ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (40)
  • Binding Sites  (33)
  • Chemistry
  • Organic Chemistry
  • 2015-2019
  • 1990-1994
  • 1985-1989  (40)
  • 1988  (40)
  • Science. 239(4837): 268-75.  (1)
  • Science. 239(4842): 888-93.  (1)
  • Science. 239(4844): 1105-10.  (1)
  • Science. 239(4844): 1150-3.  (1)
  • Science. 239(4847): 1531-4.  (1)
  • Science. 240(4849): 199-201.  (1)
  • Science. 240(4851): 521-3.  (1)
  • Science. 240(4852): 640-2.  (1)
  • Science. 240(4853): 760-7.  (1)
  • Science. 240(4854): 889-95.  (1)
  • Science. 240(4857): 1302-9.  (1)
  • Science. 240(4860): 1732.  (1)
  • Science. 240(4860): 1751-8.  (1)
  • Science. 240(4860): 1759-64.  (1)
  • Science. 241(4861): 53-7.  (1)
  • Science. 241(4861): 71-4.  (1)
  • Science. 241(4861): 89-92.  (1)
  • Science. 241(4862): 182-7.  (1)
  • Science. 241(4862): 188-91.  (1)
  • Science. 241(4862): 202-5.  (1)
  • 25
Collection
  • Articles  (40)
Years
  • 2015-2019
  • 1990-1994
  • 1985-1989  (40)
Year
Journal
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1988-08-19
    Description: The question of how the primary amino acid sequence of a protein determines its three-dimensional structure is still unanswered. One approach to this problem involves the de novo design of model peptides and proteins that should adopt desired three-dimensional structures. A systematic approach was aimed at the design of a four-helix bundle protein. The gene encoding the designed protein was synthesized and the protein was expressed in Escherichia coli and purified to homogeneity. The protein was shown to be monomeric, highly helical, and very stable to denaturation by guanidine hydrochloride (GuHCl). Thus a globular protein has been designed that is capable of adopting a stable, folded structure in aqueous solution.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Regan, L -- DeGrado, W F -- New York, N.Y. -- Science. 1988 Aug 19;241(4868):976-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉E. I. du Pont de Nemours & Company, Central Research & Development Department, Wilmington, DE 19898.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3043666" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Chemical Phenomena ; Chemistry ; Chromatography, Gel ; Escherichia coli/genetics ; Molecular Sequence Data ; Plasmids ; *Protein Conformation ; *Proteins/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1988-07-01
    Description: Expression of the interleukin-2 receptor (IL-2R alpha) gene is activated by the transcriptional activator protein, Tax (previously referred to as the tat gene product), encoded by the human T-cell leukemia virus (HTLV-I). Multiple protein binding sites for specific DNA-protein interactions were identified over the upstream IL-2R alpha transcriptional regulatory sequences. However, only one region, which includes the sequence motif GGGGAATCTCCC, was required for activation by both the tax gene product and mitogenic stimulation. Remarkably, this sequence also bound the nuclear factor NF kappa B, which is important for induction of kappa-immunoglobulin gene expression. A model is presented whereby regulation of cellular gene expression by the HTLV-I tax gene product occurs via an indirect mechanism that may involve a post-translational modification of preexistent cellular transcription factors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ruben, S -- Poteat, H -- Tan, T H -- Kawakami, K -- Roeder, R -- Haseltine, W -- Rosen, C A -- New York, N.Y. -- Science. 1988 Jul 1;241(4861):89-92.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Oncology, Roche Institute of Molecular Biology, Nutley, NJ 07110.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2838905" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Binding Sites ; Cell Line ; DNA/genetics/metabolism ; Deltaretrovirus/*genetics ; Gene Expression Regulation/*drug effects ; Gene Products, tat ; Immunoglobulin kappa-Chains/genetics ; Mutation ; Plasmids ; Promoter Regions, Genetic ; Receptors, Immunologic/*genetics ; Receptors, Interleukin-2 ; Regulatory Sequences, Nucleic Acid ; Transcription Factors/genetics/metabolism/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1988-07-01
    Description: A method of combinatorial cassette mutagenesis was designed to readily determine the informational content of individual residues in protein sequences. The technique consists of simultaneously randomizing two or three positions by oligonucleotide cassette mutagenesis, selecting for functional protein, and then sequencing to determine the spectrum of allowable substitutions at each position. Repeated application of this method to the dimer interface of the DNA-binding domain of lambda repressor reveals that the number and type of substitutions allowed at each position are extremely variable. At some positions only one or two residues are functionally acceptable; at other positions a wide range of residues and residue types are tolerated. The number of substitutions allowed at each position roughly correlates with the solvent accessibility of the wild-type side chain.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reidhaar-Olson, J F -- Sauer, R T -- AI-15706/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1988 Jul 1;241(4861):53-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Massachusetts Institute of Technology, Cambridge 02139.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3388019" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Codon ; DNA/genetics/metabolism ; *DNA-Binding Proteins ; Macromolecular Substances ; Molecular Sequence Data ; Mutation ; Plasmids ; Protein Conformation ; Repressor Proteins/*genetics ; Structure-Activity Relationship ; Transcription Factors/*genetics ; Viral Proteins ; Viral Regulatory and Accessory Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1988-11-25
    Description: The gp120 envelope glycoprotein of the human immunodeficiency virus (HIV), which is expressed on the surface of many HIV-infected cells, binds to the cell surface molecule CD4. Soluble derivatives of recombinant CD4 (rCD4) that bind gp120 with high affinity are attractive vehicles for targeting a cytotoxic reagent to HIV-infected cells. Soluble rCD4 was conjugated to the active subunit of the toxin ricin. This conjugate killed HIV-infected H9 cells but was 1/1000 as toxic to uninfected H9 cells (which do not express gp120) and was not toxic to Daudi cells (which express major histocompatibility class II antigens, the putative natural ligand for cell surface CD4). Specific killing of infected cells can be blocked by rgp120, rCD4, or a monoclonal antibody to the gp120 binding site on CD4.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Till, M A -- Ghetie, V -- Gregory, T -- Patzer, E J -- Porter, J P -- Uhr, J W -- Capon, D J -- Vitetta, E S -- CA-09082/CA/NCI NIH HHS/ -- CA-28149/CA/NCI NIH HHS/ -- CA-41081/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1988 Nov 25;242(4882):1166-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, University of Texas Southwestern Medical Center, Dallas 75235.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2847316" target="_blank"〉PubMed〈/a〉
    Keywords: Antigens, Differentiation, T-Lymphocyte/*administration & dosage/immunology ; Binding Sites ; Cell Line ; Cell Survival ; Electrophoresis, Polyacrylamide Gel ; HIV/*immunology ; HIV Envelope Protein gp120 ; Histocompatibility Antigens Class II/immunology ; Humans ; Recombinant Proteins/administration & dosage/immunology ; Retroviridae Proteins/*immunology/metabolism ; Ricin/metabolism/*pharmacology ; T-Lymphocytes/immunology/microbiology/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1988-07-08
    Description: Molecules involved in the antigen receptor-dependent regulation of early T cell activation genes were investigated with the use of functional sequences of the T cell activation-specific enhancer of interleukin-2 (IL-2). One of these sequences forms a protein complex, NFAT-1, specifically with nuclear extracts of activated T cells. This complex appeared 10 to 25 minutes before the activation of the IL-2 gene. Studies with inhibitors of protein synthesis indicated that the time of synthesis of the activator of the IL-2 gene in Jurkat T cells corresponds to the time of appearance of NFAT-1. NFAT-1, or a very similar protein, bound functional sequences of the long terminal repeat (LTR) of the human immunodeficiency virus type 1; the LTR of this virus is known to be stimulated during early T cell activation. The binding site for this complex activated a linked promoter after transfection into antigen receptor-activated T cells but not other cell types. These characteristics suggest that NFAT-1 transmits signals initiated at the T cell antigen receptor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shaw, J P -- Utz, P J -- Durand, D B -- Toole, J J -- Emmel, E A -- Crabtree, G R -- CA 01048/CA/NCI NIH HHS/ -- CA 39612/CA/NCI NIH HHS/ -- HL 33942/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1988 Jul 8;241(4862):202-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Stanford University, CA 94305.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3260404" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; DNA-Binding Proteins/*physiology ; *Enhancer Elements, Genetic ; HIV/genetics ; Humans ; In Vitro Techniques ; Interleukin-2/genetics ; *Lymphocyte Activation ; Nuclear Proteins/*physiology ; Receptors, Antigen, T-Cell/*physiology ; *Regulatory Sequences, Nucleic Acid ; T-Lymphocytes/*physiology ; Transcription Factors/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1988-12-02
    Description: D-galactose-binding (or chemoreceptor) protein of Escherichia coli serves as an initial component for both chemotaxis towards galactose and glucose and high-affinity active transport of the two sugars. Well-refined x-ray structures of the liganded forms of the wild-type and a mutant protein isolated from a strain defective in chemotaxis but fully competent in transport have provided a molecular view of the sugar-binding site and of a site for interacting with the Trg transmembrane signal transducer. The geometry of the sugar-binding site, located in the cleft between the two lobes of the bilobate protein, is novel in that it is designed for tight binding and sequestering of either the alpha or beta anomer of the D-stereoisomer of the 4-epimers galactose and glucose. Binding specificity and affinity are conferred primarily by polar planar side-chain residues that form intricate networks of cooperative and bidentate hydrogen bonds with the sugar substrates, and secondarily by aromatic residues that sandwich the pyranose ring. Each of the pairs of anomeric hydroxyls and epimeric hydroxyls is recognized by a distinct Asp residue. The site for interaction with the transducer is about 18 A from the sugar-binding site. Mutation of Gly74 to Asp at this site, concomitant with considerable changes in the local ordered water structures, contributes to the lack of productive interaction with the transmembrane signal transducer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vyas, N K -- Vyas, M N -- Quiocho, F A -- New York, N.Y. -- Science. 1988 Dec 2;242(4883):1290-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3057628" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*ultrastructure ; Binding Sites ; *Calcium-Binding Proteins ; Carrier Proteins/*ultrastructure ; *Chemotaxis ; Computer Simulation ; DNA Mutational Analysis ; Escherichia coli ; Galactose/metabolism ; Glucose/metabolism ; Hydrogen Bonding ; Models, Molecular ; *Monosaccharide Transport Proteins ; *Periplasmic Binding Proteins ; Protein Conformation ; Structure-Activity Relationship ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1988-07-08
    Description: Gramicidin, a linear polypeptide composed of hydrophobic amino acids with alternating L- and D- configurations, forms transmembrane ion channels. The crystal structure of a gramicidin-cesium complex has been determined at 2.0 angstrom resolution. In this structure, gramicidin forms a 26 angstrom long tube comprised of two polypeptide chains arranged as antiparallel beta strands that are wrapped into a left-handed helical coil with 6.4 residues per turn. The polypeptide backbone forms the interior of the hydrophilic, solvent-filled pore and the side chains form a hydrophobic and relatively regular surface on the outside of the pore. This example of a crystal structure of a solvent-filled ion pore provides a basis for understanding the physical nature of ion translocation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wallace, B A -- Ravikumar, K -- New York, N.Y. -- Science. 1988 Jul 8;241(4862):182-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Center for Biophysics, Rensselaer Polytechnic Institute, Troy, NY 12180.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2455344" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Cesium ; Computer Simulation ; Crystallography ; *Gramicidin ; *Ion Channels ; Ligands ; Macromolecular Substances ; *Membrane Proteins ; Models, Molecular ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1988-08-05
    Description: Although the proteinase inhibitor alpha-2-antiplasmin (alpha 2AP) is known to control the activity of plasmin through rapid formation of stable complexes, it also efficiently inactivates chymotrypsin. These interactions are shown to occur at adjacent, overlapping sites so that plasmin attacks the inhibitor at an Arg364-Met365 peptide bond, while chymotrypsin interacts at a Met365-Ser366 sequence one residue downstream. Thus, a naturally occurring plasma serine proteinase inhibitor can have multiple specificities through interactions at adjacent sites. It also illustrates the potential flexibility of the reactive site loop in this class of inhibitors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Potempa, J -- Shieh, B H -- Travis, J -- New York, N.Y. -- Science. 1988 Aug 5;241(4866):699-700.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Biology, Jagiellonian University, Cracow, Poland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2456616" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Carboxypeptidase B ; Carboxypeptidases/metabolism ; Carboxypeptidases A ; Chromatography, Gel ; Chromatography, High Pressure Liquid ; Chymotrypsin/antagonists & inhibitors/metabolism ; Electrophoresis, Polyacrylamide Gel ; Humans ; Molecular Sequence Data ; Peptide Fragments/metabolism ; Protease Inhibitors ; alpha-2-Antiplasmin/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1988-09-02
    Description: Study of proteins that recognize specific DNA sequences has yielded much information, but the field is still in its infancy. Already two major structural motifs have been discovered, the helix-turn-helix and zinc finger, and numerous examples of DNA-binding proteins containing either of them are known. The restriction enzyme Eco RI uses yet a different motif. Additional motifs are likely to be found as well. There is a growing understanding of some of the physical chemistry involved in protein-DNA binding, but much remains to be learned before it becomes possible to engineer a protein that binds to a specific DNA sequence.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schleif, R -- New York, N.Y. -- Science. 1988 Sep 2;241(4870):1182-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate Department of Biochemistry, Brandeis University, Waltham, MA 02254.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2842864" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acids/metabolism ; Binding Sites ; Chemical Phenomena ; Chemistry ; DNA/metabolism ; DNA Restriction Enzymes/metabolism ; DNA-Binding Proteins/*metabolism ; Deoxyribonuclease EcoRI ; Electrochemistry ; Nucleic Acids/metabolism ; Protein Conformation ; Zinc
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1988-11-25
    Description: Nucleotide sequences for the nuclear genes encoding chloroplast (GapA and GapB) and cytosolic (GapC) glyceraldehyde-3-phosphate dehydrogenases (GAPDHs) from Arabidopsis thaliana were determined. Comparison of nucleotide sequences indicates that the divergence of chloroplast and cytosolic GAPDH genes preceded the divergence of prokaryotes and eukaryotes. In addition, some intron-exon junctions are conserved among GapB, GapC, and chicken GAPDH genes. These results provide evidence at the molecular level to support the idea that introns existed before the divergence of prokaryotes and eukaryotes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shih, M C -- Heinrich, P -- Goodman, H M -- New York, N.Y. -- Science. 1988 Nov 25;242(4882):1164-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Harvard Medical School, Boston, MA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3055302" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Binding Sites ; *Biological Evolution ; *Cells ; Chickens/genetics ; Chloroplasts/enzymology ; Cytosol/enzymology ; Escherichia coli/genetics ; *Eukaryotic Cells ; Exons ; Glyceraldehyde-3-Phosphate Dehydrogenases/*genetics/metabolism ; *Introns ; Molecular Sequence Data ; NAD/metabolism ; NADP/metabolism ; Plants/genetics ; *Prokaryotic Cells
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1988-06-24
    Description: A specific, reversible binding site for a free amino acid is detectable on the intron of the Tetrahymena self-splicing ribosomal precursor RNA. The site selects arginine among the natural amino acids, and prefers the L- to the D-amino acid. The dissociation constant is in the millimolar range, and amino acid binding is at or in the catalytic rG splicing substrate site. Occupation of the G site by L-arginine therefore inhibits splicing by inhibiting the binding of rG, without inhibition of later reactions in the splicing reaction sequence. Arginine binding specificity seems to be directed at the side chain and the guanidino radical, and the alpha-amino and carboxyl groups are dispensable for binding. The arginine site can be placed within the G site by structural homology, with consequent implications for RNA-amino acid interaction, for the origin of the genetic code, for control of RNA activities, and for further catalytic capabilities for RNA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yarus, M -- R37 GM30881/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1988 Jun 24;240(4860):1751-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder 80309.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3381099" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arginine/*metabolism ; Binding Sites ; Catalysis ; Genetic Code ; Guanosine Triphosphate/metabolism ; Kinetics ; Magnesium/metabolism ; Models, Molecular ; *RNA Splicing ; RNA, Ribosomal/*physiology ; Structure-Activity Relationship ; Tetrahymena
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1988-06-24
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marx, J L -- New York, N.Y. -- Science. 1988 Jun 24;240(4860):1732.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3381097" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; *DNA-Binding Proteins ; Leucine ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 1988-03-25
    Description: The transition from the expression of alpha, the first set of five herpes simplex virus genes expressed after infection, to beta and gamma genes, expressed later in infection, requires the participation of infected cell protein 4 (alpha 4), the major viral regulatory protein. The alpha 4 protein is present in complexes formed by proteins extracted from infected cells and viral DNA fragments derived from promoter domains. This report shows that the alpha 4 protein forms specific complexes with DNA fragments derived from 5' transcribed noncoding domains of late (gamma 2) genes whose expression requires viral DNA synthesis as well as functional alpha 4 protein. Some of the DNA fragments to which alpha 4 binds do not contain homologs of the previously reported DNA binding site consensus sequence, suggesting that alpha 4 may recognize and interact with more than one type of DNA binding site. The alpha 4 proteins can bind to DNA directly. A posttranslationally modified form of the alpha 4 protein designated alpha 4c differs from the alpha 4a and alpha 4b forms with respect to its affinity for DNA fragments differing in the nucleotide sequences of the binding sites.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Michael, N -- Spector, D -- Mavromara-Nazos, P -- Kristie, T M -- Roizman, B -- AI124009/AI/NIAID NIH HHS/ -- CA08494/CA/NCI NIH HHS/ -- CA19264/CA/NCI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1988 Mar 25;239(4847):1531-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Marjorie B. Kovler Viral Oncology Laboratories, University of Chicago, IL 60637.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2832940" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Binding Sites ; DNA, Viral/*metabolism ; DNA-Binding Proteins ; Electrophoresis, Polyacrylamide Gel ; Gene Expression Regulation ; Genes, Viral ; *Immediate-Early Proteins ; Immunoassay ; Molecular Sequence Data ; Sequence Homology, Nucleic Acid ; Simplexvirus/*analysis/genetics ; Transcription Factors ; Viral Proteins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 1988-11-18
    Description: A general chemical strategy has been developed whereby antibody combining sites can be selectively derivatized with natural or synthetic molecules, such as catalytic groups, drugs, metals, or reporter molecules. Cleavable affinity labels were used to selectively introduce a thiol into the combining site of the immunoglobulin A MOPC 315. This thiol acted both as a nucleophile to accelerate ester thiolysis 60,000-fold and as a handle for selectively derivatizing the antibody with additional functional groups. For example, derivatization of the antibody with a fluorophore made possible a direct spectroscopic assay of antibody-ligand complexation. This chemistry should not only extend our ability to exploit antibody specificity in chemical catalysis, diagnostics, and therapeutics, but may also prove generally applicable to the functional modification of other proteins for which detailed structural information is unavailable.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pollack, S J -- Nakayama, G R -- Schultz, P G -- AI24695-02/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1988 Nov 18;242(4881):1038-40.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of California, Berkeley 94720.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3194752" target="_blank"〉PubMed〈/a〉
    Keywords: Affinity Labels ; Animals ; *Antigen-Antibody Reactions ; *Binding Sites, Antibody ; Chemical Phenomena ; Chemistry ; Dinitrobenzenes ; Immunoglobulin Fab Fragments ; Mice ; Spectrometry, Fluorescence ; Sulfhydryl Compounds
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 1988-12-16
    Description: Three variations to the structure of the nicotinamide adenine dinucleotide (NAD)-dependent L-lactate dehydrogenase from Bacillus stearothermophilus were made to try to change the substrate specificity from lactate to malate: Asp197----Asn, Thr246----Gly, and Gln102----Arg). Each modification shifts the specificity from lactate to malate, although only the last (Gln102----Arg) provides an effective and highly specific catalyst for the new substrate. This synthetic enzyme has a ratio of catalytic rate (kcat) to Michaelis constant (Km) for oxaloacetate of 4.2 x 10(6)M-1 s-1, equal to that of native lactate dehydrogenase for its natural substrate, pyruvate, and a maximum velocity (250 s-1), which is double that reported for a natural malate dehydrogenase from B. stearothermophilus.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wilks, H M -- Hart, K W -- Feeney, R -- Dunn, C R -- Muirhead, H -- Chia, W N -- Barstow, D A -- Atkinson, T -- Clarke, A R -- Holbrook, J J -- New York, N.Y. -- Science. 1988 Dec 16;242(4885):1541-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Bristol, United Kingdom.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3201242" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Geobacillus stearothermophilus/*enzymology/genetics ; Kinetics ; L-Lactate Dehydrogenase/*genetics/metabolism ; Malate Dehydrogenase/*metabolism ; Models, Molecular ; Protein Conformation ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 1988-12-09
    Description: Progesterone (PRE) or glucocorticoid receptor (GRE) DNA binding sites are often found clustered with binding sites for other transcription factors. Individual protein binding sites were tested without the influence of adjacent factors by analyzing isolated combinations of several transcription factor binding sites with PREs or GREs. All show strong synergistic effects on steroid induction. The degree of synergism is inversely related to the strength of the GRE. Thus, a steroid responsive unit can be composed of several modules that, if positioned correctly, act synergistically.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schule, R -- Muller, M -- Kaltschmidt, C -- Renkawitz, R -- New York, N.Y. -- Science. 1988 Dec 9;242(4884):1418-20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max-Planck Institut fur Biochemie, Martinsried, Federal Republic of Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3201230" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Binding Sites ; Cloning, Molecular ; Genes ; HeLa Cells/metabolism ; Humans ; Molecular Sequence Data ; Plasmids ; Receptors, Glucocorticoid/*genetics/metabolism ; Receptors, Progesterone/*genetics/metabolism ; Transcription Factors/*genetics/metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 1988-03-04
    Description: Kinetic analysis and protein mutagenesis allow the importance of individual amino acids in ligand binding and catalysis to be assessed. A kinetic analysis has shown that the reaction catalyzed by dihydrofolate reductase is optimized with respect to product flux, which in turn is predetermined by the active-site hydrophobic surface. Protein mutagenesis has revealed that specific hydrophobic residues contribute 2 to 5 kilocalories per mole to ligand binding and catalysis. The extent to which perturbations within this active-site ensemble may affect catalysis is discussed in terms of the constraints imposed by the energy surface for the reaction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Benkovic, S J -- Fierke, C A -- Naylor, A M -- GM24129/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1988 Mar 4;239(4844):1105-10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Pennsylvania State University, University Park 16802.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3125607" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Catalysis ; Chemical Phenomena ; Chemistry ; Escherichia coli/enzymology ; Kinetics ; Lactobacillus casei/enzymology ; *Mutation ; Structure-Activity Relationship ; Tetrahydrofolate Dehydrogenase/genetics/*metabolism ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 1988-08-12
    Description: The interaction between receptors and guanine nucleotide binding (G) proteins leads to G protein activation and subsequent regulation of effector enzymes. The molecular basis of receptor-G protein interaction has been examined by using the ability of the G protein from rods (transducin) to cause a conformational change in rhodopsin as an assay. Synthetic peptides corresponding to two regions near the carboxyl terminus of the G protein alpha subunit, Glu311-Val328 and Ile340-Phe350, compete with G protein for interaction with rhodopsin. Amino acid substitution studies show that Cys321 is required for this effect. Ile340-Phe350 and a modified peptide, acetyl-Glu311-Lys329-amide, mimic G protein effects on rhodopsin conformation, showing that these peptides bind to and stabilize the activated conformation of rhodopsin.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hamm, H E -- Deretic, D -- Arendt, A -- Hargrave, P A -- Koenig, B -- Hofmann, K P -- EY06062/EY/NEI NIH HHS/ -- EY06225/EY/NEI NIH HHS/ -- RP05369/PHS HHS/ -- etc. -- New York, N.Y. -- Science. 1988 Aug 12;241(4867):832-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology and Biophysics, University of Illinois College of Medicine, Chicago 60680.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3136547" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antibodies, Monoclonal ; Antigen-Antibody Complex ; Binding Sites ; GTP-Binding Proteins/*metabolism ; Kinetics ; Macromolecular Substances ; Membrane Proteins/*metabolism ; Peptides/metabolism ; Protein Binding ; Protein Conformation ; Retinal Pigments/*metabolism ; Rhodopsin/analogs & derivatives/*metabolism ; Transducin
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 1988-09-02
    Description: Catalysis of amide bond hydrolysis is of singular importance in enzymology. An antibody was induced to an analog of a high-energy intermediate anticipated along the reaction coordinate of amide hydrolysis. This antibody is an amidase with high specificity and a large rate enhancement (250,000) relative to the uncatalyzed reaction. This reaction represents the kinetically most difficult hydrolysis reaction yet catalyzed by an antibody.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Janda, K D -- Schloeder, D -- Benkovic, S J -- Lerner, R A -- New York, N.Y. -- Science. 1988 Sep 2;241(4870):1188-91.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Research Institute of Scripps Clinic, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3413482" target="_blank"〉PubMed〈/a〉
    Keywords: Amidohydrolases/metabolism ; Animals ; Antibodies, Monoclonal/biosynthesis/*physiology ; Antibody Specificity ; Antigens/immunology ; *Catalysis ; Chemical Phenomena ; Chemistry ; Hemocyanin/analogs & derivatives/immunology ; Hydrolysis ; Immunization ; Kinetics ; Mice ; Organophosphorus Compounds/immunology ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1988-09-30
    Description: Homopurine-homopyrimidine sequences that flank certain actively transcribed genes are hypersensitive to single strand-specific nucleases such as S1. This has raised the possibility that an unusual structure exists in these regions that might be involved in recognition or regulation. Several of these sequences, including d(C-T)n.d(A-G)n, are known to undergo a transition in plasmids to an underwound state that is hypersensitive to single strand-specific nucleases; this transition occurs under conditions of moderately acid pH and negative supercoiling. Chemical probes were used to examine the reactivity of a restriction fragment from a human U1 gene containing the sequence d(C-T)18.d(A-G)18 as a function of supercoiling and pH, and thus analyze the structure in this region. Hyperreactivity was seen in the center and at one end of the (C-T)n tract, and continuously from the center to the same end of the (A-G)n tract, in the presence of supercoiling and pH less than or equal to 6.0. These results provide strong support for a triple-helical model recently proposed for these sequences and are inconsistent with other proposed structures.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Johnston, B H -- New York, N.Y. -- Science. 1988 Sep 30;241(4874):1800-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Massachusetts Institute of Technology, Cambridge 02139.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2845572" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Chemical Phenomena ; Chemistry ; *Dna ; DNA, Superhelical ; Endonucleases/*metabolism ; Hydrogen-Ion Concentration ; Molecular Sequence Data ; *Nucleic Acid Conformation ; Plasmids ; Single-Strand Specific DNA and RNA Endonucleases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 1988-06-24
    Description: A 30-amino-acid segment of C/EBP, a newly discovered enhancer binding protein, shares notable sequence similarity with a segment of the cellular Myc transforming protein. Display of these respective amino acid sequences on an idealized alpha helix revealed a periodic repetition of leucine residues at every seventh position over a distance covering eight helical turns. The periodic array of at least four leucines was also noted in the sequences of the Fos and Jun transforming proteins, as well as that of the yeast gene regulatory protein, GCN4. The polypeptide segments containing these periodic arrays of leucine residues are proposed to exist in an alpha-helical conformation, and the leucine side chains extending from one alpha helix interdigitate with those displayed from a similar alpha helix of a second polypeptide, facilitating dimerization. This hypothetical structure is referred to as the "leucine zipper," and it may represent a characteristic property of a new category of DNA binding proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Landschulz, W H -- Johnson, P F -- McKnight, S L -- New York, N.Y. -- Science. 1988 Jun 24;240(4860):1759-64.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Embryology, Carnegie Institution of Washington, Baltimore, MD 21210.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3289117" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Computer Simulation ; *DNA-Binding Proteins ; *Enhancer Elements, Genetic ; *Leucine ; Models, Molecular ; Protein Conformation ; Proto-Oncogene Proteins ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 1988-07-08
    Description: The crystal structure of the uncomplexed orthorhombic form of gramicidin A has been determined at 120 K and at 0.86 angstrom resolution. The pentadecapeptide crystallizes as a left-handed antiparallel double-stranded helical dimer with 5.6 amino acid residues per turn. The helix has an overall length of 31 angstroms and an average inner channel diameter of 4.80 angstroms. The channel of this crystalline form is void of ions or solvent molecules. The channel diameter varies from a minimum of 3.85 angstroms to a maximum of 5.47 angstroms and contains three pockets where the cross-channel contacts are 5.25 angstroms or greater. The range of variation seen for the phi and psi torsion angles of the backbone of the helix suggests that these potential ion binding sites can be induced to travel the length of the channel in a peristaltic manner by cooperatively varying these angles. The indole rings of the eight tryptophan residues of the dimer are overlapped in three separate regions on the outer surface of the helix when viewed down the barrel of the channel. This arrangement would permit long-chained lipid molecules to nest parallel to the outer channel surface between these protruding tryptophan regions and act like molecular splines to constrain helical twist deformations of the channel.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Langs, D A -- GM32812/GM/NIGMS NIH HHS/ -- HL32303/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1988 Jul 8;241(4862):188-91.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Foundation of Buffalo, NY 14203.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2455345" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Crystallography ; *Gramicidin ; *Ion Channels ; *Membrane Proteins ; Models, Molecular ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 1988-11-11
    Description: The microtubule-associated protein MAP2 is a prominent large-sized component of purified brain microtubules that, like the 36- to 38-kilodalton tau proteins, bears antigenic determinants found in association with the neurofibrillary tangles of Alzheimer's disease. The complete sequence of mouse brain MAP2 was determined from a series of overlapping cloned complementary DNAs. The sequence of the carboxyl-terminal 185 amino acids is very similar (67 percent) to a corresponding region of tau protein, and includes a series of three imperfect repeats, each 18 amino acids long and separated by 13 or 14 amino acids. A subcloned fragment spanning the first two of the 18-amino acid repeats was expressed as a polypeptide by translation in vitro. This polypeptide copurified with microtubules through two successive cycles of polymerization and depolymerization, whereas a control polypeptide derived from the amino-terminal region of MAP2 completely failed to copurify. These data imply that the carboxyl-terminal domain containing the 18-amino acid repeats constitutes the microtubule binding site in MAP2. The occurrence of these repeats in tau protein suggests that these may be a general feature of microtubule binding proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lewis, S A -- Wang, D H -- Cowan, N J -- New York, N.Y. -- Science. 1988 Nov 11;242(4880):936-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, New York University Medical Center, NY 10016.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3142041" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; DNA/genetics ; Mice ; Microtubule-Associated Proteins/genetics/*metabolism ; Microtubules/*metabolism ; Molecular Sequence Data ; Molecular Weight ; Nerve Tissue Proteins ; Protein Biosynthesis ; Repetitive Sequences, Nucleic Acid ; Sequence Homology, Nucleic Acid ; Tubulin/metabolism ; tau Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1988-01-15
    Description: Glycosylated forms of phosphatidylinositol, which have only recently been described in eukaryotic organisms, are now known to play important roles in biological membrane function. These molecules can serve as the sole means by which particular cell-surface proteins are anchored to the membrane. Lipids with similar structures may also be involved in signal transduction mechanisms for the hormone insulin. The utilization of this novel class of lipid molecules for these two distinct functions suggests new mechanisms for the regulation of proteins in biological membranes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Low, M G -- Saltiel, A R -- DK33804/DK/NIDDK NIH HHS/ -- GM35873/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1988 Jan 15;239(4837):268-75.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons of Columbia University, New York, NY 10032.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3276003" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Membrane/*physiology ; Chemical Phenomena ; Chemistry ; Glycolipids/biosynthesis/*physiology ; Glycosylation ; Humans ; Hydrolysis ; Insulin/physiology ; Membrane Lipids/physiology ; Membrane Proteins/physiology ; Phosphatidylinositols/biosynthesis/*physiology ; Phospholipases/metabolism ; Phospholipid Ethers/biosynthesis/physiology ; Trypanosoma brucei brucei/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 1988-11-11
    Description: The repressors of temperate bacteriophages such as 434 and lambda control transcription by binding to a set of DNA operator sites. The different affinity of repressor for each of these sites ensures efficient regulation. High-resolution x-ray crystallography was used to study the DNA-binding domain of phage 434 repressor in complex with a synthetic DNA operator. The structure shows recognition of the operator by direct interactions with base pairs in the major groove, combined with the sequence-dependent ability of DNA to adopt the required conformation on binding repressor. In particular, a network of three-centered bifurcated hydrogen bonds among base pairs in the operator helps explain why 434 repressor prefers certain sites over others. These bonds, which stabilize the conformation of the bound DNA, can form only with certain sequences.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Aggarwal, A K -- Rodgers, D W -- Drottar, M -- Ptashne, M -- Harrison, S C -- GMS-29109/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1988 Nov 11;242(4880):899-907.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, Harvard University, Cambridge, MA 02138.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3187531" target="_blank"〉PubMed〈/a〉
    Keywords: Base Composition ; Base Sequence ; Binding Sites ; DNA/*metabolism ; *DNA-Binding Proteins ; Hydrogen Bonding ; Molecular Structure ; Nucleic Acid Conformation ; *Operator Regions, Genetic ; Protein Binding ; Protein Conformation ; Repressor Proteins/*metabolism ; Software ; Transcription Factors/*metabolism ; Viral Proteins/*metabolism ; Viral Regulatory and Accessory Proteins ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1988-10-14
    Description: Oligonucleotide-directed mutagenesis of the codons for glutamine-68 (Gln68), lysine-72 (Lys72), isoleucine-79 (Ile79), alanine-80 (Ala80), and threonine-81 (Thr81) of the Escherichia coli trpR (tryptophan aporepressor) gene was used to make mutant repressors with each of 36 different amino acid changes. Mutant repressors were tested for binding to each member of a set of 28 different operators closely related to the consensus trp operator. Of the 36 mutant repressors, 11 bind a subset of the 28 operators; 5 of these have new binding specificities. These new specificities indicate that the hydroxyl group of Thr81 makes a specific contact with one of the four critical base pairs in a trp operator half-site, and the methyl group of Thr81 determines specificity at a second, critical base pair. The Trp repressor does not use the first two amino acids of its "recognition alpha-helix," Ile79 and Ala80, to make sequence-specific DNA contacts, and interacts with its operator in vivo in a way fundamentally different from the way that phage lambda repressor, lambda Cro protein, and coliphage 434 repressor contact their respective binding sites.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bass, S -- Sorrells, V -- Youderian, P -- GM34150/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1988 Oct 14;242(4876):240-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, University of Southern California, Los Angeles 90089-1481.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3140377" target="_blank"〉PubMed〈/a〉
    Keywords: Alanine/genetics ; Amino Acid Sequence ; Apoproteins/*genetics/metabolism ; Bacterial Proteins ; Base Sequence ; Binding Sites ; Codon ; DNA, Bacterial/*metabolism ; Escherichia coli/*genetics ; *Escherichia coli Proteins ; Glutamine/genetics ; Isoleucine/genetics ; Lysine/genetics ; Mutation ; Operator Regions, Genetic ; Protein Conformation ; Repressor Proteins/*genetics/metabolism ; Threonine/genetics ; Transcription Factors/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1988-11-18
    Description: Low molecular weight material associated with affinity-purified class II major histocompatibility complex (MHC) molecules of mouse (Ia) had the expected properties of peptides bound to the antigen binding site of Ia. Thus, the low molecular weight material derived from the I-Ad isotype was efficient in inhibiting the binding of 125I-labeled I-Ad-specific peptide to I-Ad, but did not significantly inhibit the binding of an I-Ed-specific peptide to I-Ed; the reciprocal isotype-specific inhibition was demonstrated with low molecular weight material derived from I-Ed. The inhibitory material was predominantly peptide in nature, as shown by its susceptibility to protease digestion. It was heterogeneous as measured by gel filtration (mean molecular weight approximately 3000), and when characterized by high-performance liquid chromatography, it eluted over a wide concentration of solvent. Such self peptide-MHC complexes may have broad significance in the biology of T cell responses, including generation of the T cell repertoire, the specificity of mixed lymphocyte responses, and the immune surveillance of self and nonself antigens in peripheral lymphoid tissues.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Buus, S -- Sette, A -- Colon, S M -- Grey, H M -- AI09758/AI/NIAID NIH HHS/ -- AI18634/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1988 Nov 18;242(4881):1045-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, National Jewish Center for Immunology and Respiratory Medicine, Denver, CO 80206.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3194755" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Autoantigens/immunology ; Binding Sites ; Chromatography, High Pressure Liquid ; Histocompatibility Antigens Class II/isolation & purification/*metabolism ; Mice ; Molecular Weight ; Ovalbumin/metabolism ; Peptides/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 1988-10-07
    Description: Many adhesive interactions are mediated by Arg-Gly-Asp (RGD) sequences within adhesive proteins. Such RGD sequences are frequently recognized by structurally related heterodimers that are members of the integrin family of adhesion receptors. A region was found in the platelet RGD receptor, gpIIb/IIIa, to which an RGD peptide becomes chemically cross-linked. This region corresponds to residues 109 to 171 of gpIIIa. This segment is conserved among the beta subunits of the integrins (76 percent identity of sequence), indicating that it may play a role in the adhesive functions of this family of receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉D'Souza, S E -- Ginsberg, M H -- Burke, T A -- Lam, S C -- Plow, E F -- HL16411/HL/NHLBI NIH HHS/ -- HL28235/HL/NHLBI NIH HHS/ -- HL38292/HL/NHLBI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1988 Oct 7;242(4875):91-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, Research Institute of Scripps Clinic, La Jolla, California 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3262922" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Blood Platelets/immunology ; Humans ; Integrins ; Membrane Glycoproteins/genetics/*metabolism ; Molecular Sequence Data ; Platelet Membrane Glycoproteins/genetics/metabolism ; Protein Binding ; Receptors, Immunologic/*metabolism ; *Receptors, Peptide
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 1988-02-19
    Description: The crystal structure at 2.7 A resolution of the normal human c-H-ras oncogene protein lacking a flexible carboxyl-terminal 18 residue reveals that the protein consists of a six-stranded beta sheet, four alpha helices, and nine connecting loops. Four loops are involved in interactions with bound guanosine diphosphate: one with the phosphates, another with the ribose, and two with the guanine base. Most of the transforming proteins (in vivo and in vitro) have single amino acid substitutions at one of a few key positions in three of these four loops plus one additional loop. The biological functions of the remaining five loops and other exposed regions are at present unknown. However, one loop corresponds to the binding site for a neutralizing monoclonal antibody and another to a putative "effector region"; mutations in the latter region do not alter guanine nucleotide binding or guanosine triphosphatase activity but they do reduce the transforming activity of activated proteins. The data provide a structural basis for understanding the known biochemical properties of normal as well as activated ras oncogene proteins and indicate additional regions in the molecule that may possibly participate in other cellular functions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉de Vos, A M -- Tong, L -- Milburn, M V -- Matias, P M -- Jancarik, J -- Noguchi, S -- Nishimura, S -- Miura, K -- Ohtsuka, E -- Kim, S H -- CA 45593/CA/NCI NIH HHS/ -- GM 29287/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1988 Feb 19;239(4842):888-93.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of California, Berkely 94720.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2448879" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antibodies, Monoclonal/immunology ; Binding Sites ; Catalysis ; Crystallization ; Epitopes/immunology ; Escherichia coli/genetics ; GTP Phosphohydrolases ; Guanosine Diphosphate/metabolism ; Guanosine Triphosphate/metabolism ; Neoplasms/genetics ; Phosphates/metabolism ; Protein Conformation ; Proto-Oncogene Proteins/genetics/immunology/*metabolism ; Proto-Oncogene Proteins p21(ras) ; Recombinant Proteins/metabolism ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 1988-04-22
    Description: The three-dimensional structure of most enzymes is unknown; however, many enzymes may have structural motifs similar to those in the known structures of functionally related enzymes. Evidence is presented that an enzyme of unknown structure [Ile-transfer RNA (tRNA) synthetase] may share a functionally important structural motif with an enzyme of related function (Tyr-tRNA synthetase). This approach involves (i) identifying segments of Ile-tRNA synthetase that have been unusually conserved during evolution, (ii) predicting the function of one such segment by assuming a structural relation between Ile-tRNA synthetase and Tyr-tRNA synthetase, and (iii) testing the predicted function by mutagenesis and subsequent biochemical analysis. Random mutations were introduced by cassette mutagenesis into a ten-amino-acid segment of Ile-tRNA synthetase that was predicted to be involved in the formation of the binding site for isoleucine. Few amino acid substitutions appear to be tolerated in this region. However, one substitution (independently isolated twice) increased the Michaelis constant Km for isoleucine in the adenylate synthesis reaction by greater than 6000-fold, but had little effect on the Km for adenosine triphosphate, the apparent Km for tRNA, or the rate constant kcat.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Clarke, N D -- Lien, D C -- Schimmel, P -- GM15539/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1988 Apr 22;240(4851):521-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Massachusetts Institute of Technology, Cambridge 02139.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3282306" target="_blank"〉PubMed〈/a〉
    Keywords: *Amino Acyl-tRNA Synthetases ; Binding Sites ; DNA Mutational Analysis ; Escherichia coli/enzymology ; *Isoleucine-tRNA Ligase ; Kinetics ; Protein Conformation ; Saccharomyces cerevisiae/enzymology ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1988-05-06
    Description: The origins, definitions, tools, and guiding principles of host-guest chemistry are developed. Perching, nesting, and capsular complexes are exemplified through molecular model and crystal structure comparisons. The degree of preorganization of a host for binding is a central determinant of its binding power. Complementarity of binding site placement in host and guest is a central determinant of structural recognition in complexation. Examples are given of chiral recognition in complexation, of partial transacylase mimics, of caviplexes, and of a synthetic molecular cell.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cram, D J -- New York, N.Y. -- Science. 1988 May 6;240(4853):760-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry, University of California, Los Angeles 90024.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3283937" target="_blank"〉PubMed〈/a〉
    Keywords: Acylation ; Binding Sites ; Chemical Phenomena ; Chemistry ; Crystallization ; Enzymes ; *Models, Chemical ; Models, Molecular ; Nucleic Acids ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 1988-04-08
    Description: Site-directed mutagenesis of the large fragment of DNA polymerase I (Klenow fragment) yielded two mutant proteins lacking 3',5'-exonuclease activity but having normal polymerase activity. Crystallographic analysis of the mutant proteins showed that neither had any alteration in protein structure other than the expected changes at the mutation sites. These results confirmed the presumed location of the exonuclease active site on the small domain of Klenow fragment and its physical separation from the polymerase active site. An anomalous scattering difference Fourier of a complex of the wild-type enzyme with divalent manganese ion and deoxythymidine monophosphate showed that the exonuclease active site has binding sites for two divalent metal ions. The properties of the mutant proteins suggest that one metal ion plays a role in substrate binding while the other is involved in catalysis of the exonuclease reaction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Derbyshire, V -- Freemont, P S -- Sanderson, M R -- Beese, L -- Friedman, J M -- Joyce, C M -- Steitz, T A -- GM-22778/GM/NIGMS NIH HHS/ -- GM-28550/GM/NIGMS NIH HHS/ -- RR-01644/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 1988 Apr 8;240(4849):199-201.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biophysics and Biochemistry, Yale University Medical School, New Haven, CT 06510.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2832946" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Catalysis ; Computer Graphics ; Crystallography ; DNA Mutational Analysis ; *DNA Polymerase I/genetics ; Escherichia coli/enzymology ; Exonucleases ; Metals ; Models, Molecular ; Protein Conformation ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1988-04-29
    Description: Exposure of Escherichia coli to low concentrations of hydrogen peroxide results in DNA damage that causes mutagenesis and kills the bacteria, whereas higher concentrations of peroxide reduce the amount of such damage. Earlier studies indicated that the direct DNA oxidant is a derivative of hydrogen peroxide whose formation is dependent on cell metabolism. The generation of this oxidant depends on the availability of both reducing equivalents and an iron species, which together mediate a Fenton reaction in which ferrous iron reduces hydrogen peroxide to a reactive radical. An in vitro Fenton system was established that generates DNA strand breaks and inactivates bacteriophage and that also reproduces the suppression of DNA damage by high concentrations of peroxide. The direct DNA oxidant both in vivo and in this in vitro system exhibits reactivity unlike that of a free hydroxyl radical and may instead be a ferryl radical.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Imlay, J A -- Chin, S M -- Linn, S -- GM19020/GM/NIGMS NIH HHS/ -- P30ES01896/ES/NIEHS NIH HHS/ -- New York, N.Y. -- Science. 1988 Apr 29;240(4852):640-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of California, Berkeley 94720.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2834821" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteriophage lambda ; Chemical Phenomena ; Chemistry ; *DNA Damage ; DNA Repair ; DNA, Bacterial/*drug effects ; Escherichia coli/drug effects/*genetics ; Ferrous Compounds ; Free Radicals ; Hydrogen Peroxide/administration & dosage/*pharmacology ; Hydrogen-Ion Concentration ; Hydroxides ; Hydroxyl Radical ; Oxidation-Reduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 1988-12-23
    Description: Hypocalcemic vitamin D-resistant rickets is a human genetic disease resulting from target organ resistance to the action of 1,25-dihydroxyvitamin D3. Two families with affected children homozygous for this autosomal recessive disorder were studied for abnormalities in the intracellular vitamin D receptor (VDR) and its gene. Although the receptor displays normal binding of 1,25-dihydroxyvitamin D3 hormone, VDR from affected family members has a decreased affinity for DNA. Genomic DNA isolated from these families was subjected to oligonucleotide-primed DNA amplification, and each of the nine exons encoding the receptor protein was sequenced for a genetic mutation. In each family, a different single nucleotide mutation was found in the DNA binding domain of the protein; one family near the tip of the first zinc finger (Gly----Asp) and one at the tip of the second zinc finger (Arg----Gly). The mutant residues were created in vitro by oligonucleotide directed point mutagenesis of wild-type VDR complementary DNA and this cDNA was transfected into COS-1 cells. The produced protein is biochemically indistinguishable from the receptor isolated from patients.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hughes, M R -- Malloy, P J -- Kieback, D G -- Kesterson, R A -- Pike, J W -- Feldman, D -- O'Malley, B W -- New York, N.Y. -- Science. 1988 Dec 23;242(4886):1702-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Baylor College of Medicine, Houston, TX 77030.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2849209" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Calcitriol/metabolism ; Cell Line ; Cell Line, Transformed ; Codon ; DNA/genetics/metabolism ; Exons ; Female ; Gene Amplification ; Homozygote ; Humans ; Hypocalcemia/*genetics ; Immunoblotting ; Male ; Molecular Sequence Data ; *Mutation ; Receptors, Calcitriol ; Receptors, Steroid/*genetics/metabolism ; Rickets/*genetics ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1988-06-03
    Description: A major portion of the toxicity of hydrogen peroxide in Escherichia coli is attributed to DNA damage mediated by a Fenton reaction that generates active forms of hydroxyl radicals from hydrogen peroxide, DNA-bound iron, and a constant source of reducing equivalents. Kinetic peculiarities of DNA damage production by hydrogen peroxide in vivo can be reproduced by including DNA in an in vitro Fenton reaction system in which iron catalyzes the univalent reduction of hydrogen peroxide by the reduced form of nicotinamide adenine dinucleotide (NADH). To minimize the toxicity of oxygen radicals, the cell utilizes scavengers of these radicals and DNA repair enzymes. On the basis of observations with the model system, it is proposed that the cell may also decrease such toxicity by diminishing available NAD(P)H and by utilizing oxygen itself to scavenge active free radicals into superoxide, which is then destroyed by superoxide dismutase.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Imlay, J A -- Linn, S -- New York, N.Y. -- Science. 1988 Jun 3;240(4857):1302-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University of California, Berkeley.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3287616" target="_blank"〉PubMed〈/a〉
    Keywords: Chemical Phenomena ; Chemistry ; *DNA Damage ; DNA, Bacterial/*drug effects ; Escherichia coli/drug effects/*genetics ; Free Radicals ; Hydrogen Peroxide/*pharmacology ; Iron ; NAD/metabolism ; Oxidation-Reduction ; Oxygen/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 1988-08-05
    Description: The x-ray structures of the allosteric enzyme aspartate transcarbamylase from Escherichia coli have been solved and refined for both allosteric forms. The T form was determined in the presence of the heterotropic inhibitor cytidine triphosphate, CTP, while the R form was determined in the presence of the bisubstrate analog N-phosphonacetyl-L-aspartate. These two x-ray structures provide the starting point for an understanding of how allosteric enzymes are able to control the rates of metabolic pathways. Insights into the mechanisms of both catalysis and homotropic cooperativity have been obtained by using site-directed mutagenesis to probe residues thought to be critical to the function of the enzyme based on these x-ray structures.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kantrowitz, E R -- Lipscomb, W N -- GM 06920/GM/NIGMS NIH HHS/ -- GM26237/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1988 Aug 5;241(4866):669-74.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Boston College, MA 02167.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3041592" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Allosteric Site ; Aspartate Carbamoyltransferase/*physiology ; Binding Sites ; Chemical Phenomena ; Chemistry ; Escherichia coli/*enzymology ; Macromolecular Substances ; Protein Conformation ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 1988-07-01
    Description: The three-dimensional structure of ribulose-1,5-biphosphate carboxylase-oxygenase (RuBisCO), has been determined at 2.6 A resolution. This enzyme initiates photosynthesis by combining carbon dioxide with ribulose bisphosphate to form two molecules of 3-phosphoglycerate. In plants, RuBisCO is built from eight large (L) and eight small (S) polypeptide chains, or subunits. Both S chains and the NH2-terminal domain (N) of L are antiparallel beta, "open-face-sandwich" domains with four-stranded beta sheets and flanking alpha helices. The main domain (B) of L is an alpha/beta barrel containing most of the catalytic residues. The active site is in a pocket at the opening of the barrel that is partly covered by the N domain of a neighboring L chain. The domain contacts of the molecule and its conserved residues are discussed in terms of this structure.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chapman, M S -- Suh, S W -- Curmi, P M -- Cascio, D -- Smith, W W -- Eisenberg, D S -- New York, N.Y. -- Science. 1988 Jul 1;241(4861):71-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Biology Institute, University of California, Los Angeles 90024.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3133767" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Macromolecular Substances ; Molecular Sequence Data ; Plants/*enzymology ; Protein Conformation ; Rhodospirillum rubrum/enzymology ; *Ribulose-Bisphosphate Carboxylase ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1988-05-13
    Description: Analyses of steroid receptors are important for understanding molecular details of transcriptional control, as well as providing insight as to how an individual transacting factor contributes to cell identity and function. These studies have led to the identification of a superfamily of regulatory proteins that include receptors for thyroid hormone and the vertebrate morphogen retinoic acid. Although animals employ complex and often distinct ways to control their physiology and development, the discovery of receptor-related molecules in a wide range of species suggests that mechanisms underlying morphogenesis and homeostasis may be more ubiquitous than previously expected.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Evans, R M -- New York, N.Y. -- Science. 1988 May 13;240(4854):889-95.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92138-9216.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3283939" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Binding Sites ; DNA/metabolism ; Gene Expression Regulation ; Humans ; Receptors, Steroid/genetics/*physiology ; Receptors, Thyroid Hormone/genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 1988-03-04
    Description: The Fos protein complex and several Fos-related antigens bind directly or indirectly to a common sequence element that is similar to the consensus binding site for HeLa cell activator protein 1 (AP-1). This element is present in a negative regulatory sequence in the differentiation-sensitive adipocyte gene, aP2; in a transcriptional enhancer for the Gibbon ape leukemia virus; and in a region of the human immunodeficiency virus (HIV) long terminal repeat partially characterized as a negative regulatory element. The protein level and binding activity of Fos and Fos-related antigens increase rapidly after calcium ionophore treatment of a CD4+ human lymphoblast cell line, H9. These data suggest that several proteins may associate with the AP-1 binding site. Moreover, temporally regulated control of the level of each protein could represent a mechanism for modulation of these putative mediators of gene expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Franza, B R Jr -- Rauscher, F J 3rd -- Josephs, S F -- Curran, T -- New York, N.Y. -- Science. 1988 Mar 4;239(4844):1150-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cold Spring Harbor Laboratory, NY 11724.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2964084" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Binding Sites ; Calcimycin/pharmacology ; Cell Line ; Chemical Precipitation ; Dna ; Electrophoresis, Polyacrylamide Gel ; Enhancer Elements, Genetic ; HIV/genetics ; Humans ; Immunoassay ; Immunosorbent Techniques ; Molecular Sequence Data ; Proto-Oncogene Proteins/analysis/genetics/immunology/*metabolism ; Proto-Oncogene Proteins c-fos ; Proto-Oncogenes ; Regulatory Sequences, Nucleic Acid ; Repetitive Sequences, Nucleic Acid ; T-Lymphocytes, Helper-Inducer/cytology/drug effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 1988-11-11
    Description: The crystal structure of a complex containing the DNA-binding domain of lambda repressor and a lambda operator site was determined at 2.5 A resolution and refined to a crystallographic R factor of 24.2 percent. The complex is stabilized by an extensive network of hydrogen bonds between the protein and the sugar-phosphate backbone. Several side chains form hydrogen bonds with sites in the major groove, and hydrophobic contacts also contribute to the specificity of binding. The overall arrangement of the complex is quite similar to that predicted from earlier modeling studies, which fit the protein dimer against linear B-form DNA. However, the cocrystal structure reveals important side chain-side chain interactions that were not predicted from the modeling or from previous genetic and biochemical studies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jordan, S R -- Pabo, C O -- GM-31471/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1988 Nov 11;242(4880):893-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biophysics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3187530" target="_blank"〉PubMed〈/a〉
    Keywords: Base Composition ; Base Sequence ; Binding Sites ; Chemical Phenomena ; Chemistry ; Crystallization ; DNA/*metabolism ; *DNA-Binding Proteins ; Glutamine/metabolism ; Hydrogen Bonding ; Molecular Sequence Data ; Molecular Structure ; Nucleic Acid Conformation ; *Operator Regions, Genetic ; Protein Binding ; Protein Conformation ; Repressor Proteins/genetics/*metabolism ; Sugar Phosphates/metabolism ; Transcription Factors/*metabolism ; Viral Proteins ; Viral Regulatory and Accessory Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...