ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1793
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Heterotrophic nitrogen-fixation (acetylene reduction) was measured during decomposition (under dark conditions) of Rhizophora mangle L. and Avicennia germinans (L.) Stearn leaf litter. Nitrogen-fixation rates in leaf litter increased following 24 d incubation, then decreased after ≃44 d for both species. Maximum rates of 66.2 and 64.6 nmol C2H4 g−1 dry wt h−1 were reached by R. mangle and A. germinans leaf litter, respectively. Higher fixation rates of leaf litter were associated with an increase in water content and sediment particles on leaf surfaces of both species. Rates of nitrogen fixation by diazotrophs attached to sediment particles were not significantly different from zero. With additions of d-glucose, ethylene production rates increased by factors of 625-, 34- and 7-fold for sediment, R. mangle and A.␣germinans leaf litter, respectively, compared to rates prior to enrichment. These organically enhanced rates of nitrogen fixation on leaves could be accounted for by increased activity associated with attached sediment particles and not the leaf material. Total phenolics [reported as tannic acid equivalent (TAE) units] decreased nitrogen-fixation rates when added to d-glucose-enriched sediment at 〉20 mg TAE l−1. Phenolic compounds could explain the initial lag in rates of nitrogen fixation during leaf-litter decomposition of R. mangle (initial content of 110.8 mg TAE g−1 dry wt), but not of A. germinans (initial content of 23.4 mg TAE g−1 dry wt). The higher phenolic content and reportedly lower carbon substrate of R. mangle did not result in species-specific differences in either the magnitude or temporal pattern of nitrogen fixation compared to A. germinans leaf litter. We conclude that the availability of organic substrates leached from the leaf litter along with colonization by the heterotrophic diazotrophs (as indicated by sediment accumulation) controls nitrogen-fixation rates in a similar manner in the leaf litter of both species.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-515X
    Keywords: estuaries ; lakes ; marine ; nitrogen ; phosphorus ; rivers ; streams ; temperate ; tropics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Published data and analyses from temperate and tropical aquatic systems are used to summarize knowledge about the potential impact of land-use alteration on the nitrogen biogeochemistry of tropical aquatic ecosystems, identify important patterns and recommend key needs for research. The tropical N-cycle is traced from pre-disturbance conditions through the phases of disturbance, highlighting major differences between tropical and temperate systems that might influence development strategies in the tropics. Analyses suggest that tropical freshwaters are more frequently N-limited than temperate zones, while tropical marine systems may show more frequent P limitation. These analyses indicate that disturbances to pristine tropical lands will lead to greatly increased primary production in freshwaters and large changes in tropical freshwater communities. Increased freshwater nutrient flux will also lead to an expansion of the high production, N- and light-limited zones around river deltas, a switch from P- to N-limitation in calcareous marine systems, with large changes in the community composition of fragile mangrove and reef systems. Key information gaps are highlighted, including data on mechanisms of nutrient transport and atmospheric deposition in the tropics, nutrient and material retention capacities of tropical impoundments, and N/P coupling and stoichiometric impacts of nutrient supplies on tropical aquatic communities. The current base of biogeochemical data suggests that alterations in the N-cycle will have greater impacts on tropical aquatic ecosystems than those already observed in the temperate zone.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-515X
    Keywords: estuaries ; lakes ; marine ; nitrogen ; phosphorus ; rivers ; streams ; temperate ; tropics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Published data and analyses from temperate and tropical aquatic systems are used to summarize knowledge about the potential impact of land-use alteration on the nitrogen biogeochemistry of tropical aquatic ecosystems, identify important patterns and recommend key needs for research. The tropical N-cycle is traced from pre-disturbance conditions through the phases of disturbance, highlighting major differences between tropical and temperate systems that might influence development strategies in the tropics. Analyses suggest that tropical freshwaters are more frequently N-limited than temperate zones, while tropical marine systems may show more frequent P limitation. These analyses indicate that disturbances to pristine tropical lands will lead to greatly increased primary production in freshwaters and large changes in tropical freshwater communities. Increased freshwater nutrient flux will also lead to an expansion of the high production, N- and light-limited zones around river deltas, a switch from P- to N-limitation in calcareous marine systems, with large changes in the community composition of fragile mangrove and reef systems. Key information gaps are highlighted, including data on mechanisms of nutrient transport and atmospheric deposition in the tropics, nutrient and material retention capacities of tropical impoundments, and N/P coupling and stoichiometric impacts of nutrient supplies on tropical aquatic communities. The current base of biogeochemical data suggests that alterations in the N-cycle will have greater impacts on tropical aquatic ecosystems than those already observed in the temperate zone.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Water, air & soil pollution 64 (1992), S. 265-288 
    ISSN: 1573-2932
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Nearly 50% of terrigenous materials delivered to the world's oceans are delivered through just twenty-one major river systems. These river-dominated coastal margins (including estuarine and shelf ecosystems) are thus important both to the regional enhancement of productivity and to the global flux of C that is observed in land-margin ecosystems. The tropical regions of the biosphere are the most biogeochemically active coastal regions and represent potentially important sinks of C in the biosphere. Rates of net primary productivity and biomass accumulation depend on a combination of global factors such as latitude and local factors such as hydrology. The global storage of C in mangrove biomass is estimated at 4.03 Pg C; and 70% of this C occurs in coastal margins from 0° to 10° latitude. The average rate of wood production is 12.08 Mg ha−1 yr−1, which is equivalent to a global estimate of 0.16 Pg C/yr stored in mangrove biomass. Together with carbon accumulation in mangrove sediments (0.02 Pg C/yr), the net ecosystem production in mangroves is about 0.18 Pg C/yr. Global estimates of export from coastal wetlands is about 0.08 Pg C/yr compared to input of 0.36 Pg C/yr from rivers to coastal ecosystems. Total allochthonous input of 0.44 Pg C/yr is lower than in situ production of 6.65 Pg C/yr. The trophic condition of coastal ecosystems depends on the fate of this total supply of 7.09 Pg C/yr as either contributing to system respiration, or becoming permanently stored in sediments. Accumulation of carbon in coastal sediments is only 0.41 Pg C/yr; about 6% of the total input. The NEP of coastal wetlands also contribute to the C sink of coastal margins, but the source of this C is part of the terrestrial C exchange with the atmosphere. Accumulation of C in wood and sediments of coastal wetlands is 0.205 Pg C/yr, half the estimate for sequestering of C in coastal sediments. Burial of C in shelf sediments is probably underestimated, particularly in tropical river-dominated coastal margins. Better estimates of these two C sinks in the tropics, coastal wetlands and shelf sediments, is needed to better understand the contribution of coastal ecosystems to the global carbon budget.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Water, air & soil pollution 70 (1993), S. 123-137 
    ISSN: 1573-2932
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract This paper reports analyses of C pools and fluxes in land-water interface zones completed at the International Workshop: Terrestrial Biospheric Carbon Fluxes; Quantification of Sinks and Sources of CO2 (Bad Harzburg, Germany, March 1–5, 1993). The objective was to determine the role of these zones as global sinks of atmospheric CO2 as part of a larger effort to quantify global C sinks and sources in the past (ca. 1850), the present, and the foreseeable future (ca. 2050). Assuming the world population doubles by the year 2050, storage of atmospheric C in reservoirs will also double, as will river loads of atmospheric C and nutrients. It is estimated that C sinks in temperate and boreal wetlands have decreased by about 50%, from 0.2 to 0.1 Gt C yr−1 since 1850. The total decrease for wetlands may be considerably larger when tropical wetlands are taken into account, however, the area and C density of tropical wetlands are not well known at this time. Changes in cultivation practices and improved sampling of methaneogenesis have caused estimates of CH4 emissions from ricelands to drop substantially from 150 to 60 Tg yr−1. Even with doubled N and P loads, rivers are unlikely to fertilize more than about 20% of the new primary production in the coastal ocean. The source of C for this new production may not be the atmosphere, however, because the coastal ocean exchanges large quantities of DIC with the open ocean. Until the C fluxes from air-sea exchange of CO2 and DIC are better quantified, the C-sink potential of the coastal ocean will remain a major uncertainty in the global C cycle. Analysis of model simulations of oceanic C uptake reconfirmed that the open ocean appears to take up about 2.0 Gt C yr−1 from the atmosphere and that model estimates are in better accord now, ±0.5 Gt C yr−1, than ever before. Land use management must consider the unique C sinks in coastal and alluvial wetlands in order to minimize the future negative impacts of agriculture and urban development. Long-term monitoring will be essential to prove the success, or failure, of management practices to sustain wetlands in the future. Relative to the other systems examined at the workshop, the C-sink capacity of the ocean (excluding estuaries) is not likely to be measurably affected in the foreseeable future by the management scenarios considered at the workshop.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Wetlands ecology and management 4 (1996), S. 273-283 
    ISSN: 1572-9834
    Keywords: denitrification ; Louisiana ; nitrate ; nitrous oxide ; wastewater ; wetland
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Although denitrification has the potential to reduce nitrate (NO 3 − ) pollution of surface waters, the quantification of denitrification rates is complex because it requires differentiation from other mechanisms and is highly variable in both space and time. This study first measured potential denitrification rates at a wetland forest site in south Louisiana before receipt of secondary wastewater effluent, and then, following 30 months of effluent application, landscape gradients of dissolved nitrate (NO 3 − ) and nitrous oxide (N2O) were measured. A computer model was developed to quantify N transformations. Floodwater NO 3 − and N2O concentrations were higher in the forest receiving effluent than in the adjacent control forest. Denitrification rates of NO 3 − -amended soil cores ranged from 0.03–0.45 g N m−2 d−1 with an overall mean of 0.10 g N m−2 d−1. Effluent N is being applied at a rate of approximately 0.034 g N m−2 d−1, with approximately 95% disappearing along a 1 km transect. In the treatment forest, floodwater NO 3 − concentrations decreased from 1000 μM at the inflow point to 50 μM along the 1 km transect. Nitrous oxide concentrations increased from 0.25 μM to 1.2 μM within the first 100 m, but decreased to 0.1 μM over the next 900 m. The initial increase in N2O was presumably a result ofin situ denitrification. Model analyses indicated that denitrification was directly associated with nitrification and was limited by the availability of NO 3 − produced by nitrification. Due to different redox potential optima, coupling of nitrification and denitrification was a function of a balance of environmental conditions that was moderately favorable to both processes. N removal efficiency was largely dependent on the proportion of effluent NH 4 + to NO 3 − . When NH 4 + /NO 3 − was ≤1, average N removal efficiency ranged from 95–100%, but ratios that were 〉1 reduced average efficiencies to as low as 57%. Actual effluent NH 4 + /NO 3 − loading ratios at this site are approximately 0.2 and are consistently 〈1.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1996-12-01
    Print ISSN: 0923-4861
    Electronic ISSN: 1572-9834
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
  • 9
  • 10
    Publication Date: 1993-10-01
    Print ISSN: 0049-6979
    Electronic ISSN: 1573-2932
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...