggered by root-borne signals due to reduced root water status in the top soil layers. At this stage the soil water content was as low as 6% by volume, the fraction of roots in ‘wet’ soil was 0.12 and relative available soil water was 45% in sand and still high 20%, 0.48 and 70%, respectively, in loam of the whole soil profile indicating that roots were responding to soil water availability and not soil water content at a certain evaporative demand. In addition, similar responses occurred at high and low evaporative demands (3.4–5.2 vs. 0.6–4.0 mm/day of potential evapotranspiration).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    ISSN: 1573-5036
    Keywords: crop residues ; isotope dilution ; 15N ; nitrogen ; organic matter ; pool substitution
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Experiments were carried out to compare the direct approach for estimating crop N uptake from 15N labelled organic inputs, to two indirect approaches, 15N isotope dilution and A value. In the first experiment soils received 25, 50, 75, or 100 mg N kg soil−1 in the form of Casuarina equisitifolia residues in addition to ammonium sulphate fertiliser, to give a total of 100 mg N kg soil−1 added. This was a cross labelling design, thus two matching sets of treatments, were set up, identical in all but the position of the 15N label. Maize (Zea mays L.) plants were grown in the soils amended with residues for 11 weeks and N derived from residues (Ndfr) estimated using the A-value or the direct approach. The A-value approach appeared to significantly overestimate %Ndfr compared to the direct method. In the second experiment contrasting residues were added to soil, fababean (Vicia faba L. var. minor), alfalfa (Medicago sativa L.), soyabean fixing, (Glycine max (L.) Merrill), soyabean non-fixing, barley (Hordeum vulgare L.) and maize. This was also cross-labelling design, labelled and unlabelled residues were used. Maize plants were grown in these soils for 11 weeks and %Ndfr in the maize plants estimated using 15 N isotope dilution and the direct approach. The 15 N isotope dilution approach also overestimated %Ndfr compared to the direct method in this experiment. Pool substitution appeared to be responsible for the discrepancy between the direct and indirect techniques. It was concluded that 15N isotope dilution and A-value approaches as used in these experiments (i.e where residues and 15N label are added simultaneously) were not appropriate techniques for estimating N derived from organic residues in soils.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    ISSN: 1573-5036
    Keywords: macropores ; rhizosphere ; roots ; root-soil interplay ; soil properties ; wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Under certain soil conditions, e.g. hardsetting clay B-horizons of South-Eastern Australia, wheat plants do not perform as well as would be expected given measurements of bulk soil attributes. In such soils, measurement indicates that a large proportion (80%) of roots are preferentially located in the soil within 1 mm of macropores. This paper addresses the question of whether there are biological and soil chemical effects concomitant with this observed spatial relationship. The properties of soil manually dissected from the 1–3 mm wide region surrounding macropores, the macropore sheath, were compared to those that are measured in a conventional manner on the bulk soil. Field specimens of two different soil materials were dissected to examine biological differentiation. To ascertain whether the macropore sheath soil differs from rhizosphere soil, wheat was grown in structured and repacked cores under laboratory conditions. The macropore sheath soil contained more microbial biomass per unit mass than both the bulk soil and the rhizosphere. The bacterial population in the macropore sheath was able to utilise a wider range of carbon substrates and to a greater extent than the bacterial population in the corresponding bulk soil. These differences between the macropore sheath and bulk soil were almost non-existent in the repacked cores. Evidence for larger numbers of propagules of the broad host range fungus Pythium in the macropore sheath soil were also obtained.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    ISSN: 1573-5036
    Keywords: nitrogen ; Prunus ; remobilisation ; storage ; uptake
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Two-year old nectarine trees (Prunus persica, Batsch, var. nectarina, cv. Starkredgold on GF305 rootstock) planted in pots each received five applications of 1.0 g 15N labelled urea either from mid May to mid July (early uptake) or from mid August to the beginning of October (late uptake). All trees were supplied with a corresponding amount of unlabelled urea when they did not receive the labelled N. In autumn, all abscised leaves were collected and during winter randomly selected trees were harvested and divided into main organs. The remaining trees were transplanted into similar pots filled with sand; they received no N fertiliser and were harvested in May to evaluate the remobilisation of N. Total N and 15N abundance were determined in each organ. Nectarine trees took up similar amounts of N in the 'early' and in the 'late' period; however, more labelled nitrogen was recovered in the perennial organs during the winter when trees received the labelled N in the 'late' than in the 'early' period. Some 73–80% of the N present in the dormant trees was stored in the roots, which contained almost twice the amount of labelled N taken up 'late' than that absorbed 'early'. Nitrogen for spring growth was remobilised predominantly from the roots and accounted for some 43–49% of the labelled N recovered in the tree during winter. Results suggest that the nitrogen taken up 'late' in the season is preferentially stored in roots and used by peach trees to sustain new growth the following spring.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 215 (1999), S. 65-72 
    ISSN: 1573-5036
    Keywords: barley ; boron deficiency ; Hordeum vulgare ; Triticum aestivum ; variation ; wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Responses of a range of barley (Hordeum vulgare L.) genotypes to boron (B) deficiency were studied in two experiments carried out in sand culture and in the field at Chiang Mai, Thailand. In experiment 1, two barley genotypes, Stirling (two-row) and BRB 2 (six-row) and one wheat (Triticum aestivum L.) genotype, SW 41, were evaluated in sand culture with three levels of applied B (0, 0.1 and 1.0 μM B) to the nutrient solution. It was found that B deficiency depressed flag leaf B concentration at booting, grain number and grain yield of all genotypes. In barley Stirling, B deficiency also depressed number of spikes plant-1, spikelets spike-1 and straw yield. However, no significant difference between genotypes in flag leaf B concentration was found under low B treatments. Flag leaf B concentration below 4 mg kg-1 was associated with grain set reduction and could, therefore, be used as a general indicator for B status in barley. In experiment 2, nine barley and two wheat genotypes were evaluated in the field on a low B soil with three levels of B. Boron levels were varied by applying either 2 t of lime ha-1 (BL), no B (B0) or 10 kg Borax ha-1 (B+) to the soil prior to sowing. Genotypes differed in their B response for grain spike-1, grain spikelet-1 and grain set index (GSI). The GSI of the B efficient wheat, Fang 60, exceeded 90% in all B treatments. The B inefficient wheat SW 41 and most of the barley genotypes set grain normally (GSI 〉80%) only at the B+. In B0 GSI of the barley genotypes ranged from 23% to 84%, and in BL from 19% to 65%. Three of the barley with severely depressed GSI in B0 and BL also had a decreased number of spikelets spike-1. In experiment 3, 21 advanced barley lines from the Barley Thailand Yield Nursery 1997/98 (BTYN 1997/98) were screened for B response in sand culture with no added B. Grain Set Index of the Fang 60 and SW 41 checks were 98 and 65%, respectively, and GSI of barley lines ranged between 5 and 90%. One advanced line was identified as B efficient and two as moderately B efficient. The remaining lines ranked between moderately inefficient to inefficient. These experiments have established that there is a range of responses to B in barley genotypes. This variation in the B response was observed in vegetative as well as reproductive growth. Boron efficiency should be considered in breeding and selection of barley in low B soils.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    ISSN: 1573-5036
    Keywords: chelator ; genotypic differences ; HEDTA ; ion speciation ; micronutrient ; tolerance to zinc deficiency ; wheat ; zinc
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The chelator-buffered nutrient solutions containing excess chelator have been used frequently in the micronutrient research, but potential toxicity of the excess chelator has not been ascertained. The present study was conducted to test effects of four concentrations of excess HEDTA [ N-(2-hydroxyethyl)ethylenedinitrilotriacetic acid] and two levels of total Zn on growth, root exudation, and nutrient uptake and transport by Triticum aestivum L. (cv. Aroona) and Triticum turgidum L. conv. durum (Desf.) MacKey (cv. Durati) genotypes differing in tolerance to Zn deficiency. Excess HEDTA at 50 μM reduced root and shoot growth and caused visual toxicity symptoms (necrotic lesions) on leaves; these effects were generally absent at lower concentrations of excess HEDTA. Root exudation of phytosiderophores increased with increasing concentrations of excess HEDTA at deficient and sufficient Zn levels, and was higher in Zn-deficiency-tolerant Aroona than in Zn-deficiency-sensitive Durati wheat. Shoot and root Zn concentrations showed a saturable response to increasing Zn2+ activities in solution. Excess HEDTA at 50 μM caused an increase in shoot concentrations of Fe and a decrease in concentrations of Mn and Cu. An average rate of Zn uptake increased with an increase in Zn2+ ionic activity in solution, with Zn-deficiency-tolerant Aroona having a higher rate of Zn uptake than Zn-deficiency-sensitive Durati in the deficiency range of Zn2+ activities. Average uptake rates of Mn and Cu decreased with an increase in concentration of excess HEDTA. Similar observations were noted for transport of Mn and Cu to shoots, while Zn transport to shoots was proportional to Zn2+ activities in solution. It was concluded that excess HEDTA at 50 μM adversely affects wheat growth and physiology, while excess of 25 μM or less does not cause measurable toxicity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 212 (1999), S. 207-217 
    ISSN: 1573-5036
    Keywords: legume ; nitrogen ; N2-fixation ; pea ; sulphur
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract A S-deficient soil was used in pot experiments to investigate the effects of S addition on growth and N2-fixation in pea (Pisum sativum L.). Addition of 100 mg S pot−1 increased seed yield by more than 2-fold. Numbers of pods formed were the most sensitive yield component affected by S deficiency. Sulphur addition also increased the concentration of N in leaves and stems, and the total content of N in the shoots. The amounts of N fixed by pea were determined at four growth stages from stem elongation to maturity, using the 15N dilution technique. Sulphur addition doubled the amount of N fixed at all growth stages. In contrast, leaf chlorophyll content and shoot dry weight were increased significantly by S addition only after the flowering and pod fill stage, respectively. Pea roots were found to have high concentrations of S, reaching approximately 10 mg g−1 dry weight and being 2.6–4.4 times the S concentration in the shoots under S-sufficient conditions. These results suggest that roots/nodules of pea have a high demand for S, and that N2-fixation is very sensitive to S deficiency. The effects of S deficiency on pea growth were likely to be caused by the shortage of N, due to decreased N2-fixation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Electronic Resource
    Electronic Resource
    Springer
    Plant molecular biology 40 (1999), S. 567-578 
    ISSN: 1573-5028
    Keywords: wheat ; mitochondria ; RNA polymerase ; transcription
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Using PCR-based methods, we assembled two wheat cDNA sequences, wheat-G and wheat-C, that encode T3/T7 bacteriophage-like RNA polymerases (RNAPs) sharing 45% amino acid identity. In phylogenetic analyses using maximum likelihood, parsimony and distance methods, the predicted protein sequence of wheat-G (1005 amino acids, 113 kDa) clusters with sequences of previously assigned mitochondrial RNAPs from dicotyledonous plants (Arabidopsis thaliana, Chenopodium album); likewise, in such analyses, the wheat-C sequence (949 amino acids, 107 kDa) affiliates specifically with the Arabidopsis sequence that encodes a phage-like RNAP thought to function in chloroplasts. To confirm biochemically the assignment of the gene encoding the putative wheat mitochondrial RNAP, we isolated a ca. 100 kDa wheat mitochondrial protein that is enriched in fractions displaying specific in vitro transcription activity and that reacts with an antibody raised against a recombinant maize phage-type RNAP. Internal peptide sequence information obtained from the 100-kDa polypeptide revealed that it corresponds to the predicted wheat-G cDNA sequence, providing direct evidence that the wheat-G gene (which we propose to call RpoTm) encodes the wheat mitochondrial RNAP.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    ISSN: 1573-5036
    Keywords: fire ; nitrogen ; phosphorus ; soil nutrient heterogeneity ; tree effects ; tropical dry forest
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Individual trees are known to influence soil chemical properties, creating spatial patterns that vary with distance from the stem. The influence of trees on soil chemical properties is commonly viewed as the agronomic basis for low-input agroforestry and shifting cultivation practices, and as an important source of spatial heterogeneity in forest soils. Few studies, however, have examined the persistence of the effects of trees on soil after the pathways responsible for the effects are removed. Here, we present evidence from a Mexican dry forest indicating that stem-related patterns of soil nutrients do persist following slash-and-burn removal of trees and two years of cropping. Pre-disturbance concentrations of resin extractable phosphorus (P), bicarbonate extractable P, NaOH extractable P, total P, total nitrogen (N) and carbon (C), KCl extractable nitrate (NO3 -), and net N mineralization and nitrification rates were higher in stem than dripline soils under two canopy dominant species of large-stemmed trees with contrasting morphologies and phenologies (Caesalpinia eriostachys Benth. and Forchhammeria pallida Liebm.). These stem effects persisted through slash burning and a first growing season for labile inorganic and organic P, NaOH inorganic P, and plant-available P, and through a second growing season for labile organic P, NaOH organic P, and plant-available P. While stem effects for extractable NO3 -, net nitrification rates, total N and C disappeared after felling and slash burning, these stem effects returned after the first growing season. These results support the view that tree-influenced patterns of soil nutrients do persist after tree death, and that trees contribute to the long-term spatial heterogeneity of forest soils.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 212 (1999), S. 173-181 
    ISSN: 1573-5036
    Keywords: nitrogen ; phosphatase activity ; phosphorus ; protease activity ; soil microbial biomass ; substrate-induced respiration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Estimating in situ N and P status of the soil microbiota is complicated because microbiological features reflect potentials rather than field conditions. Complementary microbiological assays were, therefore, combined to evaluate the N and P requirement of the microbiota in seven agricultural, grassland and forest topsoils of the Bornhöved Lake district as follows: (i) the sensitivity of the substrate-induced respiration (SIR) to supplemental addition of N and P was monitored during microbial growth and (ii) soil protease and phosphatase activities were analysed and related to soil mass and microbial biomass content. Nitrogen addition increased the maximal SIR rate in all except one soil indicating that the growth of organisms is restricted by this element when easily degradable C source is present. Supplemental N (and in some cases also P) retarded the respiratory response within the first 24 h which suggests microbial sensitivity and/or greater anabolic efficiency. With additional N the maximal SIR rate was most strongly enhanced in topsoils of the beech forest and the dystric alder forest. Thus, the microbial growth in these soils that were below litter horizons seems to be mostly restricted by N. Supplemental P positively affected respiratory response of soils under monoculture, wet grassland and dystric alder forest. In the dystric alder forest soil, high rates of alkaline and unbuffered phosphatase activity were observed when activity was related to either soil mass or microbial biomass content. The data of proteolytic and phospholytic enzymes are discussed with reference to nutrient deficiency and microbial strategy for N and P adsorption.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    ISSN: 1573-5036
    Keywords: agriculture ; fertilisation ; nitric oxide flux ; nitrification ; wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The surface flux of nitric oxide from a wheat field was investigated from 23 March to 29 May 1997 in the Kerzersmoos, Switzerland. A plot fertilised with 19 kg N ha-1 in cattle slurry and 40 kg N ha-1 in mineral NH4NO3 fertiliser and a plot receiving no nitrogen containing fertiliser were compared. The flux was calculated based on hourly measurements of the NO soil–atmosphere concentration gradient using the one-dimensional soil diffusion model of Galbally and Johansson (1989). The soil bulk diffusion coefficient was determined from measurements of the 222Rn surface flux and the activity gradient between 10 cm depth and the surface. It ranged between 79% and 0.3% of the NO diffusion coefficient in air and was parameterised by air filled soil pore space. The indirectly determined NO flux agreed well with standard flux measurements using dynamic chambers. The largest NO emission was found following fertiliser application and irrigation. The emission occurred in pulses, which lasted for 4 days up to 3 weeks coinciding with elevated soil ammonium concentrations. Nitric oxide emission in 5 days following application of cattle slurry were 31 g NO-N ha-1 and 5 g NO-N ha-1 from the non-fertilised plot, respectively. Nitric oxide emission in 15 days following application of NH4NO3 was 95 g NO-N ha-1 and 10 g NO-N ha-1 from the non-fertilised plot, respectively. NO emission in 4 days following irrigation on 21 April were 36 g N ha-1 from the fertilised and 39 g N ha-1 from the non-fertilised plot. The daily NO emission before and after fertiliser and irrigation pulses was between 0.3 and 0.7 g NO-N ha-1 d-1. NO production and NO uptake of the soil was measured regularly. No systematic influence of management or climate on NO uptake was found. NO production was strongly stimulated by fertiliser input and soil moisture content. The simulation of NO production could be reproduced using a nitrification algorithm (Riedo et al., 1998) driven by soil temperature, moisture and ammonium concentration. A NO production rate constant of 1.1ċ10-3 h-1 at 15 °C was derived from a linear regression between nitrification and NO production. Introducing the parameterisation of NO production into the model of Galbally and Johansson (1989) the duration and the strength of the NO emission pulses could be reproduced and the total NO emission during the experiment was approximated within a factor of two.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    ISSN: 1573-5036
    Keywords: effluent ; leaching ; 15N isotope ; nitrogen ; pasture ; uptake
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The objective of this study was to compare the N leaching loss and pasture N uptake from autumn-applied dairy shed effluent and ammonium fertilizer (NH4Cl) labeled with 15N, using intact soil lysimeters (80 cm diameter, 120 cm depth). The soil used was a sandy loam, and the pasture was a mixture of perennial ryegrass (Lolium perenne) and white clover (Trifolium repens). The DSE and NH4Cl were applied twice annually in autumn (May) and late spring (November), each at 200 kg N ha-1. The N applied in May 1996 was labeled with 15N. The lysimeters were either spray or flood irrigated during the summer. The autumn-applied DSE resulted in lower N leaching losses compared with NH4Cl. However, the N applied in the autumn had a higher potential for leaching than N applied in late spring. Between 4.5–8.1% of the 15N-labeled mineral N in the DSE and 15.1–18.8% of the 15N-labeled NH4Cl applied in the autumn were leached within a year of application. Of the annual N leaching losses in the DSE treatments (16.0–26.9 kg N ha-1), a fifth (20.3–22.9%) was from the mineral N fraction of the DSE applied in the autumn, with the remaining larger proportion from the organic fraction of the DSE, soil N and N applied in spring. In the NH4Cl treatments, more than half (53.8–64.8%) of the annual N leaching loss (55.9–57.6 kg N ha-1) was derived from the autumn-applied NH4Cl. DSE was as effective as NH4Cl in stimulating pasture production. Since only 4.4–4.5% of the annual herbage N uptake in the DSE treatment and 12.3–13.3% in the NH4Cl treatment were derived from the autumn-applied mineral N, large proportions of the annual herbage N uptake must have been derived from the N applied in spring, the organic N fraction in the DSE, soil N and N fixed by clover. The recoveries of 15N in the herbage were similar between the DSE and the NH4Cl treatments, but those in the leachate were over 50% less from the DSE than from the NH4Cl treatment. The lower leaching loss of 15N in the DSE treatment was attributed to the stimulated microbial activities and increased immobilization following the application of DSE.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 211 (1999), S. 223-230 
    ISSN: 1573-5036
    Keywords: silicon absorption ; transport ; wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Although silicon (Si) is a quantitatively major inorganic constituent of higher plants the element is not considered generally essential for them. Therefore it is not included in the formulation of any of the solution cultures widely used in plant physiological research. One consequence of this state of affairs is that the absorption and transport of Si have not been investigated nearly as much as those of the elements accorded 'essential' status. In this paper we report experiments showing that Si is rapidly absorbed by wheat (Triticum aestivum L.) plants from solution cultures initially containing Si at 0.5 mM, a concentration realistic in terms of the concentrations of the element in soil solutions. Nearly mature plants (headed out) 'preloaded' with Si absorbed it at virtually the same rate as did plants grown previously in solutions to which Si had not been added. The rate of Si absorption increased by more than an order of magnitude between the 2-leaf and the 7-8 leaf stage, with little change thereafter.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    ISSN: 1573-5060
    Keywords: barley ; embryogenesis ; medium ; regeneration ; wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Media have been developed for somatic embryogenesis and plant regeneration from immature inflorescences and immature scutella of elite cultivars of wheat, barley and tritordeum. For wheat and tritordeum inflorescences, regeneration from embryogenic calluses induced on medium with picloram was almost twice as efficient as regeneration from cultures induced on 2,4-dichlorophenoxyacetic acid (2,4-D). The addition of zeatin at 5 or 10 mg l−1 to regeneration media had a positive effect on regeneration. For scutella, the highest frequencies of embryogenesis (85%) and regeneration (50%) was obtained using an induction medium containing 2 mg l−1 of 2,4-D and half concentration of aminoacids. The morphogenetic capacities of 19 different cultivars of wheat, barley and tritordeum were compared, and clear differences were found both between explants and genotypes. In wheat, embryogenic capacity from inflorescences (average of 92%) was higher than from immature scutella (average of 62%). However, shoot regeneration from scutella was clearly higher than from inflorescences (averages of 63%, and 18% respectively). Frequencies of regeneration in wheat and barley varied widely among the cultivars tested and in both species no difference was found between spring and winter varieties.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Electronic Resource
    Electronic Resource
    Springer
    Euphytica 108 (1999), S. 193-198 
    ISSN: 1573-5060
    Keywords: K+/Na+ selectivity ; Lophopyrum elongatum ; salt-stress ; wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Accumulation of potassium ions (K+) in expanding or most recently expanded leaves and exclusion of sodium ions (Na+) from them (K+/Na+ selectivity) have been shown to be associated with salt stress tolerance in wheat and Lophopyrum elongatum, a highly salt stress tolerant relative of wheat. This physiological trait is expressed in an amphiploid from the cross of wheat (cv. Chinese Spring) × L. elongatum and the chromosomes controlling it have been identified in field studies employing Chinese Spring disomic substitution lines with individual L. elongatum chromosomes. In this paper the arm location of these genes was investigated by assessing K+/Na+ selectivity in lines harboring individual chromosomes and chromosome arms of L. elongatum. Lophopyrum elongatum chromosome arms 1ES, 7ES, and 7EL, were shown to enhance K+/Na+ selectivity in wheat.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    ISSN: 1573-5060
    Keywords: diallel analysis ; Fusarium culmorum ; heterosis ; resistance ; scab ; wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Fusarium head blight (FHB, scab) caused by Fusarium spp. is a widespread disease of cereals causing relevant yield and quality losses and contaminating cereal products with mycotoxins. Breeding resistant cultivars is the method of choice for controlling the disease. Resistance to FHB is a quantitative trait and is most likely governed by several genes. We present the results of an F1 diallel analysis of FHB resistance involving six resistant and one susceptible European winter wheat genotypes of diverse origin in order to identify promising combinations for the selection of improved cultivars. Parents and F1s including reciprocals were evaluated for FHB resistance in an artificially inoculated field trial. Two traits were assessed: visual disease symptoms on the heads and the percentage of Fusarium damaged kernels in a harvested sample. General combining ability (GCA) and specific combining ability (SCA) effects were statistically significant for visual symptoms and kernel damage, whereas reciprocal effects were small or not significant. Heterosis for resistance was common, indicating that the parental genotypes possess different resistance genes. Selection of transgressive segregates should be feasible from such heterotic combinations.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Electronic Resource
    Electronic Resource
    Springer
    Plant growth regulation 28 (1999), S. 187-197 
    ISSN: 1573-5087
    Keywords: ABA ; grain filling ; water stress ; wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The effect of in situ water stress on the endogenous abscisic acid (ABA) content of the endosperm and the in vitro application of ABA on some important yield regulating processes in wheat have been studied. Water stress resulted in a marked increase in the ABA content of the endosperm at the time close to cessation of growth. Application of ABA to the culture medium of detached ears reduced grain weight. Exogenously applied ABA, at the highest concentration (0.1 mM) reduced transport of sucrose into the grains and lowered the starch synthesis ability of intact grains. In vitro sucrose uptake and conversion by isolated grains was stimulated by low ABA concentrations (0.001 mM) in the medium but was inhibited by higher concentrations. ABA application had no effect on sucrose synthase (SS) and uridine diphosphate glucose pyrophosphorylase (UDP-Gppase) activities, whereas adenosine diphosphate glucose pyrophosphorylase (ADP-Gppase), soluble starch synthase (SSS), and granule-bound starch synthase (GBSS) activities were reduced. These results raise the possibility that water stress-induced elevated levels of endogenous ABA contribute to reduced grain growth.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Electronic Resource
    Electronic Resource
    Springer
    Plant growth regulation 29 (1999), S. 1-21 
    ISSN: 1573-5087
    Keywords: drought resistance ; wheat ; small grains ; genetic analysis ; yield stability ; traits
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Drought is a serious problem in many parts of the world where wheat, barley and other small-grained cereals are part of the staple diets. Even in parts of South-eastern Europe, seasonal rainfall for winter cereals has been falling gradually for many years. Thus, since 1981 across three sites in Yugoslavia (Novi Sad, Kragujevac and Zaječar), rainfall fell from a mean of 511 mm for October to July in 1981--1982 to about 453 mm during the same period for the 1995--1996 season. Nevertheless, average wheat yields for new varieties in Yugoslav Commission trials during this period have shown a steady increase from 7.6 to 8.8 t ha−1. This is due to increasing the yield potential of the new varieties, even in trials giving low average yields, caused largely by drought. Thus, breeders in Yugoslavia are succeeding in improving drought resistance in new wheat varieties. However, future progress in improving drought resistance may be helped by focusing on specific traits which will help to improve either crop water use, water-use efficiency or harvest index. Thus, for example, rapid early leaf area development not only improves subsequent crop growth rates, but increases competition with weeds for water and nutrients. The rate of leaf area development is closely associated with embryo size, so selection for large embryo size should improve early growth rates. Osmotic adjustment in wheat in response to drought appears to be important for maintaining yields, and selection for high osmotic adjustment has improved drought yields. Carbon 13 discrimination (Δ) is an integral measure of plant water-use efficiency. Selecting for low Δ has also resulted in increased yield under drought conditions. Other constitutive and induced traits, such as phenology, leaf xeromorphy, excised-leaf water loss, rooting behaviour, senescence and stored assimilates are also discussed in relation to improving yields in small-grain crops. Opportunities for marker-assisted selection are also considered. Incorporating specific drought resistance traits in breeding programmes should facilitate more rapid improvement in the drought resistance of wheat and other small-grained cereals.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Electronic Resource
    Electronic Resource
    Springer
    Genetic resources and crop evolution 46 (1999), S. 81-85 
    ISSN: 1573-5109
    Keywords: aluminum tolerance ; germplasm ; rye ; wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Regional rye populations and wheat cultivars/lines were screened for aluminum tolerance using the hematoxylin staining method. Portuguese regional rye populations showed better tolerance than the Polish cv. Dank. Zlote, used as tolerant tester. In the group of bread wheats, EPM 305/81, a Barbela reselection, was the most tolerant genotype with the same behaviour as the cv. BH 1146, a tolerant tester. In a study with lines selected from a local Barbela landrace, aluminum tolerance variability was detected. Some lines were as tolerant, or higher, as wheat tester. As Portuguese rye populations and the Barbela wheat landrace have grown for centuries on an acid soil region, the data supports the idea that natural biotic or abiotic stresses associated to man selection, lead to the adaptation of genotypes to specific regional conditions and, in this case, to acid soils where aluminum toxicity occurs.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Electronic Resource
    Electronic Resource
    Springer
    Genetic resources and crop evolution 46 (1999), S. 469-475 
    ISSN: 1573-5109
    Keywords: foliar blight ; germplasm ; resistance ; Triticum aestivum ; wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract One thousand three hundred and eighty-seven spring wheat germplasm (Triticum aestivum L.) lines belonging to the Indian and CIMMYT wheat programmes were evaluated for their tolerance to foliar blight disease for three consecutive years i.e., from 1994 to 1997. Disease severity at six different growth stages, beginning from tillering to late milk stage, was recorded. None of the genotypes showed immunity to the disease. Of 43 lines showing resistant reaction, a major proportion (25) was represented by CIMMYT material. Comparatively, Indian germplasm lines tended to be more susceptible at more advanced growth stages. Area Under Disease Progress Curve (AUDPC) and Apparent Infection Rate (r) values of resistant lines were much lower than those of susceptible ones, but lower AUDPC in some of the resistant lines did not correspond to a lower 'r' value. Most of the resistant lines were derived from Seri, Myna, Bau, kauz, Hork 's' and Aegilops tauschii Coss.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Electronic Resource
    Electronic Resource
    Springer
    Genetic resources and crop evolution 46 (1999), S. 521-528 
    ISSN: 1573-5109
    Keywords: glutenin ; homogeneity ; landrace ; obsolete cultivars ; storage proteins ; Triticum aestivum L. ; wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Identity and present degree of genetic homogeneity and heterogeneity, respectively of 52 European wheat accessions, maintained in the collection of wheat genetic resources, have been characterized using analyses of glutenins by sodiumdodecylsulphate polyacrylamide gel electrophoresis (SDS-PAGE). Six of the analyzed wheat accessions were observed to be homogeneous, while 46 (88.5%) of them were heterogeneous in protein profiles. Heterogeneous accessions possessed 2 to 13 different protein lanes. Together, 17 high molecular weight glutenin subunit (HMW-GS) alleles have been found. The most frequent HMW-GS alleles at the Glu-A1, Glu-B1, and Glu-D1 complex loci were 1, 7+9, and 2+12, respectively. However, also low frequented HMW-GS alleles or allelic combinations, such as 7+15, 13+16, 20, 6, 7, and 9 were observed. Furthermore, another new allele encoding HMW glutenin subunit with relative molecular weight 98.6 kDa has been found in one of the lines of the cultivar Eritrospermum 917. The Glu-score in the examined accessions varied in broad range, some of the lines reached the maximum value 10.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 408-409 (1999), S. 375-387 
    ISSN: 1573-5117
    Keywords: eutrophication ; multi-lake studies ; phosphorus ; nitrogen ; chlorophyll-a ; transparency ; zooplankton ; macrophytes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Monitoring data obtained from 231 freshwater lakes and ponds in the Netherlands, covering the period 1980–1996, were used to analyse the relationships between (a) transparency and chlorophyll-a, and the effect of system characteristics on this relationship, (b) chlorophyll-aand nutrient concentrations, and the effect of biological variables and (c) nutrient concentrations and nutrient loading. (a) Chlorophyll-aimposes a maximum on water transparency, but deviations from this maximum can be large. Reducing chlorophyll-a, therefore, does not guarantee a sufficient improvement of transparency. Soil type and the average depth of a lake were shown to influence the relationship between chlorophyll-aand transparency. (b) The maximum ratios of both chlorophyll-a: total-P and chlorophyll-a: total-N were higher in systems dominated by filamentous cyanobacteria than in systems dominated by other algae, indicating the efficiency of the former group with respect to nutrients. In systems with an areal coverage with submersed macrophytes above 5%, concentrations of chlorophyll-aand nutrients were lower than in systems with lower coverages. The ratios between chlorophyll-aand nutrients were lower at coverages larger than 10%. This indicates both bottom-up and top-down control of algae by macrophytes. Grazing pressure by zooplankton was also found to lower the chlorophyll-a: nutrient ratios. (c) System specific linear relationships were found between the average concentrations of total-P and total-N in the incoming water and the summer mean concentration in the lake. This allows the assessment of admissible loads for individual lakes, with narrower confidence limits compared to traditional relationships based on combined data from many lakes. From the analysis, it is concluded that the chain of relationships from nutrient loading to transparency is complex, and depends on biological variables as well as system characteristics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Electronic Resource
    Electronic Resource
    Springer
    Biogeochemistry 44 (1999), S. 93-118 
    ISSN: 1573-515X
    Keywords: Everglades National Park ; mangrove soils ; organic matter ; nitrogen ; phosphorus ; sedimentation ; simulation model
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract The distribution and accumulation of organic matter, nitrogen (N) and phosphorus (P) in mangrove soils at four sites along the Shark River estuary of south Florida were investigated with empirical measures and a process-based model. The mangrove nutrient model (NUMAN) was developed from the SEMIDEC marsh organic matter model and parameterized with data from mangrove wetlands. The soil characteristics in the four mangrove sites varied greatly in both concentrations and profiles of soil carbon, N and P. Organic matter decreased from 82% in the upstream locations to 30% in the marine sites. Comparisons of simulated and observed results demonstrated that landscape gradients of soil characteristics along the estuary can be adequately modeled by accounting for plant production, litter decomposition and export, and allochthonous input of mineral sediments. Model sensitivity analyses suggest that root production has a more significant effect on soil composition than litter fall. Model simulations showed that the greatest change in organic matter, N, and P occurred from the soil surface to 5 cm depth. The rapid decomposition of labile organic matter was responsible for this decrease in organic matter. Simulated N mineralization rates decreased quickly with depth, which corresponded with the decrease of labile organic matter. The increase in organic matter content and decrease in soil bulk density from mangrove sites at downstream locations compared to those at upstream locations was controlled mainly by variation in allochthonous inputs of mineral matter at the mouth of the estuary, along with gradients in mangrove root production. Research on allochthonouns sediment input and in situ root production of mangroves is limited compared to their significance to understanding nutrient biogeochemistry of these wetlands. More accurate simulations of temporal patterns of nutrient characteristics with depth will depend on including the effects of disturbance such as hurricanes on sediment redistribution and biomass production.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    ISSN: 1573-515X
    Keywords: Chaohu Lake ; chemical fertilizer ; cycling ; denitrification ; multipond system ; nitrogen ; nutrient budget ; phosphorus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract During a two-year field study, an annual nutrient budget and cycles were developed for a small agricultural watershed. The study emphasized the integrated unit of the watershed in understanding the biogeochemistry. It was found that the total nutrient input was 39.1× 104 kg nitrogen and 3.91×104 kg phosphorus in the year 1995, of which the greatest input of nutrients to the watershed was chemical fertilizer application, reaching 34.7×104 kg (676 kg/ha) nitrogen and 3.88×104 kg (76 kg/ha) phosphorus. The total nutrient output from the watershed was 13.55×104 kg nitrogen and 0.40×104 kg phosphorus, while the largest output of nitrogen was denitrification, accounting for 44.1% of N output; the largest output of phosphorus was sale of crops, accounting for 99.4% of P output. The results show that the nutrient input is larger than output, demonstrating that there is nutrient surplus within the watershed, a surplus which may become a potential source of nonpoint pollution to area waters. The research showed that both denitrification and volatilization of nitrogen are key ways of nitrogen loss from the watershed. This suggests that careful management of fertilizer application will be important for the sustainable development of agriculture. The research demonstrated that a multipond system within the watershed had high retention rate for both water and nutrients, benefiting the water, nutrient and sediment recycling in the terrestrial ecosystem and helping to reduce agricultural nonpoint pollution at its source. Therefore, this unique watershed system should be recommended due to its great potential relevance for sustainable agricultural development.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    ISSN: 1573-515X
    Keywords: Chihuahuan desert ; desert ; desertification ; grassland ; nitrogen ; nutrient budgets ; phosphorus ; runoff
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Rainfall simulation experiments were performed in areas of semiarid grassland (Bouteloua eriopoda) and arid shrubland (Larrea tridentata) in the Chihuahuan desert of New Mexico. The objective was to compare the runoff of nitrogen (N) and phosphorus (P) from these habitats to assess whether losses of soil nutrients are associated with the invasion of grasslands by shrubs. Runoff losses from grass- and shrub-dominated plots were similar, and much less than from bare plots located in the shrubland. Weighted average concentrations of total dissolved N compounds in runoff were greatest in the grassland (1.72 mg/1) and lowest in bare plots in the shrubland (0.55 mg/1). More than half of the N transported in runoff was carried in dissolved organic compounds. In grassland and shrub plots, the total N loss was highly correlated to the total volume of discharge. We estimate that the total annual loss of N in runoff is 0.25 kg/ha/yr in grasslands and 0.43 kg/ha/yr in shrublands — consistent with the depletion of soil N during desertification of these habitats. Losses of P from both habitats were very small.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    ISSN: 1573-5117
    Keywords: nitrogen ; phosphorus ; pore water ; macrophyte ; floodplain ; Paraná River
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Inorganic nitrogen and soluble reactive phosphate (o-P) concentrations were measured in the water of a marsh and in its interstitial water at two sites, and in the river water of a floodplain marsh of the Lower Paraná River. These values were compared with the N and P concentration in sediments and macrophyte biomass in order to assess nutrient availability, fate and storage capacity. High variability was found in the interstitital water using a 1 cm resolution device. Nitrate was never detected in the pore water. Depth averaged NH4 + concentrations in the upper 30 cm layer often ranged from N = 1.5 to 1.8 mg l-1, but showed a pronounced minimum (0.5–0.7 mg l-1), close to (March 95), or relatively soon after (May 94) the end of the macrophyte growing season. Soluble phosphate showed a large variation between P = 0.1–1.1 mg l-1 without any discernible seasonal pattern. NH4 + depletion in the pore water concentration and low N/P ratios (3.7 by weight) within the macrophyte biomass at the end of the growing period suggest that available N limits plant growth. NH4 + and o-P concentrations were 35 and 7 times higher, respectively, in the pore water than in the overlying marsh, suggesting a permanent flux of nutrients from the sediments. o-P accumulate in the marsh leading to higher concentrations than in the incoming river. NH4 + did not accumulate in the marsh, and no significant differences were observed between the river and the marsh water, while the NO3 - contributed by the river water was depleted within the marsh, caused probably by coupled nitrification-denitrification at the sediment–water interface. Although an order of magnitude smaller, the pore water pool can supply enough nutrients to build up the macrophyte biomass pool, but only if a fast turnover is attained. The Paraná floodplain marsh retains a large amount of nutrients being stored mainly in the sediment compartment.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    ISSN: 1573-5117
    Keywords: shallow lake ; nutrient loading ; retention ; nitrogen ; phosphorus ; release
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The shallow (mean depth 4.9 m), polymictic and eutrophic lake Müggelsee was highly loaded with phosphorus (6 gP m-2a-1) and nitrogen (170 gN m-2a-1) by the river Spree up to the end of the 1980s. Annual load declined by 40–50% during the last years (1991–97). Phosphorus retention fluctuated strongly during the seasonal cycle between −200 and +100 kgP d-1and from year to year between −44% and + 26% of the P import. At the end of the eighties, the P retention capacity of the sediment was exceeded and Müggelsee became a source of phosphorus. The lake regained its ability to retain P in the sediments after external load reduction in the 1990s. However, the internal load of P reached the level of the external one. The release of P during summer was strongly related to the import of nitrate. On long-term average (1979–1997), less than 1% of the P input was retained in Müggelsee. About 24% of the nitrogen load were removed in the lake on annual mean. This rate decreased during the last years.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 395-396 (1999), S. 389-401 
    ISSN: 1573-5117
    Keywords: legislation ; eutrophication ; phosphorus ; nitrogen ; wildlife conservation ; SSSI
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract There is no single piece of legislation which comprehensively addresses the problem of eutrophication of freshwater lakes. An examination is made of the extent to which national and EU laws applicable in England and Wales may be used to reduce phosphorus inputs to eutrophicated lakes. This case study is then used to outline the shortcomings of existing legislation and the future challenges for lake eutrophication control. Applicable legislation may be divided into that relating to nature conservation, to water quality and to agricultural extensification. Nature conservation laws are applicable, in that lakes designated as Sites of Special Scientific Interest (SSSIs), are theoretically safeguarded from degradation. The main limitation of the SSSI system lies in the boundary definition process under which, as a rule, no other category of legally protected land may be designated. Thus, the use of surrounding buffer land to protect water quality at the catchment level is generally precluded. The introduction of consultation areas around SSSIs of international importance under the EU Directive on Habitats is unlikely to alleviate the problem, since the area involved remains minimal compared to the extent of the majority of catchments. Intensive agricultural practices are responsible for significant nutrient enrichment of rivers and lakes, so that legislation aimed at extensification is also relevant. Examples of agricultural extensification include the Environrnentally Sensitive Areas programme and various options available for Set-Aside land. However, the prime purpose of such initiatives is the alleviation of surplus and budgetary problems and, as such, they fall short of a fully integrated approach to the ecological management of farmland. Nutrient enrichment is, essentially, a water quality issue, but policy and legislation in this area are not yet sufficiently developed to address the problem comprehensively. The current regulatory process for water quality carries the potential to work comparatively well for point sources under the system of consents to discharge. This potential is limited, however, by the paucity of information available on ecologically acceptable concentrations of phosphorus in discharges. In addition, the consents system is not constructed to deal effectively with diffuse agricultural losses of phosphorus, since, unlike point sources, these tend to arise from the cumulative effect of many activities. The main legislative challenge for lake eutrophication control lies in the area of diffuse agricultural losses of phosphorus. In this respect, experience in the U.S.A. reveals that the use of comprehensive and catchment-wide ‘Best Management Practices’ is capable of producing significant water quality improvements, providing that some degree of mandatory compliance is incorporated.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    ISSN: 1573-5117
    Keywords: Integrated lake management ; biomanipulation ; lake recovery ; phosphorus ; nitrogen ; eutrophication ; restoration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The majority of Danish lakes are highly eutrophic due to high nutrient input from domestic sources and agricultural activities. Reduced nutrient retention, and more rapid removal, in catchments as a result of agricultural drainage of wetlands and lakes and channelisation or culverting of streams also play a role. Attempts have recently been made to reduce nutrient loading on lakes by intervening at the source level and by improving the retention capacity of catchment areas. The former measures include phosphorus stripping and nitrogen removal at sewage works, increased use of phosphate-free detergents, and regulations concerning animal fertiliser storage capacity, fertiliser application practices, fertilisation plans and green cover in winter. In order to improve nutrient retention capacity of catchments, wetlands and lakes have been re-established and channelised streams have been remeandered. In addition, cultivation-free buffer strips have been established alongside natural streams and there has been a switch to manual weed control. These measures have resulted in a 73% reduction of the mean total phosphorus concentration of point-source polluted streams since 1978; in contrast, there has been no significant change in the total nitrogen concentration. Despite the major reduction in stream phosphorus concentrations, lake water quality has often not improved. This may reflect a too high external or internal phosphorus loading or biological resistance. Various physico-chemical restoration measures have been used, including dredging and oxidation of the hypolimnion with nitrate and oxygen. Biological restoration measures have been employed in 17 Danish lakes. The methods include reducing the abundance of cyprinids, stocking with 0+ pike ( Esox lucius) to control 0+ cyprinids, and promoting macrophyte recolonization by protecting germinal submerged macrophyte beds against grazing waterfowl and transplanting out macrophyte shoots. In several lakes, marked and long-lasting improvements have been obtained. The findings to date indicate that fish manipulation has a long-term effect in shallow lakes, providing nutrient loading is reduced to a level so low as to ensure an equilibrium lake water phosphorus concentration of less than 0.05–0.1 mg phosphorus l−1. If nitrogen loading is very low, however, positive results may be obtained at higher phosphorus concentrations. Macrophyte refuges and transplantation seem to be the most successful as restoration measures in the same nutrient-phosphorus regime as fish manipulation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Electronic Resource
    Electronic Resource
    Springer
    Biogeochemistry 44 (1999), S. 93-118 
    ISSN: 1573-515X
    Keywords: Everglades National Park ; mangrove soils ; organic matter ; nitrogen ; phosphorus ; sedimentation ; simulation model
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract The distribution and accumulation of organic matter, nitrogen (N) and phosphorus (P) in mangrove soils at four sites along the Shark River estuary of south Florida were investigated with empirical measures and a process-based model. The mangrove nutrient model (NUMAN) was developed from the SEMIDEC marsh organic matter model and parameterized with data from mangrove wetlands. The soil characteristics in the four mangrove sites varied greatly in both concentrations and profiles of soil carbon, N and P. Organic matter decreased from 82% in the upstream locations to 30% in the marine sites. Comparisons of simulated and observed results demonstrated that landscape gradients of soil characteristics along the estuary can be adequately modeled by accounting for plant production, litter decomposition and export, and allochthonous input of mineral sediments. Model sensitivity analyses suggest that root production has a more significant effect on soil composition than litter fall. Model simulations showed that the greatest change in organic matter, N, and P occurred from the soil surface to 5 cm depth. The rapid decomposition of labile organic matter was responsible for this decrease in organic matter. Simulated N mineralization rates decreased quickly with depth, which corresponded with the decrease of labile organic matter. The increase in organic matter content and decrease in soil bulk density from mangrove sites at downstream locations compared to those at upstream locations was controlled mainly by variation in allochthonous inputs of mineral matter at the mouth of the estuary, along with gradients in mangrove root production. Research on allochthonouns sediment input and in situ root production of mangroves is limited compared to their significance to understanding nutrient biogeochemistry of these wetlands. More accurate simulations of temporal patterns of nutrient characteristics with depth will depend on including the effects of disturbance such as hurricanes on sediment redistribution and biomass production.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    ISSN: 1573-515X
    Keywords: Chaohu Lake ; chemical fertilizer ; cycling ; denitrification ; multipond system ; nitrogen ; nutrient budget ; phosphorus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract During a two-year field study, an annual nutrient budget and cycles were developed for a small agricultural watershed. The study emphasized the integrated unit of the watershed in understanding the biogeochemistry. It was found that the total nutrient input was 39.1 × 104 kg nitrogen and 3.91 × 104 kg phosphorus in the year 1995, of which the greatest input of nutrients to the watershed was chemical fertilizer application, reaching 34.7 × 104 kg (676 kg/ha) nitrogen and 3.88 × 104 kg (76 kg/ha) phosphorus. The total nutrient output from the watershed was 13.55 × 104 kg nitrogen and 0.40 × 104 kg phosphorus, while the largest output of nitrogen was denitrification, accounting for 44.1% of N output; the largest output of phosphorus was sale of crops, accounting for 99.4% of P output. The results show that the nutrient input is larger than output, demonstrating that there is nutrient surplus within the watershed, a surplus which may become a potential source of nonpoint pollution to area waters. The research showed that both denitrification and volatilization of nitrogen are key ways of nitrogen loss from the watershed. This suggests that careful management of fertilizer application will be important for the sustainable development of agriculture. The research demonstrated that a multipond system within the watershed had high retention rate for both water and nutrients, benefiting the water, nutrient and sediment recycling in the terrestrial ecosystem and helping to reduce agricultural nonpoint pollution at its source. Therefore, this unique watershed system should be recommended due to its great potential relevance for sustainable agricultural development.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    ISSN: 1573-515X
    Keywords: atmospheric deposition ; moss ; bog ; nitrogen ; phosphorus ; water table
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Nitrogen additions as NH4NO3 corresponding to 0 (N0), 1 (N1), 3 (N3) and 10 (N10) g N m−2 yr−1 were made toSphagnum magellanicurn cores at two-week intervalsin situ at four sites across Europe, i.e. Lakkasuo (Finland). Männikjärve (Estonia), Moidach More (UK) and Côte de Braveix (France). The same treatments were applied in a glasshouse experiment in Neuchâtel (Switzerland) in which the water table depth was artificially maintained at 7, 17 and 37 cm below the moss surface. In the field, N assimilation in excess of values in wet deposition occurred in the absence of growth, but varied widely between sites, being absent in Lakkasuo (moss N∶P ratio 68) and greatest in Moidach More (N∶P 21). In the glasshouse, growth was reduced by lowering the water table without any apparent effect on N assimilation. Total N content of the moss in field sites increased as the mean depth of water table increased indicating growth limitation leading to increased N concentrations which could reduce the capacity for N retention. Greater contents of NH4 + in the underlying peat at 30 cm depth, both in response to NH4NO3 addition and in the unamended cores confirmed poor retention of inorganic N by the moss at Lakkasuo. Nitrate contents in the profiles at Lakkasuo, Moidach More, and Côte de Braveix were extremely low, even in the N10 treatment, but in Männikjärve, where the mean depth of water table was greatest and retention absent, appreciable amounts of NO3 − were detected in all cores. It is concluded that peatland drainage would reduce the capture of inorganic N in atmospheric deposition bySphagnum mosses.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    ISSN: 1573-515X
    Keywords: N15 ; nitrogen ; nutrient cycling ; plants ; stable isotopes ; soil ; temperate forest ; tropical forest
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Several lines of evidence suggest that nitrogen in most tropical forests is relatively more available than N in most temperate forests, and even that it may function as an excess nutrient in many tropical forests. If this is correct, tropical forests should have more open N cycles than temperate forests, with both inputs and outputs of N large relative to N cycling within systems. Consequent differences in both the magnitude and the pathways of N loss imply that tropical forests should in general be more15N enriched than are most temperate forests. In order to test this hypothesis, we compared the nitrogen stable isotopic composition of tree leaves and soils from a variety of tropical and temperate forests. Foliar δ15N values from tropical forests averaged 6.5‰ higher than from temperate forests. Within the tropics, ecosystems with relatively low N availability (montane forests, forests on sandy soils) were significantly more depleted in15N than other tropical forests. The average δ15N values for tropical forest soils, either for surface or for depth samples, were almost 8‰ higher than temperate forest soils. These results provide another line of evidence that N is relatively abundant in many tropical forest ecosystems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    ISSN: 1573-515X
    Keywords: estuaries ; lakes ; marine ; nitrogen ; phosphorus ; rivers ; streams ; temperate ; tropics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Published data and analyses from temperate and tropical aquatic systems are used to summarize knowledge about the potential impact of land-use alteration on the nitrogen biogeochemistry of tropical aquatic ecosystems, identify important patterns and recommend key needs for research. The tropical N-cycle is traced from pre-disturbance conditions through the phases of disturbance, highlighting major differences between tropical and temperate systems that might influence development strategies in the tropics. Analyses suggest that tropical freshwaters are more frequently N-limited than temperate zones, while tropical marine systems may show more frequent P limitation. These analyses indicate that disturbances to pristine tropical lands will lead to greatly increased primary production in freshwaters and large changes in tropical freshwater communities. Increased freshwater nutrient flux will also lead to an expansion of the high production, N- and light-limited zones around river deltas, a switch from P- to N-limitation in calcareous marine systems, with large changes in the community composition of fragile mangrove and reef systems. Key information gaps are highlighted, including data on mechanisms of nutrient transport and atmospheric deposition in the tropics, nutrient and material retention capacities of tropical impoundments, and N/P coupling and stoichiometric impacts of nutrient supplies on tropical aquatic communities. The current base of biogeochemical data suggests that alterations in the N-cycle will have greater impacts on tropical aquatic ecosystems than those already observed in the temperate zone.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    ISSN: 1573-5168
    Keywords: adenosine triphosphate ; fertility ; nitrogen ; salmonid ; semen ; spermatocrit ; viability
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Adenosine triphosphate (ATP) levels in sperm from chinook salmon (Oncorhynchus tshawytscha) were found to be 12.1±1.9 pmol ATP per 106 sperm cells (mean±SEM, n=18). Sperm were stored at 0–2 °C for up to 72 h under 100, 21, and 0% O2. Changes in sperm ATP content of samples maintained under 100 and 21% O2 were indistinguishable, decreasing to 50% of initial values after 72 h. ATP levels of sperm stored under 0% O2 decreased to 10% of initial values within 8 h and remained unchanged throughout the following 64 h. The initial percent of living sperm (sperm viability) was 94.7±1.7% (mean±SEM, n=12) and was unaltered at 24 h under all O2 tensions. At 72 h, sperm viability remained unchanged under 21% O2 and had decreased by 20% under 100% O2 and by 30% under 0% O2. Therefore, reductions in sperm ATP levels could not be attributed to cell lysis, as viability decreased only modestly over these durations. Fertilizing ability correlated positively with sperm ATP levels. Spermatocrit values increased by 20% for the samples maintained under 100 and 21% O2 after 72 h. However, a 20% increase in spermatocrit occurred within 24 h in samples maintained under 0% O2, rising 70% after 72 h under 0% O2. These data indicate that chinook sperm ATP (1) can be altered and manipulated without significant loss of viability, (2) is positively associated with fertilization, and (3) probably plays a role in sperm packing and cell flexibility.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    ISSN: 1573-515X
    Keywords: acetate ; carbon dioxide ; hydrogen ; methanogenesis ; iron ; organic carbon ; nitrogen ; redox balance ; rice paddy soil ; sulfate
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract The potentials for sequential reduction of inorganic electron acceptors and production of methane have been examined in sixteen rice soils obtained from China, the Philippines, and Italy. Methane, CO2, Fe(II), NO 3 - , SO 4 2 , pH, Eh, H2 and acetate were monitored during anaerobic incubation at 30 °C for 120 days. Based on the accumulation patterns of CO2 and CH4, the reduction process was divided into three distinct phases: (1) an initial reduction phase during which most of the inorganic electron acceptors were depleted and CO2 production was at its maximum, (2) a methanogenic phase during which CH4 production was initiated and reached its highest rate, and (3) a steady state phase with constant production rates of CH4 and CO2. The reduction phases lasted for 19 to 75 days with maximum CO2 production of 2.3 to 10.9 μmol d-1 g-1 dry soil. Methane production started after 2 to 87 days and became constant after about 38--68 days (one soil 〉120 days). The maximum CH4 production rates ranged between 0.01 and 3.08 μmol d-1 g-1. During steady state the constant CH4 and CO2 production rates varied from 0.07 to 0.30 μmol d-1 g-1 and 0.02 and 0.28 μmol d-1 g-1, respectively. Within the 120 d of anaerobic incubation only 6--17% of the total soil organic carbon was released into the gas phase. The gaseous carbon released consisted of 61--100% CO2, 〈0.1--35% CH4, and 〈5% nonmethane hydrocarbons. Associated with the reduction of available Fe(III) most of the CO2 was produced during the reduction phase. The electron transfer was balanced between total CO2 produced and both CH4 formed and Fe(III), sulfate and nitrate reduced. Maximum CH4 production rate (r = 0.891) and total CH4 produced (r = 0.775) correlated best with the ratio of soil nitrogen to electron acceptors. Total nitrogen content was a better indicator for “available” organic substrates than the total organic carbon content. The redox potential was not a good predictor of potential CH4 production. These observations indicate that the availability of degradable organic substrates mainly controls the CH4 production in the absence of inorganic electron acceptors.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    ISSN: 1573-515X
    Keywords: acetate ; carbon dioxide ; hydrogen ; methanogenesis ; iron ; organic carbon ; nitrogen ; redox balance ; rice paddy soil ; sulfate
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract The potentials for sequential reduction of inorganic electron acceptors and production of methane have been examined in sixteen rice soils obtained from China, the Philippines, and Italy. Methane, CO2, Fe(II), NO 3 − , SO 4 2− , pH, Eh, H2 and acetate were monitored during anaerobic incubation at 30 °C for 120 days. Based on the accumulation patterns of CO2 and CH4, the reduction process was divided into three distinct phases: (1) an initial reduction phase during which most of the inorganic electron acceptors were depleted and CO2 production was at its maximum, (2) a methanogenic phase during which CH4 production was initiated and reached its highest rate, and (3) a steady state phase with constant production rates of CH4. and CO2. The reduction phases lasted for 19 to 75 days with maximum CO2 production of 2.3 to 10.9μmol d−1 g−1 dry soil. Methane production started after 2 to 87 days and became constant after about 38–68 days (one soil 〉120 days). The maximum CH4 production rates ranged between 0.01 and 3.08μmol d−1 g−1. During steady state the constant CH4 and CO2 production rates varied from 0.07 to 0.30μmol d−1 g−1 and 0.02 and 0.28μmol d−1 g−1, respectively. Within the 120 d of anaerobic incubation only 6–17% of the total soil organic carbon was released into the gas phase. The gaseous carbon released consisted of 61–100% CO2, 〈0.1–35% CH4, and 〈5% nonmethane hydrocarbons. Associated with the reduction of available Fe(III) most of the CO2 was produced during the reduction phase. The electron transfer was balanced between total CO2 produced and both CH4 formed and Fe(III), sulfate and nitrate reduced. Maximum CH4 production rate (r=0.891) and total CH4 produced (r =0.775) correlated best with the ratio of soil nitrogen to electron acceptors. Total nitrogen content was a better indicator for “available” organic substrates than the total organic carbon content. The redox potential was not a good predictor of potential CH4 production. These observations indicate that the availability of degradable organic substrates mainly controls the CH4 production in the absence of inorganic electron acceptors.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    ISSN: 1573-1618
    Keywords: CERES ; wheat ; soil moisture ; nitrogen ; variability ; precision agriculture ; spatial
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Crop growth modelling techniques were used to investigate the performance of a wheat crop over a range of weather conditions, nitrogen application rates and soil types. The data were used to predict long term benefits of using spatially variable fertilizer application strategies where fertilizer application rate was matched to the soil type, against a strategy of uniform fertilizer application. The model was also run with modified soil properties to determine the importance of soil moisture holding capacity in the variability of crop yield. It was found that the benefits of spatially variable nitrogen management when fertilizer was applied at the beginning of the season were modest on average. The range of results for different weather conditions was much greater than the average benefit. A large proportion of the variability of crop performance between soil types could be explained by differing soil moisture holding capacity. Devising techniques for managing this variability was concluded to be important for precision farming of cereals.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    ISSN: 1573-0867
    Keywords: acidification ; ANE ; ANR ; calcium ammonium nitrate ; cattle slurry ; dilution ; grassland ; nitric acid ; nitrogen ; residual effect
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Acidification of cattle slurry with nitric acid to pH 4.5 was studied on experimental dairy farms in the Netherlands as a measure to reduce ammonia losses. This paper presents the results of two field experiments, carried out to assess the utilization of nitrogen (N) from nitric acid treated cattle slurry following surface application to grassland. Three aspects were studied: (i) the utilization of N from nitric acid treated cattle slurry following a single surface application to grassland; (ii) the effects of multiple applications of nitric acid treated cattle slurry on N utilization, residual inorganic N in the soil and sward quality; and (iii) the residual effects of nitric acid treated slurry on DM and N yield. In these experiments undiluted acidified slurry (UAS) and diluted acidified slurry (DAS) were compared with calcium ammonium nitrate (CAN). Apparent N recoveries (ANR) and apparent N efficiencies (ANE) were calculated on the basis of inorganic N in applied fertilizer and slurries. Following single applications of UAS and CAN on the sward on the clay soil, the average ANR values of UAS and CAN were 0.74 and 0.75 kg kg-1, respectively. The average ANE values of UAS and CAN were 30.3 and 29.5 kg DM per kg N, respectively. Single applications of DAS and CAN on the sandy soil resulted in average ANR values of 0.65 and 0.84 kg kg-1 and average ANE values of 24.1 and 29.2 kg DM per kg N for DAS and CAN, respectively. On average, the direct ANR values after four successive applications of CAN, UAS or DAS were 0.82, 0.82 and 0.74 kg kg-1, respectively and the direct ANE values were 28.4, 27.8 and 27.0 kg DM per kg N. On the sandy soil, the amount of residual inorganic N in the soil after the 4th cut increased with increasing rates of inorganic N application, with a slightly higher amount on plots treated with acidified slurry than on plots fertilized with CAN. On the clay soil, the amount of residual inorganic N was not affected by N application rate nor N source. On average, the residual ANR values, in the unfertilized 5th and 6th cuts, of CAN, UAS or DAS were 0.08, 0.10 and 0.09 kg kg-1, respectively and the residual ANE values were 2.7, 3.3 and 3.0 kg DM per kg N. It was concluded that nitric acid treated cattle slurry is an effective N fertilizer on grassland and that the residual effect of nitric acid treated cattle slurry is only marginally higher than that of CAN. Repeated applications of nitric acid treated cattle slurry did not affect sward composition.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    ISSN: 1573-0867
    Keywords: carbon balance ; daily irrigation and fertilisation ; minirhizotrons ; nitrogen ; Phalaris arundinacea ; roots
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Biomass and nitrogen in the roots, rhizomes, stem bases and litter of reed canarygrass (Phalaris arundinacea L.) were repeatedly estimated by soil coring, and root growth dynamics of this potential energy crop was studied for two years using minirhizotrons. Results are discussed in relation to above-ground biomass and nitrogen fertilisation. Five treatments were used: C0, unfertilised control; C1, fertilised with solid N fertiliser in spring; I1, irrigated daily, fertilised as in C1; IF1 , irrigated as I1 and fertilised daily through a drip-tube system; IF2, as in IF1 but with higher N fertiliser rates. Biomass of below-ground plant parts of reed canarygrass increased between the first and second years. Up to 50% of total plant biomass and nitrogen were recovered below-ground. The highest proportions were found in C0. The calculated annual input via root turnover ranged between 80 and 235 g m-2. In absolute terms, up to 1 kg and 10 g m-2 of biomass and nitrogen, respectively, were found in below-ground plant fractions. High inputs of stubble and accumulated below-ground biomass will occur when the ley is ploughed, which will result in a highly positive soil carbon balance for this crop in comparison with that of conventional crops such as cereals.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 54 (1999), S. 41-48 
    ISSN: 1573-0867
    Keywords: wheat ; potassium ; nutrition ; genotypic variability ; utilization efficiency ; uptake efficiency
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Pot and field experiments were carried out in order to study the genotypic variation in potassium uptake and utilization by winter wheat (T. aestivum L). Fifty-eight genotypes showed variation in K concentration, accumulation and potassium efficiency ratio (KER) in a field experiment. KER had significant positive correlation with grain weight per spike and harvest index (HI), and significantly negative correlation with stem K concentration at maturity. In a subsequent field experiment, three out of four genotypes, Yunmei 5, 94-18 and 94-6 differed in their KER, and had significantly higher grain yield with K application (K1) than without K application (K0). The 4th genotype Zhemei 1 showed no response to K. The yield increase due to K application was mainly due to the improvement in spike development from tillers. K concentration and accumulation in the plant varied between genotypes, K levels and plant parts. Among various plant parts, stem contained the highest K concentration and had the highest K accumulation at maturity, and changed considerably with the K level, while other plant parts remained relatively unchanged. All four genotypes had smaller KER in K1, as compared to K0, but there existed some difference in KER reduction among genotypes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    ISSN: 1573-0867
    Keywords: chickpea ; marginal soils ; nitrogen ; protein content ; Rhizobium ; yield
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract A field experiment was carried out for two consecutive seasons 1994/95 and 1995/96 at ElRwakeeb (a sandy clay loam) to study the effect of Rhizobium sp. (Cicer) inoculation and N fertilization on six chickpea cultivars (Baladi, Gabel marra, NEC 25–27, NEC 2010, ILC 1919, and Flip 85–108). Plants were either inoculated with three Rhizobium sp. (Cicer) strains (TAL 480, TAL 620 and TAL 1148) separately, or N fertilized (50 kg N ha-1). The results of the two seasons indicated the absence of infective strains for chickpea in the soil. Rhizobium inoculation or N fertilization significantly increased the total nodule number per plant, 100 seed weight, yield and protein content of seeds. The results indicated that the three Rhizobium strains are infective and effective in nitrogen fixation. Inoculation with Rhizobium strain TAL 1148 resulted in a significant increment in most of the parameters studied, compared to other strains and untreated control. Cultivar ILC 1919 was the best yielding cultivar, whereas, cultivar NEC 2010 contained the highest protein content, however cultivar Gabel marra showed the highest amount of protein due to inoculation or N fertilization, in the two seasons. Inoculation with Rhizobium strain TAL 1148 increased yield by 72 and 70%, whereas, 50 kg N ha-1 increased it by 70 and 69% in the first and second seasons, respectively. The amounts of protein accumulated (kg ha-1) due to N or Rhizobium inoculation were determined for all cultivars. The results obtained from the inoculation were comparable to those of 50 kg N ha-1.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Electronic Resource
    Electronic Resource
    Springer
    Agroforestry systems 45 (1999), S. 215-244 
    ISSN: 1572-9680
    Keywords: biodiversity ; disturbance ; nitrogen ; phosphorus ; resilience ; resistance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Nutrient and hydrologic cycles in harvested native forests in southern Australia are largely balanced. For example, we have little or no evidence of any decline in nutrient capital or availability in harvested forests. Short-term and small-scale reductions in evapotranspiration due to loss of leaf area after harvesting are adequately balanced at the landscape scale by large areas of regenerating or older-age forest. In contrast, agricultural systems on similar soils are a) dependent on large inputs of fertilisers to maintain growth and b) frequently subject to increasing salinity and waterlogging or other forms of degradation. The large-scale replacement of long-lived communities of perennial and often deep- rooting native species with annual crops or other communities of shallow-rooting species might be better managed within the framework of knowledge developed from studies of native plant communities. However, application of such a mimic concept to systems of low natural productivity is limited when agricultural systems require continued high productivity. Nonetheless, the mimic concept may help in developing sustainable management of agriculture on marginal lands, and contribute to the nutritional resilience of agroecosystems. Relevant characteristics for mimic agroecosystems in south western Australia include: high species diversity, diversity of rooting attributes, utilisation of different forms of nutrients (especially of N and P) in space and time, and the promotion of practices which increase soil organic matter content.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Electronic Resource
    Electronic Resource
    Springer
    Biodegradation 10 (1999), S. 43-50 
    ISSN: 1572-9729
    Keywords: biodegradation ; nitrogen ; nutrients ; phenanthrene ; phosphorus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Phenanthrene mineralization rates were found to vary widely among four soils; differences in soil nutrient levels was one hypothesis to explain this variation. To test this hypothesis, phenanthrene mineralization rates were measured in these soils with, and without, added nitrogen and phosphorus. Mineralization rates either remained unchanged or were depressed by the addition of nitrogen and phosphorus. Phenanthrene degradation rates remained unchanged in the soil which had the highest indigenous levels of nitrogen and phosphorus and which showed the largest increase in phosphorus levels after nutrients were added. The soils in which degradation rates were depressed had lower initial phosphorus concentrations and showed much smaller or no measurable increase in phosphorus levels after nutrients were added to the soils. To understand the response of phenanthrene degradation rates to added nitrogen and phosphorus, it may be necessary to consider the bioavailability of added nutrients and nutrient induced changes in microbial metabolism and ecology.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Electronic Resource
    Electronic Resource
    Springer
    International journal of thermophysics 20 (1999), S. 867-876 
    ISSN: 1572-9567
    Keywords: dilute mixtures ; high pressure ; high-resolution Raman spectroscopy ; line width ; nitrogen
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Previous investigations have revealed a considerable difference between the spectral behavior of a molecule in a pure substance and that in a mixture. To gain more insight into the influence of the intermolecular interaction and of the mass of the molecules, we performed high-resolution measurements of the linewidths and peak positions of the vibrational Raman spectrum of pure nitrogen, nitrogen in argon, and nitrogen in helium. The research was carried out at room temperature and at pressures up to the melting line. It turns out that, in contrast with expectation, the linewidth as well as the frequency shift is essentially the same for pure nitrogen as for nitrogen diluted in argon, although both the mass and the potential well depth are quite different. The experimental results show the same tendency as recent computer simulations.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Electronic Resource
    Electronic Resource
    Springer
    Agroforestry systems 45 (1999), S. 159-185 
    ISSN: 1572-9680
    Keywords: decomposition ; environmental monitoring ; fertiliser ; mineralisation ; nitrogen ; pesticides
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Soil organisms play principal roles in several ecosystem functions, i.e. promoting plant productivity, enhancing water relations, regulating nutrient mineralisation, permitting decomposition, and acting as an environmental buffer. Agricultural soils would more closely resemble soils of natural ecosystems if management practices would reduce or eliminate cultivation, heavy machinery, and general biocides; incorporate perennial crops and organic material; and synchronise nutrient release and water availability with plant demand. In order to achieve these goals, research must be completed to develop methods for successful application of organic materials and associated micro-organisms, synchronisation of management practices with crop and soil biota phenology, and improve our knowledge of the mechanisms linking species to ecosystem processes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    ISSN: 1573-5087
    Keywords: flooding ; kinetin ; leaf relative water content ; membrane stability ; Triticum aestivum ; wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Wheat plants, 22d. old, were exposed to wide range of soil water osmotic potential (Ψs = 0 to −1.2 MPa) induced by NaCl and CaCl2 treatments in combination with roots maintained under aerobic (drained at field capacity) or nonaerobic (flooded) conditions in the soil, and sprayed with 10 mg L−1 kinetin solution. In drained plants, not receiving kinetin, increased soil salinity resulted in appreciable inhibition of shoot growth and reduction in chlorophyll (Ch1.), soluble sugars (SS) contents and grain yield. Shoot growth, Ch1. content, soluble sugars and grain yield were significantly lower for flooded plants than unflooded analogues over the entire Ψs range. Both salinity and waterlogging synergize to increase Na+, Ca+ and Cl− accumulation in shoot tissues and to decrease the stability of leaf membranes to either dehydration (40% polyethylene glycol 6000) or heat (51 °C) stress. The ratio of K+/Na+ transported to shoots under aerobic and anaerobic conditions decreased progressively on salinization. The association between the internal mineral element concentrations was largely affected by kinetin treatment. Kinetin application ameliorated the deleterious effects of salinity and oxygen deficiency. It reduced Na+, Ca2+ and Cl− accumulation and improved K+ uptake under salinity and waterlogging stresses. Increased K+/Na+ ratio helped the plants to avoid Na+ toxicity and enhanced shoot growth and grain yield. Kinetin also reduced membrane injury by dehydration and heat stresses and improved the water status of plants under both aerobic and anaerobic conditions. The effects of single factors (Soil salinity ‘Ψs’, soil waterlogging ‘WL’ and Kinetin ‘Kin’) and their interactions (Ψs × WL, Ψs × Kin, WL × Kin and Ψs × WL × Kin) were shown by analysis of variance to be statistically significant for most parameters tested. Calculation of the coefficient of determination (η+) led to three important findings. (1) Salinity (Ψs) was dominant in affecting leaf relative water content (RWC), shoot dry mass, grain yield, stability of leaf membranes to dehydration stress and the contents of Na+, Ca2+, Mg2+ and Cl−. (2) Kinetin (Kin) had a dominant effect on the stability of leaf membranes to heat stress as well as on chlorophyll and soluble sugars contents. (3) The share of waterlogging (WL) was dominant for K+ content. It can be concluded that kinetin application helped wheat plants to grow successfully in the areas subjected to combined effects of salinity and oxygen deficiency, such as in salt marshes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Electronic Resource
    Electronic Resource
    Springer
    Euphytica 105 (1999), S. 125-131 
    ISSN: 1573-5060
    Keywords: disease resistance ; inheritance ; Karnal bunt ; Neovossia ; Tilletia indica ; Triticum aestivum ; wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Inheritance of resistance to Neovossia indica was studied in a Triticum aestivum line HD 29. To overcome the influence of environment on disease expression, the study was conducted by extensive evaluation of advanced generation (F8) recombinant inbred lines (RILs) developed by single seed descent from the cross WL 711 (susceptible) × HD 29 (resistant. The results suggested that HD 29 possesses three major genes for resistance to isolated Ni7 and two genes for resistance to isolate Ni8. One of the two genes controlling resistance to Ni8 is common with one of the genes conferring resistance to Ni7. These observations have important implications in breeding for Karnal bunt resistance.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    ISSN: 1573-5060
    Keywords: capillary electrophoresis ; cultivar identification ; gliadins ; wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Gliadin proteins extracted from fifteen Chinese and Yugoslav winter wheat cultivars were fractionated using a new separation technique – Capillary Zone Electrophoresis (CZE). Different CZE conditions were defined to optimize resolution and reproducibility of gliadin separations. Excellent resolution and high reproducibility of gliadin CZE patterns were obtained by using 47 cm length, 50 μm i.d. capillaries at 15 kV and 30° C in sodium borate buffer system with acetonitrile (ACN) and sodium dodecyl sulfate. By using these CZE conditions, gliadin proteins from each cultivar were easily separated into more than 35 components. This resolution is generally superior to that of one- and two-dimensional electrophoresis and RH-HPLC. Analysis of reproducibility of gliadin CZE patterns from Chinese cultivar ‘Lumai 6’ showed that the average relative standard deviation (RSD) for peak migration times and heights was 0.21% and 4.06%, respectively. Gliadin electrophoregrams of all cultivars studied showed clear qualitative and quantitative differences, including presence or absence of some major peak, migration times and heights of peaks. Specifically, some closely related cultivars that were not differentiable by A-PAGE, were readily differentiated by CZE. In addition, winter wheat cultivars from China and Yugoslavia showed greater differences in gliadin compositions revealed by CZE.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Electronic Resource
    Electronic Resource
    Springer
    Euphytica 107 (1999), S. 71-78 
    ISSN: 1573-5060
    Keywords: Russian wheat aphid ; resistance ; inheritance ; allelism ; segregation ratio ; wheat ; Triticum aestivum L.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Russian wheat aphid (RWA), Diuraphis noxia (Mordvilko), is an important pest of wheat (Triticum aestivum L.) in the United States of America. Developing adapted wheat cultivars with genetic resistance to RWA is an effective control strategy. Genetic studies were conducted to determine the mode of inheritance of gene(s) conferring resistance to RWA in an Iranian landrace wheat line, G 5864. For the inheritance study, G 5864 was crossed with the susceptible wheats ‘Yecora Rojo’ and ND 2375. Seedlings of F1, reciprocal F1, F2, BC1 to the susceptible parent (BCS), and BC1 to the resistant parent (BCR) were screened for RWA reaction. Several phenotypic segregation ratios were tested in the F2 populations for goodness of fit; the 9:3:3:1 ratio (resistant: rolled leaves: stunted plants: susceptible) was an acceptable fit in all cases. Thus, resistance in G 5864 seemed to be controlled by two independent dominant genes with additive gene effects. The allelic relationships of gene(s) in this line with genes in other resistant lines, PI 137739 (Dn1), PI 262660 (Dn2), PI 372129 (Dn4), PI 294994 (Dn5), and PI 243781 (Dn6), were also studied. Segregation patterns observed in G 5864 × resistant (R × R) F2 populations were inconclusive. However, no susceptible plants were observed in these F2 populations. If previous reports concerning the number of resistance genes present in the other resistant lines are correct, then given the high manifestation of resistance observed in G 5864, and given the absence of susceptible plants in the R × R F2 populations, it is indicated that RWA resistance in G 5864 is either controlled by different alleles at the same loci as the other resistance genes, or that G 5864 shares a resistance gene with each of the other resistant lines.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    ISSN: 1573-5060
    Keywords: Blumeria graminis ; powdery mildew ; QTL ; RFLPs ; Triticum aestivum ; wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract A segregating population of doubled-haploid lines issued from the cross between the wheat (Triticum aestivum L. em. Thell) cultivars Courtot, resistant to several isolates of powdery mildew (Blumeria graminis DC. f. sp. tritici Em. Marchal), and Chinese Spring (susceptible) was used to map Mlar, a gene carried by Courtot and conferring resistance to this pathogen. The assignation of Mlar using monosomic lines of Courtot was confirmed by the mapping analysis. Mlar was located on the short arm of the chromosome 1A, in the vicinity of the locus XGli-A5 coding for storage proteins. This result was in accordance with those demonstrating that Mlar was an allele of the Pm3 locus (Pm3g), a gene also involved in the resistance to powdery mildew.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    ISSN: 1573-5060
    Keywords: disease assessment ; maturity ; resistance ; Septoria tritici ; Triticum aestivum ; wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Nineteen cultivars, with large differences in heading date, were evaluated for their response to septoria tritici blotch in two experimental setups in Njoro, Kenya. Due to the more or less constant temperatures during the growing season and the overhead irrigation applied the epidemic conditions were similar over the whole observation period for the early and late cultivars. In experiment 1 the cultivars were assessed for disease severity at the same moment irrespective of the developmental stage, while in experiment 2 the cultivars were assessed at the same developmental stage. Measured at the same time, the disease severity was highest in the early maturing cultivars and lowest in the late maturing cultivars (r = –0.78). When assessed at the same development stage the disease build up was independent of heading date (r = –0.10) but strongly dependent on resistance level. There were no indications that early heading cultivars were more susceptible than late heading cultivars.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    ISSN: 1573-5028
    Keywords: promoter analysis ; puroindoline gene ; seed ; tissue-specific expression ; transgenic rice ; wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A genomic DNA fragment containing the 5′-upstream sequence and part of the open reading frame corresponding to Triticum aestivum puroindoline-b cDNA, was isolated by inverse PCR. Promoter fragments extending to −1068, −388, −210 or −124 upstream of the translation initiation ATG codon and the sequence coding for the first 13 amino acids of the puroindoline-b, were translationally fused to the uidA reporter gene encoding β-glucuronidase and transferred to rice calli via particle bombardment-mediated transformation. The 1068 bp and 124 bp promoters were also transcriptionally fused to the uidA reporter gene. Out of the 196 plants regenerated from transformed rice calli, 118 plants set seeds. No GUS activity was detectable in the stems, roots, leaves or pollen of the transgenic rice which had integrated the puroindoline-b promoter or its deletions; GUS activity was detected only in seeds, except in those having integrated the 124 bp promoter. Within seeds, histological localisation showed GUS activity as being restricted to the endosperm, aleurone cells and pericarp cell layers; no GUS activity was detected in the embryonic axis. Analysis of 5′ promoter deletions identified the region between −388 and −210 as essential for endosperm expression, and the region between −210 and −124 as essential for expression in the epithelium of the scutellum. No difference of expression was observed between the translational and transcriptional fusion genes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 209 (1999), S. 233-243 
    ISSN: 1573-5036
    Keywords: bioassay ; carbon ; erosion ; forest soil ; nitrogen ; wildfire
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract A ponderosa pine/Douglas-fir forest (Pinus ponderosa Dougl., Pseudotsuga menziesii (Mirb.) Franco; PP/DF) and a lodgepole pine/Engelmann spruce forest (Pinus contorta Loud., Picea engelmannii Parry ex Engelm.; LP/ES) located on the eastern slopes of the Cascade Mountains in Washington state, USA, were examined following severe wildfire to compare total soil carbon and nitrogen capitals with unburned (control) forests. One year after fire, the average C content (60 cm depth) of PP/DF and LP/ES soil was 30% (25 Mg ha-1) and 10% (7 Mg ha-1) lower than control soil. Average N content on the burned PP/DF and LP/ES plots was 46% (3.0 Mg ha-1) and 13% (0.4 Mg ha-1) lower than control soil. The reduction in C and N in the PP/DF soil was largely the result of lower nutrient capitals in the burned Bw horizons (12–60 cm depth) relative to control plots. It is unlikely that the 1994 fire substantially affected nutrient capitals in the Bw horizons; however, natural variability or past fire history could be responsible for the varied nutrient capitals observed in the subsurface soils. Surface erosion (sheet plus rill) removed between 15 and 18 Mg ha-1 of soil from the burned plots. Nutrient losses through surface erosion were 280 kg C ha-1 and 14 kg N ha-1 in the PP/DF, whereas LP/ES losses were 640 and 22 kg ha-1 for C and N, respectively. In both forests, surface erosion of C and N was ∼1% to 2% of the A-horizon capital of these elements in unburned soil. A bioassay (with lettuce as an indicator plant) was used to compare soils from low-, moderate- and high-severity burn areas relative to control soil. In both forests, low-severity fire increased lettuce yield by 70–100% of controls. With more severe fire, yield decreased in the LP/ES relative to the low-intensity burn soil; however, only in the high-severity treatment was yield reduced (14%) from the control. Moderate- and high-severity burn areas in the PP/DF were fertilized with ∼56 kg ha-1 of N four months prior to soil sampling. In these soils, yield was 70–80% greater than the control. These results suggest that short-term site productivity can be stimulated by low-severity fire, but unaffected or reduced by more severe fire in the types of forests studied. Post-fire fertilization with N could increase soil productivity where other environmental factors do not limit growth.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 212 (1999), S. 143-151 
    ISSN: 1573-5036
    Keywords: carrot ; green manure ; nitrogen ; organic production ; rooting depth ; root distribution
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Cover crops grown as green manure or for other purposes will affect nitrogen (N) distribution in the soil, and may thereby alter root growth of a succeeding crop. During two years, experiments were performed to study effects of nitrogen supply by green manure on root development of carrots (Daucus carota L). Total root intensity (roots cm−2 on minirhizotrons) was significantly affected by the green manures, and was highest in the control plots where no green manure had been grown. Spread of the root system into the interrow soil was also affected by green manure treatments, as the spread was reduced where spring topsoil Nmin was high. Although N supply and distribution in the soil profile differed strongly among the treatments, no effect was observed on the rooting depth of the carrot crops. Across all treatments the rooting front penetrated at a rate of 0.82 and 0.68 mm day−1 °C−1 beneath the crop rows and in the interrow soil, respectively. The minirhizotrons only allowed measurements down to 1 m, and the roots reached this depth before harvest. Extrapolating the linear relationship between temperature sum and rooting depth until harvest would lead to rooting depths of 1.59 and 1.18 m under the crop rows and in the interrow soil respectively. Soil analysis showed that the carrot crop was able to reduce Nmin to very low levels even in the 0.75 to 1.0 m soil layer, which is in accordance with the root measurements. Still, where well supplied, the carrots left up 90 kg N ha−1 in the soil at harvest. This seemed to be related to a limited N uptake capacity of the carrots rather than to insufficient root growth in the top metre of the soil.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    ISSN: 1573-5036
    Keywords: barley ; genetic variation ; phosphate uptake ; rhizosphere ; root hairs ; wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Low phosphorus (P) availability in soils and diminishing P reserves emphasize the need to create plants that are more efficient P users. Knowledge of P efficient germplasm among the existing cereal varieties may serve as the basis for improving soil P use by selection and breeding. We had identified some cereal cultivars (winter wheat: Kosack and Kraka; winter barley: Hamu and Angora; spring barley: Canut, Alexis, Salka, Zita;) which differed (p〈0.05) in P depletion from thin slices (0.2 mm) of the rhizosphere soil under controlled conditions. In the present study, the same cultivars were studied under field conditions at three levels of P supply (no-P, 10 and 20 kg P ha-1) and the differences in P uptake as found in the previous work were confirmed. Under both conditions, the variation between the cultivars was greatest in soil without P fertilizers (no-P) for about 30 years. The variation in P uptake with most cultivars disappeared when 10 kg P ha-1 was applied. Root development did not differ between the cultivars much, but there was wide, consistent variation in their root hairs, regardless of growth media (solution, soil column and field). Increase in soil P level reduced the length of root hairs. The variation in root hairs between the cultivars was largest in no-P soil. When 10 kg P ha-1 was applied, the root hair lengths did not differ between the cultivars. Barley cultivars with longer root hairs depleted more P from the rhizosphere soil and also absorbed more P in the field. The relationship between root hairs and phosphorus uptake of the wheat cultivars was less clear. The wide variation in P uptake among the barley cultivars in the field and its relationship to the root hair development confirms that root hair length may be a suitable plant characteristic to use as criterion for selecting barley cultivars for P efficiency, especially in low-P soils.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    ISSN: 1573-5036
    Keywords: banded wetting agent ; furrow sowing ; lupins ; press wheels ; water repellent soils ; wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The rates of emergence of wheat and lupin were measured in 13 field experiments on water repellent sands. Conventional sowing was compared with furrow sowing either with or without the use of a press wheel and several rates of banded wetting agent. Measurements included, severity of water repellence, plant emergence, rainfall, soil temperature at sowing and, at one site, the area of wet soil after sowing. All ameliorative techniques improved emergence, with responses being greatest when seeds were sown into dry soil. Compared with conventional sowing, furrow sowing increased wheat and lupin emergence by an overall average of 16 and 41%, respectively. The benefits were greater at the drier sites. Increases in emergence due to the use of a press wheel were sometimes small, although they always occurred (1–19%). It was visually observed that press wheel use gave more uniform seeding depth, reduced clods and ensured more accurate placement of banded wetting agent. Banded wetting agent consistently improved wheat and lupin emergence, particularly where early rains were light and press wheels were used. The wetting agent increased the cross-sectional area of wet topsoil (0–10 cm) which was positively related with increased wheat emergence (R2 = 0.91). At 0.5 L ha−1 of banded wetting agent, the soil along the furrow was four times wetter than without wetting agent. Wetting agent at 0.5 and 1 L ha−1 (with press wheels) increased wheat emergence by 6 and 11% and lupin emergence by 13 and 11%, respectively. The high rates of banded wetting agent gave highest plant densities. Grain yield was only measured at three sites. Furrow sowing did not increase grain yield, however, press wheels use with furrow sowing increased grain yield by 30%. Banded wetting agent increased grain yield and they were positively correlated. The highest rate increased grain yields by a further 9% above press wheels and furrow sowing.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    ISSN: 1573-5036
    Keywords: boron ; genotypic difference ; sterility ; Triticum aestivum ; wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Two pot experiments at the Plant Environment Laboratory (PEL), Reading, UK investigated sterility, boron (B) accumulation and B partitioning of wheat cultivars grown with limited B in the growing medium. The first experiment evaluated nine cultivars of spring wheat with diverse field responses to low available soil B, supplied with or without 20 μM B. A second experiment examined the response of a susceptible (SW-41) and a tolerant (Fang-60) cultivar to B-deficiency. These cultivars were supplied with either 20 μM B from sowing to flag leaf emergence and no added B thereafter, or 20 μM B from sowing to maturity. When B was not supplied in the nutrient solution, the number of grains ranged from 4 per ear (cv. BL-1135) to 32 per ear (cv. BL-1249) and sterility of competent florets ranged from 39% to 93%. Boron concentration in the flag leaf at anthesis did not differ greatly when the growing medium contained limited B, but differences between cultivars were evident when B was unlimited. Tolerance of B-deficiency was not related to the B concentration in the flag leaf. Some cultivars produced viable pollen and set grains while others failed to do so at similar B concentrations in the flag leaf. The two contrasting cultivars did not differ much in their pattern of B partitioning when B supply was restricted from flag leaf emergence onwards. Similarly, little evidence was found that the tolerant cultivars translocated B from their leaves, roots or stems when the supply in the growing medium was restricted. The proportion of total B partitioned in different organs was the same irrespective of B supply and cultivar. On average, leaves contained 68% of the total B content in the whole plant compared to 16% in the roots, 10% in the ears and only 6% in the stems. Tolerant or susceptible cultivars of wheat could not be distinguished based on the B concentration and B content of the flag leaf.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    ISSN: 1573-5036
    Keywords: hydraulic conductivity ; leaf growth ; phosphorus ; Rhizoctonia ; water status ; wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Wheat seedlings infected with a pure inoculum of the root-rotting fungus Rhizoctonia solani were grown in pots designed to fit in pressure chambers, to allow the effects of the Rhizoctonia infection on leaf growth to be studied while maintaining the leaves at elevated water status. Wheat was grown to the third leaf stage in soil inoculated with three different levels of Rhizoctonia, and the pots were then pressurised for seven days to maintain the leaf xylem at the point of bleeding (ie. the leaves were at full turgor). The reduction in leaf expansion caused by Rhizoctonia was not overcome by pressurisation, indicating that a reduced supply of water to the leaves was not responsible for reduced leaf growth. The addition of phosphorus to pots marginally deficient in P did not increase the leaf growth of Rhizoctonia-infected plants, despite increased P uptake to the leaves. These results indicate that a reduced supply of water to the leaves and a supply of phosphorus that was bordering on deficient was not the cause of the growth reduction in seedlings with Rhizoctonia infection. The nature of this reduced growth remains uncertain but may involve growth regulators produced by the fungus, or by the plant as a result of the infection process. The mechanism of these growth reductions is of interest as it may provide a key to the development of plant resistance mechanisms.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...