ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Mutation  (59)
  • Chemistry
  • American Association for the Advancement of Science (AAAS)  (59)
  • 2015-2019
  • 2010-2014  (59)
  • 2010  (59)
Collection
Publisher
Years
  • 2015-2019
  • 2010-2014  (59)
Year
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-07-22
    Description: 〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3033778/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3033778/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rosenberg, Miriam I -- Desplan, Claude -- R01 GM064864/GM/NIGMS NIH HHS/ -- R01 GM064864-07/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Jul 16;329(5989):284-5. doi: 10.1126/science.1192769.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Developmental Genetics, Department of Biology, New York University, New York, NY 10003, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20647453" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; Conserved Sequence ; DNA-Binding Proteins/genetics/*metabolism ; Drosophila Proteins/*genetics/metabolism ; Drosophila melanogaster/embryology/*genetics ; Embryo, Nonmammalian/*metabolism ; Epidermis/cytology ; Evolution, Molecular ; *Gene Expression Regulation, Developmental ; Genes, Insect ; Mutation ; Peptides/*genetics/metabolism ; Protein Processing, Post-Translational ; RNA, Untranslated/*genetics ; Transcription Factors/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-04-10
    Description: Arsenic, an ancient drug used in traditional Chinese medicine, has attracted worldwide interest because it shows substantial anticancer activity in patients with acute promyelocytic leukemia (APL). Arsenic trioxide (As2O3) exerts its therapeutic effect by promoting degradation of an oncogenic protein that drives the growth of APL cells, PML-RARalpha (a fusion protein containing sequences from the PML zinc finger protein and retinoic acid receptor alpha). PML and PML-RARalpha degradation is triggered by their SUMOylation, but the mechanism by which As2O3 induces this posttranslational modification is unclear. Here we show that arsenic binds directly to cysteine residues in zinc fingers located within the RBCC domain of PML-RARalpha and PML. Arsenic binding induces PML oligomerization, which increases its interaction with the small ubiquitin-like protein modifier (SUMO)-conjugating enzyme UBC9, resulting in enhanced SUMOylation and degradation. The identification of PML as a direct target of As2O3 provides new insights into the drug's mechanism of action and its specificity for APL.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Xiao-Wei -- Yan, Xiao-Jing -- Zhou, Zi-Ren -- Yang, Fei-Fei -- Wu, Zi-Yu -- Sun, Hong-Bin -- Liang, Wen-Xue -- Song, Ai-Xin -- Lallemand-Breitenbach, Valerie -- Jeanne, Marion -- Zhang, Qun-Ye -- Yang, Huai-Yu -- Huang, Qiu-Hua -- Zhou, Guang-Biao -- Tong, Jian-Hua -- Zhang, Yan -- Wu, Ji-Hui -- Hu, Hong-Yu -- de The, Hugues -- Chen, Sai-Juan -- Chen, Zhu -- New York, N.Y. -- Science. 2010 Apr 9;328(5975):240-3. doi: 10.1126/science.1183424.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Road II, Shanghai 200025, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20378816" target="_blank"〉PubMed〈/a〉
    Keywords: Arsenic/*metabolism ; Arsenicals/*metabolism/*pharmacology ; Cell Line ; Humans ; Leukemia, Promyelocytic, Acute/drug therapy/genetics ; Mutant Proteins/chemistry/metabolism ; Mutation ; Nuclear Proteins/chemistry/genetics/*metabolism ; Oncogene Proteins, Fusion/chemistry/genetics/*metabolism ; Oxazines/metabolism ; Oxides/*metabolism/*pharmacology ; Protein Conformation ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Receptors, Retinoic Acid/metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Small Ubiquitin-Related Modifier Proteins/metabolism ; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization ; Transcription Factors/chemistry/genetics/*metabolism ; Tumor Suppressor Proteins/chemistry/genetics/*metabolism ; Ubiquitination ; Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-12-04
    Description: Asymmetric segregation of P granules during the first four divisions of the Caenorhabditis elegans embryo is a classic example of cytoplasmic partitioning of germline determinants. It is thought that asymmetric partitioning of P granule components during mitosis is essential to distinguish germline from soma. We have identified a mutant (pptr-1) in which P granules become unstable during mitosis and P granule proteins and RNAs are distributed equally to somatic and germline blastomeres. Despite symmetric partitioning of P granule components, pptr-1 mutants segregate a germline that uniquely expresses P granules during postembryonic development. pptr-1 mutants are fertile, except at high temperatures. Hence, asymmetric partitioning of maternal P granules is not essential to specify germ cell fate. Instead, it may serve to protect the nascent germline from stress.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3072820/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3072820/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gallo, Christopher M -- Wang, Jennifer T -- Motegi, Fumio -- Seydoux, Geraldine -- GM080042/GM/NIGMS NIH HHS/ -- HD007276/HD/NICHD NIH HHS/ -- HD037047/HD/NICHD NIH HHS/ -- R01 HD037047/HD/NICHD NIH HHS/ -- R01 HD037047-12/HD/NICHD NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Dec 17;330(6011):1685-9. doi: 10.1126/science.1193697. Epub 2010 Dec 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Center for Cell Dynamics, Johns Hopkins School of Medicine, 725 North Wolfe Street, PCTB 706, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21127218" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blastomeres/*physiology ; Caenorhabditis elegans/*embryology/genetics/metabolism ; Caenorhabditis elegans Proteins/genetics/*metabolism/physiology ; Cytoplasm/*metabolism ; Cytoplasmic Granules/*physiology/ultrastructure ; Embryo, Nonmammalian/physiology ; Embryonic Development ; Germ Cells/*physiology ; Interphase ; Microscopy, Confocal ; Mitosis ; Mutation ; Nuclear Proteins/metabolism ; Protein-Serine-Threonine Kinases/metabolism ; RNA, Helminth/*metabolism ; RNA-Binding Proteins/metabolism ; Recombinant Fusion Proteins/metabolism ; Zygote/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-12-04
    Description: Although cellular behaviors are dynamic, the networks that govern these behaviors have been mapped primarily as static snapshots. Using an approach called differential epistasis mapping, we have discovered widespread changes in genetic interaction among yeast kinases, phosphatases, and transcription factors as the cell responds to DNA damage. Differential interactions uncover many gene functions that go undetected in static conditions. They are very effective at identifying DNA repair pathways, highlighting new damage-dependent roles for the Slt2 kinase, Pph3 phosphatase, and histone variant Htz1. The data also reveal that protein complexes are generally stable in response to perturbation, but the functional relations between these complexes are substantially reorganized. Differential networks chart a new type of genetic landscape that is invaluable for mapping cellular responses to stimuli.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3006187/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3006187/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bandyopadhyay, Sourav -- Mehta, Monika -- Kuo, Dwight -- Sung, Min-Kyung -- Chuang, Ryan -- Jaehnig, Eric J -- Bodenmiller, Bernd -- Licon, Katherine -- Copeland, Wilbert -- Shales, Michael -- Fiedler, Dorothea -- Dutkowski, Janusz -- Guenole, Aude -- van Attikum, Haico -- Shokat, Kevan M -- Kolodner, Richard D -- Huh, Won-Ki -- Aebersold, Ruedi -- Keogh, Michael-Christopher -- Krogan, Nevan J -- Ideker, Trey -- P30CA013330/CA/NCI NIH HHS/ -- P50 GM081879/GM/NIGMS NIH HHS/ -- R01 ES014811/ES/NIEHS NIH HHS/ -- R01 ES014811-01A1/ES/NIEHS NIH HHS/ -- R01 ES014811-02/ES/NIEHS NIH HHS/ -- R01 ES014811-02S1/ES/NIEHS NIH HHS/ -- R01 ES014811-03/ES/NIEHS NIH HHS/ -- R01 ES014811-04/ES/NIEHS NIH HHS/ -- R01 ES014811-05/ES/NIEHS NIH HHS/ -- R01 ES014811-05S1/ES/NIEHS NIH HHS/ -- R01 ES014811-06/ES/NIEHS NIH HHS/ -- R01 GM026017/GM/NIGMS NIH HHS/ -- R01 GM084279/GM/NIGMS NIH HHS/ -- R01 GM084279-01A1/GM/NIGMS NIH HHS/ -- R01 GM084279-02/GM/NIGMS NIH HHS/ -- R01 GM084279-02S1/GM/NIGMS NIH HHS/ -- R01 GM084279-03/GM/NIGMS NIH HHS/ -- R01 GM084279-04/GM/NIGMS NIH HHS/ -- R01 GM084448/GM/NIGMS NIH HHS/ -- R01-ES14811/ES/NIEHS NIH HHS/ -- R01-GM084279/GM/NIGMS NIH HHS/ -- R37 GM026017/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Dec 3;330(6009):1385-9. doi: 10.1126/science.1195618.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21127252" target="_blank"〉PubMed〈/a〉
    Keywords: Chromatin/metabolism ; *DNA Damage ; DNA Repair/*genetics ; DNA, Fungal/genetics ; *Epistasis, Genetic ; *Gene Regulatory Networks ; Genes, Fungal ; Histones/genetics/metabolism ; Methyl Methanesulfonate/pharmacology ; Mitogen-Activated Protein Kinases/genetics/metabolism ; Mutagens/pharmacology ; Mutation ; Phosphoprotein Phosphatases/genetics/metabolism ; Protein Interaction Mapping ; Protein-Serine-Threonine Kinases/genetics/metabolism ; Saccharomyces cerevisiae/*genetics/*metabolism ; Saccharomyces cerevisiae Proteins/genetics/*metabolism ; Signal Transduction ; Transcription Factors/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2010-10-16
    Description: Mutation generates the heritable variation that genetic drift and natural selection shape. In classical quantitative genetic models, drift is a function of the effective population size and acts uniformly across traits, whereas mutation and selection act trait-specifically. We identified thousands of quantitative trait loci (QTLs) influencing transcript abundance traits in a cross of two Caenorhabditis elegans strains; although trait-specific mutation and selection explained some of the observed pattern of QTL distribution, the pattern was better explained by trait-independent variation in the intensity of selection on linked sites. Our results suggest that traits in C. elegans exhibit different levels of variation less because of their own attributes than because of differences in the effective population sizes of the genomic regions harboring their underlying loci.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3138179/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3138179/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rockman, Matthew V -- Skrovanek, Sonja S -- Kruglyak, Leonid -- P50 GM071508/GM/NIGMS NIH HHS/ -- P50 GM071508-01/GM/NIGMS NIH HHS/ -- R01 GM089972/GM/NIGMS NIH HHS/ -- R01 GM089972-02/GM/NIGMS NIH HHS/ -- R01 HG004321/HG/NHGRI NIH HHS/ -- R01 HG004321-01/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Oct 15;330(6002):372-6. doi: 10.1126/science.1194208.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology and Center for Genomics and Systems Biology, New York University, 100 Washington Square East, New York, NY 10003, USA. mrockman@nyu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20947766" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Caenorhabditis elegans/*genetics/physiology ; Chromosome Mapping ; Chromosomes/*genetics ; Crosses, Genetic ; Evolution, Molecular ; Gene Expression ; Genes, Helminth ; *Genetic Variation ; Logistic Models ; Models, Genetic ; Mutation ; Oligonucleotide Array Sequence Analysis ; Phenotype ; Polymorphism, Single Nucleotide ; Population Density ; *Quantitative Trait Loci ; *Quantitative Trait, Heritable ; Recombination, Genetic ; *Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-09-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barral, Yves -- New York, N.Y. -- Science. 2010 Sep 10;329(5997):1289-90. doi: 10.1126/science.1195445.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland. yves.barral@bc.biol.ethz.ch〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20829470" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Membrane/metabolism/ultrastructure ; *Cell Polarity ; Centrioles/metabolism ; Cilia/*metabolism/ultrastructure ; Cytoskeletal Proteins/chemistry/*metabolism ; Diffusion ; GTP-Binding Proteins/chemistry/*metabolism ; Glycoproteins/genetics/metabolism ; Hedgehog Proteins/metabolism ; Humans ; Mutant Proteins/metabolism ; Mutation ; Receptors, Cell Surface/metabolism ; Signal Transduction ; Xenopus Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2010-01-02
    Description: Prions are infectious proteins consisting mainly of PrP(Sc), a beta sheet-rich conformer of the normal host protein PrP(C), and occur in different strains. Strain identity is thought to be encoded by PrP(Sc) conformation. We found that biologically cloned prion populations gradually became heterogeneous by accumulating "mutants," and selective pressures resulted in the emergence of different mutants as major constituents of the evolving population. Thus, when transferred from brain to cultured cells, "cell-adapted" prions outcompeted their "brain-adapted" counterparts, and the opposite occurred when prions were returned from cells to brain. Similarly, the inhibitor swainsonine selected for a resistant substrain, whereas, in its absence, the susceptible substrain outgrew its resistant counterpart. Prions, albeit devoid of a nucleic acid genome, are thus subject to mutation and selective amplification.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2848070/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2848070/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Jiali -- Browning, Shawn -- Mahal, Sukhvir P -- Oelschlegel, Anja M -- Weissmann, Charles -- NS059543/NS/NINDS NIH HHS/ -- R01 NS059543/NS/NINDS NIH HHS/ -- R01 NS059543-01/NS/NINDS NIH HHS/ -- R01 NS059543-02/NS/NINDS NIH HHS/ -- R01 NS067214/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2010 Feb 12;327(5967):869-72. doi: 10.1126/science.1183218. Epub 2009 Dec 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Infectology, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20044542" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Brain Chemistry ; Cell Line ; Cell Line, Tumor ; Culture Media ; Culture Media, Conditioned ; *Evolution, Molecular ; Mice ; Mice, Inbred C57BL ; Mutation ; *PrPSc Proteins/chemistry/classification/pathogenicity ; Prion Diseases ; Prions/chemistry/classification/*pathogenicity/*physiology ; Protein Conformation ; Swainsonine/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2010-01-23
    Description: A genome-scale genetic interaction map was constructed by examining 5.4 million gene-gene pairs for synthetic genetic interactions, generating quantitative genetic interaction profiles for approximately 75% of all genes in the budding yeast, Saccharomyces cerevisiae. A network based on genetic interaction profiles reveals a functional map of the cell in which genes of similar biological processes cluster together in coherent subsets, and highly correlated profiles delineate specific pathways to define gene function. The global network identifies functional cross-connections between all bioprocesses, mapping a cellular wiring diagram of pleiotropy. Genetic interaction degree correlated with a number of different gene attributes, which may be informative about genetic network hubs in other organisms. We also demonstrate that extensive and unbiased mapping of the genetic landscape provides a key for interpretation of chemical-genetic interactions and drug target identification.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Costanzo, Michael -- Baryshnikova, Anastasia -- Bellay, Jeremy -- Kim, Yungil -- Spear, Eric D -- Sevier, Carolyn S -- Ding, Huiming -- Koh, Judice L Y -- Toufighi, Kiana -- Mostafavi, Sara -- Prinz, Jeany -- St Onge, Robert P -- VanderSluis, Benjamin -- Makhnevych, Taras -- Vizeacoumar, Franco J -- Alizadeh, Solmaz -- Bahr, Sondra -- Brost, Renee L -- Chen, Yiqun -- Cokol, Murat -- Deshpande, Raamesh -- Li, Zhijian -- Lin, Zhen-Yuan -- Liang, Wendy -- Marback, Michaela -- Paw, Jadine -- San Luis, Bryan-Joseph -- Shuteriqi, Ermira -- Tong, Amy Hin Yan -- van Dyk, Nydia -- Wallace, Iain M -- Whitney, Joseph A -- Weirauch, Matthew T -- Zhong, Guoqing -- Zhu, Hongwei -- Houry, Walid A -- Brudno, Michael -- Ragibizadeh, Sasan -- Papp, Balazs -- Pal, Csaba -- Roth, Frederick P -- Giaever, Guri -- Nislow, Corey -- Troyanskaya, Olga G -- Bussey, Howard -- Bader, Gary D -- Gingras, Anne-Claude -- Morris, Quaid D -- Kim, Philip M -- Kaiser, Chris A -- Myers, Chad L -- Andrews, Brenda J -- Boone, Charles -- 084314/Wellcome Trust/United Kingdom -- GSP-41567/Canadian Institutes of Health Research/Canada -- R01 HG003224/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2010 Jan 22;327(5964):425-31. doi: 10.1126/science.1180823.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20093466" target="_blank"〉PubMed〈/a〉
    Keywords: Computational Biology ; Gene Duplication ; Gene Expression Regulation, Fungal ; *Gene Regulatory Networks ; Genes, Fungal ; Genetic Fitness ; *Genome, Fungal ; Metabolic Networks and Pathways ; Mutation ; Protein Interaction Mapping ; Saccharomyces cerevisiae/*genetics/*metabolism/physiology ; Saccharomyces cerevisiae Proteins/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-11-06
    Description: Microglia are resident brain cells that sense pathological tissue alterations. They can develop into brain macrophages and perform immunological functions. However, expression of immune proteins by microglia is not synonymous with inflammation, because these molecules can have central nervous system (CNS)-specific roles. Through their involvement in pain mechanisms, microglia also respond to external threats. Experimental studies support the idea that microglia have a role in the maintenance of synaptic integrity. Analogous to electricians, they are capable of removing defunct axon terminals, thereby helping neuronal connections to stay intact. Microglia in healthy CNS tissue do not qualify as macrophages, and their specific functions are beginning to be explored.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Graeber, Manuel B -- New York, N.Y. -- Science. 2010 Nov 5;330(6005):783-8. doi: 10.1126/science.1190929.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Brain and Mind Research Institute, University of Sydney, Camperdown, NSW 2050, Australia. manuel@graeber.net〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21051630" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Behavior ; Behavior, Animal ; Bone Marrow Transplantation ; Brain/*cytology/pathology/physiology ; Brain Diseases/pathology/physiopathology/therapy ; Humans ; Macrophages/cytology/physiology ; Mental Disorders/physiopathology ; Microglia/immunology/*physiology ; Mutation ; Neuralgia/physiopathology ; Neurodegenerative Diseases/pathology/physiopathology/therapy ; Signal Transduction ; Spinal Cord/*cytology/pathology/physiology ; Synapses/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2010-01-16
    Description: Artemisinin is a plant natural product produced by Artemisia annua and the active ingredient in the most effective treatment for malaria. Efforts to eradicate malaria are increasing demand for an affordable, high-quality, robust supply of artemisinin. We performed deep sequencing on the transcriptome of A. annua to identify genes and markers for fast-track breeding. Extensive genetic variation enabled us to build a detailed genetic map with nine linkage groups. Replicated field trials resulted in a quantitative trait loci (QTL) map that accounts for a significant amount of the variation in key traits controlling artemisinin yield. Enrichment for positive QTLs in parents of new high-yielding hybrids confirms that the knowledge and tools to convert A. annua into a robust crop are now available.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Graham, Ian A -- Besser, Katrin -- Blumer, Susan -- Branigan, Caroline A -- Czechowski, Tomasz -- Elias, Luisa -- Guterman, Inna -- Harvey, David -- Isaac, Peter G -- Khan, Awais M -- Larson, Tony R -- Li, Yi -- Pawson, Tanya -- Penfield, Teresa -- Rae, Anne M -- Rathbone, Deborah A -- Reid, Sonja -- Ross, Joe -- Smallwood, Margaret F -- Segura, Vincent -- Townsend, Theresa -- Vyas, Darshna -- Winzer, Thilo -- Bowles, Dianna -- New York, N.Y. -- Science. 2010 Jan 15;327(5963):328-31. doi: 10.1126/science.1182612.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5YW, UK. iag1@york.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20075252" target="_blank"〉PubMed〈/a〉
    Keywords: Antimalarials/*metabolism ; Artemisia/*genetics/*metabolism ; Artemisinins/*metabolism ; *Chromosome Mapping ; Crosses, Genetic ; DNA, Complementary ; Gene Expression Profiling ; *Genes, Plant ; Genetic Association Studies ; Humans ; Malaria/drug therapy ; Mutation ; Phenotype ; Polymorphism, Single Nucleotide ; *Quantitative Trait Loci ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2010-06-05
    Description: The His274--〉Tyr274 (H274Y) mutation confers oseltamivir resistance on N1 influenza neuraminidase but had long been thought to compromise viral fitness. However, beginning in 2007-2008, viruses containing H274Y rapidly became predominant among human seasonal H1N1 isolates. We show that H274Y decreases the amount of neuraminidase that reaches the cell surface and that this defect can be counteracted by secondary mutations that also restore viral fitness. Two such mutations occurred in seasonal H1N1 shortly before the widespread appearance of H274Y. The evolution of oseltamivir resistance was therefore enabled by "permissive" mutations that allowed the virus to tolerate subsequent occurrences of H274Y. An understanding of this process may provide a basis for predicting the evolution of oseltamivir resistance in other influenza strains.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2913718/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2913718/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bloom, Jesse D -- Gong, Lizhi Ian -- Baltimore, David -- P01 CA132681/CA/NCI NIH HHS/ -- P01 CA132681-01A27259/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2010 Jun 4;328(5983):1272-5. doi: 10.1126/science.1187816.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20522774" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Animals ; Antiviral Agents/*pharmacology ; Cell Line ; Cell Line, Tumor ; Cell Membrane/metabolism ; Drug Resistance, Viral/*genetics ; *Evolution, Molecular ; Genes, Viral ; Genetic Fitness ; Humans ; Influenza A Virus, H1N1 Subtype/*drug effects/*genetics/growth & development ; Influenza, Human/drug therapy/*virology ; Mutation ; Neuraminidase/antagonists & inhibitors/chemistry/genetics/metabolism ; Oseltamivir/*pharmacology ; Phylogeny ; Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-04-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kogan, Scott C -- New York, N.Y. -- Science. 2010 Apr 9;328(5975):184-5. doi: 10.1126/science.1189198.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory Medicine, University of California San Francisco Cancer Center, CA 94143-0100, USA. scott.kogan@ucsf.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20378808" target="_blank"〉PubMed〈/a〉
    Keywords: Arsenic/*metabolism/*therapeutic use ; Arsenicals/metabolism/*therapeutic use ; Humans ; Leukemia, Promyelocytic, Acute/*drug therapy/genetics ; Mutant Proteins/chemistry/metabolism ; Mutation ; Nuclear Proteins/chemistry/*metabolism ; Oncogene Proteins, Fusion/chemistry/*metabolism ; Oxides/metabolism/*therapeutic use ; Protein Multimerization ; Transcription Factors/chemistry/*metabolism ; Tumor Suppressor Proteins/chemistry/*metabolism ; Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2010-05-01
    Description: Bacteria form communities known as biofilms, which disassemble over time. In our studies outlined here, we found that, before biofilm disassembly, Bacillus subtilis produced a factor that prevented biofilm formation and could break down existing biofilms. The factor was shown to be a mixture of D-leucine, D-methionine, D-tyrosine, and D-tryptophan that could act at nanomolar concentrations. D-amino acid treatment caused the release of amyloid fibers that linked cells in the biofilm together. Mutants able to form biofilms in the presence of D-amino acids contained alterations in a protein (YqxM) required for the formation and anchoring of the fibers to the cell. D-amino acids also prevented biofilm formation by Staphylococcus aureus and Pseudomonas aeruginosa. D-amino acids are produced by many bacteria and, thus, may be a widespread signal for biofilm disassembly.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2921573/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2921573/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kolodkin-Gal, Ilana -- Romero, Diego -- Cao, Shugeng -- Clardy, Jon -- Kolter, Roberto -- Losick, Richard -- CA24487/CA/NCI NIH HHS/ -- GM086258/GM/NIGMS NIH HHS/ -- GM18546/GM/NIGMS NIH HHS/ -- GM58213/GM/NIGMS NIH HHS/ -- R01 GM018568/GM/NIGMS NIH HHS/ -- R01 GM018568-39/GM/NIGMS NIH HHS/ -- R01 GM058213/GM/NIGMS NIH HHS/ -- R01 GM086258/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Apr 30;328(5978):627-9. doi: 10.1126/science.1188628.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20431016" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acids/*metabolism/pharmacology ; Bacillus subtilis/*physiology ; Bacterial Proteins/chemistry/metabolism ; *Biofilms/growth & development ; Cell Wall ; Culture Media, Conditioned ; Genes, Bacterial ; Leucine/metabolism/pharmacology ; Methionine/metabolism/pharmacology ; Molecular Sequence Data ; Mutation ; Pseudomonas aeruginosa/physiology ; Staphylococcus aureus/physiology ; Stereoisomerism ; Tryptophan/metabolism/pharmacology ; Tyrosine/metabolism/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2010-10-23
    Description: The ataxia-telangiectasia mutated (ATM) protein kinase is activated by DNA double-strand breaks (DSBs) through the Mre11-Rad50-Nbs1 (MRN) DNA repair complex and orchestrates signaling cascades that initiate the DNA damage response. Cells lacking ATM are also hypersensitive to insults other than DSBs, particularly oxidative stress. We show that oxidation of ATM directly induces ATM activation in the absence of DNA DSBs and the MRN complex. The oxidized form of ATM is a disulfide-cross-linked dimer, and mutation of a critical cysteine residue involved in disulfide bond formation specifically blocked activation through the oxidation pathway. Identification of this pathway explains observations of ATM activation under conditions of oxidative stress and shows that ATM is an important sensor of reactive oxygen species in human cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guo, Zhi -- Kozlov, Sergei -- Lavin, Martin F -- Person, Maria D -- Paull, Tanya T -- 007784/PHS HHS/ -- CA132813/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Oct 22;330(6003):517-21. doi: 10.1126/science.1192912.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Molecular Genetics and Microbiology, and Institute for Cellular and Molecular Biology (ICMB), University of Texas at Austin, Austin, TX 78712, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20966255" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Ataxia Telangiectasia/enzymology/genetics ; Ataxia Telangiectasia Mutated Proteins ; Cell Cycle Proteins/genetics/*metabolism ; Cysteine/metabolism ; DNA Breaks, Double-Stranded ; DNA Repair ; DNA Repair Enzymes/genetics ; DNA-Binding Proteins/genetics/*metabolism ; Disulfides/metabolism ; Enzyme Activation ; Humans ; Hydrogen Peroxide ; Mutation ; Nuclear Proteins/genetics ; *Oxidative Stress ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; Tumor Suppressor Proteins/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2010-07-22
    Description: A substantial proportion of eukaryotic transcripts are considered to be noncoding RNAs because they contain only short open reading frames (sORFs). Recent findings suggest, however, that some sORFs encode small bioactive peptides. Here, we show that peptides of 11 to 32 amino acids encoded by the polished rice (pri) sORF gene control epidermal differentiation in Drosophila by modifying the transcription factor Shavenbaby (Svb). Pri peptides trigger the amino-terminal truncation of the Svb protein, which converts Svb from a repressor to an activator. Our results demonstrate that during Drosophila embryogenesis, Pri sORF peptides provide a strict temporal control to the transcriptional program of epidermal morphogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kondo, T -- Plaza, S -- Zanet, J -- Benrabah, E -- Valenti, P -- Hashimoto, Y -- Kobayashi, S -- Payre, F -- Kageyama, Y -- New York, N.Y. -- Science. 2010 Jul 16;329(5989):336-9. doi: 10.1126/science.1188158.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology (NIBB), National Institutes of Natural Sciences, 5-1 Myodaiji-Higashiyama, Okazaki 444-8787, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20647469" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; Cell Nucleus/metabolism ; DNA-Binding Proteins/chemistry/genetics/*metabolism ; Drosophila Proteins/chemistry/genetics/*metabolism ; Drosophila melanogaster/embryology/*genetics/metabolism ; Embryo, Nonmammalian/cytology/*metabolism ; Embryonic Development ; Epidermis/cytology/metabolism ; *Gene Expression Regulation, Developmental ; Genes, Insect ; Mutation ; Open Reading Frames ; Peptides/genetics/*metabolism ; Protein Isoforms/chemistry/genetics/metabolism ; Protein Processing, Post-Translational ; Protein Structure, Tertiary ; RNA, Untranslated/genetics ; Recombinant Fusion Proteins/metabolism ; Transcription Factors/chemistry/genetics/*metabolism ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2010-04-24
    Description: We generated a high-resolution whole-genome sequence and individually deleted 5100 genes in Sigma1278b, a Saccharomyces cerevisiae strain closely related to reference strain S288c. Similar to the variation between human individuals, Sigma1278b and S288c average 3.2 single-nucleotide polymorphisms per kilobase. A genome-wide comparison of deletion mutant phenotypes identified a subset of genes that were conditionally essential by strain, including 44 essential genes unique to Sigma1278b and 13 unique to S288c. Genetic analysis indicates the conditional phenotype was most often governed by complex genetic interactions, depending on multiple background-specific modifiers. Our comprehensive analysis suggests that the presence of a complex set of modifiers will often underlie the phenotypic differences between individuals.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4412269/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4412269/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dowell, Robin D -- Ryan, Owen -- Jansen, An -- Cheung, Doris -- Agarwala, Sudeep -- Danford, Timothy -- Bernstein, Douglas A -- Rolfe, P Alexander -- Heisler, Lawrence E -- Chin, Brian -- Nislow, Corey -- Giaever, Guri -- Phillips, Patrick C -- Fink, Gerald R -- Gifford, David K -- Boone, Charles -- DK076284/DK/NIDDK NIH HHS/ -- GM035010/GM/NIGMS NIH HHS/ -- GM069676/GM/NIGMS NIH HHS/ -- P01 NS055923/NS/NINDS NIH HHS/ -- R01 GM035010/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Apr 23;328(5977):469. doi: 10.1126/science.1189015.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Computer Science and Artificial Intelligence Laboratory, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20413493" target="_blank"〉PubMed〈/a〉
    Keywords: Crosses, Genetic ; Gene Deletion ; *Gene Expression Regulation, Fungal ; Gene Regulatory Networks ; *Genes, Essential ; *Genes, Fungal ; Genetic Variation ; Genome, Fungal ; Genotype ; Mutation ; Phenotype ; Saccharomyces cerevisiae/*genetics ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2010-11-27
    Description: Kaposi's sarcoma-associated herpesvirus produces a highly abundant, nuclear noncoding RNA, polyadenylated nuclear (PAN) RNA, which contains an element that prevents its decay. The 79-nucleotide expression and nuclear retention element (ENE) was proposed to adopt a secondary structure like that of a box H/ACA small nucleolar RNA (snoRNA), with a U-rich internal loop that hybridizes to and protects the PAN RNA poly(A) tail. The crystal structure of a complex between the 40-nucleotide ENE core and oligo(A)(9) RNA at 2.5 angstrom resolution reveals that unlike snoRNAs, the U-rich loop of the ENE engages its target through formation of a major-groove triple helix. A-minor interactions extend the binding interface. Deadenylation assays confirm the functional importance of the triple helix. Thus, the ENE acts as an intramolecular RNA clamp, sequestering the PAN poly(A) tail and preventing the initiation of RNA decay.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3074936/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3074936/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mitton-Fry, Rachel M -- DeGregorio, Suzanne J -- Wang, Jimin -- Steitz, Thomas A -- Steitz, Joan A -- CA16038/CA/NCI NIH HHS/ -- GM022778/GM/NIGMS NIH HHS/ -- P01 CA016038/CA/NCI NIH HHS/ -- P01 CA016038-38/CA/NCI NIH HHS/ -- P30 EB009998/EB/NIBIB NIH HHS/ -- R01 GM026154/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Nov 26;330(6008):1244-7. doi: 10.1126/science.1195858.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biophysics and Biochemistry (MB&B), Howard Hughes Medical Institute (HHMI), Yale University School of Medicine, Boyer Center for Molecular Medicine, 295 Congress Avenue, New Haven, CT 06536-9812, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21109672" target="_blank"〉PubMed〈/a〉
    Keywords: Base Pairing ; Cell Nucleus/genetics/metabolism ; Crystallography, X-Ray ; Herpesvirus 8, Human/*genetics ; Mutation ; *Nucleic Acid Conformation ; Poly A/chemistry/*metabolism ; *RNA Stability ; RNA, Messenger/chemistry/genetics/metabolism ; RNA, Nuclear/*chemistry/metabolism ; RNA, Untranslated/*chemistry/genetics/metabolism ; RNA, Viral/*chemistry/genetics/metabolism ; *Regulatory Sequences, Ribonucleic Acid ; Riboswitch
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2010-05-15
    Description: Prions are infectious proteins composed of the abnormal disease-causing isoform PrPSc, which induces conformational conversion of the host-encoded normal cellular prion protein PrPC to additional PrPSc. The mechanism underlying prion strain mutation in the absence of nucleic acids remains unresolved. Additionally, the frequency of strains causing chronic wasting disease (CWD), a burgeoning prion epidemic of cervids, is unknown. Using susceptible transgenic mice, we identified two prevalent CWD strains with divergent biological properties but composed of PrPSc with indistinguishable biochemical characteristics. Although CWD transmissions indicated stable, independent strain propagation by elk PrPC, strain coexistence in the brains of deer and transgenic mice demonstrated unstable strain propagation by deer PrPC. The primary structures of deer and elk prion proteins differ at residue 226, which, in concert with PrPSc conformational compatibility, determines prion strain mutation in these cervids.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4097672/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4097672/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Angers, Rachel C -- Kang, Hae-Eun -- Napier, Dana -- Browning, Shawn -- Seward, Tanya -- Mathiason, Candace -- Balachandran, Aru -- McKenzie, Debbie -- Castilla, Joaquin -- Soto, Claudio -- Jewell, Jean -- Graham, Catherine -- Hoover, Edward A -- Telling, Glenn C -- 1P01AI077774-01/AI/NIAID NIH HHS/ -- 2R01 NS040334-04/NS/NINDS NIH HHS/ -- N01-AI-25491/AI/NIAID NIH HHS/ -- P01 AI077774/AI/NIAID NIH HHS/ -- R01 NS049173/NS/NINDS NIH HHS/ -- T32 AI49795/AI/NIAID NIH HHS/ -- T32 DA022738/DA/NIDA NIH HHS/ -- New York, N.Y. -- Science. 2010 May 28;328(5982):1154-8. doi: 10.1126/science.1187107. Epub 2010 May 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky Medical Center, Lexington, KY 40536, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20466881" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Brain/pathology ; Brain Chemistry ; *Deer ; Disease Susceptibility ; Mice ; Mice, Transgenic ; Mutation ; PrPC Proteins/*chemistry/genetics ; PrPSc Proteins/analysis/*chemistry/genetics/pathogenicity ; Protein Conformation ; Protein Folding ; Selection, Genetic ; Serial Passage ; Species Specificity ; *Wasting Disease, Chronic/pathology/transmission
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2010-09-18
    Description: Exocytosis requires formation of SNARE [soluble N-ethylmaleimide-sensitive factor attachment protein (SNAP) receptor] complexes between vesicle and target membranes. Recent assessments in reduced model systems have produced divergent estimates of the number of SNARE complexes needed for fusion. Here, we used a titration approach to answer this question in intact, cultured chromaffin cells. Simultaneous expression of wild-type SNAP-25 and a mutant unable to support exocytosis progressively altered fusion kinetics and fusion-pore opening, indicating that both proteins assemble into heteromeric fusion complexes. Expressing different wild-type:mutant ratios revealed a third-power relation for fast (synchronous) fusion and a near-linear relation for overall release. Thus, fast fusion typically observed in synapses and neurosecretory cells requires at least three functional SNARE complexes, whereas slower release might occur with fewer complexes. Heterogeneity in SNARE-complex number may explain heterogeneity in vesicular release probability.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mohrmann, Ralf -- de Wit, Heidi -- Verhage, Matthijs -- Neher, Erwin -- Sorensen, Jakob B -- New York, N.Y. -- Science. 2010 Oct 22;330(6003):502-5. doi: 10.1126/science.1193134. Epub 2010 Sep 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Membrane Biophysics, Max-Planck Institute for Biophysical Chemistry, Gottingen, Germany. Ralf.Mohrmann@uks.eu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20847232" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Membrane/physiology ; Chromaffin Cells/physiology ; Cytoplasmic Vesicles/physiology ; Exocytosis/*physiology ; Green Fluorescent Proteins/genetics ; Membrane Fusion/*physiology ; Mice ; Mutation ; SNARE Proteins/physiology ; Synaptosomal-Associated Protein 25/genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-06-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Holmes, Edward C -- New York, N.Y. -- Science. 2010 Jun 4;328(5983):1243-4. doi: 10.1126/science.1190994.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Infectious Disease Dynamics, Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA. ech15@psu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20522766" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Antiviral Agents/metabolism/*pharmacology ; Drug Resistance, Viral/*genetics ; *Evolution, Molecular ; Genetic Fitness ; Humans ; Influenza A Virus, H1N1 Subtype/*drug effects/*genetics ; Influenza, Human/drug therapy/*virology ; Mutation ; Neuraminidase/antagonists & inhibitors/chemistry/genetics/metabolism ; Oseltamivir/metabolism/*pharmacology ; Phylogeny ; Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-01-09
    Description: Microbes rely on diverse defense mechanisms that allow them to withstand viral predation and exposure to invading nucleic acid. In many Bacteria and most Archaea, clustered regularly interspaced short palindromic repeats (CRISPR) form peculiar genetic loci, which provide acquired immunity against viruses and plasmids by targeting nucleic acid in a sequence-specific manner. These hypervariable loci take up genetic material from invasive elements and build up inheritable DNA-encoded immunity over time. Conversely, viruses have devised mutational escape strategies that allow them to circumvent the CRISPR/Cas system, albeit at a cost. CRISPR features may be exploited for typing purposes, epidemiological studies, host-virus ecological surveys, building specific immunity against undesirable genetic elements, and enhancing viral resistance in domesticated microbes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Horvath, Philippe -- Barrangou, Rodolphe -- New York, N.Y. -- Science. 2010 Jan 8;327(5962):167-70. doi: 10.1126/science.1179555.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Danisco France SAS, BP10, F-86220 Dange-Saint-Romain, France. philippe.horvath@danisco.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20056882" target="_blank"〉PubMed〈/a〉
    Keywords: Archaea/*genetics/immunology/virology ; Archaeal Proteins/metabolism ; Bacteria/*genetics/immunology/virology ; Bacterial Proteins/metabolism ; Bacteriophages/genetics/physiology ; Base Sequence ; Conserved Sequence ; Gene Transfer, Horizontal ; Genes, Archaeal ; Genes, Bacterial ; *Genetic Loci ; *Genome, Archaeal ; *Genome, Bacterial ; Genome, Viral ; Mutation ; Plasmids ; RNA Interference ; RNA, Archaeal/genetics/metabolism ; RNA, Bacterial/genetics/metabolism ; *Repetitive Sequences, Nucleic Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2010-05-01
    Description: Carotenoids are colored compounds produced by plants, fungi, and microorganisms and are required in the diet of most animals for oxidation control or light detection. Pea aphids display a red-green color polymorphism, which influences their susceptibility to natural enemies, and the carotenoid torulene occurs only in red individuals. Unexpectedly, we found that the aphid genome itself encodes multiple enzymes for carotenoid biosynthesis. Phylogenetic analyses show that these aphid genes are derived from fungal genes, which have been integrated into the genome and duplicated. Red individuals have a 30-kilobase region, encoding a single carotenoid desaturase that is absent from green individuals. A mutation causing an amino acid replacement in this desaturase results in loss of torulene and of red body color. Thus, aphids are animals that make their own carotenoids.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Moran, Nancy A -- Jarvik, Tyler -- New York, N.Y. -- Science. 2010 Apr 30;328(5978):624-7. doi: 10.1126/science.1187113.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology and Evolutionary Biology, 1041 East Lowell Street, University of Arizona, Tucson, AZ 85721, USA. nancy.moran@yale.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20431015" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aphids/*genetics/*metabolism/microbiology ; Carotenoids/analysis/*biosynthesis/genetics ; Crosses, Genetic ; Fungi/genetics ; Gene Duplication ; *Gene Transfer, Horizontal ; *Genes, Fungal ; *Genes, Insect ; Genome, Insect ; Heterozygote ; Molecular Sequence Data ; Mutation ; Oxidoreductases/genetics ; Phylogeny ; Pigmentation/genetics ; Pigments, Biological/chemistry ; Polymorphism, Genetic ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2010-03-06
    Description: Meiotic crossovers (COs) are tightly regulated to ensure that COs on the same chromosome are distributed far apart (crossover interference, COI) and that at least one CO is formed per homolog pair (CO homeostasis). CO formation is controlled in part during meiotic double-strand break (DSB) creation in Caenorhabditis elegans, but a second level of control must also exist because meiotic DSBs outnumber COs. We show that the antirecombinase RTEL-1 is required to prevent excess meiotic COs, probably by promoting meiotic synthesis-dependent strand annealing. Two distinct classes of meiotic COs are increased in rtel-1 mutants, and COI and homeostasis are compromised. We propose that RTEL-1 implements the second level of CO control by promoting noncrossovers.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4770885/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4770885/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Youds, Jillian L -- Mets, David G -- McIlwraith, Michael J -- Martin, Julie S -- Ward, Jordan D -- ONeil, Nigel J -- Rose, Ann M -- West, Stephen C -- Meyer, Barbara J -- Boulton, Simon J -- Canadian Institutes of Health Research/Canada -- Cancer Research UK/United Kingdom -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Mar 5;327(5970):1254-8. doi: 10.1126/science.1183112.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉DNA Damage Response Laboratory, London Research Institute, Cancer Research UK, Clare Hall, South Mimms, EN6 3LD, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20203049" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caenorhabditis elegans/*genetics/physiology ; Caenorhabditis elegans Proteins/genetics/*metabolism ; Chromatids/genetics ; Chromosomal Proteins, Non-Histone/genetics/metabolism ; *Crossing Over, Genetic ; DNA Breaks, Double-Stranded ; DNA Helicases/genetics/*metabolism ; DNA Repair ; DNA, Helminth/genetics/metabolism ; Homeostasis ; *Meiosis ; Mutation ; Polymorphism, Single Nucleotide ; X Chromosome/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2010-08-28
    Description: Recognition of lipids by proteins is important for their targeting and activation in many signaling pathways, but the mechanisms that regulate such interactions are largely unknown. Here, we found that binding of proteins to the ubiquitous signaling lipid phosphatidic acid (PA) depended on intracellular pH and the protonation state of its phosphate headgroup. In yeast, a rapid decrease in intracellular pH in response to glucose starvation regulated binding of PA to a transcription factor, Opi1, that coordinately repressed phospholipid metabolic genes. This enabled coupling of membrane biogenesis to nutrient availability.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Young, Barry P -- Shin, John J H -- Orij, Rick -- Chao, Jesse T -- Li, Shu Chen -- Guan, Xue Li -- Khong, Anthony -- Jan, Eric -- Wenk, Markus R -- Prinz, William A -- Smits, Gertien J -- Loewen, Christopher J R -- Canadian Institutes of Health Research/Canada -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2010 Aug 27;329(5995):1085-8. doi: 10.1126/science.1191026.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20798321" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Cation Transport Proteins/genetics/metabolism ; Cell Membrane/*metabolism ; Cell Nucleus/metabolism ; Endoplasmic Reticulum/metabolism ; Gene Expression Regulation, Fungal ; Genes, Fungal ; Glucose/metabolism ; Hydrogen-Ion Concentration ; Inositol/genetics/metabolism ; Liposomes/metabolism ; Mutation ; Phosphatidic Acids/*metabolism ; Protein Binding ; Protein Phosphatase 1/genetics/metabolism ; Proton-Translocating ATPases/genetics/metabolism ; Recombinant Fusion Proteins/metabolism ; Repressor Proteins/genetics/*metabolism ; Saccharomyces cerevisiae/genetics/growth & development/*metabolism ; Saccharomyces cerevisiae Proteins/genetics/*metabolism ; Signal Transduction ; Transcription, Genetic ; Vacuolar Proton-Translocating ATPases/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2010-04-17
    Description: Salmonella enterica is an important intracellular bacterial pathogen of humans and animals. It replicates within host-cell vacuoles by delivering virulence (effector) proteins through a vacuolar membrane pore made by the Salmonella pathogenicity island 2 (SPI-2) type III secretion system (T3SS). T3SS assembly follows vacuole acidification, but when bacteria are grown at low pH, effector secretion is negligible. We found that effector secretion was activated at low pH from mutant strains lacking a complex of SPI-2-encoded proteins SsaM, SpiC, and SsaL. Exposure of wild-type bacteria to pH 7.2 after growth at pH 5.0 caused dissociation and degradation of SsaM/SpiC/SsaL complexes and effector secretion. In infected cells, loss of the pH 7.2 signal through acidification of host-cell cytosol prevented complex degradation and effector translocation. Thus, intravacuolar Salmonella senses host cytosolic pH, resulting in the degradation of regulatory complex proteins and effector translocation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yu, Xiu-Jun -- McGourty, Kieran -- Liu, Mei -- Unsworth, Kate E -- Holden, David W -- 074553/Z/04/Z/Wellcome Trust/United Kingdom -- G0800148/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2010 May 21;328(5981):1040-3. doi: 10.1126/science.1189000. Epub 2010 Apr 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Microbiology, Centre for Molecular Microbiology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20395475" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Processes ; Bacterial Proteins/chemistry/genetics/*metabolism ; Cytosol/chemistry ; Genomic Islands ; HeLa Cells ; Humans ; Hydrogen-Ion Concentration ; Molecular Chaperones/metabolism ; Multiprotein Complexes/metabolism ; Mutation ; Salmonella typhimurium/genetics/growth & development/*metabolism/pathogenicity ; Vacuoles/metabolism/*microbiology ; Virulence Factors/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2010-05-22
    Description: Small RNA (sRNA) molecules regulate a vast array of processes in biology, but evidence for adaptive evolution of sRNA sequences has been indirect. Here, we identify an sRNA, Pxr, that negatively regulates fruiting body development in Myxococcus xanthus. We further show that a spontaneous evolutionary mutation in Pxr abolished its regulatory function and thereby adaptively restored developmental proficiency to a socially defective M. xanthus cheater. In wild-type M. xanthus, development is initiated only upon starvation, but deletion of pxr allows development to proceed even while nutrients remain abundant. Thus, Pxr serves as a major checkpoint controlling the transition from growth to development in the myxobacteria. These findings show that an sRNA molecule governs a complex form of multicellular development in prokaryotes and directly demonstrate the ability of sRNA regulators to facilitate evolutionary adaptations of major phenotypic effect.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3027070/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3027070/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yu, Yuen-Tsu N -- Yuan, Xi -- Velicer, Gregory J -- GM079690/GM/NIGMS NIH HHS/ -- R01 GM079690/GM/NIGMS NIH HHS/ -- R01 GM079690-01/GM/NIGMS NIH HHS/ -- R01 GM079690-02/GM/NIGMS NIH HHS/ -- R01 GM079690-03/GM/NIGMS NIH HHS/ -- R01 GM079690-04/GM/NIGMS NIH HHS/ -- R01 GM079690-05/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 May 21;328(5981):993. doi: 10.1126/science.1187200.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Indiana University, Bloomington, IN 47405, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20489016" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; *Evolution, Molecular ; Gene Deletion ; Genes, Bacterial ; Microbial Interactions ; Mutation ; Myxococcus xanthus/*genetics/*growth & development/physiology ; Phenotype ; RNA, Bacterial/chemistry/genetics/*physiology ; RNA, Untranslated/chemistry/genetics/*physiology ; Spores, Bacterial/growth & development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-12-04
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Friedman, Nir -- Schuldiner, Maya -- New York, N.Y. -- Science. 2010 Dec 3;330(6009):1327-8. doi: 10.1126/science.1199862.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel. nir@cs.huji.ac.il〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21127235" target="_blank"〉PubMed〈/a〉
    Keywords: *DNA Damage ; DNA Repair/*genetics ; *Epistasis, Genetic ; *Gene Regulatory Networks ; Genes, Fungal ; Methyl Methanesulfonate/pharmacology ; Mutagens/pharmacology ; Mutation ; Protein Interaction Mapping ; Saccharomyces cerevisiae/*genetics/metabolism ; Saccharomyces cerevisiae Proteins/*metabolism ; Signal Transduction ; Transcription Factors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-11-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaiser, Jocelyn -- New York, N.Y. -- Science. 2010 Nov 12;330(6006):903. doi: 10.1126/science.330.6006.903.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21071642" target="_blank"〉PubMed〈/a〉
    Keywords: *Exons ; Genetic Diseases, Inborn/*genetics ; *Genome, Human ; Humans ; Mutation ; Rare Diseases/*genetics ; *Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2010-09-04
    Description: Recent reports of increased tolerance to artemisinin derivatives--the most recently adopted class of antimalarials--have prompted a need for new treatments. The spirotetrahydro-beta-carbolines, or spiroindolones, are potent drugs that kill the blood stages of Plasmodium falciparum and Plasmodium vivax clinical isolates at low nanomolar concentration. Spiroindolones rapidly inhibit protein synthesis in P. falciparum, an effect that is ablated in parasites bearing nonsynonymous mutations in the gene encoding the P-type cation-transporter ATPase4 (PfATP4). The optimized spiroindolone NITD609 shows pharmacokinetic properties compatible with once-daily oral dosing and has single-dose efficacy in a rodent malaria model.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3050001/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3050001/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rottmann, Matthias -- McNamara, Case -- Yeung, Bryan K S -- Lee, Marcus C S -- Zou, Bin -- Russell, Bruce -- Seitz, Patrick -- Plouffe, David M -- Dharia, Neekesh V -- Tan, Jocelyn -- Cohen, Steven B -- Spencer, Kathryn R -- Gonzalez-Paez, Gonzalo E -- Lakshminarayana, Suresh B -- Goh, Anne -- Suwanarusk, Rossarin -- Jegla, Timothy -- Schmitt, Esther K -- Beck, Hans-Peter -- Brun, Reto -- Nosten, Francois -- Renia, Laurent -- Dartois, Veronique -- Keller, Thomas H -- Fidock, David A -- Winzeler, Elizabeth A -- Diagana, Thierry T -- R01 AI059472/AI/NIAID NIH HHS/ -- R01 AI059472-04/AI/NIAID NIH HHS/ -- R01 AI059472-05/AI/NIAID NIH HHS/ -- R01AI059472/AI/NIAID NIH HHS/ -- WT078285/Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2010 Sep 3;329(5996):1175-80. doi: 10.1126/science.1193225.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Swiss Tropical and Public Health Institute, Parasite Chemotherapy, CH-4002 Basel, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20813948" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/antagonists & inhibitors/chemistry/genetics/metabolism ; Animals ; Antimalarials/administration & dosage/chemistry/pharmacokinetics/*pharmacology ; Cell Line ; Drug Discovery ; Drug Resistance ; Erythrocytes/parasitology ; Female ; Genes, Protozoan ; Humans ; Indoles/administration & dosage/chemistry/pharmacokinetics/*pharmacology ; Malaria/*drug therapy/parasitology ; Male ; Mice ; Models, Molecular ; Mutant Proteins/antagonists & inhibitors/chemistry/metabolism ; Mutation ; Parasitic Sensitivity Tests ; Plasmodium berghei/*drug effects ; Plasmodium falciparum/*drug effects/genetics/growth & development ; Plasmodium vivax/*drug effects/growth & development ; Protein Synthesis Inhibitors/administration & ; dosage/chemistry/pharmacokinetics/pharmacology ; Protozoan Proteins/biosynthesis/chemistry/genetics/metabolism ; Rats ; Rats, Wistar ; Spiro Compounds/administration & dosage/chemistry/pharmacokinetics/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2010-10-16
    Description: Granulosa cells of mammalian Graafian follicles maintain oocytes in meiotic arrest, which prevents their precocious maturation. We show that mouse mural granulosa cells, which line the follicle wall, express natriuretic peptide precursor type C (Nppc) messenger RNA (mRNA), whereas cumulus cells surrounding oocytes express mRNA of the NPPC receptor NPR2, a guanylyl cyclase. NPPC increased cGMP levels in cumulus cells and oocytes and inhibited meiotic resumption in vitro. Meiotic arrest was not sustained in most Graafian follicles of Nppc or Npr2 mutant mice, and meiosis resumed precociously. Oocyte-derived paracrine factors promoted cumulus cell expression of Npr2 mRNA. Therefore, the granulosa cell ligand NPPC and its receptor NPR2 in cumulus cells prevent precocious meiotic maturation, which is critical for maturation and ovulation synchrony and for normal female fertility.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3056542/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3056542/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Meijia -- Su, You-Qiang -- Sugiura, Koji -- Xia, Guoliang -- Eppig, John J -- HD21970/HD/NICHD NIH HHS/ -- HD23839/HD/NICHD NIH HHS/ -- R01 HD023839/HD/NICHD NIH HHS/ -- R01 HD023839-22/HD/NICHD NIH HHS/ -- R37 HD021970/HD/NICHD NIH HHS/ -- R37 HD021970-25/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2010 Oct 15;330(6002):366-9. doi: 10.1126/science.1193573.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, People's Republic of China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20947764" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cumulus Cells/*metabolism ; Cyclic AMP/metabolism ; Cyclic GMP/metabolism ; Female ; Granulosa Cells/*metabolism ; Intercellular Signaling Peptides and Proteins/metabolism ; Ligands ; *Meiosis ; Mice ; Models, Biological ; Mutation ; Natriuretic Peptide, C-Type/genetics/*metabolism ; Oocytes/*physiology ; Ovarian Follicle/cytology ; Protein Precursors/genetics/*metabolism ; RNA, Messenger/genetics/metabolism ; Receptors, Atrial Natriuretic Factor/genetics/*metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2010-03-13
    Description: The matrix of evolutionary distances is a model-based statistic, derived from molecular sequences, summarizing the pairwise phylogenetic relations between a collection of species. Phylogenetic tree reconstruction methods relying on this matrix are relatively fast and thus widely used in molecular systematics. However, because of their intrinsic reliance on summary statistics, distance-matrix methods are assumed to be less accurate than likelihood-based approaches. In this paper, pairwise sequence comparisons are shown to be more powerful than previously hypothesized. A statistical analysis of certain distance-based techniques indicates that their data requirement for large evolutionary trees essentially matches the conjectured performance of maximum likelihood methods--challenging the idea that summary statistics lead to suboptimal analyses. On the basis of a connection between ancestral state reconstruction and distance averaging, the critical role played by the covariances of the distance matrix is identified.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Roch, Sebastien -- New York, N.Y. -- Science. 2010 Mar 12;327(5971):1376-9. doi: 10.1126/science.1182300.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Mathematics, University of California at Los Angeles, 520 Portola Plaza, Los Angeles, CA 90095, USA. roch@math.ucla.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20223986" target="_blank"〉PubMed〈/a〉
    Keywords: *Algorithms ; Base Sequence ; Biological Evolution ; *Computational Biology ; DNA/genetics ; *Evolution, Molecular ; Likelihood Functions ; Models, Statistical ; Mutation ; *Phylogeny ; Sequence Alignment ; Software
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2010-12-04
    Description: Microbial consortia that cooperatively exchange electrons play a key role in the anaerobic processing of organic matter. Interspecies hydrogen transfer is a well-documented strategy for electron exchange in dispersed laboratory cultures, but cooperative partners in natural environments often form multispecies aggregates. We found that laboratory evolution of a coculture of Geobacter metallireducens and Geobacter sulfurreducens metabolizing ethanol favored the formation of aggregates that were electrically conductive. Sequencing aggregate DNA revealed selection for a mutation that enhances the production of a c-type cytochrome involved in extracellular electron transfer and accelerates the formation of aggregates. Aggregate formation was also much faster in mutants that were deficient in interspecies hydrogen transfer, further suggesting direct interspecies electron transfer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Summers, Zarath M -- Fogarty, Heather E -- Leang, Ching -- Franks, Ashley E -- Malvankar, Nikhil S -- Lovley, Derek R -- New York, N.Y. -- Science. 2010 Dec 3;330(6009):1413-5. doi: 10.1126/science.1196526.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21127257" target="_blank"〉PubMed〈/a〉
    Keywords: Anaerobiosis ; Bacterial Proteins/chemistry/genetics/*metabolism ; Biological Evolution ; Culture Media ; Cytochrome c Group/chemistry/genetics/*metabolism ; Electron Transport ; *Electrons ; Ethanol/metabolism ; Fimbriae Proteins/genetics/metabolism ; Geobacter/genetics/growth & development/*metabolism ; Hydrogen/metabolism ; Microbial Consortia/*physiology ; *Microbial Interactions ; Mutation ; Oxidation-Reduction ; Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2010-11-26
    Description: Metacaspases are distant relatives of animal caspases found in protozoa, fungi, and plants. Limited experimental data exist defining their function(s), despite their discovery by homology modeling a decade ago. We demonstrated that two type I metacaspases, AtMC1 and AtMC2, antagonistically control programmed cell death in Arabidopsis. AtMC1 is a positive regulator of cell death and requires conserved caspase-like putative catalytic residues for its function. AtMC2 negatively regulates cell death. This function is independent of the putative catalytic residues. Manipulation of the Arabidopsis type I metacaspase regulatory module can nearly eliminate the hypersensitive cell death response (HR) activated by plant intracellular immune receptors. This does not lead to enhanced pathogen proliferation, decoupling HR from restriction of pathogen growth.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Coll, Nuria S -- Vercammen, Dominique -- Smidler, Andrea -- Clover, Charles -- Van Breusegem, Frank -- Dangl, Jeffery L -- Epple, Petra -- R01 GM057171/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Dec 3;330(6009):1393-7. doi: 10.1126/science.1194980. Epub 2010 Nov 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, 108 Coker Hall, University of North Carolina (UNC), CB 3280, Chapel Hill, NC 27599-3280, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21097903" target="_blank"〉PubMed〈/a〉
    Keywords: *Apoptosis ; Arabidopsis/*enzymology/immunology/microbiology/*physiology ; Arabidopsis Proteins/chemistry/genetics/*metabolism ; Caspases/chemistry/genetics/*metabolism ; DNA-Binding Proteins/chemistry/genetics/metabolism ; Mutation ; Oomycetes/physiology ; Plant Diseases/immunology/microbiology ; Plants, Genetically Modified ; Pseudomonas syringae/physiology ; Transcription Factors/chemistry/genetics/metabolism ; Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2010-11-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gray, Michael W -- Lukes, Julius -- Archibald, John M -- Keeling, Patrick J -- Doolittle, W Ford -- New York, N.Y. -- Science. 2010 Nov 12;330(6006):920-1. doi: 10.1126/science.1198594.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21071654" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; *Cell Physiological Processes ; Genome, Mitochondrial ; Introns ; Mitochondria/genetics/physiology ; Models, Biological ; Mutation ; RNA Editing ; RNA Splicing ; Ribosomes/physiology ; Selection, Genetic ; Spliceosomes/genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-08-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gibbons, Ann -- New York, N.Y. -- Science. 2010 Aug 13;329(5993):740-2. doi: 10.1126/science.329.5993.740.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20705825" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological/*genetics ; *Biological Evolution ; Gene Frequency ; Genetic Techniques ; Genetics, Population/*methods ; *Genome, Human ; Haplotypes ; Humans ; Models, Genetic ; Multifactorial Inheritance ; Mutation ; *Polymorphism, Single Nucleotide ; *Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-05-29
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Collinge, John -- MC_U123192748/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2010 May 28;328(5982):1111-2. doi: 10.1126/science.1190815.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Prion Unit, Institute of Neurology, University College London, London WC1N3BG, UK. j.collinge@prion.ucl.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20508117" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Deer ; Evolution, Molecular ; Mutation ; Polymorphism, Genetic ; PrPC Proteins/*chemistry/genetics ; PrPSc Proteins/*chemistry/genetics/pathogenicity ; Protein Conformation ; Protein Folding ; Selection, Genetic ; Species Specificity ; *Wasting Disease, Chronic/transmission
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-05-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gibbons, Ann -- New York, N.Y. -- Science. 2010 May 7;328(5979):680-4. doi: 10.1126/science.328.5979.680.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20448163" target="_blank"〉PubMed〈/a〉
    Keywords: African Continental Ancestry Group/genetics ; Animals ; Asian Continental Ancestry Group/genetics ; European Continental Ancestry Group/genetics ; Extinction, Biological ; Female ; *Fossils ; Gene Flow ; *Genome ; *Genome, Human ; Hominidae/anatomy & histology/*genetics/physiology ; Humans ; Mutation ; Pan troglodytes/genetics ; Polymorphism, Single Nucleotide ; *Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2010-04-24
    Description: Nontyphoidal Salmonellae are a major cause of life-threatening bacteremia among HIV-infected individuals. Although cell-mediated immunity controls intracellular infection, antibodies protect against Salmonella bacteremia. We report that high-titer antibodies specific for Salmonella lipopolysaccharide (LPS) are associated with a lack of Salmonella-killing in HIV-infected African adults. Killing was restored by genetically shortening LPS from the target Salmonella or removing LPS-specific antibodies from serum. Complement-mediated killing of Salmonella by healthy serum is shown to be induced specifically by antibodies against outer membrane proteins. This killing is lost when excess antibody against Salmonella LPS is added. Thus, our study indicates that impaired immunity against nontyphoidal Salmonella bacteremia in HIV infection results from excess inhibitory antibodies against Salmonella LPS, whereas serum killing of Salmonella is induced by antibodies against outer membrane proteins.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3772309/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3772309/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉MacLennan, Calman A -- Gilchrist, James J -- Gordon, Melita A -- Cunningham, Adam F -- Cobbold, Mark -- Goodall, Margaret -- Kingsley, Robert A -- van Oosterhout, Joep J G -- Msefula, Chisomo L -- Mandala, Wilson L -- Leyton, Denisse L -- Marshall, Jennifer L -- Gondwe, Esther N -- Bobat, Saeeda -- Lopez-Macias, Constantino -- Doffinger, Rainer -- Henderson, Ian R -- Zijlstra, Eduard E -- Dougan, Gordon -- Drayson, Mark T -- MacLennan, Ian C M -- Molyneux, Malcolm E -- 067321/Wellcome Trust/United Kingdom -- BB/F022778/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- G0701275/Medical Research Council/United Kingdom -- G108/574/Medical Research Council/United Kingdom -- G8402371/Medical Research Council/United Kingdom -- G9818340/Medical Research Council/United Kingdom -- Biotechnology and Biological Sciences Research Council/United Kingdom -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2010 Apr 23;328(5977):508-12. doi: 10.1126/science.1180346.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council Centre for Immune Regulation and Clinical Immunology Service, Institute of Biomedical Research, School of Immunity and Infection, University of Birmingham, Birmingham, UK. c.maclennan@bham.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20413503" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS-Related Opportunistic Infections/immunology ; Adult ; Animals ; Antibodies, Bacterial/blood/*immunology ; Antibodies, Blocking/blood/*immunology ; Bacteremia/immunology ; Bacterial Outer Membrane Proteins/*immunology ; Complement Activation ; Disease Susceptibility ; HIV Infections/complications/*immunology ; Humans ; Immunoglobulin G/blood/immunology ; Lipopolysaccharides/blood/*immunology ; Malawi ; Mice ; Mutation ; O Antigens/*immunology ; Salmonella Infections/*immunology ; Salmonella typhimurium/genetics/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2010-10-12
    Description: Bacterial biofilms are structured multicellular communities involved in a broad range of infections. Knowing how free-swimming bacteria adapt their motility mechanisms near surfaces is crucial for understanding the transition between planktonic and biofilm phenotypes. By translating microscopy movies into searchable databases of bacterial behavior, we identified fundamental type IV pili-driven mechanisms for Pseudomonas aeruginosa surface motility involved in distinct foraging strategies. Bacteria stood upright and "walked" with trajectories optimized for two-dimensional surface exploration. Vertical orientation facilitated surface detachment and could influence biofilm morphology.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gibiansky, Maxsim L -- Conrad, Jacinta C -- Jin, Fan -- Gordon, Vernita D -- Motto, Dominick A -- Mathewson, Margie A -- Stopka, Wiktor G -- Zelasko, Daria C -- Shrout, Joshua D -- Wong, Gerard C L -- New York, N.Y. -- Science. 2010 Oct 8;330(6001):197. doi: 10.1126/science.1194238.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Bioengineering, California Nano Systems Institute,University of California, Los Angeles, CA 90024, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20929769" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Bacterial Adhesion ; *Biofilms ; Cell Division ; Databases, Factual ; Fimbriae, Bacterial/*physiology ; Microscopy ; Motion Pictures as Topic ; Movement ; Mutation ; Pseudomonas aeruginosa/genetics/*physiology/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2010-07-10
    Description: Long intergenic noncoding RNAs (lincRNAs) regulate chromatin states and epigenetic inheritance. Here, we show that the lincRNA HOTAIR serves as a scaffold for at least two distinct histone modification complexes. A 5' domain of HOTAIR binds polycomb repressive complex 2 (PRC2), whereas a 3' domain of HOTAIR binds the LSD1/CoREST/REST complex. The ability to tether two distinct complexes enables RNA-mediated assembly of PRC2 and LSD1 and coordinates targeting of PRC2 and LSD1 to chromatin for coupled histone H3 lysine 27 methylation and lysine 4 demethylation. Our results suggest that lincRNAs may serve as scaffolds by providing binding surfaces to assemble select histone modification enzymes, thereby specifying the pattern of histone modifications on target genes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2967777/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2967777/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tsai, Miao-Chih -- Manor, Ohad -- Wan, Yue -- Mosammaparast, Nima -- Wang, Jordon K -- Lan, Fei -- Shi, Yang -- Segal, Eran -- Chang, Howard Y -- R01 CA118750/CA/NCI NIH HHS/ -- R01 CA119176/CA/NCI NIH HHS/ -- R01 CA119176-05/CA/NCI NIH HHS/ -- R01-CA118487/CA/NCI NIH HHS/ -- R01-HG004361/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Aug 6;329(5992):689-93. doi: 10.1126/science.1192002. Epub 2010 Jul 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20616235" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Carrier Proteins/metabolism ; Cell Line ; Cells, Cultured ; Chromatin/*metabolism ; Chromatin Immunoprecipitation ; Co-Repressor Proteins ; DNA-Binding Proteins/*metabolism ; HeLa Cells ; Histone Demethylases/*metabolism ; Histones/*metabolism ; Humans ; Methylation ; Mutation ; Nerve Tissue Proteins/metabolism ; Nuclear Proteins/metabolism ; Nucleic Acid Conformation ; Polycomb Repressive Complex 2 ; Polycomb-Group Proteins ; Promoter Regions, Genetic ; Protein Binding ; RNA Interference ; RNA, Untranslated/chemistry/*metabolism ; Repressor Proteins/*metabolism ; Transcription Factors/*metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2010-05-08
    Description: The mechanisms controlling the formation and maintenance of neuronal trees are poorly understood. We examined the dynamic development of two arborized mechanoreceptor neurons (PVDs) required for reception of strong mechanical stimuli in Caenorhabditis elegans. The PVDs elaborated dendritic trees comprising structural units we call "menorahs." We studied how the number, structure, and function of menorahs were maintained. EFF-1, an essential protein mediating cell fusion, acted autonomously in the PVDs to trim developing menorahs. eff-1 mutants displayed hyperbranched, disorganized menorahs. Overexpression of EFF-1 in the PVD reduced branching. Neuronal pruning appeared to involve EFF-1-dependent branch retraction and neurite-neurite autofusion. Thus, EFF-1 activities may act as a quality control mechanism during the sculpting of dendritic trees.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3057141/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3057141/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Oren-Suissa, Meital -- Hall, David H -- Treinin, Millet -- Shemer, Gidi -- Podbilewicz, Benjamin -- R24 RR012596/RR/NCRR NIH HHS/ -- R24 RR012596-14/RR/NCRR NIH HHS/ -- RR12596/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2010 Jun 4;328(5983):1285-8. doi: 10.1126/science.1189095. Epub 2010 May 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20448153" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Genetically Modified ; Caenorhabditis elegans/growth & development/*metabolism/*ultrastructure ; Caenorhabditis elegans Proteins/genetics/*metabolism ; Dendrites/metabolism/physiology/*ultrastructure ; Imaging, Three-Dimensional ; Mechanoreceptors/*metabolism/*ultrastructure ; Membrane Glycoproteins/genetics/*metabolism ; Microscopy, Confocal ; Models, Neurological ; Mutant Proteins/metabolism ; Mutation ; Neurites/physiology/*ultrastructure ; Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-07-22
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Orkin, Stuart H -- Higgs, Douglas R -- R01 HL032259/HL/NHLBI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Jul 16;329(5989):291-2. doi: 10.1126/science.1194035.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Children's Hospital Boston and Dana-Farber Cancer Institute, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA 02115, USA. stuart_orkin@dfci.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20647458" target="_blank"〉PubMed〈/a〉
    Keywords: *Anemia, Sickle Cell/blood/genetics/therapy ; Carrier Proteins/genetics ; Fetal Hemoglobin/analysis/biosynthesis/*genetics ; GTP-Binding Proteins/genetics ; Gene Expression Regulation ; Genes, myb ; Hemoglobin, Sickle/chemistry/genetics ; Humans ; Multigene Family ; Mutation ; Nuclear Proteins/genetics ; beta-Globins/genetics ; gamma-Globins/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2010-11-27
    Description: Synthetic genetic devices that interface with native cellular pathways can be used to change natural networks to implement new forms of control and behavior. The engineering of gene networks has been limited by an inability to interface with native components. We describe a class of RNA control devices that overcome these limitations by coupling increased abundance of particular proteins to targeted gene expression events through the regulation of alternative RNA splicing. We engineered RNA devices that detect signaling through the nuclear factor kappaB and Wnt signaling pathways in human cells and rewire these pathways to produce new behaviors, thereby linking disease markers to noninvasive sensing and reprogrammed cellular fates. Our work provides a genetic platform that can build programmable sensing-actuation devices enabling autonomous control over cellular behavior.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3171693/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3171693/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Culler, Stephanie J -- Hoff, Kevin G -- Smolke, Christina D -- RC1 GM091298/GM/NIGMS NIH HHS/ -- RC1 GM091298-01/GM/NIGMS NIH HHS/ -- RC1 GM091298-02/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Nov 26;330(6008):1251-5. doi: 10.1126/science.1192128.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Chemistry and Chemical Engineering, 1200 East California Boulevard, MC 210-41, California Institute of Technology, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21109673" target="_blank"〉PubMed〈/a〉
    Keywords: *Alternative Splicing ; Apoptosis ; Aptamers, Nucleotide/chemistry/genetics/*metabolism ; Capsid Proteins/metabolism ; Cell Line ; Cell Nucleus/metabolism ; Exons ; Ganciclovir/pharmacology ; *Gene Expression Regulation ; Gene Regulatory Networks ; *Genetic Engineering ; Green Fluorescent Proteins/genetics ; Humans ; Introns ; Ligands ; Mutation ; NF-kappa B p50 Subunit/genetics/metabolism ; Protein Binding ; Signal Transduction ; Survival of Motor Neuron 1 Protein/genetics ; Transcription Factor RelA/genetics/metabolism ; Transfection ; Wnt Proteins/metabolism ; beta Catenin/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2010-11-13
    Description: During sexual reproduction in flowering plants such as Arabidopsis, a tip-growing pollen tube (PT) is guided to the synergid cells of the female gametophyte, where it bursts and releases the two sperm. Here we show that PT reception and powdery mildew (PM) infection, which involves communication between a tip-growing hypha and a plant epidermal cell, share molecular components. NORTIA (NTA), a member of the MLO family originally discovered in the context of PM resistance, and FERONIA (FER), a receptor-like kinase, both control PT reception in synergids. Homozygous fer mutants also display PM resistance, revealing a new function for FER and suggesting that conserved components, such as FER and distinct MLO proteins, are involved in both PT reception and PM infection.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kessler, Sharon A -- Shimosato-Asano, Hiroko -- Keinath, Nana F -- Wuest, Samuel E -- Ingram, Gwyneth -- Panstruga, Ralph -- Grossniklaus, Ueli -- New York, N.Y. -- Science. 2010 Nov 12;330(6006):968-71. doi: 10.1126/science.1195211.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Plant Biology and Zurich Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, CH-8008 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21071669" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/genetics/*microbiology/*physiology ; Arabidopsis Proteins/chemistry/genetics/*metabolism ; Ascomycota/*physiology ; Calmodulin-Binding Proteins/chemistry/genetics/*metabolism ; Fertility ; Flowers/genetics ; Gene Expression Profiling ; Genes, Plant ; Hyphae/physiology ; Mutation ; Phosphotransferases/genetics/*metabolism ; Plant Diseases/*microbiology ; Plant Leaves/microbiology ; Pollen/genetics ; Pollen Tube/*physiology ; Pollination ; Recombinant Fusion Proteins/metabolism ; Seeds/growth & development ; Signal Transduction ; Spores, Fungal/physiology ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2010-07-31
    Description: The planar cell polarity (PCP) signaling pathway governs collective cell movements during vertebrate embryogenesis, and certain PCP proteins are also implicated in the assembly of cilia. The septins are cytoskeletal proteins controlling behaviors such as cell division and migration. Here, we identified control of septin localization by the PCP protein Fritz as a crucial control point for both collective cell movement and ciliogenesis in Xenopus embryos. We also linked mutations in human Fritz to Bardet-Biedl and Meckel-Gruber syndromes, a notable link given that other genes mutated in these syndromes also influence collective cell movement and ciliogenesis. These findings shed light on the mechanisms by which fundamental cellular machinery, such as the cytoskeleton, is regulated during embryonic development and human disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3509789/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3509789/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Su Kyoung -- Shindo, Asako -- Park, Tae Joo -- Oh, Edwin C -- Ghosh, Srimoyee -- Gray, Ryan S -- Lewis, Richard A -- Johnson, Colin A -- Attie-Bittach, Tania -- Katsanis, Nicholas -- Wallingford, John B -- G0700073/Medical Research Council/United Kingdom -- P50 MH094268/MH/NIMH NIH HHS/ -- R01 DK072301/DK/NIDDK NIH HHS/ -- R01 DK075972/DK/NIDDK NIH HHS/ -- R01 GM074104/GM/NIGMS NIH HHS/ -- R01 HD042601/HD/NICHD NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Sep 10;329(5997):1337-40. doi: 10.1126/science.1191184. Epub 2010 Jul 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Molecular Cell and Developmental Biology and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20671153" target="_blank"〉PubMed〈/a〉
    Keywords: Abnormalities, Multiple/genetics ; Animals ; Bardet-Biedl Syndrome/*genetics ; Cell Membrane/metabolism/ultrastructure ; *Cell Movement ; *Cell Polarity ; Cell Shape ; Cilia/*metabolism/ultrastructure ; Cytoskeletal Proteins/genetics/*metabolism ; Cytoskeleton/*metabolism/ultrastructure ; Embryo, Nonmammalian/cytology/physiology ; Embryonic Development ; Female ; GTP-Binding Proteins/genetics/*metabolism ; Gastrula/cytology ; Genetic Association Studies ; Glycoproteins/genetics/*metabolism ; Hedgehog Proteins/metabolism ; Humans ; Morphogenesis ; Mutant Proteins/metabolism ; Mutation ; Septins ; Syndrome ; Xenopus Proteins/genetics/*metabolism ; Xenopus laevis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-12-04
    Description: Studies on a variety of interesting biological problems, ranging from circadian rhythm to cancer cell growth to longevity, have begun to give evidence that the physiological state of cells and tissues reflects both the cell's regulatory systems and its state of intermediary metabolism. It is appreciated that the regulatory state of a cell or tissue, as driven by transcription factors and signaling pathways, can impose itself upon the dynamics of metabolic state. It follows that the reciprocal must also be the case, that metabolic state will feed back to impose itself on regulatory state. An appreciation and understanding of this reciprocity may be required to crack open problems in biological research that have heretofore been insoluble.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McKnight, Steven L -- New York, N.Y. -- Science. 2010 Dec 3;330(6009):1338-9. doi: 10.1126/science.1199908.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9152, USA. steven.mcknight@utsouthwestern.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21127243" target="_blank"〉PubMed〈/a〉
    Keywords: Enzymes/genetics/*metabolism ; Gene Expression Regulation, Neoplastic ; Glycolysis ; Humans ; *Metabolism ; Mutation ; Neoplasm Proteins/genetics/*metabolism ; Neoplasms/genetics/*metabolism ; Signal Transduction ; Transcription Factors/metabolism ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-10-12
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Browse, John -- New York, N.Y. -- Science. 2010 Oct 8;330(6001):185-6. doi: 10.1126/science.1196737.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA. jab@wsu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20929764" target="_blank"〉PubMed〈/a〉
    Keywords: *Acclimatization ; Arabidopsis/genetics/metabolism/*physiology ; Arabidopsis Proteins/genetics/*metabolism ; Chloroplasts/chemistry/*metabolism/ultrastructure ; *Freezing ; Galactolipids/chemistry/metabolism ; Gene Expression Regulation, Plant ; Genes, Plant ; Intracellular Membranes/chemistry/*metabolism/ultrastructure ; Lipid Bilayers/chemistry/*metabolism ; Membrane Lipids/chemistry/metabolism ; Mutation ; beta-Glucosidase/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2010-02-27
    Description: The nitrogen-fixing symbiosis between Sinorhizobium meliloti and its leguminous host plant Medicago truncatula occurs in a specialized root organ called the nodule. Bacteria that are released into plant cells are surrounded by a unique plant membrane compartment termed a symbiosome. We found that in the symbiosis-defective dnf1 mutant of M. truncatula, bacteroid and symbiosome development are blocked. We identified the DNF1 gene as encoding a subunit of a signal peptidase complex that is highly expressed in nodules. By analyzing data from whole-genome expression analysis, we propose that correct symbiosome development in M. truncatula requires the orderly secretion of protein constituents through coordinated up-regulation of a nodule-specific pathway exemplified by DNF1.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Dong -- Griffitts, Joel -- Starker, Colby -- Fedorova, Elena -- Limpens, Erik -- Ivanov, Sergey -- Bisseling, Ton -- Long, Sharon -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Feb 26;327(5969):1126-9. doi: 10.1126/science.1184096.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Stanford University, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20185723" target="_blank"〉PubMed〈/a〉
    Keywords: Endoplasmic Reticulum/metabolism ; Gene Expression ; Gene Expression Profiling ; Genes, Plant ; Medicago truncatula/genetics/*metabolism/*microbiology ; Membrane Proteins/genetics/*metabolism ; Mutation ; *Nitrogen Fixation ; Plant Proteins/genetics/metabolism ; Plants, Genetically Modified ; Protein Subunits/genetics/metabolism ; Root Nodules, Plant/metabolism/*microbiology ; *Secretory Pathway ; Serine Endopeptidases/genetics/*metabolism ; Sinorhizobium meliloti/*physiology ; *Symbiosis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2010-08-14
    Description: Aurora B is a component of the chromosomal passenger complex (CPC) required for correct spindle-kinetochore attachments during chromosome segregation and for cytokinesis. The chromatin factors that recruit the CPC to centromeres are unknown, however. Here we show that phosphorylation of histone H3 threonine 3 (H3T3ph) by Haspin is necessary for CPC accumulation at centromeres and that the CPC subunit Survivin binds directly to H3T3ph. A nonbinding Survivin-D70A/D71A mutant does not support centromeric CPC concentration, and both Haspin depletion and Survivin-D70A/D71A mutation diminish centromere localization of the kinesin MCAK and the mitotic checkpoint response to taxol. Survivin-D70A/D71A mutation and microinjection of H3T3ph-specific antibody both compromise centromeric Aurora B functions but do not prevent cytokinesis. Therefore, H3T3ph generated by Haspin positions the CPC at centromeres to regulate selected targets of Aurora B during mitosis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2967368/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2967368/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Fangwei -- Dai, Jun -- Daum, John R -- Niedzialkowska, Ewa -- Banerjee, Budhaditya -- Stukenberg, P Todd -- Gorbsky, Gary J -- Higgins, Jonathan M G -- R01 GM050412/GM/NIGMS NIH HHS/ -- R01 GM050412-16/GM/NIGMS NIH HHS/ -- R01 GM063045/GM/NIGMS NIH HHS/ -- R01 GM063045-10/GM/NIGMS NIH HHS/ -- R01 GM074210/GM/NIGMS NIH HHS/ -- R01 GM074210-04/GM/NIGMS NIH HHS/ -- R01-GM050412/GM/NIGMS NIH HHS/ -- R01-GM063045/GM/NIGMS NIH HHS/ -- R01-GM074210/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Oct 8;330(6001):231-5. doi: 10.1126/science.1189435. Epub 2010 Aug 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Harvard Medical School, Smith Building, 1 Jimmy Fund Way, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20705812" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aurora Kinase B ; Aurora Kinases ; Cell Cycle Proteins/metabolism ; Cell Line ; Cell Line, Tumor ; Centromere/*metabolism ; Chromatin/*metabolism ; HeLa Cells ; Histones/*metabolism ; Humans ; Inhibitor of Apoptosis Proteins ; Intracellular Signaling Peptides and Proteins/genetics/*metabolism ; Kinesin/metabolism ; Kinetochores/metabolism ; Microtubule-Associated Proteins/chemistry/genetics/*metabolism ; *Mitosis ; Mutation ; Phosphorylation ; Protein Binding ; Protein Interaction Domains and Motifs ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; RNA Interference ; Recombinant Proteins/metabolism ; Spindle Apparatus/metabolism ; Swine ; Threonine/metabolism ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2010-02-20
    Description: Lysine acetylation regulates many eukaryotic cellular processes, but its function in prokaryotes is largely unknown. We demonstrated that central metabolism enzymes in Salmonella were acetylated extensively and differentially in response to different carbon sources, concomitantly with changes in cell growth and metabolic flux. The relative activities of key enzymes controlling the direction of glycolysis versus gluconeogenesis and the branching between citrate cycle and glyoxylate bypass were all regulated by acetylation. This modulation is mainly controlled by a pair of lysine acetyltransferase and deacetylase, whose expressions are coordinated with growth status. Reversible acetylation of metabolic enzymes ensure that cells respond environmental changes via promptly sensing cellular energy status and flexibly altering reaction rates or directions. It represents a metabolic regulatory mechanism conserved from bacteria to mammals.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4183141/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4183141/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Qijun -- Zhang, Yakun -- Yang, Chen -- Xiong, Hui -- Lin, Yan -- Yao, Jun -- Li, Hong -- Xie, Lu -- Zhao, Wei -- Yao, Yufeng -- Ning, Zhi-Bin -- Zeng, Rong -- Xiong, Yue -- Guan, Kun-Liang -- Zhao, Shimin -- Zhao, Guo-Ping -- R01 CA068377/CA/NCI NIH HHS/ -- R01 CA163834/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2010 Feb 19;327(5968):1004-7. doi: 10.1126/science.1179687.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Genetic Engineering, Department of Microbiology, School of Life Sciences and Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20167787" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Acetyltransferases/chemistry/genetics/metabolism ; Amino Acid Sequence ; Bacterial Proteins/*metabolism ; Citric Acid/*metabolism ; Energy Metabolism ; Enzymes/*metabolism ; Gene Expression Regulation, Bacterial ; *Gluconeogenesis ; Glucose/*metabolism ; Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism ; *Glycolysis ; Group III Histone Deacetylases/genetics/metabolism ; Isocitrate Lyase/metabolism ; Lysine/metabolism ; Metabolic Networks and Pathways ; Multienzyme Complexes/metabolism ; Mutation ; Protein Processing, Post-Translational ; Protein-Serine-Threonine Kinases/metabolism ; Recombinant Proteins/metabolism ; Salmonella typhimurium/enzymology/genetics/growth & development/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-10-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kluwe, Christien -- Ellington, Andrew D -- New York, N.Y. -- Science. 2010 Oct 15;330(6002):330-1. doi: 10.1126/science.1197667.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20947753" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Directed Molecular Evolution ; *Evolution, Molecular ; Genotype ; Mutation ; RNA/metabolism ; RNA, Catalytic/chemistry/*genetics/*metabolism ; Selection, Genetic ; Sequence Analysis, RNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2010-02-20
    Description: Antibiotics with new mechanisms of action are urgently required to combat the growing health threat posed by resistant pathogenic microorganisms. We synthesized a family of peptidomimetic antibiotics based on the antimicrobial peptide protegrin I. Several rounds of optimization gave a lead compound that was active in the nanomolar range against Gram-negative Pseudomonas spp., but was largely inactive against other Gram-negative and Gram-positive bacteria. Biochemical and genetic studies showed that the peptidomimetics had a non-membrane-lytic mechanism of action and identified a homolog of the beta-barrel protein LptD (Imp/OstA), which functions in outer-membrane biogenesis, as a cellular target. The peptidomimetic showed potent antimicrobial activity in a mouse septicemia infection model. Drug-resistant strains of Pseudomonas are a serious health problem, so this family of antibiotics may have important therapeutic applications.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Srinivas, Nityakalyani -- Jetter, Peter -- Ueberbacher, Bernhard J -- Werneburg, Martina -- Zerbe, Katja -- Steinmann, Jessica -- Van der Meijden, Benjamin -- Bernardini, Francesca -- Lederer, Alexander -- Dias, Ricardo L A -- Misson, Pauline E -- Henze, Heiko -- Zumbrunn, Jurg -- Gombert, Frank O -- Obrecht, Daniel -- Hunziker, Peter -- Schauer, Stefan -- Ziegler, Urs -- Kach, Andres -- Eberl, Leo -- Riedel, Kathrin -- DeMarco, Steven J -- Robinson, John A -- New York, N.Y. -- Science. 2010 Feb 19;327(5968):1010-3. doi: 10.1126/science.1182749.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Chemistry Department, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20167788" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anti-Bacterial Agents/chemical synthesis/metabolism/*pharmacology ; Antimicrobial Cationic Peptides/chemistry ; Bacterial Outer Membrane Proteins/chemistry/genetics/*metabolism ; Cell Membrane/*metabolism ; Drug Design ; Drug Resistance, Bacterial/genetics ; Genes, Bacterial ; Lipopolysaccharides/metabolism ; Mice ; Microbial Sensitivity Tests ; Molecular Mimicry ; Mutation ; Peptide Library ; Peptides/chemical synthesis/chemistry/metabolism/*pharmacology ; Protein Structure, Tertiary ; Pseudomonas Infections/drug therapy/microbiology ; Pseudomonas aeruginosa/*drug effects/growth & ; development/*metabolism/ultrastructure ; Sepsis/drug therapy/microbiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2010-08-28
    Description: Plants show complex adaptations to freezing that prevent cell damage caused by cellular dehydration. Lipid remodeling of cell membranes during dehydration is one critical mechanism countering loss of membrane integrity and cell death. SENSITIVE TO FREEZING 2 (SFR2), a gene essential for freezing tolerance in Arabidopsis, encodes a galactolipid remodeling enzyme of the outer chloroplast envelope membrane. SFR2 processively transfers galactosyl residues from the abundant monogalactolipid to different galactolipid acceptors, forming oligogalactolipids and diacylglycerol, which is further converted to triacylglycerol. The combined activity of SFR2 and triacylglycerol-biosynthetic enzymes leads to the removal of monogalactolipids from the envelope membrane, changing the ratio of bilayer- to non-bilayer-forming membrane lipids. This SFR2-based mechanism compensates for changes in organelle volume and stabilizes membranes during freezing.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Moellering, Eric R -- Muthan, Bagyalakshmi -- Benning, Christoph -- New York, N.Y. -- Science. 2010 Oct 8;330(6001):226-8. doi: 10.1126/science.1191803. Epub 2010 Aug 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20798281" target="_blank"〉PubMed〈/a〉
    Keywords: Acclimatization ; Arabidopsis/genetics/metabolism/*physiology ; Arabidopsis Proteins/genetics/*metabolism ; Chloroplasts/chemistry/*metabolism/ultrastructure ; Diglycerides/metabolism ; *Freezing ; Galactolipids/chemistry/metabolism ; Gene Expression Regulation, Plant ; Genes, Plant ; Intracellular Membranes/chemistry/*metabolism ; Lipid Bilayers/chemistry/*metabolism ; Membrane Lipids/chemistry/*metabolism ; Mutation ; Triglycerides/metabolism ; beta-Glucosidase/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2010-10-12
    Description: Population density-dependent dispersal is a well-characterized strategy of animal behavior in which dispersal rate increases when population density is higher. Caenorhabditis elegans shows positive chemotaxis to a set of odorants, but the chemotaxis switches from attraction to dispersal after prolonged exposure to the odorants. We show here that this plasticity of olfactory behavior is dependent on population density and that this regulation is mediated by pheromonal signaling. We show that a peptide, suppressor of NEP-2 (SNET-1), negatively regulates olfactory plasticity and that its expression is down-regulated by the pheromone. NEP-2, a homolog of the extracellular peptidase neprilysin, antagonizes SNET-1, and this function is essential for olfactory plasticity. These results suggest that population density information is transmitted through the external pheromone and endogenous peptide signaling to modulate chemotactic behavior.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3021133/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3021133/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yamada, Koji -- Hirotsu, Takaaki -- Matsuki, Masahiro -- Butcher, Rebecca A -- Tomioka, Masahiro -- Ishihara, Takeshi -- Clardy, Jon -- Kunitomo, Hirofumi -- Iino, Yuichi -- CA24487/CA/NCI NIH HHS/ -- GM087533/GM/NIGMS NIH HHS/ -- K99 GM087533/GM/NIGMS NIH HHS/ -- K99 GM087533-01/GM/NIGMS NIH HHS/ -- R00 GM087533/GM/NIGMS NIH HHS/ -- R00 GM087533-03/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Sep 24;329(5999):1647-50. doi: 10.1126/science.1192020.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo 113-0032, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20929849" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptation, Physiological ; Animals ; Caenorhabditis elegans/genetics/*physiology ; Caenorhabditis elegans Proteins/genetics/*metabolism ; *Chemotaxis ; Down-Regulation ; Gene Expression Regulation ; Mutation ; Neprilysin/genetics/*metabolism ; Neurites/metabolism ; Neurons/metabolism ; Odors ; Olfactory Pathways/cytology/physiology ; Pheromones/*metabolism ; Population Density ; Recombinant Fusion Proteins/metabolism ; Repressor Proteins/genetics/*metabolism ; *Signal Transduction ; Smell/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2010-10-12
    Description: For proper partitioning of chromosomes in mitosis, the chromosomal passenger complex (CPC) including Aurora B and survivin must be localized at the center of paired kinetochores, at the site called the inner centromere. It is largely unknown what defines the inner centromere and how the CPC is targeted to this site. Here, we show that the phosphorylation of histone H3-threonine 3 (H3-pT3) mediated by Haspin cooperates with Bub1-mediated histone 2A-serine 121 (H2A-S121) phosphorylation in targeting the CPC to the inner centromere in fission yeast and human cells. H3-pT3 promotes nucleosome binding of survivin, whereas phosphorylated H2A-S121 facilitates the binding of shugoshin, the centromeric CPC adaptor. Haspin colocalizes with cohesin by associating with Pds5, whereas Bub1 localizes at kinetochores. Thus, the inner centromere is defined by intersection of two histone kinases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yamagishi, Yuya -- Honda, Takashi -- Tanno, Yuji -- Watanabe, Yoshinori -- New York, N.Y. -- Science. 2010 Oct 8;330(6001):239-43. doi: 10.1126/science.1194498.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi, Tokyo 113-0032, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20929775" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Aurora Kinase B ; Aurora Kinases ; Cell Cycle Proteins/metabolism ; Centromere/*metabolism ; Chromatin/metabolism ; Chromosomal Proteins, Non-Histone/metabolism ; Chromosome Segregation ; Chromosomes, Fungal/*physiology ; Chromosomes, Human/*physiology ; HeLa Cells ; Heterochromatin/metabolism ; Histones/*metabolism ; Humans ; Inhibitor of Apoptosis Proteins ; Intracellular Signaling Peptides and Proteins/chemistry/genetics/*metabolism ; Kinetochores/metabolism ; Microtubule-Associated Proteins/metabolism ; Mitosis ; Molecular Sequence Data ; Mutation ; Nucleosomes/metabolism ; Phosphorylation ; Protein Binding ; Protein Interaction Domains and Motifs ; Protein-Serine-Threonine Kinases/chemistry/genetics/*metabolism ; Schizosaccharomyces/*genetics/metabolism ; Schizosaccharomyces pombe Proteins/genetics/*metabolism ; Serine/metabolism ; Threonine/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-10-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Charlesworth, Brian -- New York, N.Y. -- Science. 2010 Oct 15;330(6002):326-7. doi: 10.1126/science.1197700.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JT, UK. brian.charlesworth@ed.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20947750" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caenorhabditis elegans/*genetics ; Chromosomes/*genetics ; Crosses, Genetic ; *Evolution, Molecular ; Gene Expression ; Gene Frequency ; Genes, Helminth ; Genetic Variation ; Mutation ; *Quantitative Trait Loci ; *Quantitative Trait, Heritable ; Recombination, Genetic ; Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-03-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Allman, Elizabeth S -- Rhodes, John A -- New York, N.Y. -- Science. 2010 Mar 12;327(5971):1334-5. doi: 10.1126/science.1187797.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Mathematics and Statistics, University of Alaska, P.O. Box 756660, Fairbanks, AK 99775, USA. e.allman@alaska.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20223973" target="_blank"〉PubMed〈/a〉
    Keywords: *Algorithms ; Base Sequence ; Biological Evolution ; Computational Biology ; DNA/genetics ; *Evolution, Molecular ; Likelihood Functions ; Models, Statistical ; Mutation ; *Phylogeny ; Software
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2010-06-05
    Description: The bacterial second messenger cyclic diguanosine monophosphate (c-di-GMP) regulates cellular motility and the synthesis of organelles and molecules that promote adhesion to a variety of biological and nonbiological surfaces. These properties likely require tight spatial and temporal regulation of c-di-GMP concentration. We have developed genetically encoded fluorescence resonance energy transfer (FRET)-based biosensors to monitor c-di-GMP concentrations within single bacterial cells by microscopy. Fluctuations of c-di-GMP were visualized in diverse Gram-negative bacterial species and observed to be cell cycle dependent. Asymmetrical distribution of c-di-GMP in the progeny correlated with the time of cell division and polarization for Caulobacter crescentus and Pseudomonas aeruginosa. Thus, asymmetrical distribution of c-di-GMP was observed as part of cell division, which may indicate an important regulatory step in extracellular organelle biosynthesis or function.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3906730/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3906730/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Christen, Matthias -- Kulasekara, Hemantha D -- Christen, Beat -- Kulasekara, Bridget R -- Hoffman, Lucas R -- Miller, Samuel I -- 1R21NS067579-01/NS/NINDS NIH HHS/ -- K02 HL105543/HL/NHLBI NIH HHS/ -- K08 AI066251/AI/NIAID NIH HHS/ -- K08AI066251/AI/NIAID NIH HHS/ -- R01 HL098084/HL/NHLBI NIH HHS/ -- U54AI057141/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2010 Jun 4;328(5983):1295-7. doi: 10.1126/science.1188658.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, University of Washington, Seattle, WA 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20522779" target="_blank"〉PubMed〈/a〉
    Keywords: Biosensing Techniques ; Caulobacter crescentus/*cytology/genetics/*metabolism ; *Cell Division ; Cyclic GMP/*analogs & derivatives/metabolism ; Escherichia coli Proteins ; Fluorescence Resonance Energy Transfer ; Klebsiella pneumoniae/cytology/metabolism ; Microscopy ; Movement ; Mutation ; Phosphorus-Oxygen Lyases/genetics/metabolism ; Pseudomonas aeruginosa/*cytology/genetics/*metabolism ; Salmonella typhimurium/cytology/metabolism ; *Second Messenger Systems
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2010-03-12
    Description: We analyzed the whole-genome sequences of a family of four, consisting of two siblings and their parents. Family-based sequencing allowed us to delineate recombination sites precisely, identify 70% of the sequencing errors (resulting in 〉 99.999% accuracy), and identify very rare single-nucleotide polymorphisms. We also directly estimated a human intergeneration mutation rate of approximately 1.1 x 10(-8) per position per haploid genome. Both offspring in this family have two recessive disorders: Miller syndrome, for which the gene was concurrently identified, and primary ciliary dyskinesia, for which causative genes have been previously identified. Family-based genome analysis enabled us to narrow the candidate genes for both of these Mendelian disorders to only four. Our results demonstrate the value of complete genome sequencing in families.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3037280/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3037280/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Roach, Jared C -- Glusman, Gustavo -- Smit, Arian F A -- Huff, Chad D -- Hubley, Robert -- Shannon, Paul T -- Rowen, Lee -- Pant, Krishna P -- Goodman, Nathan -- Bamshad, Michael -- Shendure, Jay -- Drmanac, Radoje -- Jorde, Lynn B -- Hood, Leroy -- Galas, David J -- GM076547/GM/NIGMS NIH HHS/ -- P50 GM076547/GM/NIGMS NIH HHS/ -- P50 GM076547-05/GM/NIGMS NIH HHS/ -- R01 HG002939/HG/NHGRI NIH HHS/ -- R01 HG002939-08/HG/NHGRI NIH HHS/ -- R01GM081083/GM/NIGMS NIH HHS/ -- R01HD048895/HD/NICHD NIH HHS/ -- R01HL094976/HL/NHLBI NIH HHS/ -- RC2HG005608/HG/NHGRI NIH HHS/ -- RZ1HG004749/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2010 Apr 30;328(5978):636-9. doi: 10.1126/science.1186802. Epub 2010 Mar 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Systems Biology, Seattle, WA 98103, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20220176" target="_blank"〉PubMed〈/a〉
    Keywords: Abnormalities, Multiple/*genetics ; Algorithms ; Alleles ; Axonemal Dyneins/genetics ; Ciliary Motility Disorders/*genetics ; Crossing Over, Genetic ; Female ; Genes, Dominant ; Genes, Recessive ; Genetic Association Studies ; *Genome, Human ; Humans ; *Inheritance Patterns ; Limb Deformities, Congenital/genetics ; Male ; Mandibulofacial Dysostosis/genetics ; Mutation ; *Nuclear Family ; Oxidoreductases Acting on CH-CH Group Donors/genetics ; Pedigree ; Polymorphism, Single Nucleotide ; *Sequence Analysis, DNA ; Syndrome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...