ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (1,980)
  • Elsevier  (998)
  • Springer  (580)
  • Copernicus Publications (EGU)  (270)
  • Institut für Meereskunde  (70)
  • Univ. Köln  (61)
  • American Institute of Physics (AIP)
  • Nature Publishing Group (NPG)
  • 2010-2014  (1,726)
  • 1985-1989  (254)
Collection
Publisher
Language
Years
Year
  • 1
    Publication Date: 2017-06-19
    Description: Cold-water coral (CWC) reefs constitute one of the most complex deep-sea habitats harboring a vast diversity of associated species. Like other tropical or temperate framework builders, these systems are facing an uncertain future due to several threats, such as global warming and ocean acidification. In the case of Mediterranean CWC communities, the effect may be exacerbated due to the greater capacity of these waters to absorb atmospheric CO2 compared to the global ocean. Calcification in these organisms is an energy-demanding process, and it is expected that energy requirements will be greater as seawater pH and the availability of carbonate ions decrease. Therefore, studies assessing the effect of a pH decrease in skeletal growth, and metabolic balance are critical to fully understand the potential responses of these organisms under a changing scenario. In this context, the present work aims to investigate the medium- to long-term effect of a low pH scenario on calcification and the biochemical composition of two CWCs from the Mediterranean, Dendrophyllia cornigera and Desmophyllum dianthus. After 314 d of exposure to acidified conditions, a significant decrease of 70 % was observed in Desmophyllum dianthus skeletal growth rate, while Dendrophyllia cornigera showed no differences between treatments. Instead, only subtle differences between treatments were observed in the organic matter amount, lipid content, skeletal microdensity, or porosity in both species, although due to the high variability of the results, these differences were not statistically significant. Our results also confirmed a heterogeneous effect of low pH on the skeletal growth rate of the organisms depending on their initial weight, suggesting that those specimens with high calcification rates may be the most susceptible to the negative effects of acidification.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Earth System Dynamics, 5 (2). pp. 383-397.
    Publication Date: 2018-03-15
    Description: The Atlantic meridional overturning circulation (AMOC) carries large amounts of heat into the North Atlantic influencing climate regionally as well as globally. Palaeo-records and simulations with comprehensive climate models suggest that the positive salt-advection feedback may yield a threshold behaviour of the system. That is to say that beyond a certain amount of freshwater flux into the North Atlantic, no meridional overturning circulation can be sustained. Concepts of monitoring the AMOC and identifying its vicinity to the threshold rely on the fact that the volume flux defining the AMOC will be reduced when approaching the threshold. Here we advance conceptual models that have been used in a paradigmatic way to understand the AMOC, by introducing a density-dependent parameterization for the Southern Ocean eddies. This additional degree of freedom uncovers a mechanism by which the AMOC can increase with additional freshwater flux into the North Atlantic, before it reaches the threshold and collapses: an AMOC that is mainly wind-driven will have a constant upwelling as long as the Southern Ocean winds do not change significantly. The downward transport of tracers occurs either in the northern sinking regions or through Southern Ocean eddies. If freshwater is transported, either atmospherically or via horizontal gyres, from the low to high latitudes, this would reduce the eddy transport and by continuity increase the northern sinking which defines the AMOC until a threshold is reached at which the AMOC cannot be sustained. If dominant in the real ocean this mechanism would have significant consequences for monitoring the AMOC.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-03-08
    Description: Brackish coastal groundwater is enriched in Ra, which is transported to surface waters via submarine groundwater discharge (SGD). The Ra activity of the SGD end-member is influenced by a variety of environmental factors including salinity, pH, and isotope half-life. In the York River estuary (YRE), 223Ra, 224Ra, and 226Ra were measured in surface water and shallow groundwater across a range of salinities and additional Ra sources quantified (desorption and diffusion from sediments, input from tidal marshes). The Ra budget of the estuary indicated a major source of Ra that could only be satisfied by SGD. The apparent Ra flux was combined with groundwater Ra end-member activity to estimate SGD volume fluxes of 5–178 L m− 2 d− 1. Each isotope exhibited a different seasonal pattern, with significantly higher 224Ra flux during summer than winter, lower 226Ra SGD flux during summer than winter, and no seasonal differences in 223Ra SGD flux. However, the SGD 224Ra end-member activity varied with seasonal pore water salinity fluctuations, indicating end-member control on seasonal 224Ra flux. Each Ra isotope suggested a different SGD volume flux, indicating that different nuclide regeneration rates may respond to and reflect different flow mechanisms in the subterranean estuary. This work indicates that volume fluxes estimated using geochemical tracers are sensitive to SGD end-member variations and end-member variability must be well-characterized for reliable SGD flux estimates.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-10-12
    Description: In this paper we present an in-depth analysis and synthesis of published and newly acquired data on the chemical and isotopic composition of forearc fluids, fluid fluxes, and the associated thermal regimes in well-studied, representative erosional and accretionary subduction zone (SZ) forearcs. Evidence of large-scale fluid flow, primarily focused along faults, is manifested by widespread seafloor venting, associated biological communities, extensive authigenic carbonate formation, chemical and isotopic anomalies in pore-fluid depth-profiles, and thermal anomalies. The nature of fluid venting seems to differ at the two types of SZs. At both, fluid and gas venting sites are primarily associated with faults. The décollement and coarser-grained stratigraphic horizons are the main fluid conduits at accretionary SZs, whereas at non-accreting and erosive margins, the fluids from compaction and dehydration reactions are to a great extent partitioned between the décollement and focused conduits through the prism, respectively. The measured fluid output fluxes at seeps are high, ∼15–40 times the amount that can be produced through local steady-state compaction, suggesting that in addition, other fluid sources or non-steady-state fluid flow must be involved. Recirculation of seawater must be an important component of the overall forearc output fluid flux in SZs. The most significant chemical and isotopic characteristics of the expelled fluids relative to seawater are: Cl dilution; sulfate, Ca, and Mg depletions; and enrichments in Li, B, Si, Sr, alkalinity, and hydrocarbon concentrations, often distinctive δ18O, δD, δ7Li, δ11B, and δ37Cl values, and variable Sr isotope ratios. These characteristics provide key insights on the source of the fluid and the temperature at the source. Based on the fluid chemistry, the most often reported source temperatures reported are 120–150 °C. We estimate a residence time of the global ocean in SZs of ∼100 Myr, about five times faster than the previous estimate of ∼500 Myr by Moore and Vrolijk, similar to the residence time of ∼90 Myr for fluids in the global ridge crest estimated by Elderfield and Schultz, and ∼3 times longer than the 20–36 Myr estimate by German and von Damm and Mottl. Based on this extrapolated fluid reflux to the global ocean, subduction zones are an important source and sink for several elements and isotopic ratios, in particular an important sink for seawater sulfate, Ca and Mg, and an important source of Li and B.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Elsevier
    In:  In: Treatise on Geochemistry. Reference Module in Earth Systems and Environmental Sciences, 5 . Elsevier, Amsterdam, pp. 385-404. 2.Ed. ISBN 978-0-08-099946-3
    Publication Date: 2018-04-19
    Description: A very close coupling exists between changes in atmospheric O2 and CO2 concentrations, owing to the chemistry of photosynthesis, respiration, and combustion. The coupling is not perfect, however, because CO2 variations are partially buffered by reactions involving the inorganic carbon system in seawater, which has no effect on O2. Measurements over the past two decades document variations in O2 on a range of space and time scales, including a long-term decrease driven mostly by fossil fuel burning and seasonal cycles driven by exchanges with the land biosphere and the oceans. In this chapter, these and other features seen in the measurements are described, also discussing variations in the tracer ‘atmospheric potential oxygen,’ which is a linear combination of O2 and CO2 designed to be insensitive to exchanges from the land biosphere and thereby sensitive mostly to oceanic processes. Challenges associated with measuring variations in O2 are addressed, and various applications of the observations are discussed, including quantifying the magnitude of the global land and ocean carbon sinks and testing ocean biogeochemical models. An updated budget for global carbon sinks based on O2 measurements from the Scripps O2 program is presented for the decades of the 1990s and 2000s.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-07-09
    Description: Marine laminated sediments in dysoxic areas of the ocean floor are an excellent archive for high-resolution climate reconstructions. While the existence of discontinuities produced by natural events, such as underwater landslides (slumps), strong bottom currents, and/or bioturbation is usually acknowledged for long records, the extent of their influence on high-resolution sequences is usually not considered. In the present work we show strong evidence for multiple stratigraphic discontinuities in different gravity and box-cores retrieved off Pisco (Peru) covering the last 600 years. Chronostratigraphies are largely based on cross-correlation of distinct sedimentary structures (determined by X-ray image analysis) and validated using 210Pb, 241Am, and 14C profiles, as well as proxy records. The cross-correlation of distinct stratigraphic layers allows for chronostratigraphic tie points and clearly shows that some sedimentary sequences are continuous across scales of tens of kilometers, indicating that regional processes often determine laminae formation. Some differences in laminae thickness were found among cores, which could be explained by different sedimentation rates, spatially variable deposition of diatom blooms, changes in silica dissolution and partial deposition/erosion caused by bottom currents. Using multiple stratigraphic tie points provides clear evidence for laminated sequences present in some cores to be missing in other cores. Moreover, instantaneous depositions from upslope were identified in all the cores disrupting the continuity of the sediment records. These discontinuities (instantaneous deposits and missing sequences) may be due to slumps, possibly triggered by earthquakes and/or erosion by strong bottom currents. In spite of the missing sequences in some cores, a continuous composite record of the last six centuries was reconstructed from spliced sequences of the different cores, which provides a well-constrained temporal framework to develop further high-resolution proxies in this region. The present work shows that paleoreconstructions developed from single cores, particularly in areas with strong seismic activity and/or strong bottom currents, are subject to both temporal gaps and instantaneous depositions from upslope, both of which could be misinterpreted as abrupt climate changes or anomalous climate events. We stress the need for multiple cores to determine the stratigraphic continuity and chronologies for high-resolution records.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-07-14
    Description: Kelp forests represent a major habitat type in coastal waters worldwide and their structure and distribution is predicted to change due to global warming. Despite their ecological and economical importance, there is still a lack of reliable spatial information on their abundance and distribution. In recent years, various hydroacoustic mapping techniques for sublittoral environments evolved. However, in turbid coastal waters, such as off the island of Helgoland (Germany, North Sea), the kelp vegetation is present in shallow water depths normally excluded from hydroacoustic surveys. In this study, single beam survey data consisting of the two seafloor parameters roughness and hardness were obtained with RoxAnn from water depth between 2 and 18 m. Our primary aim was to reliably detect the kelp forest habitat with different densities and distinguish it from other vegetated zones. Five habitat classes were identified using underwater-video and were applied for classification of acoustic signatures. Subsequently, spatial prediction maps were produced via two classification approaches: Linear discriminant analysis (LDA) and manual classification routine (MC). LDA was able to distinguish dense kelp forest from other habitats (i.e. mixed seaweed vegetation, sand, and barren bedrock), but no variances in kelp density. In contrast, MC also provided information on medium dense kelp distribution which is characterized by intermediate roughness and hardness values evoked by reduced kelp abundances. The prediction maps reach accordance levels of 62% (LDA) and 68% (MC). The presence of vegetation (kelp and mixed seaweed vegetation) was determined with higher prediction abilities of 75% (LDA) and 76% (MC). Since the different habitat classes reveal acoustic signatures that strongly overlap, the manual classification method was more appropriate for separating different kelp forest densities and low-lying vegetation. It became evident that the occurrence of kelp in this area is not simply linked to water depth. Moreover, this study shows that the two seafloor parameters collected with RoxAnn are suitable indicators for the discrimination of different densely vegetated seafloor habitats in shallow environments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-12-13
    Description: The convergence between the Indian plate and the southern margin of the Eurasian continent created an active continental margin from Late Jurassic until about 40 Ma ago, which then evolved to form the Himalaya and the Tibetan Plateau during the continental collision stage. Post-collisional magmatism in southern Tibet, north of the Yarlung Zangbo Suture Zone (YZSZ) has been active since 45 Ma and is related to normal faulting and extensional tectonism. To date no such magmatism was reported within the YZSZ itself. This paper reports on the discovery of Miocene shoshonites within the YZSZ. They are significant because the magma traveled, at least in part, through oceanic crust, thus limiting interaction with the continental crust to the mid-crustal level and which affected the post-collisional magmatic rocks occurring in the northern part of the subduction system. In addition, xenoliths and xenocrysts of crustal origin in these rocks constrain the nature of metamorphic rocks underlying the YZSZ at mid-crustal level. The geochemical signatures of the shoshonitic rocks, including Nd and Sr isotope systematics, indicate derivation from a garnet-bearing middle continental crustal source. Crustal imprint complicates modeling of the petrogenetic processes which occurred prior to mid-crustal ponding of the magma which took place between 11 and 17 Ma at depths of 40 to 50 km. The significant role of crustal contamination raises serious concerns about models proposed for similar magmatic activity elsewhere in the Himalaya and the Tibetan Plateau.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-12-13
    Description: Arc magmas are commonly assumed to form by melting of sub-arc mantle that has been variably enriched by a component from the subducted slab. Although most magmas that reach the surface are not primitive, the impact of assimilation of the arc crust is often ignored with the consequence that trace element and isotopic compositions are commonly attributed only to varying contributions from different components present in the mantle. This jeopardises the integrity of mass balance recycling calculations. Here we use Sr and O isotope data in minerals from a suite of volcanic rocks from St Lucia, Lesser Antilles arc, to show that assimilation of oceanic arc basement can be significant. Analysis of 87Sr/86Sr in single plagioclase phenocrysts from four Soufrière Volcanic Complex (SVC; St Lucia) hand samples with similar composition (87Sr/86Sr = 0.7089–0.7091) reveals crystal isotopic heterogeneity among hand samples ranging from 0.7083 to 0.7094 with up to 0.0008 difference within a single hand sample. measurements in the SVC crystals show extreme variation beyond the mantle range with +7.5 to ‰ for plagioclase (), +10.6 to ‰ for quartz (), +9.4 to ‰ for amphibole () and +9 to ‰ for pyroxene () while older lavas (Pre-Soufriere Volcanic Complex), with less radiogenic whole rock Sr composition (87Sr/86Sr = 0.7041–0.7062) display values closer to mantle range: +6.4 to ‰ for plagioclase () and +6 to ‰ for pyroxene (). We argue that the 87Sr/86Sr isotope disequilibrium and extreme values provide compelling evidence for assimilation of material located within the arc crust. Positive correlations between mineral and whole rock 87Sr/86Sr, 143Nd/144Nd and 206,207,208Pb/204Pb shows that assimilation seems to be responsible not only for the isotopic heterogeneity observed in St Lucia but also in the whole Lesser Antilles since St Lucia encompasses almost the whole-arc range of isotopic compositions. This highlights the need for detailed mineral-scale investigation of oceanic arc suites to quantify assimilation that could otherwise lead to misinterpretation of source composition and subduction processes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Elsevier
    In:  In: Treatise on Geochemistry Vol. 8: The oceans and marine geochemistry. , ed. by Elderfield, H. and Holland, H. D. Elsevier, Amsterdam, pp. 151-189.
    Publication Date: 2017-01-18
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2017-06-19
    Description: The scleractinian cold-water corals (CWC) Lophelia pertusa and Madrepora oculata represent two major deep-sea reef-forming species that act as key ecosystem engineers over a wide temperature range, extending from the northern Atlantic (ca. 5–9 °C) to the Mediterranean Sea (ca. 11–13 °C). Recent research suggests that environmental parameters, such as food supply, settling substrate availability or aragonite saturation state may represent important precursors controlling habitat suitability for CWC. However, the effect of one principal environmental factor, temperature, on CWC key physiological processes is still unknown. In order to evaluate this effect on calcification, respiration, and dissolved organic carbon (DOC) net flux, colonies of Mediterranean L. pertusa and M. oculata were acclimated in aquaria to three temperatures (12, 9 and 6 °C), by consecutive decrements of 1 month duration. L. pertusa and M. oculata maintained at Mediterranean control conditions (i.e. 12 °C) displayed constant rates, on average respiring 4.8 and 4.0 µmol O2 cm−2 coral surface area d−1, calcifying 22.3 and 12.3 µmol CaCO3 g−1 skeletal dry weight d−1 and net releasing 2.6 and 3.1 µmol DOC cm−2 coral surface area d−1, respectively. Respiration of L. pertusa was not affected by lowered temperatures, while M. oculata respiration declined significantly (by 48%) when temperature decreased to 9 °C and 6 °C relative to controls. L. pertusa calcification at 9 °C was similar to controls, but decreased significantly (by 58%) at 6 °C. For M. oculata, calcification declined by 41% at 9 °C and by 69% at 6 °C. DOC net flux was similar throughout the experiment for both CWC. These findings reveal species-specific physiological responses by CWC within their natural temperature range. L. pertusa shows thermal acclimation in respiration and calcification, while these mechanisms appear largely absent in M. oculata. Conclusively, species-specific thermal acclimation may significantly affect the occurrence and local abundance of cosmopolitan CWC species, consequently influencing their important role in habitat engineering and ecosystem functioning in various thermal environments. Keywords
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2017-06-19
    Description: Dissolved organic matter, which contains many compounds such as lipids, sugars and amino acids, is an important source of carbon and nitrogen for several symbiotic and asymbiotic tropical coral species. However, there is still no information on its possible uptake by cold-water coral species. In this study, we demonstrated that dissolved organic matter, in the form of dissolved free amino acids (DFAA), is actively absorbed by four cold-water coral species from the Mediterranean Sea. Although the uptake rates observed with 3 µM DFAA concentration were one order of magnitude lower than those observed in tropical species, they corresponded to 12–50% of the daily excreted-nitrogen, and 16–89% of the daily respired-carbon of the cold-water corals. Consequently, DFAA, even at in situ concentrations lower than those tested in this study, can supply a significant amount of carbon and nitrogen to the corals, especially during periods when particulate food is scarce.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2017-07-14
    Description: Marine habitats worldwide are increasingly pressurized by climate change, especially along the Antarctic Peninsula. Well-studied areas in front of rapidly retreating tidewater glaciers like Potter Cove are representative for similar coastal environments and, therefore, shed light on habitat formation and development on not only a local but also regional scale. The objective of this study was to provide insights into habitat distribution in Potter Cove, King George Island, Antarctica, and to evaluate the associated environmental processes. Furthermore, an assessment concerning the future development of the habitats is provided. To describe the seafloor habitats in Potter Cove, an acoustic seabed discrimination system (RoxAnn) was used in combination with underwater video images and sediment samples. Due to the absence of wave and current measurements in the study area, bed shear stress estimates served to delineate zones prone to sediment erosion. On the basis of the investigations, two habitat classes were identified in Potter Cove, namely soft-sediment and stone habitats that, besides influences from sediment supply and coastal morphology, are controlled by sediment erosion. A future expansion of the stone habitat is predicted if recent environmental change trends continue. Possible implications for the Potter Cove environment, and other coastal ecosystems under similar pressure, include changes in biomass and species composition.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2017-07-14
    Description: Redox-sensitive trace metals (Mn, Fe, U, Mo, Re), nutrients and terminal metabolic products (NO3-, NH4+, PO43-, total alkalinity) were investigated for the first time in pore waters of Antarctic coastal sediments. The results of this study reveal a high spatial variability in redox conditions in surface sediments from Potter Cove, King George Island, western Antarctic Peninsula. Particularly in the shallower areas of the bay the significant correlation between sulphate depletion and total alkalinity, the inorganic product of terminal metabolism, indicates sulphate reduction to be the major pathway of organic matter mineralisation. In contrast, dissimilatory metal oxide reduction seems to be prevailing in the newly ice-free areas and the deeper troughs, where concentrations of dissolved iron of up to 700 μM were found. We suggest a combination of several factors to be responsible for the domination of metal oxide reduction over sulphate reduction in these areas. These include the increased accumulation of fine-grained material with high amounts of reducible metal oxides, a reduced availability of metabolisable organic matter and an enhanced physical and biological disturbance by bottom water currents, ice scouring and burrowing organisms. Based on modelled iron fluxes we calculate the contribution of the Antarctic shelf to the pool of potentially bioavailable iron (Feb) to be 6.9 × 103 to 790 × 103 t yr-1. Consequently, these shelf sediments would provide an Feb flux of 0.35-39.5 mg m-2 yr-1 (median: 3.8 mg m-2 yr-1) to the Southern Ocean. This contribution is in the same order of magnitude as the flux provided by icebergs and significantly higher than the input by aeolian dust. For this reason suboxic shelf sediments form a key source of iron for the high nutrient-low chlorophyll (HNLC) areas of the Southern Ocean. This source may become even more important in the future due to rising temperatures at the WAP accompanied by enhanced glacier retreat and the accumulation of melt water derived iron-rich material on the shelf.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2017-09-22
    Description: Compared with microscopic indices such as biomass, inverted satellite images can reflect cyanobacterial blooms from a macroscopic perspective, can provide planar information for blooms, and can more definitely reflect the occurrence of visible cyanobacterial blooms. We therefore adopted inverted images (from MODIS imagery) to judge whether cyanobacterial blooms had occurred in a water area at a given time. We constructed two probit models for identifying significant environmental factors related to cyanobacterial bloom occurrence and for short-term forecasts of bloom occurrence. The models used the index of cyanobacterial bloom occurrence as the dependent variable and the predicted variable, respectively, and used three categories (water quality, hydrology, and weather) of monitoring variables as the independent variables (or predictive variables). We used the Hill Dagong water area of Lake Tai in China as a case study of the new methods. The results produced by the identification model are consistent with the general conclusions in this research field indicating the validity of the model. The mean relative error of the forecast model is 13.5%, which is close to or lower than that of two previous models. Compared with the previous models, our forecast model also has advantages in terms of spatial and temporal precision. The new models have both practical applicability and the ability to be generalized and can, therefore, be easily adapted for the prevention, control, and prediction of cyanobacterial blooms in other bodies of water.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    Springer
    In:  Journal of Chemical Ecology, 40 (3). pp. 218-219.
    Publication Date: 2018-01-19
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    Springer
    In:  Journal of Chemical Ecology, 40 (3). pp. 225-226.
    Publication Date: 2018-01-19
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Biogeosciences (BG), 11 (3). pp. 833-842.
    Publication Date: 2017-05-09
    Description: In this study we present a comparative quantification of CaCO3 production rates by rhodolith-forming coralline red algal communities situated in high polar latitudes and assess which environmental parameters control these production rates. The present rhodoliths act as ecosystem engineers, and their carbonate skeletons provide an important ecological niche to a variety of benthic organisms. The settings are distributed along the coasts of the Svalbard archipelago, being Floskjeret (78◦180N) in Isfjorden, Krossfjorden (79◦080N) at the eastern coast of Haakon VII Land, Mosselbukta (79◦530N) at the eastern coast of Mosselhalvøya, and Nordkappbukta (80◦310N) at the northern coast of Nordaustlandet. All sites feature Arctic climate and strong seasonality.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2017-07-14
    Description: Fresh volcanic glasses from the extrusive section of the Troodos Ophiolite in Akaki Canyon are tholeiitic and basaltic to dacitic in composition. Compared to normal MORB they have extremely low fractionation corrected Na8, Fe8 and Ti8 and are enriched in fluid-mobile trace elements, including U, Ba, Rb, Sr and Pb, relative to non-fluid mobile elements of similar incompatibility. Trace element compositions of Akaki lavas define an array extending between ‘back-arc lava’-like compositions, and the field defined by Troodos boninites from the upper part of the lava sequence. Troodos lavas were derived from a mantle source that underwent early melt depletion, and later enrichment by both fluids and small degree melts. These processes can explain the unusual negative correlation of Pb/Ce with Zr/Nb and Ba/Nb in Troodos extrusives. Although some Troodos lavas are similar in composition to lavas from back-arc spreading centres, the boninites from the upper parts of the lava pile do not appear to have exact compositional equivalents among lavas from fore-arcs, back-arcs or other tectonic settings where similar rocktypes have been recovered. We suggest that the geochemical evolution inferred for the mantle source of Troodos lavas, together with geological evidence is most consistent with an origin for the Troodos Ophiolite at a spreading centre close to a ridge–trench–trench, or ridge–trench–transform triple junction, where highly depleted, subduction-modified, fluid-enriched mantle wedge material was able to upwell and decompress to shallow depths in a ‘fore-arc’ location. In such a tectonic setting, arc volcanism is captured by the spreading centre, explaining the lack of evidence for subaerial arc magmatism in Troodos. Rapid lateral migration of the triple junction could account for the similar ages of other Tethyan supra-subduction zone ophiolites.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    Springer
    In:  In: The Prokaryotes. Springer, Berlin, pp. 439-512. ISBN 978-3-642-30196-4
    Publication Date: 2017-11-07
    Description: The family Rhodobacteraceae can be considered a paradigm of modern taxonomy of prokaryotes. Taking into account the number of species and genera that conforms the family, together with the knowledge about their abundance and vast global distribution, it surprises that most of them have been described relatively recent to our days. Two notable exceptions are Rhodonostoc capsulatum (Molisch, Die purpurbakterien nach neuen untersuchungen, vols i–vii. G. Fischer, Jena, pp 1–95, 1907) and Micrococcus denitrificans Beijerinck and Minkman (Zentbl Bakteriol, Parasitenkd, Infektionskr Hyg. Abt II 25:30–63, 1910), early basonyms of Rhodobacter capsulatus and Paracoccus denitrificans, respectively. The fact that so many descriptions within this family are recent means that some studies have been concomitant and pose a challenge not only for pure taxonomic studies but also for interpreting other studies in which a rapidly evolving nomenclature had to be used anyway. The metabolic and ecological diversity of the group adds further complexity. In spite of all these difficulties, the picture is far from being a chaos and it can be considered an exciting and important bacterial group to study. Rhodobacteraceae are, fundamentally, aquatic bacteria that frequently thrive in marine environments. They comprise mainly aerobic photo- and chemoheterotrophs but also purple non-sulfur bacteria which perform photosynthesis in anaerobic environments. They are deeply involved in sulfur and carbon biogeochemical cycling and symbiosis with aquatic micro- and macroorganisms. One hundred genera are currently recognized as members of the family although the Stappia group, Ahrensia, Agaricicola, and Rhodothalassium do not belong, phylogenetically, to the family. The 90 other genera are distributed in 5 phylogenetic groups (the Rhodobacter, the Paracoccus, the Rhodovulum, the Amaricoccus, and the Roseobacter clades) that might be considered a family on its own.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2018-05-04
    Description: The geochemical features of the volatiles dissolved in artesian thermal waters discharged over three basins (Millungera, Galilee and Cooper basin) of the Australian Great Artesian Basin (GAB) consistently indicate the presence of fluids from multiple gas sources located in the crust (e.g. sediments, oil reservoirs, granites) as well as minor but detectable contributions of mantle/magma-derived fluids. The gases extracted from 19 water samples and analyzed for their chemical and isotopic composition exhibit amounts of CO2 up to about 340 mlSTP/LH2O marked by a δ13CTDC (Total Dissolved Carbon) ranging from − 16.9 to + 0.18‰ vs PDB, while CH4 concentrations vary from 4.4 × 10− 5 to 4.9 mlSTP/LH2O. Helium contents were between 9 and 〉 2800 times higher than equilibrium with Air Saturated Water (ASW), with a maximum value of 0.12 mlSTP/LH2O. Helium isotopic composition was in the 0.02–0.21 Ra range (Ra = air-normalized 3He/4He ratio). The three investigated basins differ from each other in terms of both chemical composition and isotopic signatures of the dissolved gases whose origin is attributed to both mantle and crustal volatiles. Mantle He is present in the west-central and hottest part of the GAB despite no evidence of recent volcanism. We found that the partial pressure of helium, significantly higher in crustal fluids than in mantle-type volatiles, enhances the crustal He signature in the dissolved gases, thus masking the original mantle contribution. Neotectonic activity involving deep lithospheric structures and magma intrusions, highlighted by recent geophysical investigations, is considered to be the drivers of mantle/magmatic volatiles towards the surface. The results, although pertaining to artesian waters from a vast area of 〉 542,000 km2, provide new constraints on volatile injection, and show that fluids' geochemistry can provide additional and independent information on the geo-tectonic settings of the Great Artesian Basin and its geothermal potential.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    Springer
    In:  In: Bioluminescence: Fundamentals and Applications in Biotechnology. Advances in Biochemical Engineering-Biotechnology, 144 . Springer, Berlin, Germany, pp. 37-64. ISBN 978-3-662-43384-3
    Publication Date: 2020-08-03
    Description: Bacterial light production involves enzymes-luciferase, fatty acid reductase, and flavin reductase-and substrates-reduced flavin mononucleotide and long-chain fatty aldehyde-that are specific to bioluminescence in bacteria. The bacterial genes coding for these enzymes, luxA and luxB for the subunits of luciferase; luxC, luxD, and luxE for the components of the fatty acid reductase; and luxG for flavin reductase, are found as an operon in light-emitting bacteria, with the gene order, luxCDABEG. Over 30 species of marine and terrestrial bacteria, which cluster phylogenetically in Aliivibrio, Photobacterium, and Vibrio (Vibrionaceae), Shewanella (Shewanellaceae), and Photorhabdus (Enterobacteriaceae), carry lux operon genes. The luminescence operons of some of these bacteria also contain genes involved in the synthesis of riboflavin, ribEBHA, and in some species, regulatory genes luxI and luxR are associated with the lux operon. In well-studied cases, lux genes are coordinately expressed in a population density-responsive, self-inducing manner called quorum sensing. The evolutionary origins and physiological function of bioluminescence in bacteria are not well understood but are thought to relate to utilization of oxygen as a substrate in the luminescence reaction.
    Type: Book chapter , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    Springer
    In:  Helgoland Marine Research, 68 (2). pp. 341-356.
    Publication Date: 2020-07-30
    Description: Fertilization depends on distribution and aggregation patterns of sea urchins which influence gamete contact time and may potentially enhance their vulnerability to ocean acidification. In this study, we conducted fertilization experiments to assess the effects of selected pH scenarios on fertilization success of Strongylocentrotus droebachiensis, from Spitsbergen, Arctic. Acidification was achieved by aerating seawater with different CO2 partial pressures to represent pre-industrial and present conditions (measured ~180–425 µatm) and future acidification scenarios (~550–800, ~1,300, ~2,000 µatm). Fertilization success was defined as the proportion of successful/unsuccessful fertilizations per treatment; eggs were classified according to features of their fertilization envelope (FE), hyaline layer (HL) and achievement of cellular division. The diagnostic findings of specific pathological aberrations were described in detail. We additionally measured intracellular pH changes in unfertilized eggs exposed for 1 h to selected acidification treatments using BCECF/AM. We conclude that (a) acidified conditions increase the proportion of eggs that failed fertilization, (b) acidification may increase the risk of polyspermy due to failures in the FE formation supported by the occasional observation of multiple sperms in the perivitelline space and (c) irregular formation of the embryo may arise due to impaired formation of the HL. The decrease in fertilization success could be also related to the observed changes in intracellular pH at pCO2 ~ 1,000 μatm or higher.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
  • 25
    Publication Date: 2019-09-23
    Description: The 5th International Workshop on Modeling the Ocean (IWMO http://www.uib.no/en/IWMO2013/-58927/iwmo-2013-bergen-norway) was held in June 17–20, in Bergen, Norway. The historic city of Bergen is the gateway to the fjords and a center for oceanic research. The workshop was hosted by the University of Bergen and also sponsored by the Research Council of Norway. Approximately 80 researchers worldwide participated in the workshop. Professor Mellor, Princeton University, gave the keynote lecture. The 5th IWMO meeting in Bergen was the first IWMO held in Europe, followed on the footsteps of previous meetings, IWMO-2009 in Taipei, Taiwan (Oey et al. 2010a, b), IWMO-2010 in Norfolk, USA (Ezer et al. 2011), IWMO-2011 in Qingdao, China (Oey et al. 2013a), and IWMO-2012 in Yokohama, Japan (Oey et al. 2013b). The participants presented approximately 60 oral talks and 20 posters, covering a wide range of ocean modeling and data analysis topics, as described below. In the spirit of promoting young s ...
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-09-23
    Description: Linking lower and higher trophic levels requires special focus on the essential role played by mid-trophic levels, i.e., the zooplankton. One of the most relevant pieces of information regarding zooplankton in terms of flux of energy lies in its size structure. In this study, an extensive data set of size measurements is presented, covering parts of the western European continental shelf and slope, from the Galician coast to the Ushant front, during the springs from 2005 to 2012. Zooplankton size spectra were estimated using measurements carried out in situ with the Laser Optical Plankton Counter (LOPC) and with an image analysis of WP2 net samples (200 μm mesh size) performed following the ZooScan methodology. The LOPC counts and sizes particles within 100–2000 μm of spherical equivalent diameter (ESD), whereas the WP2/ZooScan allows for counting, sizing and identification of zooplankton from ~ 400 μm ESD. The difference between the LOPC (all particles) and the WP2/ZooScan (zooplankton only) was assumed to provide the size distribution of non-living particles, whose descriptors were related to a set of explanatory variables (including physical, biological and geographic descriptors). A statistical correction based on these explanatory variables was further applied to the LOPC size distribution in order to remove the non-living particles part, and therefore estimate the size distribution of zooplankton. This extensive data set provides relevant information about the zooplankton size distribution variability, productivity and trophic transfer efficiency in the pelagic ecosystem of the Bay of Biscay at a regional and interannual scale.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2015-01-09
    Description: The final phase of the closure of the Panamanian Gateway and the intensification of Northern Hemisphere Glaciation (NHG) both occurred during the Late Pliocene. Glacial–interglacial (G–IG) variations in sea level might, therefore, have had a significant impact on the remaining connections between the East Pacific and the Caribbean. Here, we present combined foraminiferal Mg/Ca and δ 18O measurements from Ocean Drilling Program (ODP) Site 1241 from the East Pacific and ODP Site 999 from the Caribbean. The studied time interval covers the first three major G–IG Marine Isotope Stages (MIS 95–100, ∼2.5 Ma∼2.5 Ma) after the intensification of NHG. Analyses were performed on the planktonic foraminifera Neogloboquadrina dutertrei and Globigerinoides sacculifer, representing water mass properties in the thermocline and the mixed-layer, respectively. Changes in sea water temperature, relative salinity, and water column stratification strongly suggest that the Panamanian Gateway temporarily closed during glacial MIS 98 and 100, as a result of changes in ice volume equivalent to a drop in sea level of 60–90 m. Reconstructed sea surface temperatures (SST) from G. sacculifer show a glacial decrease of 2.5 °C at Site 1241, but increases of up to 3 °C at Site 999 during glacial MIS 98 and 100 suggesting that the Panamanian Gateway closed during these glacial periods. The Mg/Ca-temperatures of N. dutertrei remain relatively stable in the East Pacific, but do show a 3 °C warming in the Caribbean at the onset of these glacial periods suggesting that the closing of the gateway also changed the water column stratification. We infer that the glacial closure of the gateway allowed the Western Atlantic Warm Pool to extend into the southern Caribbean, increasing SST (G. sacculifer) and deepening the thermocline (N. dutertrei). Additionally, ice volume appears to have become large enough during MIS 100 to survive the relatively short lasting interglacial MIS 99 so that the gateway remained closed. Towards the end of MIS 98, during MIS 97 and into MIS 96 temperatures on both sides are mostly similar suggesting water masses exchanged again. Additionally, Caribbean variations in SST and δ18Owater follow a precession-like cyclicity rather than the obliquity-controlled variations characteristic of the East Pacific and many other tropical areas, suggesting that regional atmospheric processes related to the trade winds and the InterTropical Convergence Zone (ITCZ) had a dominant impact in the Caribbean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2016-09-21
    Description: The Adula Nappe in the Central Alps is a mixture of various pre-Mesozoic continental basement rocks, metabasics, ultrabasics, and Mesozoic cover rocks, which were pervasively deformed during Alpine orogeny. Metabasics, ultrabasics, and locally garnet–mica schists preserve eclogite-facies assemblages while the bulk of the nappe lacks such evidence. We provide garnet major-element data, Lu profiles, and Lu–Hf garnet geochronology from eclogites sampled along a north–south traverse. A southward increasing Alpine overprint over pre-Alpine garnets is observed throughout the nappe. Garnets in a sample from the northern Adula Nappe display a single growth cycle and yield a Variscan age of 323.8 ± 6.9 Ma. In contrast, a sample from Alpe Arami in the southernmost part contains unzoned garnets that fully equilibrated to Alpine high-pressure (HP) metamorphic conditions with temperatures exceeding 800 °C. We suggest that the respective Eocene Lu–Hf age of 34.1 ± 2.8 Ma is affected by partial re-equilibration after the Alpine pressure peak. A third sample from the central part of the nappe contains separable Alpine and Variscan garnet populations. The Alpine population yields a maximum age of 38.8 ± 4.3 Ma in line with a previously published garnet maximum age from the central nappe of 37.1 ± 0.9 Ma. The Adula Nappe represents a coherent basement unit, which preserves a continuous Alpine high-pressure metamorphic gradient. It was subducted as a whole in a single, short-lived event in the upper Eocene. Controversial HP ages and conditions in the Adula Nappe may result from partly preserved Variscan assemblages in Alpine metamorphic rocks.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    facet.materialart.
    Unknown
    Springer
    In:  [Paper] In: Modelling and Knowledge Management applications: Systems and Domains (MoKMaSD), 02.09.2014, Grenoble, France . Software Engineering and Formal Methods ; pp. 276-293 .
    Publication Date: 2015-02-17
    Description: Ecosystems and their biodiversity have to be protected and preserved as sources of services and goods. The human population controls and modifies ecosystems to improve its health conditions and welfare. The consequences of human activities should be carefully monitored and ecosystems should be managed to protect all of the species and preserve their functioning. The development of strategies for ecosystem management benefits from the use of computational techniques to model the dynamics of species that interact with their abiotic and biotic environment. Life scientists and computer scientists need to work together to define and analyse ecosystem models. However, there is a multifaceted gap between the approaches used in life science and those used in computer science. Such gap is both cultural and technical, and results in a number of challenges. In this paper we identify these challenges and provide technical and cultural proposals for solving them.
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2015-01-12
    Description: The impact of mesoscale activity on phytoplankton and nutrient distribution in the Mozambique Channel was simulated by coupling a biogeochemical model (PISCES) with a regional oceanic model (ROMS). Examples of the effects of eddies on the biogeochemistry of the Mozambique Channel are presented to illustrate the complexity of the system. In the model, several cyclonic eddies were found with low concentrations of chlorophyll at their cores, which contrasts with previous studies in the open ocean. In addition, several anticyclonic eddies were simulated with high concentrations of chlorophyll at their cores. Phytoplankton growth within these mesoscale features (both cyclonic and anticyclonic eddies) occurred in response to nutrient injection into the euphotic zone by advection, and subsequent retention of surrounding nutrient-rich waters within eddies. Offshore nutrient distributions depended strongly on lateral advection of nutrient-rich water from the coastal regions, induced by eddy interaction with the shelf. The environmental conditions at the locations where eddies were generated had an important effect on nutrient concentrations within these structures.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2015-02-19
    Description: Knowledge of calcium phosphate (Ca-P) solubility is crucial for understanding temporal and spatial variations of phosphorus (P) concentrations in water bodies and sedimentary reservoirs. In situ relationships between liquid-and solid-phase levels cannot be fully explained by dissolved analytes alone and need to be verified by determining particular sediment P species. Lack of quantification methods for these species limits the knowledge of the P cycle. To address this issue, we (i) optimized a specifically developed conversion-extraction (CONVEX) method for P species quantification using standard additions, and (ii) simultaneously determined solubilities of Ca-P standards by measuring their pH-dependent contents in the sediment matrix. Ca-P minerals including various carbonate fluorapatite (CFAP) specimens from different localities, fluorapatite (FAP), fish bone apatite, synthetic hydroxylapatite (HAP) and octacalcium phosphate (OCP) were characterized by XRD, Raman, FTIR and elemental analysis. Sediment samples were incubated with and without these reference minerals and then sequentially extracted to quantify Ca-P species by their differential dissolution at pH values between 3 and 8. The quantification of solid-phase phosphates at varying pH revealed solubilities in the following order: OCP〉 HAP〉 CFAP (4.5% CO3)〉 CFAP (3.4% CO3)〉 CFAP (2.2% CO3)〉 FAP. Thus, CFAP was less soluble in sediment than HAP, and CFAP solubility increased with carbonate content. Unspiked sediment analyses together with standard addition analyses indicated consistent differential dissolution of natural sediment species vs. added reference species and therefore verified the applicability of the CONVEX method in separately determining the most prevalent Ca-P minerals. We found surprisingly high OCP contents in the coastal sediments analyzed, which supports the hypothesis of apatite formation by an OCP precursor mechanism.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2017-07-19
    Description: Highlights: • A DEB model for M. leidyi was parameterized using 60 datasets from literature. • 12 °C might already be outside the optimal temperature range. • M. leidyi has high reserve turnover rates and a high structural component. • Delayed metabolic acceleration confers flexibility in controlling generation time. Abstract: Mnemiopsis leidyi is an invasive comb jelly which has successfully established itself in European seas. The species is known to produce spectacular blooms yet it is holoplanktonic and not much is known about its population dynamics in between. One way to gain insight on how M. leidyi might survive between blooms and how it can bloom so fast is to study how the metabolism of this species actually responds to environmental changes in food and temperature over its different life-stages. To this end we combined modelling and data analysis to study the energy budget of M. leidyi over its full life-cycle using Dynamic Energy Budget (DEB) theory and literature data. An analysis of data obtained at temperatures ranging from 8 to 30 °C suggests that the optimum thermal tolerance range of M. leidyi is higher than 12 °C. Furthermore M. leidyi seems to undergo a so-called metabolic acceleration after hatching. Intriguingly, the onset of the acceleration appears to be delayed and the data do not yet exist which allows determining what actually triggers it. It is hypothesised that this delay confers a lot of metabolic flexibility by controlling generation time. We compared the DEB model parameters for this species with those of another holoplanktonic gelatinous zooplankton species (Pelagia noctiluca). After accounting for differences in water content, the comparison shows just how fundamentally different the two energy allocation strategies are. P. noctiluca has an extremely high reserve capacity, low turnover times of reserve compounds and high resistance to shrinking. M. leidyi adopts the opposite strategy: it has a low reserve capacity, high turnover rates of reserve compounds and fast shrinking.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2017-10-05
    Description: Total organic carbon (TOC) content of marine sediments represents residual carbon, originally derived from terrestrial and marine sources, which has survived seafloor and shallow subseafloor diagenesis. Ultimately, its preservation below the sulfate reduction zone in marine sediments drives methanogenesis. Within the gas hydrate stability zone (GHSZ), methane production along continental margins can supersaturate pore fluids and lead to the formation of gas hydrate. In this paper we examine the inventory and sources of TOC in sediments collected from four regions within the GHSZ along the Indian continental margins. The recovered sediments vary in age from Oligocene to recent. Mean TOC abundance is greatest in the Krishna-Godavari (K-G) Basin and decreases progressively to the Mahanadi basin, Andaman wedge, and Kerala-Konkan (K-K) Basin. This decrease in TOC is matched by a progressive increase in biogenic CaCO3 and increasing distance from terrestrial sources of organic matter and lithogenic materials. Organic carbon sources inferred from C/N and delta C-13(TOC) range from terrestrial (K-G Basin) to mixed marine and terrestrial (Mahanadi Basin), to marine dominant (Andaman wedge and K-K Basin). In the K-G Basin, variation in the bulk delta C-13(TOC) is consistent with changes in C-3 and C-4 vegetation driven by monsoon variability on glacial-interglacial timescales, whereas in the Mahanadi Basin a shift in the delta C-13(TOC) likely reflects the onset of C-4 plant deposition in the Late Miocene. A large shift the delta C-13(TOC) in the K-K basin is consistent with a change from C-3 to C-4 dominated plants during the middle Miocene. We observe a close relationship between TOC content and gas hydrate saturation, but consider the role of sedimentation rates on the preservation of TOC in the zone of methanogenesis and advective flow of methane from depth. Although TOC contents are sufficient for in situ methanogenesis at all the sites where gas hydrates were observed or inferred from proxy data, seismic, borehole log, pressure core, and gas composition data coupled with relatively high observed gas hydrate saturations suggest that advective gas transport may also play a role in the saturation of methane and the formation of gas hydrates in these regions. Although TOC content may be a first order indicator for gas hydrate potential, the structural and stratigraphic geologic environment along a margin will most likely dictate where the greatest gas hydrate saturations will occur.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2015-03-12
    Description: Dedicated to the memory of our colleague Klaus Hochheim, who tragically lost his life in the Arctic expedition in September 2013. A distinct, subsurface density front along the eastern St. Anna Trough in the northern Kara Sea is inferred from hydrographic observations in 1996 and 2008–2010. Direct velocity measurements show a persistent northward subsurface current (~ 18 cm s−1) along the St. Anna Trough eastern flank. This sheared flow, carrying the outflow from the Barents and Kara seas to the Arctic Ocean, is also evident from shipboard observations as well as from geostrophic velocities and numerical model simulations. Although we cannot substantiate our conclusions by direct observation-based estimates of mixing rates in the area, we hypothesize that the enhanced vertical mixing along the St. Anna Trough eastern flank favors the upward heat loss from the intermediate warm Atlantic water layer. Modeling results support this hypothesis. The upward heat flux inferred from hydrographic data and model simulations is of O(30–100) W m−2. The region of lowered sea ice thickness and concentration seen both in sea ice remote sensing observations and model simulations marks the Atlantic water pathway in the St. Anna Trough and adjacent Nansen Basin continental margin. In fact, the sea ice shows a delayed freeze-up onset during fall and a reduction in the sea ice thickness during winter. This is consistent with our results on the enhanced Atlantic water heat loss along the Atlantic water pathway in the St. Anna Trough.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2015-03-13
    Description: Following the launch of ESA's Soil Moisture and Ocean Salinity (SMOS) mission, it has been shown that brightness temperatures at a low microwave frequency of 1.4 GHz (L-band) are sensitive to sea ice properties. In the first demonstration study, sea ice thickness up to 50 cm has been derived using a semi-empirical algorithm with constant tie-points. Here, we introduce a novel iterative retrieval algorithm that is based on a thermodynamic sea ice model and a three-layer radiative transfer model, which explicitly takes variations of ice temperature and ice salinity into account. In addition, ice thickness variations within the SMOS spatial resolution are considered through a statistical thickness distribution function derived from high-resolution ice thickness measurements from NASA's Operation IceBridge campaign. This new algorithm has been used for the continuous operational production of a SMOS-based sea ice thickness data set from 2010 on. The data set is compared to and validated with estimates from assimilation systems, remote sensing data, and airborne electromagnetic sounding data. The comparisons show that the new retrieval algorithm has a considerably better agreement with the validation data and delivers a more realistic Arctic-wide ice thickness distribution than the algorithm used in the previous study (Kaleschke et al., 2012).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2015-03-20
    Description: Though primarily driven by insolation changes associated with well-known variations in Earth's astronomical parameters, the response of the climate system during interglacials includes a diversity of feedbacks involving the atmosphere, ocean, sea ice, vegetation and land ice. A thorough multi-model-data comparison is essential to assess the ability of climate models to resolve interglacial temperature trends and to help in understanding the recorded climatic signal and the underlying climate dynamics. We present the first multi-model-data comparison of transient millennial-scale temperature changes through two intervals of the Present Interglacial (PIG; 8-1.2 ka) and the Last Interglacial (LIG; 123-116.2 ka) periods. We include temperature trends simulated by 9 different climate models, alkenone-based temperature reconstructions from 117 globally distributed locations (about 45% of them within the LIG) and 12 ice-core-based temperature trends from Greenland and Antarctica (50% of them within the LIG). The definitions of these specific interglacial intervals enable a consistent inter-comparison of the two intervals because both are characterised by minor changes in atmospheric greenhouse gas concentrations and more importantly by insolation trends that show clear similarities. Our analysis shows that in general the reconstructed PIG and LIG Northern Hemisphere mid-to-high latitude cooling compares well with multi-model, mean-temperature trends for the warmest months and that these cooling trends reflect a linear response to the warmest-month insolation decrease over the interglacial intervals. The most notable exception is the strong LIG cooling trend reconstructed from Greenland ice cores that is not simulated by any of the models. A striking model-data mismatch is found for both the PIG and the LIG over large parts of the mid-to-high latitudes of the Southern Hemisphere where the data depicts negative temperature trends that are not in agreement with near zero trends in the simulations. In this area, the positive local summer insolation trend is counteracted in climate models by an enhancement of the Southern Ocean summer sea-ice cover and/or an increase in Southern Ocean upwelling. If the general picture emerging from reconstructions is realistic, then the model-data mismatch in mid and high Southern Hemisphere latitudes implies that none of the models is able to resolve the correct balance of these feedbacks, or, alternatively, that interglacial Southern Hemisphere temperature trends are driven by mechanisms which are not included in the transient simulations, such as changes in the Antarctic ice sheet or meltwater-induced changes in the overturning circulation
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2015-04-21
    Description: Subfossil Cladocera were sampled and examined from the surface sediments of 35 thermokarst lakes along a temperature gradient crossing the tree line in the Anabar-river basin in northwestern Yakutia, northeastern Siberia. The lakes were distributed through three environmental zones: typical tundra, southern tundra and forest tundra. All lakes were situated within the continuous permafrost zone. Our investigation showed that the cladoceran communities in the lakes of the Anabar region are diverse and abundant, as reflected by taxonomic richness, and high diversity and evenness indices (H = 1.89 ± 0.51; I = 0.8 ± 0.18). CONISS cluster analysis indicated that the cladoceran communities in the three ecological zones (typical tundra, southern tundra and forest-tundra) differed in their taxonomic composition and structure. Differences in the cladoceran assemblages were related to limnological features and geographical position, vegetation type, climate and water chemistry. The constrained redundancy analysis indicated that TJuly, water depth and both sulphate (SO4 2−) and silica (Si4+) concentrations significantly (p ≤ 0.05) explained variance in the cladoceran assemblage. TJuly featured the highest percentage (17.4 %) of explained variance in the distribution of subfossil Cladocera. One of the most significant changes in the structure of the cladoceran communities in the investigated transect was the replacement of closely related species along the latitudinal and vegetation gradient. The results demonstrate the potential for a regional cladoceran-based temperature model for the Arctic regions of Russia, and for and Yakutia in particular.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2015-04-23
    Description: A large monothalamous foraminiferan, Toxisarcon taimyr sp. nov., has been isolated from the benthic samples from the Kara Sea inner shelf near the mouth of Yenisey river estuary, at a depth of 50–100 m. In its overall morphology, the new species closely resembles T. synsuicidica, one of the two species of Toxisarcon described to date. It possesses a large irregularly shaped cell body, covered by a thin layer of a fibrous organic coating. Numerous reticulopodia typically extend from all over the cell surface; the species is very motile and rapidly changes cell shape. Long and thick reticulopodial bundles form in the direction of movement. In the phylogenetic tree based on partial small-subunit ribosomal DNA (SSU rDNA) sequences, T. taimyr branches together with the two other known species of Toxisarcon within the clade C of monothalamous foraminifera.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2015-05-28
    Description: The first long-term aerosol sampling and chemical characterization results from measurements at the Cape Verde Atmospheric Observatory (CVAO) on the island of São Vicente are presented and are discussed with respect to air mass origin and seasonal trends. In total 671 samples were collected using a high-volume PM10 sampler on quartz fiber filters from January 2007 to December 2011. The samples were analyzed for their aerosol chemical composition, including their ionic and organic constituents. Back trajectory analyses showed that the aerosol at CVAO was strongly influenced by emissions from Europe and Africa, with the latter often responsible for high mineral dust loading. Sea salt and mineral dust dominated the aerosol mass and made up in total about 80% of the aerosol mass. The 5-year PM10 mean was 47.1 ± 55.5 μg m−2, while the mineral dust and sea salt means were 27.9 ± 48.7 and 11.1 ± 5.5 μg m−2, respectively. Non-sea-salt (nss) sulfate made up 62% of the total sulfate and originated from both long-range transport from Africa or Europe and marine sources. Strong seasonal variation was observed for the aerosol components. While nitrate showed no clear seasonal variation with an annual mean of 1.1 ± 0.6 μg m−3, the aerosol mass, OC (organic carbon) and EC (elemental carbon), showed strong winter maxima due to strong influence of African air mass inflow. Additionally during summer, elevated concentrations of OM were observed originating from marine emissions. A summer maximum was observed for non-sea-salt sulfate and was connected to periods when air mass inflow was predominantly of marine origin, indicating that marine biogenic emissions were a significant source. Ammonium showed a distinct maximum in spring and coincided with ocean surface water chlorophyll a concentrations. Good correlations were also observed between nss-sulfate and oxalate during the summer and winter seasons, indicating a likely photochemical in-cloud processing of the marine and anthropogenic precursors of these species. High temporal variability was observed in both chloride and bromide depletion, differing significantly within the seasons, air mass history and Saharan dust concentration. Chloride (bromide) depletion varied from 8.8 ± 8.5% (62 ± 42%) in Saharan-dust-dominated air mass to 30 \textpm 12% (87 ± 11%) in polluted Europe air masses. During summer, bromide depletion often reached 100% in marine as well as in polluted continental samples. In addition to the influence of the aerosol acidic components, photochemistry was one of the main drivers of halogenide depletion during the summer; while during dust events, displacement reaction with nitric acid was found to be the dominant mechanism. Positive matrix factorization (PMF) analysis identified three major aerosol sources: sea salt, aged sea salt and long-range transport. The ionic budget was dominated by the first two of these factors, while the long-range transport factor could only account for about 14% of the total observed ionic mass.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    facet.materialart.
    Unknown
    Springer
    In:  In: Landslide Science for a Safer Geoenvironment. Springer, Heidelberg, Germany, pp. 549-555. ISBN 978-3-319-04995-3
    Publication Date: 2015-09-24
    Description: Submarine slope failures of various types and sizes are common along the tectonic and seismically active Ligurian margin, northwestern Mediterranean Sea, primarily because of seismicity up to ~M6, rapid sediment deposition in the Var fluvial system, and steepness of the continental slope (average 11°). We present geophysical, sedimentological and geotechnical results of two distinct slides in water depth 〉1,500 m: one located on the flank of the Upper Var Valley called Western Slide (WS), another located at the base of continental slope called Eastern Slide (ES). WS is a superficial slide characterized by a slope angle of ~4.6° and shallow scar (~30 m) whereas ES is a deep-seated slide with a lower slope angle (~3°) and deep scar (~100 m). Both areas mainly comprise clayey silt with intermediate plasticity, low water content (30–75 %) and underconsolidation to strong overconsolidation. Upslope undeformed sediments have low undrained shear strength (0–20 kPa) increasing gradually with depth, whereas an abrupt increase in strength up to 200 kPa occurs at a depth of ~3.6 m in the headwall of WS and ~1.0 m in the headwall of ES. These boundaries are interpreted as earlier failure planes that have been covered by hemipelagite or talus from upslope after landslide emplacement. Infinite slope stability analyses indicate both sites are stable under static conditions; however, slope failure may occur in undrained earthquake condition. Peak earthquake acceleration from 0.09 g on WS and 0.12 g on ES, i.e. M5–5.3 earthquakes on the spot, would be required to induce slope instability. Different failure styles include rapid sedimentation on steep canyon flanks with undercutting causing superficial slides in the west and an earthquake on the adjacent Marcel fault to trigger a deep-seated slide in the east.
    Type: Book chapter , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2015-09-22
    Description: We show that the Li/Mg systematics of a large suite of aragonitic coral skeletons, representing a wide range of species inhabiting disparate environments, provides a robust proxy for ambient seawater temperature. The corals encompass both zooxanthellate and azooxanthellate species (Acropora sp., Porites sp., Cladocora caespitosa, Lophelia pertusa, Madrepora oculata and Flabellum impensum) collected from shallow, intermediate, and deep-water habitats, as well as specimens cultured in tanks under temperature-controlled conditions. The Li/Mg ratios observed in corals from these diverse tropical, temperate, and deep-water environments are shown to be highly correlated with temperature, giving an exponential temperature relationship of: Li/Mg (mmol/mol) = 5.41 exp (−0.049 * T) (r2 = 0.975, n = 49). Based on the standard error of the Li/Mg versus temperature correlation, we obtain a typical precision of ±0.9 °C for the wide range of species analysed, similar or better than that of other less robust coral temperature proxies such as Sr/Ca ratios. The robustness and species independent character of the Li/Mg temperature proxy is shown to be the result of the normalization of Li to Mg, effectively eliminating the precipitation efficiency component such that temperature remains as the main controller of coral Li/Mg compositions. This is inferred from analysis of corresponding Li/Ca and Mg/Ca ratios with both ratios showing strong microstructure-related co-variations between the fibrous aragonite and centres of calcification, a characteristic that we attribute to varying physiological controls on growth rate. Furthermore, Li/Ca ratios show an offset between more rapidly growing zooxanthellate and azooxanthellate corals, and hence only an approximately inverse relationship to seawater temperature. Mg/Ca ratios show very strong physiological controls on growth rate but no significant dependence with temperature, except possibly for Acropora sp. and Porites sp. A strong positive correlation is nevertheless found between Li/Ca and Mg/Ca ratios at similar temperatures, indicating that both Li and Mg are subject to control by similar growth mechanisms, specifically the mass fraction of aragonite precipitated during calcification, which is shown to be consistent with a Rayleigh-based elemental fractionation model. The highly coherent array defined by Li/Mg versus temperature is thus largely independent of coral calcification mechanisms, with the strong temperature dependence reflecting the greater sensitivity of the KdLi/Ca partition coefficient relative to KdMg/Ca. Accordingly, Li/Mg ratios exhibit a highly coherent exponential correlation with temperature, thereby providing a more robust tool for reconstructing paleo-seawater temperatures.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Climate of the Past, 10 (2). pp. 811-824.
    Publication Date: 2015-11-20
    Description: An earth system model of intermediate complexity (CLIMate and BiosphERe – CLIMBER-2) and a land surface model (JSBACH), which dynamically represent vegetation, are used to simulate natural fire dynamics through the last 8000 yr. Output variables of the fire model (burned area and fire carbon emissions) are used to compare model results with sediment-based charcoal reconstructions. Several approaches for processing model output are also tested. Charcoal data are reported in Z-scores with a base period of 8000–200 BP in order to exclude the strong anthropogenic forcing of fire during the last two centuries. The model–data comparison reveals a robust correspondence in fire activity for most regions considered, while for a few regions, such as Europe, simulated and observed fire histories show different trends. The difference between modelled and observed fire activity may be due to the absence of anthropogenic forcing (e.g. human ignitions and suppression) in the model simulations, and also due to limitations inherent to modelling fire dynamics. The use of spatial averaging (or Z-score processing) of model output did not change the directions of the trends. However, Z-score-transformed model output resulted in higher rank correlations with the charcoal Z-scores in most regions. Therefore, while both metrics are useful, processing model output as Z-scores is preferable to areal averaging when comparing model results to transformed charcoal records.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2016-01-11
    Description: A key challenge in oceanography is to capture and quantify processes that happen on short time scales, seasonal changes and inter-annual variations. To address this problem the P&O European Ferries Ltd. Ship MV Pride of Bilbao was fitted with a FerryBox from 2002 to 2010 and data returned to NOC in real time providing near continuous measurements between UK (Portsmouth) and Spain (Bilbao) of temperature, salinity, chlorophyll-fluorescence and oxygen. Additional monthly samples were collected on manned crossings. Over 6000 samples were analysed for nitrate (nitrate and nitrite) concentrations. The timing of nitrate concentration increases (with winter mixing) and decreases (with the spring bloom) are different on and off shelf and in autumn nitrate concentrations remain high on the shelf. Off shelf in the Bay of Biscay, the mixed layer depth assessed using Argo floats, was found to vary from 212 m in relatively mild winters (such as 2007/2008) to 476 m in cold winters (2009/2010). Years with deeper mixing were associated with an increase in nitrate concentrations in the surface waters (~3 μmol l−1) and the increased vertical nutrient supply resulted in higher productivity the following spring. Bloom progression could be seen through the increase in oxygen anomaly and decrease in nitrate concentrations off shelf prior to changes further north on the shelf and phytoplankton growth was initiated as shoaling begins. The full dataset demonstrates that ships of opportunity, particularly ferries with consistently repeated routes, can deliver high quality in situ measurements over large time and space scales that currently cannot be delivered in any other way.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    Springer
    In:  , ed. by Harff, J., Meschede, M., Petersen, S. and Thiede, J. Springer, Amsterdam, The Netherlands, - pp. ISBN 978-94-007-6644-0 (online)
    Publication Date: 2016-12-06
    Description: This Encyclopedia comprises the current knowledge in marine geosciences whereby not only basic but also applied and technical sciences are covered. Through this concept a broad scale of users in the field of marine sciences and techniques is addressed, from students and scholars in academia to engineers and decision makers in industry and politics. Globally growing demand of energy and mineral resources, reliable future projection of climate processes and the protection of coasts to mitigate the threats of disasters and hazards require a comprehensive understanding of the structure, ongoing processes and genesis of the marine geosphere. Beyond the “classical” research fields in marine geology in current time more general concepts have been evolved integrating marine geophysics, hydrography, marine biology, climatology and ecology. As an umbrella the term “marine geosciences” has been broadly accepted for this new complex field of research and the solutions of practical tasks in the marine realm.
    Type: Book , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-09-23
    Description: Highlights • Climate progression in the Balearic basin is examined between 140 and 100 ka. • A number of MIS 5e intra-interglacial cooling events is recognized. • MIS 5e climate phasing in the Western Mediterranean resembles the one in the Nordic Seas. • Foraminiferal abundances are strongly tied to a water circulation regime. • The timing of ORL deposition during MIS 5e resembles that of during the Holocene. Abstract A multiproxy analysis based on planktic foraminiferal abundances, derived SSTs, and stable planktic isotopes measurements together with alkenone abundances and Uk′37 SSTs was performed on late MIS 6 to early MIS 5d sediment recovered from Site 975 (ODP Leg 161) in the South Balearic Islands Basin (Western Mediterranean) with emphasis on reconstructing the climate progression of the last interglacial period. A number of abrupt climate changes related to alternative influence of nutrient rich northern and oligotrophic southern water masses was revealed. Heinrich event 11 and cooling events C27, C26, C25, C24, and C23, which have been previously described in the North Atlantic, were recognized. However, in comparison to the eastern North Atlantic mid-latitude region, events C27 and C26 at Site 975 seem to be significantly more pronounced. Together with evidence of a two-phase climate optimum with maximum SSTs reached during its later phase, this implies a close similarity in climate dynamics between the Western Mediterranean and the Nordic seas. We propose that postglacial effects in the Nordic seas had an influence on the western Mediterranean climate via atmospheric circulation and that these effects competed with the insolation force.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Biogeosciences (BG), 11 (24). pp. 7269-7274.
    Publication Date: 2021-04-23
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    Springer
    In:  In: Remote Sensing of the African Seas. , ed. by Barale, V. and Gade, M. Springer, Dordrecht, Netherlands, pp. 205-231. ISBN 978-94-017-8007-0
    Publication Date: 2015-03-05
    Description: Oceanic eddies having scales from several hundred meters to several hundred kilometers are ubiquitous phenomena in the World’s ocean. This became evident only after they could be observed from satellites and space shuttles. Here we present several images taken in different spectral bands which show signatures of eddies of different spatial scales in sea areas around Africa. In particular, we present a series of satellite images showing the propagation of a small-scale cyclonic (cold) eddy generated at Cap-Vert at the coast of Senegal into the open ocean. We show that this small-scale eddy transported nutrients from the Senegal upwelling region westward into the oligotrophic North Atlantic thus giving rise to enhanced chlorophyll-a concentration there. Since eddies are also areas of high fish population, knowledge of their position and properties is of great importance for fishery.
    Type: Book chapter , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2015-07-02
    Description: Marine sponge-associated actinomycetes represent an exciting new resource for the identification of new and novel natural products . Previously, we have reported the isolation and structural elucidation of actinosporins A (1) and B (2) from Actinokineospora sp. strain EG49 isolated from the marine sponge Spheciospongia vagabunda. Herein, by employing different fermentation conditions on the same microorganism, we report on the isolation and antioxidant activity of structurally related metabolites, actinosporins C (3) and D (4). The antioxidant potential of actinosporins C and D was demonstrated using the ferric reducing antioxidant power (FRAP) assay. Additionally, at 1.25 μM, actinosporins C and D showed a significant antioxidant and protective capacity from the genomic damage induced by hydrogen peroxide in the human promyelocytic (HL-60) cell line.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2015-07-02
    Description: Microluside A [4 (19-para-hydroxy benzoyloxy-O-β-d-cellobiosyl), 5 (30-para-hydroxy benzoyloxy-O-β-d-glucopyranosyl) xanthone (1)] is a unique O-glycosylated disubstituted xanthone isolated from the broth culture of Micrococcus sp. EG45 cultivated from the Red Sea sponge Spheciospongia vagabunda. The structure of microluside A was determined by 1D- and 2D-NMR techniques as well as high resolution tandem mass spectrometry. The antimicrobial activity evaluation showed that 1 exhibited antibacterial potential against Enterococcus faecalis JH212 and Staphylococcus aureus NCTC 8325 with MIC values of 10 and 13 μM, respectively.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2015-10-13
    Description: Highlights • Seismic imaging of gas hydrate deposits in the Mahanadi Basin shows strong linkages to channel/levee structures. • Gas hydrate occurs only in discrete layers, stratigraphically bound. • Gas hydrate saturation was determined successfully from log and core data. • Saturation estimates show overall low values of up to 10% in discrete layers. Abstract Gas hydrate was recovered in the Mahanadi Basin along the eastern continental margin of India during the India National Gas Hydrate Program (NGHP) Expedition-01 in 2006. Infrared imaging of recovered core confirmed gas hydrate occurs predominantly in discrete layers. Pore-water chemistry, electrical resistivity and acoustic velocity down-hole logs were used to estimate gas hydrate saturations at three of the sites in the Mahanadi Basin: Sites NGHP-01-08, -09, and -19. Gas hydrate saturation estimated from pore-water chloride concentrations shows values up to ∼10% of the pore space at ∼200 m below seafloor just above the base of the gas hydrate stability zone (BGHSZ). Gas hydrate saturations estimated from electrical resistivity and acoustic velocity logs using standard relations and modeling approaches are comparable to each other and saturations are ∼10–15% of the pore space. Seismic reflection data were also analyzed for the evidence of gas hydrate, and a bottom-simulating reflector (BSR) was imaged along the seismic profiles in the study area. The depth of the BSR is varying from ∼200 m to ∼300 m below seafloor depending on water depth in the Mahanadi Basin. The occurrence of gas hydrate was observed to be associated with deep-water channel and levee complexes (especially at Site NGHP-01-19) based on the regional seismic data. But the cored/logged section at each site lacked any significant sand fraction, which does not allow for higher gas hydrate saturations. As identified from seismic time-slice data, all sites drilled in the Mahanadi Basin are within the steeper slope region of the channel system and any sand bypassed this region. Significant sand deposition would occur further down slope where typical fan-type deposits can be inferred from the seismic data and thus higher accumulations of gas hydrate would be expected.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2015-10-13
    Description: Highlights • Regional difference in Vp and Vs are related to grain-size distribution. • New algorithm to derive gas hydrate concentration from Vp and Vs is introduced. • Sediments from northern Cascadia are similar to Arctic gas hydrate settings. • New empirical relationships for shear-wave velocities are defined. Abstract Shear wave velocity data have been acquired at several marine gas hydrate drilling expeditions, including the India National Gas Hydrate Program Expedition 1 (NGHP-01), the Ocean Drilling Program (ODP) Leg 204, and Integrated Ocean Drilling Program (IODP) Expedition 311 (X311). In this study we use data from these marine drilling expeditions to develop an understanding of general grain-size control on the P- and S-wave properties of sediments. A clear difference in the downhole trends of P-wave (Vp) and S-wave (Vs) velocity and the Vp/Vs ratio from all three marine regions was observed: the northern Cascadia margin (IODP X311) shows the highest P-wave and S-wave velocity values overall and those from the India margin (Expedition NGHP-01) are the lowest. The southern Cascadia margin (ODP Leg 204) appears to have similar low P-wave and S-wave velocity values as seen off India. S-wave velocity values increase relative to the sites off India, but they are not as high as those seen on the northern Cascadia margin. Such regional differences can be explained by the amount of silt/sand (or lack thereof) occurring at these sites, with northern Cascadia being the region of the highest silt/sand occurrences. This grain-size control on P-wave and S-wave velocity and associated mineral composition differences is amplified when compared to the Arctic permafrost environments, where gas hydrate predominantly occurs in sand- and silt-dominated formations. Using a cross-plot of gamma ray values versus the Vp/Vs ratio, we compare the marine gas hydrate occurrences in these regions: offshore eastern India margin, offshore Cascadia margin, the Ignik-Sikumi site in Alaska, and the Mallik 5L-38 site in the Mackenzie Delta. The log-data from the Arctic permafrost regions show a strongly linear Vp–Vs relationship, similar to the previously defined empirical relationships by Greenberg and Castagna (1992). P- and S-wave velocity data from the India margin and ODP Leg 204 deviate strongly from these linear trends, whereas data from IODP X311 plot closer to the trend of the Arctic data sets and previously published relationships. Three new linear relationships for different grain size marine sediment hosts are suggested: a) mud-dominated (Mahanadi Basin, ODP Leg 204 & NGHP-01-17): Vs = 1.5854 × Vp − 2.1649 b) silty-mud (KG Basin): Vs = 0.8105 × Vp − 1.0223 c) silty-sand (IODP X311): Vs = 0.5316 × Vp − 0.4916 We investigate the relationship of gas hydrate saturation determined from electrical resistivity on the Vp/Vs ratio and found that the sand-dominated Arctic hosts show a clearly decreasing trend of Vp/Vs ratio with gas hydrate saturation. Though limited due to lower overall GH saturations, a similar trend is seen for sites from IODP X311 and at the ash-dominated NGHP-01-17 sediment in the Andaman Sea. Gas hydrate that occurs predominantly in fractured clay hosts show a different trend where the Vp/Vs ratio is much higher than at sand-dominated sites and remains constant or increases slightly with increasing gas hydrate saturation. This trend may be the result of anisotropy in fracture-dominated systems, where P- and S-wave velocities appear higher and Archie-based saturations of gas hydrate are overestimated. Gas hydrate concentrations were also estimated in these three marine settings and at Arctic sites using an effective medium model, combining P- and S-wave velocities as equally weighted constraints on the calculation. The effective medium approach generally overestimates S-wave velocity in high-porosity, clay-dominated sediments, but can be accurately used in sand-rich formations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2020-10-21
    Description: Highlights: • The central uplift of the Manicouagan impact structure has been dated by (U–Th)/He • A (U–Th)/He central age (207.1 ± 6.4 Ma, 2 standard error, n = 40) has been determined • This age reflects the rapid uplift, cooling and closure of He in ~ 1 Gyr-old titanites • This correlates with the previously determined U–Pb impact-melt age of 214 ± 1 Ma • Our new approach enables dating complex impact structures that lack impact melt rocks Abstract Forty titanite grain fragments from 9 central uplift samples of metamorphosed anorthosite from the Manicouagan impact structure were dated by the (U–Th)/He technique. A (U–Th)/He central age of 207.1 ± 6.4 Ma (2 standard error (SE), n = 40) has been determined. With 4 outlier ages removed the central age is refined to 208.9 ± 5.1 Ma (2 SE). Both of these ages are within error of the previously determined U–Pb zircon age of 214 ± 1 Ma (2σ) derived from the impact melt. Manicouagan's central uplift formed due to rapid elevation from ~ 7–10 km depth as part of the modification stage of the impact process, which has facilitated the dating of its emplacement due to resulting rapid exhumation and cooling and closure of the (U–Th)/He system in titanite. Correlation with the previous U–Pb zircon 214 ± 1 Ma impact melt crystallization age indicates that the (U–Th)/He titanite dating technique offers a new approach to dating complex impact structures in the absence of viable melt sheets, or other melt products. The youngest ca. 195 Ma (U–Th)/He dates preserved in some titanite fragments are synchronous with Early Jurassic, rift-induced lithospheric thinning and associated igneous activity that defines the Central Atlantic Magmatic Province (CAMP). The (U–Th)/He titanite data from Manicouagan indicate that the influence of this regional event may extend west of the previously proposed limit of CAMP activity.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2016-01-11
    Description: Gas hydrate resource assessments that indicate enormous global volumes of gas present within hydrate accumulations have been one of the primary driving forces behind the growing interest in gas hydrates. Gas hydrate volumetric estimates in recent years have focused on documenting the geologic parameters in the “gas hydrate petroleum system” that control the occurrence of gas hydrates in nature. The primary goals of this report are to review our present understanding of the geologic controls on the occurrence of gas hydrate in the offshore of India and to document the application of the petroleum system approach to the study of gas hydrates. National Gas Hydrate Program of India executed the National Gas Hydrate Program Expedition 01 (NGHP-01) in 2006 in four areas located on the eastern and western margins of the Indian Peninsula and in the Andaman Sea. These areas have experienced very different tectonic and depositional histories. The peninsular margins are passive continental margins resulting from a series of rifting episodes during the breakup and dispersion of Gondwanaland to form the present Indian Ocean. The Andaman Sea is bounded on its western side by a convergent margin where the Indian plate lithosphere is being subducted beneath southeast Asia. NGHP-01 drilled, logged, and/or cored 15 sites (31 holes) in the Krishna–Godavari Basin, 4 sites (5 holes) in the Mahanadi Basin, 1 site (2 holes) in the Andaman Sea, and 1 site (1 hole) in the Kerala–Konkan Basin. Holes were drilled using standard drilling methods for the purpose of logging-while-drilling and dedicated wireline logging; as well as through the use of a variety of standard coring systems and specialized pressure coring systems. NGHP-01 yielded evidence of gas hydrate from downhole log and core data obtained from all the sites in the Krishna–Godavari Basin, the Mahanadi Basin, and in the Andaman Sea. The site drilled in the Kerala–Konkan Basin during NGHP-01 did not yield any evidence of gas hydrate. Most of the downhole log-inferred gas hydrate and core-recovered gas hydrate were characterized as either fracture-filling in clay-dominated sediments or as pore-filling or grain-displacement particles disseminated in both fine- and coarse-grained sediments. Geochemical analyses of gases obtained from sediment cores recovered during NGHP-01 indicated that the gas in most all of the hydrates in the offshore of India is derived from microbial sources; only one site in the Andaman Sea exhibited limited evidence of a thermogenic gas source. The gas hydrate petroleum system concept has been used to effectively characterize the geologic controls on the occurrence of gas hydrates in the offshore of India.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2016-01-04
    Description: The Indian National Gas Hydrate Program Expedition 01 (NGHP-01) is designed to study the occurrence of gas hydrate along the passive continental margin of the Indian Peninsula and in the Andaman convergent margin, with special emphasis on understanding the geologic and geochemical controls on the occurrence of gas hydrate in these two diverse settings. The NGHP-01 expedition established the presence of gas hydrates in the Krishna–Godavari and Mahanadi Basins, and the Andaman Sea. The expedition discovered in the Krishna–Godavari Basin one of the thickest gas hydrate accumulations ever documented, in the Andaman Sea one of the thickest and deepest gas hydrate stability zones in the world, and established the existence of a fully developed gas hydrate petroleum system in all three basins. The primary goal of NGHP-01 was to conduct scientific ocean drilling/coring, logging, and analytical activities to assess the geologic occurrence, regional context, and characteristics of gas hydrate deposits along the continental margins of India. This was done in order to meet the long-term goal of exploiting gas hydrate as a potential energy resource in a cost effective and safe manner. During its 113.5-day voyage, the D/V JOIDES Resolution cored and/or drilled 39 holes at 21 sites (1 site in Kerala–Konkan, 15 sites in Krishna–Godavari, 4 sites in Mahanadi, and 1 site in the Andaman deep offshore area), penetrated more than 9250 m of sedimentary section, and recovered nearly 2850 m of core. Twelve holes were logged with logging-while-drilling (LWD) tools and an additional 13 holes were wireline logged. The science team utilized extensive on-board laboratory facilities to examine and prepare preliminary reports on the physical properties, geochemistry, and sedimentology of all the data collected prior to the end of the expedition. Samples were also analyzed in additional post-expedition shore-based studies conducted in leading laboratories around the world. One of the specific objectives of this expedition was to test gas hydrate formation models and constrain model parameters, especially those that account for the formation of concentrated gas hydrate accumulations. The necessary data for characterizing the occurrence of in situ gas hydrate, such as interstitial water chlorinities, core-derived gas chemistry, physical and sedimentological properties, thermal images of the recovered cores, and downhole measured logging data (LWD and/or conventional wireline log data), were obtained from most of the drill sites established during NGHP-01. Almost all of the drill sites yielded evidence for the occurrence of gas hydrate; however, the inferred in situ concentration of gas hydrate varied substantially from site to site. For the most part, the interpretation of downhole logging data, core thermal images, interstitial water analyses, and pressure core images from the sites drilled during NGHP-01 indicate that the occurrence of concentrated gas hydrate is mostly associated with the presence of fractures in the sediments, and in some limited cases, by coarser grained (mostly sand-rich) sediments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2015-01-15
    Description: Satellite observations of microwave brightness temperatures between 19 GHz and 85 GHz are the main data sources for operational sea-ice monitoring and retrieval of ice concentrations. However, microwave brightness temperatures depend on the emissivity of snow and ice, which is subject to pronounced seasonal variations and shows significant hemispheric contrasts. These mainly arise from differences in the rate and strength of snow metamorphism and melt. We here use the thermodynamic snow model SNTHERM forced by European Re-Analysis (ERA) interim data and the Microwave Emission Model of Layered Snowpacks (MEMLS), to calculate the sea-ice surface emissivity and to identify the contribution of regional patterns in atmospheric conditions to its variability in the Arctic and Antarctic. The computed emissivities reveal a pronounced seasonal cycle with large regional variability. The emissivity variability increases from winter to early summer and is more pronounced in the Antarctic. In the pre-melt period (January–May, July–November) the standard deviations in surface microwave emissivity due to diurnal, regional and inter-annual variability of atmospheric forcing reach up to Δε = 0.034, 0.043, and 0.097 for 19 GHz, 37 GHz and 85 GHz channels, respectively. Between 2000 and 2009, small but significant positive emissivity trends were observed in the Weddell Sea during November and December as well as in Fram Strait during February, potentially related to earlier melt onset in these regions. The obtained results contribute to a better understanding of the uncertainty and variability of sea-ice concentration and snow-depth retrievals in regions of high sea-ice concentrations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2017-01-18
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2017-02-01
    Description: The main migrations of the Polar front (PF) during the last 300 ka were identified using planktic foraminiferal census data and derived from them sea surface paleotemperature (SST) estimates in two synchronized AMK-4438 and M23414 cores recovered directly beneath the main stream of the North Atlantic Current (NAC) south of Iceland. During the summer seasons, the cold waters adjacent to the PF did not reach the studied sites. These waters occurred here only during the winter seasons of MIS 2, 6, and 8. The northern part of the study area was influenced by the arctic waters more often than its southern part. During MIS 8 and 6 isotherms in the North Atlantic had mainly the subzonal orientation, while during MIS 2-4 they had the submeridional orientation. During the interglacials, the PF was located northward and westward from the study area. During MIS 7, the front was presumably situated closer to the study area in comparison with its modern position, and the isotherms were oriented mainly subzonal. For the MIS 5e period, we observed the most distant retreat of PF from the investigated area in the western and northwestern direction in relation to the anomalous deflection of the NAC to the north-west (intensification of the Irminger current) and the predominance of the submeridional orientation of the isotherms in the study area. During MIS 1, as well as MIS 7, the isotherms in the study area had mainly the subzonal orientation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2015-03-12
    Description: The Fram Strait is the main gateway for water, heat and sea-ice exchanges between the Arctic Ocean and the North Atlantic. The complex physical environment results in a highly variable primary production in space and time. Previous regional studies have defined key bottom-up (ice cover and stratification from melt water controlling the light availability, and wind mixing and water transport affecting the supply of nutrients) and top-down processes (heterotrophic grazing). In this study, in situ field data, remote sensing and modeling techniques were combined to investigate in detail the influence of melting sea-ice and ocean properties on the development of phytoplankton blooms in the Fram Strait region for the years 1998–2009. Satellite-retrieved chlorophyll-a concentrations from temporarily ice-free zones were validated with contextual field data. These were then integrated per month on a grid size of 20 × 20 km, resulting in 10 grids/fields. Factors tested for their influence on spatial and temporal variation of chlorophyll-a were: sea-ice concentration from satellite and sea-ice thickness, ocean stratification, water temperature and salinity time-series simulated by the ice-ocean model NAOSIM. The time series analysis for those ten ice-free fields showed a regional separation according to different physical processes affecting phytoplankton distribution. At the marginal ice zone the melting sea-ice was promoting phytoplankton growth by stratifying the water column and potentially seeding phytoplankton communities. In this zone, the highest mean chlorophyll concentration averaged for the productive season (April–August) of 0.8 mgC/m3 was observed. In the open ocean the phytoplankton variability was correlated highest to stratification formed by solar heating of the upper ocean layers. Coastal zone around Svalbard showed processes associated with the presence of coastal ice were rather suppressing than promoting the phytoplankton growth. During the twelve years of observations, chlorophyll concentrations significantly increased in the southern part of the Fram Strait, associated with an increase in sea surface temperature and a decrease in Svalbard coastal ice. Highlights • We used combination of satellite, simulated and in situ data for 1998–2009. • Stratification from sea-ice melt resulted in largest CHL at the marginal ice zone. • Stratification caused by solar warming promoted open ocean blooms. • Late retreat of Svalbard shelf ice delayed coastal blooms.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    facet.materialart.
    Unknown
    Springer
    In:  In: STRATI 2013 : First International Congress on Stratigraphy At the Cutting Edge of Stratigraphy. , ed. by Rocha, R., Pais, J., Kullberg, J. C. and Finney, S. Springer, Zürich, Switzerland, pp. 1309-1313. ISBN 978-3-319-04364-7
    Publication Date: 2015-04-28
    Description: Three bottom sediment cores (140–190 cm long) taken from Isfjorden, West Spitsbergen, were analysed for pollen and spores with the main aim of elucidating the local pattern of pollen and spore succession in order to establish age control and define the stratigraphy of marine sediments. Isfjorden bottom sediments consist of greyish-green silty pelite with gruss, detritus, and pebble inclusions. The upper 25 cm are water-saturated and nonplastic. In spite of extremely low concentrations, and the predominance of reworked pre-Quaternary microfossils, the marine pollen spectra appear quite similar to those known from radiocarbon-dated lake sediments and peat exposures on the coasts of neighbouring Billefjorden, Van Mijenfjorden, and Hornsundfjorden, provided that long-distance transported pollen of conifers, tree birches, and spores of ferns are eliminated from marine pollen spectra compositions. The correlation of pollen zones (PZ) established in fjord sediments with those known from peat and lake sections enables the pollen-based stratigraphy of Isfjorden bottom sediments to be established and further reconstruction to be made of the major stages of the late Holocene terrestrial vegetation history of West Spitsbergen. The oldest pollen records date back to about 2.8–3 ka. They characterize the lowermost silty pelite layer (intervals 180–150 cm in core 11 and 190–60 cm in core 14 from the southwestern part of the fjord). At this time, moss–cereal–sedge fens and heather bogs in the coastal areas coexisted with rocky tundra vegetation at higher elevations. A marked increase in the content of Salix sp., Betula sect. Nanae-type, and Ericales pollen is recorded in the upper part of the pelite layer in cores 11 and 14. Similar spectra dominate core 9 from the northeastern inner part of the fjord. The percentage of green moss spores is extremely low. This type of spectra is suggestive of a warmer-than-present climate in West Spitsbergen. The upper water-saturated layer of all three cores contains pollen assemblages that are very similar to those identified in the Isfjorden surface sediment samples. Therefore, they have been likely accumulated during the last 2000 years. These uppermost pollen assemblages show a sharp increase in sedge pollen. This suggests the expansion of coastal fens, which can be attributed to an increase in the amount of precipitation. Extremely low pollen concentrations in Isfjorden bottom sediments possibly reflect very high accumulation rates during the time of silty pelite layer sedimentation.
    Type: Book chapter , PeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2015-04-23
    Description: Lake Mogilnoe (Kildin Island, the Barents Sea) is a marine stratified lake, a refuge for landlocked populations of marine organisms. Unlike other known marine lakes from polar areas, which communicate with the sea by water percolation at the surface, Mogilnoe has a subterranean connection with the sea like tropical and subtropical anchialine lakes. Similarly to some other marine lakes, Mogilnoe has traditionally been considered to be biologically isolated from the sea and subject to little change. We review the current status of the physical features, zooplankton and benthos of Mogilnoe and trace changes that have occurred in the lake since the start of observations in 1894. The anaerobic bottom water layer has expanded by 100 %, while the upper freshwater layer has diminished by 40 %. The species diversity of zooplankton and macrobenthos has halved. The occurrence of Atlantic cod likens Mogilnoe to some other Arctic marine lakes while the presence of large flocks of sea anemones, scyphomedusae and suberitid sponges makes it similar to tropical anchialine lakes. Lake Mogilnoe is not entirely biologically isolated; accidental introduction of species from the sea does occur. We argue that the idealised model of an isolated steady-state ecosystem can be applied to a marine lake with caution. A model of fluctuating abiotic environment and partial biological isolation portrays the real situation better.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    facet.materialart.
    Unknown
    Springer
    In:  In: STRATI 2013 : First International Congress on Stratigraphy At the Cutting Edge of Stratigraphy. Springer, Zürich, Switzerland, pp. 1321-1325. ISBN 978-3-319-04363-0
    Publication Date: 2015-04-29
    Description: Two sediment cores retrieved from the southern Lomonosov Ridge (LR) in 2007 (core ALR07-26C from the top of the ridge, water depth 1359 m, and core ALR07-15C from the base of Geophysicists’ Spur, water depth 2500 m) were investigated for lithology (wt % 〉 63 μm, terrigenous lithic grains 〉500 μm) and microfossils. Prominent peaks of coarse-grained material in ALR07-26C represented largely by quartz and clastic rocks are regarded as inputs of ice and, especially, iceberg-rafted debris (IRD) of Eurasian origin. In accordance with previously obtained evidence from age-constrained cores from the central LR, the highest peak 4 is correlated with the MIS 6–5 boundary and the disintegration of the Saalian ice sheet. The three younger IRD peaks are provisionally correlated with the MIS 5–4, MIS 4–3, and MIS 2–1 boundaries, respectively. Small peaks of coarse-grained material in ALR07-15C dominated by various rocks in contrast represent local material transported by downslope slides mixed with some IRD. No calcareous microfossils occur in the cores, but only agglutinated benthic foraminifers are found. In ALR07-26C, they correlate with IRD-rich layers, which correspond to glacial terminations with more open-sea ice conditions and, probably, higher productivity in the sea-ice marginal zone. The Cyclammina-dominated assemblage in ALR07-26C below IRD peak 4 supports the proposed age estimate for this peak (MIS 6–5), as similar foraminiferal assemblages in other LR cores are recorded in sediments of MIS 7–9 and older. Younger assemblages show a transition from a Recurvoides-dominated assemblage in the early Late Pleistocene to a more “oligotrophic” recent assemblage with a predominance of Reophax and Rhabdammina.
    Type: Book chapter , PeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    facet.materialart.
    Unknown
    Elsevier
    In:  Journal of Asian Earth Sciences, 79 . pp. 358-365.
    Publication Date: 2015-10-13
    Description: Highlights • Gas hydrate reported from the Andaman Sea, India after coring and drilling. • Geothermal modeling of base of gas hydrate stability zone. • Gas hydrate stability thickness map of Andaman Sea. • Gas hydrate saturation using rock physics modeling. • Seismic attributes (i.e. reflection strength and instantaneous frequency etc.). Abstract Wide-spread bottom simulating reflectors (BSRs) are observed along available multichannel seismic profiles covering an area of about 290 km2 in the Andaman Sea. The seismic data shows that the BSR occurs at places where water depth exceeds 1000 m, and is identified by cross-cutting relationships with the dipping reflectors. The BSR that represents the base of gas hydrate stability field can be used to infer the gas hydrate stability thickness, which ranges between ∼518 m to ∼861 m depending on water depths. In situ measurement at site 17 during the Indian National Gas Hydrate Program (NGHP) Expedition-01 shows very low geothermal gradient 19 ± 2 °C/km. A conductive model was used to determine geothermal gradients from BSRs, which is calculated and varying between 10 °C/km to 40 °C/km. The low geothermal gradient is responsible for the deepest BSR or gas hydrate stability zone (GHSZ) in the Andaman region and in the world. The geothermal modeling shows a close match of the predicted base of the gas hydrate stability zone with the observed BSR depths.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2017-10-24
    Description: Epibenthos communities play an important role in the marine ecosystems of the Weddell Sea. Information on the factors controlling their structure and distribution are, however, still rare. In particular, the interactions between environmental factors and biotic assemblages are not fully understood. Nachtigaller Hill, a newly discovered seabed structure on the over-deepened shelf of the northwest Weddell Sea (Southern Ocean), offers a unique site to study these interactions in a high-latitude Antarctic setting. Based on high-resolution bathymetry and georeferenced biological data, the effect of the terrain and related environmental parameters on the epibenthos was assessed. At Nachtigaller Hill, both geomorphological and biological data showed complex distribution patterns, reflecting local processes such as iceberg scouring and locally amplified bottom currents. This variability was also generally reflected in the variable epibenthos distribution patterns although statistical analyses did not show strong correlations between the selected environmental parameters and species abundances. By analysing the interactions between environmental and biological patterns, this study provides crucial information towards a better understanding of the factors and processes that drive epibenthos communities on the shelves of the Weddell Sea and probably also on other Antarctic shelves.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    facet.materialart.
    Unknown
    Springer
    In:  Doklady Biological Sciences, 458 (1). pp. 286-288.
    Publication Date: 2015-04-27
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2015-07-03
    Description: Monitoring of the water column in the vicinity of offshore Carbon Capture and Storage (CCS) sites is needed to ensure site integrity and to protect the surrounding marine ecosystem. In this regard, the use of continuous, autonomous systems is considered greatly advantageous due to the costs and limitations of periodic, ship-based sampling campaigns. While various geochemical monitoring tools have been developed their elevated costs and complexities mean that typically only one unit can be deployed at a time, yielding single point temporal data but no spatial data. To address this the authors have developed low-cost pCO2 sensors (GasPro-pCO2) that are small, robust, stable, and which have a low power consumption, characteristics which allow for the deployment of numerous units to monitor the spatial-temporal distribution of pCO2, temperature, and water pressure in surface water environments. The present article details the results of three field deployments at the natural, CO2-leaking site near Panarea, Island. While the first consisted of 6 probes placed on the sea floor for a 2.5 month period, the other two involved the deployment of 20 GasPro units along a transect through the water column in the vicinity of active CO2 seeps over 2 – 4 days. Results show both transport and mixing processes and highlight the dynamic nature of the leakage-induced marine geochemical anomalies. Implications for monitoring programs as well as potential impacts are discussed.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2015-07-03
    Description: Although CO2 capture and storage in deep, offshore reservoirs is a proven technology, as illustrated by over 15 years of operation of the Sleipner site in the Norwegian North Sea, potential leakage from such sites into the overlying water column remains a concern for some stakeholders. Therefore, we are obliged to carefully assess our ability to predict and monitor the migration, fate, and potential ecosystem impact of any leaked CO2. The release of bubbles from the sea floor, their upward movement, and their dissolution into the surrounding water controls the initial boundary conditions, and thus an understanding of the behavior of CO2 bubbles is critical to address such issues related to monitoring and risk assessment. The present study describes results from an in situ experiment conducted in 12 m deep marine water near the extinct volcanic island of Panarea (Italy). Bubbles of a controlled size were created using natural CO2 released from the sea floor, and their evolution during ascent in the water column was monitored via both video and chemical measurements. The obtained results were modelled and a good fit was obtained, showing the potential of the model as a predictive tool. These preliminary results and an assessment of the difficulties encountered are examined and will be used to improve experimental design for the subsequent phase of this research.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2015-07-24
    Description: Highlights • The complex geodynamic structure of the area is reflected in the wide range of compositions of the emitted fluids. • High salinity waters with hydrocarbon gases and a purely crustal He component were collected from deep wells. • Hyperalkaline waters with CH4- and H2-dominated gases are found in the ophiolite complex. • Shallow meteoric groundwaters in the southern part of the basin show a prevailing atmospheric component for dissolved gases. • A significant mantle component (He and C) is found in the dissolved gases of the northeastern sites. Abstract We investigated the geochemical features of the fluids circulating over the Amik Basin (SE Turkey–Syria border), which is crossed by the Northern extension of the DSF (Dead Sea Fault) and represents the boundary area of three tectonic plates (Anatolian, Arabian and African plates). We collected 34 water samples (thermal and cold from natural springs and boreholes) as well as 8 gas samples (bubbling and gas seepage) besides the gases dissolved in the sampled waters. The results show that the dissolved gas phase is a mixture of shallow (atmospheric) and deep components either of mantle and crustal origin. Coherently the sampled waters are variable mixtures of shallow and deep ground waters, the latter being characterised by higher salinity and longer residence times. The deep groundwaters (from boreholes deeper than 1000 m) have a CH4-dominated dissolved gas phase related to the presence of hydrocarbon reservoirs. The very unique tectonic setting of the area includes the presence of an ophiolitic block outcropping in the westernmost area on the African Plate, as well as basalts located to the North and East on the Arabic Plate. The diffuse presence of CO2-enriched gases, although diluted by the huge groundwater circulation, testifies a regional degassing activity. Fluids circulating over the ophiolitic block are marked by H2-dominated gases with abiogenic methane and high-pH waters. The measured 3He/4He isotopic ratios display contributions from both crustal and mantle-derived sources over both sides of the DSF. Although the serpentinization process is generally independent from mantle-type contribution, the recorded helium isotopic ratios highlight variable contents of mantle-derived fluids. Due to the absence of recent volcanism over the western side of the basin (African Plate), we argue that CO2-rich volatiles carrying mantle-type helium and enriched in heavy carbon, are degassed by deep-rooted regional faults rather than from volcanic sources.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2015-09-24
    Description: Highlights: • Cold-water coral mound formation is mainly influenced by the baffling of fine grained material within a coral framework. • Mass wasting appears to be an important mound progradation process. • Even heavily reworked sediments contain valuable information on the original mound aggradation processes. Abstract: An unconformity-bound glacial sequence (135 cm thick) of a coral-bearing sediment core collected from the flank of a cold-water coral mound in the Banda Mound Province off Mauritania was analysed. In order to study the relation between coral framework growth and its filling by hemipelagic sediments, U-series dates obtained from the cold-water coral species Lophelia pertusa were compared to 14C dates of planktonic foraminifera of the surrounding matrix sediments. The coral ages, ranging from 45.1 to 32.3 ka BP, exhibit no clear depositional trend, while on the other hand the 14C dates of the matrix sediment provide ages within a much narrower time window of 〈3000 yrs (34.6–31.8 cal ka BP), corresponding to the latest phase of the coral growth period. In addition, high-resolution computer tomography data revealed a subdivision of the investigated sediment package into three distinct parts, defined by the portion and fragmentation of corals and associated macrofauna as well as in the density of the matrix sediments. Grain size spectra obtained on the matrix sediments show a homogeneous pattern throughout the core sediment package, with minor variations. These features are interpreted as indicators of redeposition. Based on the observed structures and the dating results, the sediments were interpreted as deposits of a mass wasting event, namely a debris flow. During this event, the sediment unit must have been entirely mixed; resulting in averaging of the foraminifera ages from the whole unit and giving randomly distributed coral ages. In this context, for the first time mass wasting is proposed to be a substantial process of mound progradation by exporting material from the mound top to the flanks. Hence, it may not only be an erosional feature but also widening the base of the mound, thus allowing further vertical mound growth.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2016-09-14
    Description: Mediterranean Outflow Water (MOW) is thought to be a key contributor to the strength and stability of Atlantic Meridional Overturning Circulation (AMOC), but the future of Mediterranean-Atlantic water exchange is uncertain. It is chiefly dependent on the difference between Mediterranean and Atlantic temperature and salinity characteristics, and as a semi-enclosed basin, the Mediterranean is particularly vulnerable to future changes in climate and water usage. Certainly, there is strong geologic evidence that the Mediterranean underwent dramatic salinity and sea-level fluctuations in the past. Here, we use a fully coupled atmosphere–ocean General Circulation Model to examine the impact of changes in Mediterranean-Atlantic exchange on global ocean circulation and climate. Our results suggest that MOW strengthens and possibly stabilises the AMOC not through any contribution towards NADW formation, but by delivering relatively warm, saline water to southbound Atlantic currents below 800 m. However, we find almost no climate signal associated with changes in Mediterranean-Atlantic flow strength. Mediterranean salinity, on the other hand, controls MOW buoyancy in the Atlantic and therefore affects its interaction with the shallow-intermediate circulation patterns that govern surface climate. Changing Mediterranean salinity by a factor of two reorganises shallow North Atlantic circulation, resulting in regional climate anomalies in the North Atlantic, Labrador and Greenland-Iceland-Norwegian Seas of ±4 °C or more. Although such major variations in salinity are believed to have occurred in the past, they are unlikely to occur in the near future. However, our work does suggest that changes in the Mediterranean’s hydrological balance can impact global-scale climate.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2017-05-23
    Description: Seafloormethane emission from the Quepos Slide on the submarine segment of the Costa Rica fore-arc margin was estimated by extrapolating flux measurements from individual seeps to the total area covered by bacterial mats. This approach is based on the combination of detailed mapping to determine the abundance of seeps and the application of a numerical model to estimate the amount of benthic methane fluxes. Model results suggest that the majority of the studied seeps transport rather limited amount of methane (on average: *177 lmol cm-2 a-1) into the water column due to moderate upward advection, allowing for intense anaerobic oxidation of methane (AOM; on average: 53 % of the methane flux is consumed). Depth-integrated AOM rates (56–1,538 lmol CH4 cm-2 a-1) are comparable with values reported from other active seep sites. The overall amount of dissolved methane released into the water column from the entire area covered by bacterial mats on the Quepos Slide is estimated to be about 0.28 9 106 mol a-1. This conservative estimate which relies on rather accurate determinations of seafloor methane fluxes emphasizes the potential importance of submarine slides as sites of natural methane seepage; however, at present the global extent of methane seepage from submarine slides is largely unknown.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-09-23
    Description: The surface sediments of two mud mounds (‘‘Mound 11’’ and ‘‘Mound 12’’) offshore southwest Costa Rica contain abundant authigenic carbonate concretions dominated by high-Mg calcite (14–20 mol-% MgCO3). Pore fluid geochemical profiles (sulfate, sulfide, methane, alkalinity, Ca and Mg) indicate recent carbonate precipitation within the zone of anaerobic oxidation of methane (AOM) at variable depths. The current location of the authigenic carbonate concretions is, however, not related to the present location of the AOM zone, suggesting mineral precipitation under past geochemical conditions as well as changes in the flow rates of upward migrating fluids. Stable oxygen and carbon isotope analysis of authigenic carbonate concretions yielded d18Ocarbonate values ranging between 34.0 and 37.7 % Vienna standard mean ocean water (VSMOW) and d13Ccarbonate values from -52.2 to -14.2 % Vienna Pee Dee belemnite (VPDB). Assuming that no temperature changes occurred during mineral formation, the authigenic carbonate concretions have been formed at in situ temperature of 4–5 °C. The d18Ocarbonate values suggest mineral formation from seawater-derived pore fluid (d18Oporefluid = 0 % VSMOW) for Mound 12 carbonate concretions but also the presence of an emanating diagenetic fluid (d18Oporefluid &5 %) in Mound 11. A positive correlation between d13Ccarbonate and d18Ocarbonate is observed, indicating the admixing of two different sources of dissolved carbon and oxygen in the sediments of the two mounds. The carbon of these sources are (1) marine bicarbonate (d13Cporefluid &0 %) and (2) bicarbonate which formed during the AOM (d13Cporefluid &-70 %). Furthermore, the d18Oporefluid composition, with values up to ?4.7 % Vienna standard mean ocean water (VSMOW), is interpreted to be affected by the presence of emanating, freshened and boronenriched fluids. Earlier, it has been shown that the origin of 18O-enriched fluids are deep diagenetic processes as it was indicated by the presence of methane with thermogenic signature (d13CCH4 = -38 %). A combination of present geochemical data with geophysical observations indicates that Mounds 11 and 12 represent a single fluid system interconnected by deep-seated fault(s).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-07-09
    Description: Larval fish growth and survival depends not only on prey quantity, but also on prey quality. To investigate effects of prey fatty acid concentration on larval herring growth, we collected different prey organisms and larval herring (Clupea harengus L.) in the Kiel Canal during the spring season of 2009. Along with biotic background data, we analysed fatty acids both in prey organisms and in the larvae and used biochemically derived growth rates of the larvae as the response variable. Larval herring reached their highest RNA/DNA derived growth rates only at high docosahexaenoic acid (DHA) concentration. When the ratio of copepodids to lesser quality cirriped nauplii was low, larval growth and larval DHA concentration were both significantly negatively affected. This was true even as prey abundance was increasing. This finding indicates that even in mixed, natural feeding conditions, growth variations are associated with DHA availability in larval fish.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    facet.materialart.
    Unknown
    Springer
    In:  In: Ocean-Atmosphere Interactions of Gases and Particles. , ed. by Liss, P. and Johnson, M. T. Springer Earth System Sciences . Springer, Berlin, Germany, pp. 113-169. ISBN 978-3-642-25642-4
    Publication Date: 2019-09-23
    Description: Understanding and quantifying ocean–atmosphere exchanges of the long-lived greenhouse gases carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) are important for understanding the global biogeochemical cycles of carbon and nitrogen in the context of ongoing global climate change. In this chapter we summarise our current state of knowledge regarding the oceanic distributions, formation and consumption pathways, and oceanic uptake and emissions of CO2, N2O and CH4, with a particular emphasis on the upper ocean. We specifically consider the role of the ocean in regulating the tropospheric content of these important radiative gases in a world in which their tropospheric content is rapidly increasing and estimate the impact of global change on their present and future oceanic uptake and/or emission. Finally, we evaluate the various uncertainties associated with the most commonly used methods for estimating uptake and emission and identify future research needs.
    Type: Book chapter , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2017-08-22
    Description: Highlights: • Development/evaluation of a ‘needle trap device’ (NTD) method for the analysis of VOC in seawater. • First field application of the NTD method in a Norwegian Fjord during a CO2 enrichment study. • Identification and quantification of DMS, isoprene and α-pinene under various pCO2 levels. • In field NTD GC-MS and P&T GC-FPD method comparison for the DMS datasets (r2 = 0.8). Abstract: A novel analytical method using newly developed needle trap devices (NTDs) and a gas chromatograph–mass spectrometer (GC–MS) system was developed. It has been applied for the first time on seawater samples to quantify marine volatile organic compounds (VOCs) relevant to atmospheric chemistry and climate. By purging gases from small water volumes (10 ml) onto sealable NTDs and then desorbing them thermally within the GC injection port, an effective analysis of a wide range of VOCs (isoprene to α-pinene) was achieved within 23 min. Good repeatability (RSDs 〈 16 %), linearity (r2 = 0.96–0.99) and limits of detection in the range of pM were obtained for all examined compounds. Following laboratory validation, the NTD method was applied in a mesocosm field study in a Norwegian Fjord. Nine individual mesocosm ecosystems under different CO2 regimes were examined. Dimethyl sulfide (DMS), isoprene and monoterpenes were identified and quantified in mesocosm seawater. The DMS measurements are compared with parallel measurements provided by an independent P&T GC–FPD system showing good correlation, r2 = 0.8. Our study indicates that the NTD method can be used successfully in place of the traditionally used extraction techniques (P&T, SPME) in marine environments to extend the suite of species typically measured and improve detection limits.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2016-09-13
    Description: In analysis of climate variability or change it is often of interest how the spatial structure in modes of variability in two datasets differ from each other, e.g. between past and future climate or between models and observations. Often such analysis is based on Empirical Orthogonal Function (EOF) analysis or other simple indices of large-scale spatial structures. The present analysis lays out a concept on how two datasets of multivariate climate variability can be compared against each other on basis of EOF analysis and how the differences in the multivariate spatial structure between the two datasets can be quantified in terms of explained variance in the leading spatial patterns. It is also illustrated how the patterns of largest differences between the two datasets can be defined and interpreted. We illustrate this method on the basis of several well-defined artificial examples and by comparing our approach with examples of climate change studies from the literature. These literature examples include analysis of changes in the modes of variability under climate change for the sea level pressure (SLP) of the North Atlantic and Europe, the SLP of the Southern Hemisphere, the surface temperature of the Northern Hemisphere, the sea surface temperature of the North Pacific and for precipitation in the tropical Indo-Pacific.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-09-23
    Description: Recent studies show that mid-latitude SST variations over the Kuroshio-Oyashio Extension influence the atmospheric circulation. However, the impact of variations in SST in the Gulf Stream region on the atmosphere has been less studied. Understanding the atmospheric response to such variability can improve the climate predictability in the North Atlantic Sector. Here we use a relatively high resolution (∼1°) Atmospheric General Circulation Model to investigate the mechanisms linking observed 5-year low-pass filtered SST variability in the Gulf Stream region and atmospheric variability, with focus on precipitation. Our results indicate that up to 70 % of local convective precipitation variability on these timescales can be explained by Gulf Stream SST variations. In this region, SST and convective precipitation are strongly correlated in both summer (r = 0.73) and winter (r = 0.55). A sensitivity experiment with a prescribed local warm SST anomaly in the Gulf Stream region confirms that local SST drives most of the precipitation variability over the Gulf Stream. Increased evaporation connected to the anomalous warm SST plays a crucial role in both seasons. In summer there is an enhanced local SLP minimum, a concentrated band of low level convergence, deep upward motion and enhanced precipitation. In winter we also get enhanced precipitation, but a direct connection to deep vertical upward motion is not found. Nearly all of the anomalous precipitation in winter is connected to passing atmospheric fronts. In summer the connection between precipitation and atmospheric fronts is weaker, but still important.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-09-23
    Description: Subduction zones of continental, transitional, and oceanic settings, relative to the nature of the overriding plate, are compared in terms of trace element compositions of mafic to intermediate arc rocks, in order to evaluate the relationship between subduction parameters and the presence of subduction fluids. The continental Chilean Southern Volcanic Zone (SVZ) and the transitional to oceanic Central American Volcanic Arc (CAVA) show increasing degrees of melting with increasing involvement of slab fluids, as is typical for hydrous flux melting beneath arc volcanoes. At the SVZ, the central segment with the thinnest continental crust/lithosphere erupted the highest-degree melts from the most depleted sources, similar to the oceanic-like Nicaraguan segment of the CAVA. The northern part of the SVZ, located on the thickest continental crust/lithosphere, exhibits features more similar to Costa Rica situated on the Caribbean Large Igneous Province, with lower degrees of melting from more enriched source materials. The composition of the slab fluids is characteristic for each arc system, with a particularly pronounced enrichment in Pb at the SVZ and in Ba at the CAVA. A direct compositional relationship between the arc rocks and the corresponding marine sediments that are subducted at the trenches clearly shows that the compositional signature of the lavas erupted in the different arcs carries an inherited signal from the subducted sediments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-09-23
    Description: The variability of the East Asian summer monsoon (EASM) is studied using a partially coupled climate model (PCCM) in which the ocean component is driven by observed monthly mean wind stress anomalies added to the monthly mean wind stress climatology from a fully coupled control run. The thermodynamic coupling between the atmospheric and oceanic components is the same as in the fully coupled model and, in particular, sea surface temperature (SST) is a fully prognostic variable. The results show that the PCCM simulates the observed SST variability remarkably well in the tropical and North Pacific and Indian Oceans. Analysis of the rainfall-SST and rainfall-SST tendency correlation shows that the PCCM exhibits local air-sea coupling as in the fully coupled model and closer to what is seen in observations than is found in an atmospheric model driven by observed SST. An ensemble of experiments using the PCCM is analysed using a multivariate EOF analysis to identify the two major modes of variability of the EASM. The PCCM simulates the spatial pattern of the first two modes seen in the ERA40 reanalysis as well as part of the variability of the first principal component (correlation up to 0.5 for the model ensemble mean). Different from previous studies, the link between the first principal component and ENSO in the previous winter is found to be robust for the ensemble mean throughout the whole period of 1958–2001. Individual ensemble members nevertheless show the breakdown in the relationship before the 1980’s as seen in the observations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2017-05-23
    Description: Melt inclusions in olivine Fo83–72 from tephras of 1867, 1971 and 1992 eruptions of Cerro Negro volcano represent a series of basaltic to andesitic melts of narrow range of MgO (5.6–8 wt %) formed by ~46 wt % fractional crystallization of olivine (~6 wt %), plagioclase (~27 wt %), pyroxene (~13 wt %) and magnetite (〈1 wt %) from primitive basaltic melt (average SiO2 = 49 wt %, MgO = 7.6 wt %, H2O = 6 wt %) as it ascended to the surface from the depth of about 14 km. The crystallization occurred at increasing liquidus temperature from 1,050 to 1,090 °C in the pressure range from 400 to 50 MPa and was induced by release of mixed H2O–CO2 fluid from the melt at decreasing pressure. Matrix glass compositions fall at the high-Si end of the melt inclusion trend and represent the final stage of melt crystallization during and after eruption. The bulk compositions of erupted Cerro Negro magmas (tephras and lavas) range from high- to low-MgO (3–10 wt %) basalts, which form a compositional array crossing the trend of melt inclusions so that virtually no rock from Cerro Negro has composition akin to true melt represented by the inclusions. The variations of the bulk magma (rocks) and melt (melt inclusions) compositions can be generated in a dyke connecting a deep primitive magma reservoir with the Cerro Negro edifice. While the melt inclusions represent the compositional trend of instantaneous melts along the magma pathway at decreasing pressure and H2O content, occurrence of low-Mg to high-Mg basalts reflects the process of phenocryst re-distribution in progressively evolving melt. The crystallization scenario is anticipated to operate everywhere in dykes feeding basaltic volcanoes and can explain the predominance of plagioclase-rich high-Al basalts in island arc as well as typical compositional variations of magmas during single eruptions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    facet.materialart.
    Unknown
    Springer
    In:  International Journal of Earth Sciences, 103 (7). pp. 1747-1764.
    Publication Date: 2017-05-23
    Description: Transition from subduction of normal to thickened oceanic crust occurs in the central portion of the Costa Rican margin, where large interplate earthquakes (M * 7) and abundant interseismic seismicity have been associated with subduction of bathymetric highs. We relocated *1,300 earthquakes recorded for 6 months by a combined on- and offshore seismological network using probabilistic earthquake relocation in a 3D P-wave velocity model. Most of the seismicity originated at the seismogenic zone of the plate boundary, appearing as an 18° dipping, planar cluster from 15 to 25–30 km depth, beneath the continental shelf. Several reverse focal mechanisms were resolved within the cluster. The upper limit of this interseismic interplate seismicity seems to be controlled primarily by the overlying-plate thickness and coherency, which in turn is governed by the erosional processes and fluid release and escape at temperatures lower than *100 to 120° C along the plate boundary. The downdip limit of the stick–slip behaviour collocates with relative low temperatures of *150 to 200° C, suggesting that it is controlled by serpentinization of the mantle wedge. The distribution of the interseismic interplate seismicity is locally modified by the presence of subducted seamounts at different depths. Unlike in northern Costa Rica, rupture of large earthquakes in the last two decades seems to coincide with the area defined by the interseismic interplate seismicity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-09-23
    Description: Llaima and Villarrica are two of the most active volcanoes in the Chilean Southern Volcanic Zone and presently show contrasting types of activity. Llaima is a closed vent edifice with fumarolic activity, while Villarrica has an open vent with a lava lake, continuous degassing and tremor activity. This study is focused on characterizing the relationships between volcanic and seismic activity in the months before and after the 2010 M8.8 Maule earthquake, which was located in NNW direction from the volcanoes. Time series for tremors, long-period and volcano-tectonic events were obtained from the catalogue of the Volcanic Observatory of the Southern Andes (OVDAS) and from the SFB 574 temporary volcanic network. An increase in the amount of tremor activity, long-period events and degassing rates was observed at Villarrica weeks before the mainshock and continued at a high level also after it. This increase in activity is interpreted to be caused by enhanced magma influx at depth and may be unrelated to the Maule event. In Llaima, an increase in the volcano-tectonic activity was observed directly after the earthquake. The simultaneous post-earthquake activity at both volcanoes is consistent with a structural adjustment response. Since this enhanced activity lasted for more than a year, we suggest that it is related to a medium-term change in the static stress. Thus, the Maule earthquake may have affected both volcanoes, but did not trigger eruptions, from which we assume that none of the volcanoes were in a critical state.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-09-23
    Description: Here we present the first systematic investigation of volatile geochemistry along the Southern Volcanic Zone (SVZ) of Chile. Holocene olivine-hosted melt inclusions in the most mafic tephras sampled from 16 volcanoes along the volcanic front of the SVZ between 33°S and 43°S were analysed for pre-eruptive sulphur, chlorine, and major element contents. These results are combined with trace element compositions of the host whole rocks. The highest fractionation-corrected gas contents occur in the least-degassed melt inclusions from small monogenetic cones of Los Hornitos, Cabeza de Vaca, and Apagado from both the transitional and the southern-central SVZ, reaching ~3,000 μg/g S and 1,400 μg/g Cl, while the lowest abundances of ~1,100 μg/g S and ~600 μg/g Cl were found in the central SVZ at Volcán Lonquimay, Volcán Llaima, and Volcán Villarrica. Chlorine co-varies with trace element indicators for the degree of melting and/or source enrichment, such that the lowest Cl contents are found in high-degree melts from the most depleted mantle sources. The size of the volcanic edifices correlates inversely with Cl abundances in the melt. This could reflect more extensive degassing during ascent through the complex magma plumbing systems beneath the stratovolcanoes or greater dilution during larger degrees of melting of more depleted sources, or a combination of these factors. Compared to other subduction zones, the SVZ melt inclusions exhibit Cl and S abundances in the same range as most of those from the Central American and those from the Marianas arcs.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2016-09-13
    Description: There is evidence that the observed changes in winter North Atlantic Oscillation (NAO) drive a significant portion of Atlantic Multi Decadal Variability (AMV). However, whether the observed decadal NAO changes can be forced by the ocean is controversial. There is also evidence that artificially imposed multi-decadal stratospheric changes can impact the troposphere in winter. But the origins of such stratospheric changes are still unclear, especially in early to mid winter, where the radiative ozone-impact is negligible. Here we show, through observational analysis and atmospheric model experiments, that large-scale Atlantic warming associated with AMV drives high-latitude precursory stratospheric warming in early to mid winter that propagates downward resulting in a negative tropospheric NAO in late winter. The mechanism involves stratosphere/troposphere dynamical coupling, and can be simulated to a large extent, but only with a stratosphere resolving model (i.e., high-top). Further analysis shows that this precursory stratospheric response can be explained by the shift of the daily extremes toward more major stratospheric warming events. This shift cannot be simulated with the atmospheric (low-top) model configuration that poorly resolves the stratosphere and implements a sponge layer in upper model levels. While the potential role of the stratosphere in multi-decadal NAO and Atlantic meridional overturning circulation changes has been recognised, our results show that the stratosphere is an essential element of extra-tropical atmospheric response to ocean variability. Our findings suggest that the use of stratosphere resolving models should improve the simulation, prediction, and projection of extra-tropical climate, and lead to a better understanding of natural and anthropogenic climate change.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-09-23
    Description: The continental shelf and slope of southern Central Chile have been subject to a number of international as well as Chilean research campaigns over the last 30 years. This work summarizes the geologic setting of the southern Central Chilean Continental shelf (33°S–43°S) using recently published geophysical, seismological, sedimentological and bio-geochemical data. Additionally, unpublished data such as reflection seismic profiles, swath bathymetry and observations on biota that allow further insights into the evolution of this continental platform are integrated. The outcome is an overview of the current knowledge about the geology of the southern Central Chilean shelf and upper slope. We observe both patches of reduced as well as high recent sedimentation on the shelf and upper slope, due to local redistribution of fluvial input, mainly governed by bottom currents and submarine canyons and highly productive upwelling zones. Shelf basins show highly variable thickness of Oligocene-Quaternary sedimentary units that are dissected by the marine continuations of upper plate faults known from land. Seismic velocity studies indicate that a paleo-accretionary complex that is sandwiched between the present, relatively small active accretionary prism and the continental crust forms the bulk of the continental margin of southern Central Chile.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    facet.materialart.
    Unknown
    Springer
    In:  International Journal of Earth Sciences, 103 (7). pp. 1801-1815.
    Publication Date: 2019-09-23
    Description: Methane (CH4) concentrations and CH4 stable carbon isotopic composition (d13CCH4 ) were investigated in the water column within Jaco Scar. It is one of several scars formed by massive slides resulting from the subduction of seamounts offshore Costa Rica, a process that can open up structural and stratigraphical pathways for migrating CH4. The release of large amounts of CH4 into the adjacent water column was discovered at the outcropping lowermost sedimentary sequence of the hanging wall in the northwest corner of Jaco Scar, where concentrations reached up to 1,500 nmol L-1. There CH4-rich fluids seeping from the sedimentary sequence stimulate both growth and activity of a dense chemosynthetic community. Additional point sources supplying CH4 at lower concentrations were identified in density layers above and below the main plume from light carbon isotope ratios. The injected CH4 is most likely a mixture of microbial and thermogenic CH4 as suggested by d13CCH4 values between -50 and -62 % Vienna Pee Dee Belemnite. This CH4 spreads along isopycnal surfaces throughout the whole area of the scar, and the concentrations decrease due to mixing with ocean water and microbial oxidation. The supply of CH4 appears to be persistent as repeatedly high CH4 concentrations were found within the scar over 6 years. The maximum CH4 concentration and average excess CH4 concentration at Jaco Scar indicate that CH4 seepage from scars might be as significant as seepage from other tectonic structures in the marine realm. Hence, taking into account the global abundance of scars, such structures might constitute a substantial, hitherto unconsidered contribution to natural CH4 sources at the seafloor.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2016-05-24
    Description: Kalsilite-bearing igneous rocks are extremely rare,most known examples are volcanic. The few previously recorded kalsilite-bearing plutonic rocks are all Phanerozoic and mostly limited to the small ultrapotassic massifs of the Baikal–Stanovoi Rift in the Siberian Craton, the Greenland Batbjerg Massif, and the Kola Peninsula Khibiny Complex. We have found that the Archean to Proterozoic transition in thewestern Reguibat Rise of theWest African Craton is marked by several small massifs predominantly composed of kalsilite syenites, i.e., synnyrites. The largest massif is Awsard, a deep-seated intrusive body mainly composed of 2.46 Ga synnyrites and K-rich nepheline syenites with mantle-like Sr and Nd (whole-rock) and O (zircon) isotope composition. Apart from some superficial resemblance to the Baikal–Stanovoi synnyritiferous complexes, Awsard has no known equivalent in the geological record. It is the oldest, the deepest and the largest known occurrence of synnyrites. Awsard comprises solely felsic syenites with εNd(t) notably more primitive than their Siberian counterparts. The synnyrites contain kalsilite and rare nepheline as primary phases with no leucite or leucite pseudomorphs. Kalsilite and nepheline form large discrete grains that, in places, are accompanied by spectacular Ks–Or or Ne–Or symplectites. The symplectites are magmatic, generated by simultaneous crystallization of the two phases and the imbalance between the growth rate of the feldspar and the diffusivity of silica and alkalis in the melt. To explain why Awsard lacks mafic rocks and associated carbonatites, typical of other synnyrite massifs, we propose that ascending water-poor (H2O b 0.65 wt.%) mafic ultrapotassic magmas solidified at a pressure of 10–16 kbar underneath the already stabilized Archean crust of the region. In these conditions leucite began to crystallize when the temperature dropped to around 1100 °C. As a result of their low density, leucite crystals floated and formed a cap at the top of the intrusion. Then, the chamber was replenished with awater-rich andmore sodic ultrapotassicmagma that originated in the samemetasomatized mantle-source region. After prolonged fractional crystallization this second magma released an aqueous vapor phase that migrated upwards and melted the leucite cap thus producing a low-density hydrous magma of leucite-like, synnyritic, composition. This leucite-like magma, and the late residual melts from the second pulse that replenished the chamber, ascended and intruded the already cratonized lower crust of the western Reguibat Rise. There, the magmas crystallized outside the leucite stability field to produce the synnyrites and the nepheline syenites, respectively. There is no evidence that the metasomatic refertilization of the mantle required to produce the initial ultrapotassic mafic magmas was related to subduction fluids. On the contrary, it seems to have been caused by incompatible-element enriched hydrous fluids released from delaminated lower crustal fragments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Biogeosciences (BG), 11 (4). pp. 929-944.
    Publication Date: 2016-06-09
    Description: The response of coccolithophore calcification to ocean acidification has been studied in culture experiments as well as in present and past oceans. The response, however, is different between species and strains, and for the relatively small carbonate chemistry changes observed in natural environments, a uniform response of the entire coccolithophore community has not been documented so far. Moreover, previous palaeo-studies basically focus on changes in coccolith weight due to increasing CO2 and the resulting changes in the carbonate system, and only few studies focus on the influence of other environmental factors. In order to untangle changes in coccolithophore calcification due to environmental factors such as temperature and/or productivity from changes caused by increasing pCO2 and decreasing carbonate ion concentration, we here present a study on coccolith calcification from the Holocene North Atlantic Ocean. The pre-industrial Holocene, with its predominantly stable atmospheric CO2, provides the conditions for such a comprehensive analysis. For an analysis on changes in major components of Holocene coccolithophores under natural conditions, the family Noelaerhabdaceae was selected, which constitutes the main part of the assemblage in the North Atlantic. Records of average coccolith weights from three Holocene sediment cores along a north–south transect in the North Atlantic were analysed. During the Holocene, mean weight (and therefore calcification) of Noelaerhabdaceae (Emiliania huxleyi and Gephyrocapsa) coccoliths decreased at the Azores (Geofar KF 16) from around 7 to 6 pg, but increased at the Rockall Plateau (ODP site 980) from around 6 to 8 pg, and at the Vøring Plateau (MD08-3192) from 7 to 10 pg. The amplitude of average weight variability is within the range of glacial–interglacial changes that were interpreted to be an effect of decreasing carbonate ion concentration. By comparison with SEM assemblage counts, we show that weight changes are not only partly due to variations in the coccolithophore assemblage but also an effect of a change in calcification and/or morphotype variability within single species. Our results indicate that there is no single key factor responsible for the observed changes in coccolith weight. A major increase in coccolith weight occurs during a slight decrease in carbonate ion concentration in the late Holocene at the Rockall Plateau and Vøring Plateau. Here, more favourable productivity conditions apparently lead to an increase in coccolith weight, either due to the capability of coccolithophore species, especially E. huxleyi, to adapt to decreasing carbonate ion concentration or due to a shift towards heavier calcifying morphotypes.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    facet.materialart.
    Unknown
    Elsevier
    In:  In: Encyclopedia of Meat Sciences. , ed. by Divine, C. and Dikeman, M. Elsevier, Amsterdam, The Netherlands, pp. 395-404. 2.ed. ISBN 978-0-12-384734-8
    Publication Date: 2016-06-27
    Description: Yeasts and molds are important microorganisms related to human welfare, safety, and food resources. They contribute greatly to the food industry in areas such as winemaking, single-cell protein production, brewing, baking, vitamin production, etc. However, under certain conditions they can act as potential spoilage organisms in food, especially in processed, preserved, and refrigerated food. Enumeration and identification of yeasts and molds from foods are of great importance in understanding the value of these organisms in various food systems as well as their role in spoilage. Knowledge of how certain yeasts and molds colonize meat products and of their effects on the meat products is essential in order to prevent economic losses during spoilage or to maximize desirable fermentation of certain cured meat products by yeasts and molds. Occasionally, some pathogenic yeasts and molds might occur in meat and meat products that may pose food safety issues.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2016-09-28
    Description: Due to their outstanding resolution and well-constrained chronologies, Greenland ice-core records provide a master record of past climatic changes throughout the Last InterglacialeGlacial cycle in the North Atlantic region. As part of the INTIMATE (INTegration of Ice-core, MArine and TErrestrial records) project, protocols have been proposed to ensure consistent and robust correlation between different records of past climate. A key element of these protocols has been the formal definition and ordinal numbering of the sequence of Greenland Stadials (GS) and Greenland Interstadials (GI) within the most recent glacial period. The GS and GI periods are the Greenland expressions of the characteristic DansgaardeOeschger events that represent cold and warm phases of the North Atlantic region, respectively. We present here a more detailed and extended GS/GI template for the whole of the Last Glacial period. It is based on a synchronization of the NGRIP, GRIP, and GISP2 ice-core records that allows the parallel analysis of all three records on a common time scale. The boundaries of the GS and GI periods are defined based on a combination of stable-oxygen isotope ratios of the ice (d18O, reflecting mainly local temperature) and calcium ion concentrations (reflecting mainly atmospheric dust loading) measured in the ice. The data not only resolve the well-known sequence of DansgaardeOeschger events that were first defined and numbered in the ice-core records more than two decades ago, but also better resolve a number of short-lived climatic oscillations, some defined here for the first time. Using this revised scheme, we propose a consistent approach for discriminating and naming all the significant abrupt climatic events of the Last Glacial period that are represented in the Greenland ice records. The final product constitutes an extended and better resolved Greenland stratotype sequence, against which other proxy records can be compared and correlated. It also provides a more secure basis for investigating the dynamics and fundamental causes of these climatic perturbations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2016-06-09
    Description: Highlights: • Noelaerhabdaceae mean coccolith weight increases during Termination II. • Coccolith assemblage and the degree of coccolith calcification control mean weight. • Causes for the weight increase are different in sub-arctic and tropical settings. • Terminations I and II show opposite patterns in coccolith weight changes. • Rising CO2 during deglaciations has no uniform effect on coccolith weight. Abstract: Glacial to interglacial environmental changes have a strong impact on coccolithophore assemblage composition. At the same time, glacial terminations are characterised by an increase in atmospheric CO2 concentration. In order to determine how these two processes influence the calcite production of coccolithophores, we compared coccolith weight estimates obtained with the automated coccolith recognition system SYRACO with SEM assemblage counts covering the penultimate glacial Termination (T II) from two sediment cores in the North Atlantic Ocean. At the temperate Rockall Plateau (ODP Site 980), mean coccolith weight peaks around Heinrich event 11. This is paralleled by a shift within the coccolith assemblage related to the changes of the oceanic frontal system during Termination II. In the tropical Florida Strait, far from the influences of frontal zones, mean Noelaerhabdaceae coccolith weight doubles during Termination II. This is partly due to an assemblage shift towards larger and heavier calcifying morphotypes, but mainly an effect of increasing coccolithophore calcification. This increase is exactly mirroring the rise in atmospheric CO2, contradicting previous findings from Termination I. Reconstructions of DIC, alkalinity and calcite saturation at the Florida Strait during Termination II produce higher estimates of these parameters compared to previous studies for which coccolith weight estimates are available, and therefore a change of the carbonate system is the most likely cause for the coccolithophore calcification increase during atmospheric CO2 rise. Our results illustrate that even during rising atmospheric CO2 the conditions of the seawater carbonate system can be favourable for coccolithophore calcification. The total CaCO3 production of a coccolithophore assemblage under increasing CO2 therefore depends on regional seawater carbonate system characteristics and the local assemblage composition.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2016-06-14
    Description: Glacial environments may provide an important but poorly constrained source of potentially bioavailable iron and manganese phases to the coastal ocean in high-latitude regions. Little is known about the fate and biogeochemical cycling of glacially derived iron and manganese in the coastal marine realm. Sediment and porewater samples were collected along transects from the fjord mouths to the tidewater glaciers at the fjord heads in Smeerenburgfjorden, Kongsfjorden, and Van Keulenfjorden along Western Svalbard. Solid-phase iron and manganese speciation, determined by sequential chemical extraction, could be linked to the compositions of the local bedrock and hydrological/weathering conditions below the local glaciers. The concentration and sulfur isotope composition of chromium reducible sulfur (CRS) in Kongs- and Van Keulenfjorden sediments largely reflect the delivery rate and isotope composition of detrital pyrite originating from adjacent glaciers. The varying input of reducible iron and manganese oxide phases and the input of organic matter of varying reactivity control the pathways of organic carbon mineralization in the sediments of the three fjords. High reducible iron and manganese oxide concentrations and elevated metal accumulation rates coupled to low input of “fresh” organic matter lead to a strong expression of dissimilatory metal oxide reduction evidenced in very high porewater iron (up to 800 lM) and manganese (up to 210 lM) concentrations in Kongsfjorden and Van Keulenfjorden. Sediment reworking by the benthic macrofauna and physical sediment resuspension via iceberg calving may be additional factors that promote extensive benthic iron and manganese cycling in these fjords. On-going benthic recycling of glacially derived dissolved iron into overlying seawater, where partial reoxidation and deposition occurs, facilitates the transport of iron across the fjords and potentially into adjacent continental shelf waters. Such iron-dominated fjord sediments are likely to provide significant fluxes of potentially bioavailable iron to coastal waters and beyond. By contrast, low delivery of reducible iron (oxyhydr)oxide phases and elevated organic carbon mineralization rates driven by elevated input of “fresh” marine organic matter allow organoclastic sulfate reduction to dominate carbon remineralization at the outer Smeerenburgfjorden sites, which may limit iron fluxes to the water column.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-09-23
    Description: Highlights: • Geochemical data from high-T leucogranites imply pure crustal melting. • New U–Pb monazite ages constrain intrusion time close to peak metamorphism. • Updated Sr–Nd–Pb isotope data imply metasedimentary sources. Two suites of leucogranites were emplaced at 508 ± 5.9 Ma in the Okombahe District of the Damara belt (Namibia) synchronous with the peak of regional high-temperature metamorphism. The Sr (87Sr/86Srinit: 0.707 to 0.711), Nd (εNdinit: − 4.5 to − 6.6), and Pb isotopic (206Pb/204Pb: 18.51–19.13; 207Pb/204Pb: 15.63–15.69; 208Pb/204Pb: 38.08–38.66) compositions indicate that these peraluminous S-type granites were derived from mid- to lower-crustal rocks, which are slightly different to the metapelitic rocks into which they intruded. Since the leucogranites are unfractionated and show no evidence for assimilation or contamination, they constrain the temperature and pressure conditions of their formation. Calculated Zr and LREE saturation temperatures of ca. 850 °C indicate high-temperature crustal melts. High Rb/Sr and low Sr/Ba ratios are consistent with biotite dehydration melting of pelitic source rocks. Qz–Ab–Or systematics reveal that melting and segregation for the least fractionated samples occurred at ca. 7 kbar corresponding to a mid-crustal level of ca. 26 km. However, there is no evidence for a mantle component that could have served as a local heat source for crustal melting. Therefore, the hot felsic magmas that formed close to the time of peak metamorphism are the result of long-lasting high temperature regional metamorphic conditions and intra-crustal collision.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-09-23
    Description: Highlights: • Marie Byrd Seamounts (MBS) formed off Antarctica at 65-56 Ma in an extensional regime • MBS originate from HIMU-type mantle attached at the base of the Antarctic lithosphere • Continental insulation flow transferred HIMU mantle into the oceanic mantle New radiometric age and geochemical data of volcanic rocks from the guyot-type Marie Byrd Seamounts (MBS) and the De Gerlache Seamounts and Peter I Island (Amundsen Sea) are presented. 40Ar/39Ar ages of the shield phase of three MBS are Early Cenozoic (65 to 56 Ma) and indicate formation well after creation of the Pacific-Antarctic Ridge. A Pliocene age (3.0 Ma) documents a younger phase of volcanism at one MBS and a Pleistocene age (1.8 Ma) for the submarine base of Peter I Island. Together with published data, the new age data imply that Cenozoic intraplate magmatism occurred at distinct time intervals in spatially confined areas of the Amundsen Sea, excluding an origin through a fixed mantle plume. Peter I Island appears strongly influenced by an EMII type mantle component that may reflect shallow mantle recycling of a continental raft during the final breakup of Gondwana. By contrast the Sr-Nd-Pb-Hf isotopic compositions of the MBS display a strong affinity to a HIMU type mantle source. On a regional scale the isotopic signatures overlap with those from volcanics related to the West Antarctic Rift System, and Cretaceous intraplate volcanics in and off New Zealand. We propose reactivation of the HIMU material, initially accreted to the base of continental lithosphere during the pre-rifting stage of Marie Byrd Land/Zealandia to explain intraplate volcanism in the Amundsen Sea in the absence of a long-lived hotspot. We propose continental insulation flow as the most plausible mechanism to transfer the sub-continental accreted plume material into the shallow oceanic mantle. Crustal extension at the southern boundary of the Bellingshausen Plate from about 74 to 62 Ma may have triggered adiabatic rise of the HIMU material from the base of Marie Byrd Land to form the MBS. The De Gerlache Seamounts are most likely related to a preserved zone of lithospheric weakness underneath the De Gerlache Gravity Anomaly.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2017-07-19
    Description: Highlights: • We used indoor mesocosms to test the impact of warming on plankton communities. • Different stages of phytoplankton bloom were analysed. • Increased temperature and zooplankton grazing had similar effects on phytoplankton. • Warming and increased zooplankton density decreased phytoplankton richness. • Warming and increased zooplankton density increased phytoplankton evenness. Recent climate warming is expected to affect phytoplankton biomass and diversity in marine ecosystems. Temperature can act directly on phytoplankton (e.g. rendering physiological processes) or indirectly due to changes in zooplankton grazing activity. We tested experimentally the impact of increased temperature on natural phytoplankton and zooplankton communities using indoor mesocosms and combined the results from different experimental years applying a meta-analytic approach. We divided our analysis into three bloom phases to define the strength of temperature and zooplankton impacts on phytoplankton in different stages of bloom development. Within the constraints of an experiment, our results suggest that increased temperature and zooplankton grazing have similar effects on phytoplankton diversity, which are most apparent in the post-bloom phase, when zooplankton abundances reach the highest values. Moreover, we observed changes in zooplankton composition in response to warming and initial conditions, which can additionally affect phytoplankton diversity, because changing feeding preferences of zooplankton can affect phytoplankton community structure. We conclude that phytoplankton diversity is indirectly affected by temperature in the post-bloom phase through changing zooplankton composition and grazing activities. Before and during the bloom, however, these effects seem to be overruled by temperature enhanced bottom-up processes such as phytoplankton nutrient uptake.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Climate of the Past, 10 . pp. 123-136.
    Publication Date: 2014-06-04
    Description: Four sediment cores from the central and northern Greenland Sea basin, a crucial area for the renewal of North Atlantic deep water, were analyzed for planktic foraminiferal fauna, planktic and benthic stable oxygen and carbon isotopes as well as ice-rafted debris to reconstruct the environmental variability in the last 23 kyr. During the Last Glacial Maximum, the Greenland Sea was dominated by cold and sea-ice bearing surface water masses. Meltwater discharges from the surrounding ice sheets affected the area during the deglaciation, influencing the water mass circulation. During the Younger Dryas interval the last major freshwater event occurred in the region. The onset of the Holocene interglacial was marked by an increase in the advection of Atlantic Water and a rise in sea surface temperatures (SST). Although the thermal maximum was not reached simultaneously across the basin, benthic isotope data indicate that the rate of overturning circulation reached a maximum in the central Greenland Sea around 7 ka. After 6–5 ka a SST cooling and increasing sea-ice cover is noted. Conditions during this so-called "Neoglacial" cooling, however, changed after 3 ka, probably due to enhanced sea-ice expansion, which limited the deep convection. As a result, a well stratified upper water column amplified the warming of the subsurface waters in the central Greenland Sea, which were fed by increased inflow of Atlantic Water from the eastern Nordic Seas. Our data reveal that the Holocene oceanographic conditions in the Greenland Sea did not develop uniformly. These variations were a response to a complex interplay between the Atlantic and Polar water masses, the rate of sea-ice formation and melting and its effect on vertical convection intensity during times of Northern Hemisphere insolation changes.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-09-23
    Description: Highlights: • Phase II of the Coordinated Ocean-ice Reference Experiments (CORE-II) is introduced. • Solutions from CORE-II simulations from eighteen participating models are presented. • Mean states in the North Atlantic with a focus on AMOC are examined. • The North Atlantic solutions differ substantially among the models. • Many factors, including parameterization choices, contribute to these differences. Simulation characteristics from eighteen global ocean–sea-ice coupled models are presented with a focus on the mean Atlantic meridional overturning circulation (AMOC) and other related fields in the North Atlantic. These experiments use inter-annually varying atmospheric forcing data sets for the 60-year period from 1948 to 2007 and are performed as contributions to the second phase of the Coordinated Ocean-ice Reference Experiments (CORE-II). The protocol for conducting such CORE-II experiments is summarized. Despite using the same atmospheric forcing, the solutions show significant differences. As most models also differ from available observations, biases in the Labrador Sea region in upper-ocean potential temperature and salinity distributions, mixed layer depths, and sea-ice cover are identified as contributors to differences in AMOC. These differences in the solutions do not suggest an obvious grouping of the models based on their ocean model lineage, their vertical coordinate representations, or surface salinity restoring strengths. Thus, the solution differences among the models are attributed primarily to use of different subgrid scale parameterizations and parameter choices as well as to differences in vertical and horizontal grid resolutions in the ocean models. Use of a wide variety of sea-ice models with diverse snow and sea-ice albedo treatments also contributes to these differences. Based on the diagnostics considered, the majority of the models appear suitable for use in studies involving the North Atlantic, but some models require dedicated development effort.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2017-06-23
    Description: The western Woodlark Basin lies within a gold-rich metallogenic province. This area is characterized by detachment faults that record ongoing extension and act as major pathways for the circulation of hydrothermal fluids. Dredging from the flanks of a submarine ridge southeast of Cheshire Seamount, western Woodlark Basin retrieved hydrothermally altered monomictic to polymictic crackle, mosaic and chaotic breccias with at least 30% clasts N2 mmin diameter. The precursor rocks are andesitic to rhyolitic in composition, but have been intensely hydrothermally altered, with about 90% of the volcanic glass replaced by secondaryminerals. The breccias show five generations of quartz growth, with the first being related to magmatic processes and the remaining four to alteration stages including silicification, chloritization, illitization, sericitization, albitization, and sulfidation. Needle-like crystals ofmordenite (zeolite)withmultiple growth centers growon the fourth generation of quartz. Notable textural variants in the breccias are vesicles, perlitic cracks, and zoned alteration halos that mantle the rims of clasts. Electron microprobe analyses on chlorite from breccia samples have identified clinochlore as the main chlorite type and indicate a formation temperature in the range of 210–304 °C. This and the elevated Au–As–Ag–Hg–Zn–Pb–Sb contents of a mineralized sample indicate hydrothermal alteration temperatures N200 °C suggesting that these breccias may represent the upflow zone of a hydrothermal system and highlight the potential for seafloor massive sulfides in the area. The breccias show elevated contents of immobile trace elements and LREE as well as a depletion in Ta and Nb suggesting that the precursor rocks were formed in a rift-related suprasubduction environment.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2021-05-07
    Description: Highlights: • We combine high-resolution ocean models with population genetics • Variation in wind-driven ocean currents mediates the collapse of A. anguilla • Female eels are philopatric within the Sargasso Sea, while males maintain gene flow • We present first evidence of the role of ocean currents in shaping species’ evolution Summary: Worldwide, exploited marine fish stocks are under threat of collapse [1]. Although the drivers behind such collapses are diverse, it is becoming evident that failure to consider evolutionary processes in fisheries management can have drastic consequences on a species’ long-term viability [2]. The European eel (Anguilla anguilla; Linnaeus, 1758) is no exception: not only does the steep decline in recruitment observed in the 1980s [ 3 and 4] remain largely unexplained, the punctual detection of genetic structure also raises questions regarding the existence of a single panmictic population [ 5, 6 and 7]. With its extended Transatlantic dispersal, pinpointing the role of ocean dynamics is crucial to understand both the population structure and the widespread decline of this species. Hence, we combined dispersal simulations using a half century of high-resolution ocean model data with population genetics tools. We show that regional atmospherically driven ocean current variations in the Sargasso Sea were the major driver of the onset of the sharp decline in eel recruitment in the beginning of the 1980s. The simulations combined with genotyping of natural coastal eel populations furthermore suggest that unexpected evidence of coastal genetic differentiation is consistent with cryptic female philopatric behavior within the Sargasso Sea. Such results demonstrate the key constraint of the variable oceanic environment on the European eel population.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-09-23
    Description: We investigate the respective role of variations in subpolar deep water formation and Nordic Seas overflows for the decadal to multidecadal variability of the Atlantic meridional overturning circulation (AMOC). This is partly done by analysing long (order of 1000 years) control simulations with five coupled climate models. For all models, the maximum influence of variations in subpolar deep water formation is found at about 45° N, while the maximum influence of variations in Nordic Seas overflows is rather found at 55 to 60° N. Regarding the two overflow branches, the influence of variations in the Denmark Strait overflow is, for all models, substantially larger than that of variations in the overflow across the Iceland–Scotland Ridge. The latter might, however, be underestimated, as the models in general do not realistically simulate the flow path of the Iceland–Scotland overflow water south of the Iceland–Scotland Ridge. The influence of variations in subpolar deep water formation is, on multimodel average, larger than that of variations in the Denmark Strait overflow. This is true both at 45° N, where the maximum standard deviation of decadal to multidecadal AMOC variability is located for all but one model, and at the more classical latitude of 30° N. At 30° N, variations in subpolar deep water formation and Denmark Strait overflow explain, on multimodel average, about half and one-third respectively of the decadal to multidecadal AMOC variance. Apart from analysing multimodel control simulations, we have performed sensitivity experiments with one of the models, in which we suppress the variability of either subpolar deep water formation or Nordic Seas overflows. The sensitivity experiments indicate that variations in subpolar deep water formation and Nordic Seas overflows are not completely independent. We further conclude from these experiments that the decadal to multidecadal AMOC variability north of about 50° N is mainly related to variations in Nordic Seas overflows. At 45° N and south of this latitude, variations in both subpolar deep water formation and Nordic Seas overflows contribute to the AMOC variability, with neither of the processes being very dominant compared to the other.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-09-23
    Description: Methyl iodide (CH3I}, bromoform (CHBr3) and dibromomethane (CH2Br2), which are produced naturally in the oceans, take part in ozone chemistry both in the troposphere and the stratosphere. The significance of oceanic upwelling regions for emissions of these trace gases in the global context is still uncertain although they have been identified as important source regions. To better quantify the role of upwelling areas in current and future climate, this paper analyzes major factors that influenced halocarbon emissions from the tropical North East Atlantic including the Mauritanian upwelling during the DRIVE expedition. Diel and regional variability of oceanic and atmospheric CH3I, CHBr3 and CH2Br2 was determined along with biological and meteorological parameters at six 24 h-stations. Low oceanic concentrations of CH3I from 0.1–5.4 pmol L-1 were equally distributed throughout the investigation area. CHBr3 of 1.0–42.4 pmol L-1 and CH2Br2 of 1.0–9.4 pmol L-1 were measured with maximum concentrations close to the Mauritanian coast. Atmospheric mixing rations of CH3I of up to 3.3, CHBr3 to 8.9 and CH2Br2 to 3.1 ppt above the upwelling and 1.8, 12.8, respectively 2.2 ppt at a Cape Verdean coast were detected during the campaign. While diel variability in CH3I emissions could be mainly ascribed to oceanic non-biological production, no main driver was identified for its emissions in the entire study region. In contrast, oceanic bromocarbons resulted from biogenic sources which were identified as regional drivers of their sea-to-air fluxes. The diel impact of wind speed on bromocarbon emissions increased with decreasing distance to the coast. The height of the marine atmospheric boundary layer (MABL) was determined as an additional factor influencing halocarbon emissions. Oceanic and atmospheric halocarbons correlated well in the study region and in combination with high oceanic CH3I, CHBr3 and CH2Br2 concentrations, local hot spots of atmospheric halocarbons could solely be explained by marine sources. This conclusion is in contrast with previous studies that hypothesized the occurrence of elevated atmospheric halocarbons over the eastern tropical Atlantic mainly originating from the West-African continent.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...