Skip to main content
Log in

Identification and characterization of T3/T7 bacteriophage-like RNA polymerase sequences in wheat

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Using PCR-based methods, we assembled two wheat cDNA sequences, wheat-G and wheat-C, that encode T3/T7 bacteriophage-like RNA polymerases (RNAPs) sharing 45% amino acid identity. In phylogenetic analyses using maximum likelihood, parsimony and distance methods, the predicted protein sequence of wheat-G (1005 amino acids, 113 kDa) clusters with sequences of previously assigned mitochondrial RNAPs from dicotyledonous plants (Arabidopsis thaliana, Chenopodium album); likewise, in such analyses, the wheat-C sequence (949 amino acids, 107 kDa) affiliates specifically with the Arabidopsis sequence that encodes a phage-like RNAP thought to function in chloroplasts. To confirm biochemically the assignment of the gene encoding the putative wheat mitochondrial RNAP, we isolated a ca. 100 kDa wheat mitochondrial protein that is enriched in fractions displaying specific in vitro transcription activity and that reacts with an antibody raised against a recombinant maize phage-type RNAP. Internal peptide sequence information obtained from the 100-kDa polypeptide revealed that it corresponds to the predicted wheat-G cDNA sequence, providing direct evidence that the wheat-G gene (which we propose to call RpoTm) encodes the wheat mitochondrial RNAP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adachi, J., Hasegawa, M. 1992. MOLPHY: Programs for Molecular Phylogenetics, I. PROTML: Maximum Likelihood Inference of Protein Phylogeny. Computer Science Monographs, Institute of Statistical Mathematics, Tokyo.

    Google Scholar 

  • Börner, T., Hedtke, B., Hess, W.R., Legen, J., Herrmann, R.G. and Weihe, A. In press. Phage-type RNA polymerases in higher plants. In: J. Argyroudi-Akoyunoglou (Ed.), The Chloroplast: From Molecular Biology to Biotechnology. Kluwer Academic Publishers, Dordrecht, Netherlands.

  • Cermakian, N., Ikeda, T.M., Cedergren, R. and Gray, M.W. 1996. Sequences homologous to yeast mitochondrial and bacteriophage T3 and T7 RNA polymerases are widespread throughout the eukaryotic lineage. Nucl. Acids Res. 24: 648-654.

    PubMed  Google Scholar 

  • Cermakian, N., Ikeda, T.M., Miramontes, P., Lang, B.F., Gray, M.W. and Cedergren, R. 1997. On the evolution of the singlesubunit RNA polymerases. J Mol Evol 45: 671-681.

    PubMed  Google Scholar 

  • Chang, C.-C., Sheen, J., Bligny, M., Niwa, Y., Lerbs-Mache, S. and Stern, D.B. In press. Functional analysis of two maize cDNAs encoding T7-like RNA polymerases. Plant Cell.

  • Chen, B., Kubelik, A.R., Mohr, S. and Breitenberger, C.A. 1996. Cloning and characterization of the Neurospora crassa cyt-5 gene. A nuclear-coded mitochondrial RNA polymerase with a polyglutamine repeat. J. Biol. Chem. 271: 6537-6544.

    PubMed  Google Scholar 

  • Dellaporta, S.L., Wood, J. and Hicks, J.B. 1983. A plant DNA minipreparation: version II. Plant Mol. Biol. Rep. 1(4): 19-21.

    Google Scholar 

  • Denhardt, D.T. 1966. A membrane-filter technique for the detection of complementary DNA. Biochem. Biophys. Res. Commun. 23: 641-646.

    PubMed  Google Scholar 

  • Farrell Jr., R.E. 1993. RNA Methodologies: A Laboratory Guide for Isolation and Characterization. Academic Press, San Diego, CA.

    Google Scholar 

  • Felsenstein, J. 1993. Phylip (Phylogeny Inference Package) Version 3.5c. Department of Genetics, University ofWashington, Seattle, WA.

    Google Scholar 

  • Fisher, R.P., Clayton, D.A. 1985. A transcription factor required for promoter recognition by human mitochondrial RNA polymerase. Accurate initiation at the heavy-and light-strand promoters dissected and reconstituted in vitro. J. Biol. Chem. 260: 11330-11338.

    PubMed  Google Scholar 

  • Fisher, R.P. and Clayton, D.A. 1988. Purification and characterization of human mitochondrial transcription factor 1. Mol. Cell. Biol. 8: 3496-3509.

    PubMed  Google Scholar 

  • Frohman, M.A., Dush, M.K. and Martin, G.R. 1988. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc. Natl. Acad. Sci. USA 85: 8998-9002.

    PubMed  Google Scholar 

  • Gillham, N.W. 1994. Organelle Genes and Genomes. Oxford University Press, New York.

    Google Scholar 

  • Goodall, G.J., Wiebauer, K. and Filipowicz, W. 1990. Analysis of pre-mRNA processing in transfected plant protoplasts. Meth. Enzymol. 181: 148-161.

    PubMed  Google Scholar 

  • Gray, M.W. and Lang, B.F. 1998. Transcription in chloroplasts and mitochondria: a tale of two polymerases. Trends Microbiol. 6: 1-3.

    PubMed  Google Scholar 

  • Hajdukiewicz, P.T.J., Allison, L.A. and Maliga, P. 1997. The two RNA polymerases encoded by the nuclear and the plastid compartments transcribe distinct groups of genes in tobacco plastids. EMBO J. 16: 4041-4048.

    PubMed  Google Scholar 

  • Hanic-Joyce, P.J. and Gray, M.W. 1991. Accurate transcription of a plant mitochondrial gene in vitro. Mol. Cell. Biol. 11: 2035-2039.

    Google Scholar 

  • Hedtke, B., Börner, T., Weihe, A., 1997. Mitochondrial and chloroplast phage-type RNA polymerases in Arabidopsis. Science 277: 809-811.

    PubMed  Google Scholar 

  • Hess, W.R. and Börner, T. In press. Organellar RNA polymerases of higher plants. Int. Rev. Cytol.

  • Jang, S.H. and Jaehning, J.A. The yeast mitochondrial RNA polymerase specificity factor, MTF1, is similar to bacterial _ factors. J. Biol. Chem. 266: 22671-22677.

  • Kostyuk, D.A., Dragan, S.M., Lyakhov, D.L., Rechinsky, V.O., Tunitskaya, V.L., Chernov, B.K. and Kochetkov, S.N. 1995. Mutants of T7 RNA polymerase that are able to synthesize both RNA and DNA. FEBS Lett. 369: 165-168.

    PubMed  Google Scholar 

  • Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.

    PubMed  Google Scholar 

  • Liere, K. and Maliga, P. 1999. In vitro characterization of the tobacco rpoB promoter reveals a core sequence motif conserved between phage-type plastid and plant mitochondrial promoters. EMBO J. 18: 249-257.

    PubMed  Google Scholar 

  • Maliga, P. 1998. Two plastid polymerases of higher plants: an evolving story. Trends Plant Sci. 3: 4-6.

    Google Scholar 

  • Masters, B.S., Stohl, L.L. and Clayton, D.A. 1987. Yeast mitochondrial RNA polymerase is homologous to those encoded by bacteriophages T3 and T7. Cell 51: 89-99.

    PubMed  Google Scholar 

  • Nakai, K. and Kanehisa, M. 1992. A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics 14: 897-911.

    Google Scholar 

  • Osumi-Davis, P.A., de Aguilera, M.C., Woody, R.W. and Woody, A.-Y.M. 1992. Asp537, Asp812 are essential and Lys631, His811 are catalytically significant in bacteriophage T7 RNA polymerase activity. J. Mol. Biol. 226: 37-45.

    PubMed  Google Scholar 

  • Parisi, M.A. and Clayton, D.A. 1991. Similarity of human mitochondrial transcription factor 1 to high mobility group proteins. Science 252: 965-969.

    PubMed  Google Scholar 

  • Raskin, C.A., Diaz, G.A. and McAllister, W.T. 1993. T7 RNA polymerase mutants with altered promoter specificities. Proc. Natl. Acad. Sci. USA 90: 3147-3151.

    PubMed  Google Scholar 

  • Sambrook, J., Fritsch, E.F. and Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  • Sánchez, H. and Schuster, W. 1997. Cloning of three singlesubunit RNA polymerases from Arabidopsis thaliana. GenBank accession number AJ001037.

  • Thompson, J.D., Higgins, D.G. and Gibson, T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl. Acids Res. 22: 4673-4680.

    Google Scholar 

  • Tiranti, V., Savoia, A., Forti, F., D'Apolito, M.-F., Centra, M., Rocchi, M. and Zeviani, M. 1997. Identification of the gene encoding the human mitochondrial RNA polymerase (h-mtRPOL) by cyberscreening of the Expressed Sequence Tags database. Hum. Mol. Genet. 5: 615-625.

    Google Scholar 

  • von Heijne, G., Steppuhn, J. and Herrmann, R.G. 1989. Domain structure of mitochondrial and chloroplast targeting peptides. Eur. J. Biochem. 180: 535-545.

    PubMed  Google Scholar 

  • Weihe, A., Hedtke, B. and Börner, T. 1997. Cloning and characterization of a cDNA encoding a bacteriophage-type RNA polymerase from the higher plant Chenopodium album. Nucl. Acids Res. 25: 2319-2325.

    PubMed  Google Scholar 

  • Weissensteiner, T. and Lanchbury J.S. 1996. Strategy for controlling preferential amplification and avoiding false negatives in PCR typing. Biotechniques 21: 1102-1108.

    PubMed  Google Scholar 

  • Whelan, J. and Glaser, E. 1997. Protein import into plant mitochondria. Plant Mol. Biol. 33: 771-789.

    PubMed  Google Scholar 

  • Young, D.A., Allen, R.L., Harvey, A.J. and Lonsdale, D.M. 1998. Characterization of a gene encoding a single-subunit bacteriophage-type RNA polymerase from maize which is alternatively spliced. Mol. Gen. Genet. 260: 30-37.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ikeda, T.M., Gray, M.W. Identification and characterization of T3/T7 bacteriophage-like RNA polymerase sequences in wheat. Plant Mol Biol 40, 567–578 (1999). https://doi.org/10.1023/A:1006203928189

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006203928189

Navigation