Skip to main content
Log in

A starch-branching enzyme gene in wheat produces alternatively spliced transcripts

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

A wheat gene, denoted Sbe1, encoding a type I starch-branching enzyme (SBEI) was isolated from a genomic library and shown to comprise 14 exons distributed over a 5.7 kb DNA region. Analyses of kernel RNA by 5′ rapid amplification of cDNA ends (5′-RACE) and reverse transcription-polymerase chain reaction (RT-PCR) demonstrated a considerable sequence variation at the 5′ ends of SBEI gene transcripts. DNA sequence alignments between the 5′-RACE products and the Sbe1 genomic DNA indicated that the first two exons and first intron were differentially processed to generate three classes of the mature transcript. One form of the SBEI gene transcript in 12-day old kernels contained the exon I+II+III combination at the 5′ end, whereas other forms differed by inclusion of intron 1 or exclusion of exon II sequences. RT-PCR analysis of Sbe1-uidA::nptII chimeric mRNA produced in transgenic wheat cultured cells confirmed that the isolated Sbe1 was able to produce all three forms of SBEI gene transcripts by alternative splicing of the primary mRNA. The variants of processed Sbe1 mRNA were potentially translated into N-terminal variants of the SBEI precursor with different transit peptide sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bå ga, M., Chibbar, R.N. and Kartha, K.K. 1995. Molecular cloning and expression analysis of peroxidase genes from wheat. Plant Mol. Biol. 29: 647–662.

    PubMed  Google Scholar 

  • Bournay, A.-S., Hedley, P.E., Maddison, A., Waugh, R. and Machray, G.C. 1996. Exon skipping induced by cold stress in a potato invertase gene transcript. Nucl. Acids Res. 24: 2347–2351.

    PubMed  Google Scholar 

  • Burton, R.A., Bewley, J.D., Smith, A.M., Bhattacharyya, M.K., Tatge, H., Ring, S., Bull, V., Hamilton, W.D.O. and Martin, C. 1995. Starch branching enzymes belonging to distinct enzyme families are differentially expressed during pea embryo development. Plant J. 7: 3–15.

    PubMed  Google Scholar 

  • Carle-Urioste, J.C., Brendel, V. and Walbot, V. 1997. A combinatorial role for exon, intron and splice site sequences in splicing in maize. Plant J 11: 1253–1263.

    PubMed  Google Scholar 

  • Datla, R.S.S., Hammerlindl, J.K., Pelcher, L.E., Crosby, W.L. and Selvaraj, G. 1991. A bifunctional fusion between β-glucuronidase and neomycin phosphotransferase: a broadspectrum marker enzyme for plants. Gene 101: 239–246.

    Article  PubMed  Google Scholar 

  • de Boer, D., Cremers, F., Teertstra, R., Smits, L., Hille, J., Smeekens, S. and Weisbeek, P. 1988. In vivoimport of plastocyanin and a fusion protein into developmentally different plastids of transgenic plants. EMBO J 7: 2631–2635.

    Google Scholar 

  • Denyer, K., Sidebottom, C., Hylton, C.M. and Smith, A.M. 1993. Soluble isoforms of starch synthase and starch-branching enzyme also occur within starch granules in developing pea embryos. Plant J. 4: 191–198.

    PubMed  Google Scholar 

  • Fisher, D.K., Kim, K.-N., Gao, M., Boyer, C.D. and Guiltinan, M.J. 1995. A cDNA encoding starch branching enzyme I from maize endosperm. Plant Physiol 108: 1313–1314.

    Article  PubMed  Google Scholar 

  • Gao, M., Fisher, D.K., Kim, K.-N., Shannon, J.C. and Guiltinan, M.J. 1996. Evolutionary conservation and expression patterns of maize starch branching enzyme I and IIb genes suggest isoform specialization. Plant Mol. Biol. 30: 1223–1232.

    PubMed  Google Scholar 

  • Gavel, Y. and von Heijne, G. 1990. A conserved cleavage-site motif in chloroplast transit peptides. FEBS Lett. 261: 455–458.

    PubMed  Google Scholar 

  • Görlach, J., Raesecke, H.-R., Abel, G., Wehrli, R., Amrhein, N. and Schmid, J. 1995. Organ-specific differences in the ratio of alternatively spliced chorismate synthase (LeCS2) transcripts in tomato. Plant J. 8: 451–456.

    PubMed  Google Scholar 

  • Grotewold, E., Athma, P. and Peterson, T. 1991. Alternatively spliced products of the maize Pgene encode proteins with homology to the DNA-binding domain of myb-like transcription factors. Proc. Natl. Acad. Sci. USA 88: 4587–4591.

    PubMed  Google Scholar 

  • Guan, H.P. and Preiss, J. 1993. Differentiation of the properties of the branching isozymes from maize (Zea mays). Plant Physiol. 102: 1269–1273.

    PubMed  Google Scholar 

  • Hayashi, M., Tsugeki, R., Kondo, M., Mori, H. and Nishimura, M. 1996. Pumpkin hydroxypyruvate reductases with and without a putative C-terminal signal for targeting to microbodies may be produced by alternative splicing. Plant Mol. Biol. 30: 183–189.

    PubMed  Google Scholar 

  • Hodges, D. and Bernstein, S.I. 1994. Genetic and biochemical analysis of alternative RNA splicing. Adv. Genet. 31: 270–281.

    Google Scholar 

  • Jefferson, R.A., Kavanagh, T.A. and Bevan, M.W. 1987. GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6: 3901–3907.

    PubMed  Google Scholar 

  • Kawasaki, T., Mizuno, K., Baba, T. and Shimada, H. 1993. Molecular analysis of the gene encoding a rice starch branching enzyme. Mol. Gen. Genet. 237: 10–16.

    PubMed  Google Scholar 

  • Klösgen, R.B. and Weil, J.-H. 1991. Subcellular location and expression level of a chimeric protein consisting of the maize waxytransit peptide and the β-glucuronidase of Escherichia coliin transgenic potato plants. Mol. Gen. Genet. 225: 297–304.

    PubMed  Google Scholar 

  • Kopriva, S., Cossu, R. and Bauwe, H. 1995. Alternative splicing results in two different transcripts for H-protein of the glycine cleavage system in the C4 species Flaveria trinervia. Plant J. 8: 435–441.

    PubMed  Google Scholar 

  • Kram, A.M., Oostergestel, G.T. and van Bruggen, E.F.J. 1993. Localization of branching enzyme in potato tuber cells with the use of immunoelectron microscopy. Plant Physiol. 101: 237–243.

    PubMed  Google Scholar 

  • Lou, H., McCullough, A.J. and Schuler, M.A. 1993. 30 splice site selection in dicot plant nuclei is position dependent. Mol. Cell. Biol. 13: 4485–4493.

    PubMed  Google Scholar 

  • Lugert, T. and Werr, W. 1994. A novel DNA-binding domain in the Shrunken initiator-binding protein (IBP1). Plant Mol. Biol. 25: 493–506.

    PubMed  Google Scholar 

  • Marchuk, D., Drumm, M., Saulino, A. and Collins, F.S. 1991. Construction of T-vectors, a rapid and general system for direct cloning of unmodified PCR products. Nucl. Acids Res. 19: 1154.

    PubMed  Google Scholar 

  • Montag, K., Salamini, F. and Thompson, R.D. 1995. ZEMa, a member of a novel group of MADS box genes, is alternatively spliced in maize endosperm. Nucl. Acids Res. 23: 2168–2177.

    PubMed  Google Scholar 

  • Morell, M.K., Blennow, A., Kosar-Hashemi, B. and Samuel, M.S. 1997. Differential expression and properties of starch branching enzyme isoforms in developing wheat endosperm. Plant Physiol. 113: 201–208.

    PubMed  Google Scholar 

  • Mu-Forster, C., Huang, R., Powers, J.R., Harriman, R.W., Knight, M., Singletary, G.W., Keeling, P.L. and Wasserman, B.P. 1996. Physical association of starch biosynthetic enzymes with starch granules of maize endosperm. Plant Physiol. 111: 821–829.

    PubMed  Google Scholar 

  • Nair, R.B., Bå ga, M., Scoles, G.J., Kartha, K.K. and Chibbar, R.N. 1997. Isolation, characterization and expression analysis of a starch branching enzyme II cDNA from wheat. Plant Sci. 122: 153–163.

    Google Scholar 

  • Nakamura, Y. and Yamanouchi, H. 1992. Nucleotide sequence of a cDNA encoding starch-branching enzyme, or Q-enzyme I, from rice endosperm. Plant Physiol. 99: 1265–1266.

    Google Scholar 

  • Nehra, N.S., Chibbar, R.N., Leung, N., Caswell, K., Mallard, C., Steinhauer, L., Bå ga, M. and Kartha, K.K. 1994. Self-fertile transgenic wheat plants regenerated from isolated scutellar tissues following microprojectile bombardment with two distinct gene constructs. Plant J. 5: 285–297.

    Google Scholar 

  • Pilon, M., Wienk, H., Sips, W., de Swaaf, M., Talboom, I., van't Hof, R., de Korte-Kool, G., Demel, R., Weisbeek, P. and de Kruijff, B. 1995. Functional domains of the ferredoxin transit sequence involved in chloroplast import. J. Biol. Chem. 270: 3882–3893.

    PubMed  Google Scholar 

  • Pinnaduwage, P. and Bruce, B.D. 1996. In vitrointeraction between a chloroplast transit peptide and chloroplast outer envelope lipids is sequence-specific and lipid class-dependent. J. Biol. Chem. 271: 32907–32915.

    PubMed  Google Scholar 

  • Preiss, J. and Sivak, M.N. 1998. Biochemistry, molecular biology and regulation of starch synthesis. Genet. Eng. 20: 177–223.

    Google Scholar 

  • Rahman, S., Abrahams, S., Abbott, D., Mukai, Y., Samuel, M., Morell, M. and Appels, R. 1997. A complex arrangement of genes at a starch branching enzyme I locus in the D-genome donor of wheat. Genome 40: 465–474.

    PubMed  Google Scholar 

  • Repellin, A., Nair, R.B., Bå ga, M. and Chibbar, R.N. 1997. Isolation of a starch branching enzyme I cDNA from a wheat endosperm library (accession No. Y12320) (PGR97-094). Plant Physiol. 114: 1135.

    PubMed  Google Scholar 

  • Sambrook, J., Fritsch, E.F. and Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  • Sanford, J.C., Smith, F.D. and Russell, J.A. 1993. Optimizing the biolistic process for different biological applications. Meth. Enzymol. 217: 483–509.

    PubMed  Google Scholar 

  • Schindler, C. and Soll, J. 1986. Protein transport in intact, purified pea etioplasts. Arch. Biochem. Biophys. 247: 211–220.

    PubMed  Google Scholar 

  • Simpson, G.G. and Filipowicz, W. 1996. Splicing of precursors to mRNA in higher plants: mechanism, regulation and sub-nuclear organization of the spliceosomal machinery. Plant Mol. Biol. 32: 1–41.

    PubMed  Google Scholar 

  • Smith, A.M. 1988. Major differences in isoforms of starchbranching enzyme between developing embryos of round-and wrinkled-seeded peas (Pisum sativumL.). Planta 175: 270–279.

    Google Scholar 

  • Smith, A.M., Denyer, K. and Martin, C. 1997. The synthesis of the starch granule. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48: 67–87.

    PubMed  Google Scholar 

  • von Heijne, G., Steppuhn, J. and Herrmann, R.G. 1989. Domain structure of mitochondrial and chloroplast targeting peptides. Eur. J. Biochem. 180: 535–545.

    PubMed  Google Scholar 

  • Waegemann, K. and Soll, J. 1996. Phosphorylation of the transit sequence of chloroplast precursor proteins. J. Biol. Chem. 271: 6545–6554.

    PubMed  Google Scholar 

  • Wan, J., Blakeley, S.D., Dennis, D.T. and Ko, K. 1996. Transit peptides play a major role in the preferential import of proteins into leucoplasts and chloroplasts. J. Biol. Chem. 271: 31227–31233.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Båga, M., Glaze, S., Mallard, C.S. et al. A starch-branching enzyme gene in wheat produces alternatively spliced transcripts. Plant Mol Biol 40, 1019–1030 (1999). https://doi.org/10.1023/A:1006286807176

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006286807176

Navigation