ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Humans  (7,470)
  • Chemistry
  • LUNAR AND PLANETARY EXPLORATION
  • 2010-2014  (7,486)
Collection
Years
Year
  • 1
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution May 1998
    Description: Planktonic protozoan grazers have the potential to significantly affect the chemistry of particle-associated trace metals. This is due both to the importance of protists as consumers of bacterial-sized particles, and to the unique low-pH, enzyme-rich microenvironment of the grazer food vacuole. This thesis examines the role of protozoan grazers in the marine geochemistry of strongly hydrolyzed, particle-reactive trace metals, in particular Th and Fe. A series of tracer experiments was carried out in model systems in order to determine the effect of grazer-mediated transformations on the chemical speciation and partitioning of radioisotopes C9Fe, 234Th, 51Cr) associated with prey cells. Results indicate that protozoan grazers are equally able to mobilize intracellular and extracellular trace metals. In some cases, protozoan regeneration of trace metals appears to lead to the formation of metal-organic complexes. Protozoan grazing may generate colloidal material that can scavenge trace metals and, via aggregation, lead to an increase in the metal/organic carbon ratio of aggregated particles. Model system experiments were also conducted in order to determine the effect of grazers on mineral phases, specifically colloidal iron oxide (ferrihydrite). Several independent techniques were employed, including size fractionation ors9Fe-labeled colloids, competitive ligand exchange, and iron-limited diatoms as "probes" for bioavailable Fe. Experimental evidence strongly suggests that protozoan grazing can affect the surface chemistry and increase the dissolution rate of iron oxide phases through phagotrophic ingestion. In further work on protozoan-mediated dissolution of colloidal Fe oxides, a novel tracer technique was developed based on the synthesis of colloidal ferrihydrite impregnated with 133Ba as an inert tracer. This technique was shown to be a sensitive, quantitative indicator for the extent of ferrihydrite dissolution/alteration by a variety of mechanisms, including photochemical reduction and ligand-mediated dissolution. In field experiments using this technique, grazing by naturally occuring protistan assemblages was shown to significantly enhance the dissolution rate of colloidal ferrihydrite over that in non-grazing controls. Laboratory and field results indicate that, when integrated temporally over the entire euphotic zone, protozoan grazing may equal or exceed photoreduction as a pathway for the dissolution of iron oxides.
    Description: This work was financially supported by a Department of Defense ONR-NDSEG Graduate Fellowship, Office ofNaval Research AASERT Award (N00014-94-1-0711), and the National Science Foundation EGB Program (OCE-9523910).
    Keywords: Protozoa ; Water chemistry ; Trace elements in water ; Marine zooplankton ; Chemistry
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-05-19
    Description: Daily topical application of the aqueous ethanolic extract of the marine sea grass, Thalassia testudinum, on mice skin exposed to UVB radiation resulted in a dose dependent recovery of the skin macroscopic alterations over a 6-day period. Maximal effect (90%) occurred at a dose of 240 μg/cm2, with no additional effects at higher doses. Bioassay-guided fractionation of the plant extract resulted in the isolation of thalassiolin B (1). Topical application of 1 (240 μg/cm2) markedly reduces skin UVB-induced damage. In addition, thalassiolin B scavenged 2,2-diphenyl-2-picrylhydrazyl radical with an EC50=100 μg/ml. These results suggest that thalassiolin B is responsible for the skin regenerating effects of the crude extract of T. testudinum
    Description: Published
    Description: Flavonoids, Thalassiolin B, DPPH scavenged, antioxidant activity, Skin regenerating activity, Thalassia testudinum
    Keywords: Chemistry ; Pharmacology ; Chemistry ; Pharmacology
    Repository Name: AquaDocs
    Type: Journal Contribution
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-05-19
    Description: Bioguided fractionation of Agelas cerebrum crude extract resulted in isolation of four bromopyrrole and four bromopyrrole aminoimidazole alkaloids, identified as 5-bromopyrrole-2-carboxylic acid (1), 4-bromopyrrole-2-carboxylic acid (2), 3,4-bromopyrrole-2-carboxylic acid (3), 4,5-bromopyrrole-2-carboxylic acid (4), oroidin (5), bromoageliferin (6), dibromoageliferin (7) and dibromosceptrin (8) on the basis of spectroscopic data analyses (UV, IR, HRMS, 1D and 2D NMR) and comparison with literature data. This is the first report of compounds 2 and 3 in a marine sponge belonging to the Agelas genus and the first evidence of the presence of 1 from a natural source.
    Description: Published
    Description: Agelas cerebrum, bromopyrrole alkaloids, antitumoral, antiprotozoal activity
    Keywords: Chemistry ; Alkaloids ; Sponges ; Alkaloids ; Sponges ; Chemistry
    Repository Name: AquaDocs
    Type: Journal Contribution
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-05-19
    Description: La velocidad de descomposición de tres fenólicos, el p-hidroxibenzoico, el protocatecúico y el gálico, los cuales se diferencian en el número de grupos OH, fue investigada en el suelo. Con el aumento de grupos OH aumenta también la velocidad de descomposición microbial. El ácido gálico se descompone más rápido que el protocatecúico y este a su vez más rápido que el phidroxibenzoico.
    Description: The rate of decomposition of the three phenolics, p-hydroxybenzoic acid, protocatechuic acid and gallic acid, whose difference is the amount of OH-groups, was investigated in the soil. With the increase in OH-groups increases the rate of microbial decomposition. Gallic acid decomposes faster than protocatecuic acid and this again faster than p-hydroxybenzoic acid.
    Description: Published
    Keywords: Chemical decomposition ; OH Groups ; Microbes ; Phenols ; Chemistry ; Phenols ; Chemistry
    Repository Name: AquaDocs
    Type: Journal Contribution
    Format: pp.141-143
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-12-30
    Description: The skin represents the primary interface between the host and the environment. This organ is also home to trillions of microorganisms that play an important role in tissue homeostasis and local immunity. Skin microbial communities are highly diverse and can be remodelled over time or in response to environmental challenges. How, in the context of this complexity, individual commensal microorganisms may differentially modulate skin immunity and the consequences of these responses for tissue physiology remains unclear. Here we show that defined commensals dominantly affect skin immunity and identify the cellular mediators involved in this specification. In particular, colonization with Staphylococcus epidermidis induces IL-17A(+) CD8(+) T cells that home to the epidermis, enhance innate barrier immunity and limit pathogen invasion. Commensal-specific T-cell responses result from the coordinated action of skin-resident dendritic cell subsets and are not associated with inflammation, revealing that tissue-resident cells are poised to sense and respond to alterations in microbial communities. This interaction may represent an evolutionary means by which the skin immune system uses fluctuating commensal signals to calibrate barrier immunity and provide heterologous protection against invasive pathogens. These findings reveal that the skin immune landscape is a highly dynamic environment that can be rapidly and specifically remodelled by encounters with defined commensals, findings that have profound implications for our understanding of tissue-specific immunity and pathologies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4667810/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4667810/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Naik, Shruti -- Bouladoux, Nicolas -- Linehan, Jonathan L -- Han, Seong-Ji -- Harrison, Oliver J -- Wilhelm, Christoph -- Conlan, Sean -- Himmelfarb, Sarah -- Byrd, Allyson L -- Deming, Clayton -- Quinones, Mariam -- Brenchley, Jason M -- Kong, Heidi H -- Tussiwand, Roxanne -- Murphy, Kenneth M -- Merad, Miriam -- Segre, Julia A -- Belkaid, Yasmine -- R01 CA173861/CA/NCI NIH HHS/ -- R01 CA190400/CA/NCI NIH HHS/ -- U01 AI095611/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- Intramural NIH HHS/ -- England -- Nature. 2015 Apr 2;520(7545):104-8. doi: 10.1038/nature14052. Epub 2015 Jan 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Immunity at Barrier Sites Initiative, National Institute of Allergy and Infectious Diseases, NIH, Bethesda 20892, USA [2] Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland 20892, USA. ; Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, Maryland 20892, USA. ; 1] Immunity at Barrier Sites Initiative, National Institute of Allergy and Infectious Diseases, NIH, Bethesda 20892, USA [2] Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland 20892, USA [3] Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, Maryland 20892, USA. ; Bioinformatics and Computational Bioscience Branch, National Institute of Allergy and Infectious Diseases, NIH Bethesda, Maryland 20892, USA. ; 1] Immunity at Barrier Sites Initiative, National Institute of Allergy and Infectious Diseases, NIH, Bethesda 20892, USA [2] Immunopathogenesis Section, Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, NIH Bethesda, Maryland 20892, USA. ; Dermatology Branch, National Cancer Institute, NIH Bethesda, Maryland 20892, USA. ; Howard Hughes Medical Institute, Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri 63110, USA. ; Department of Oncological Sciences, Tisch Cancer Institute and Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25539086" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, Bacterial/immunology ; CD8-Positive T-Lymphocytes/cytology/*immunology ; Dendritic Cells/cytology/*immunology ; Humans ; Immunity, Innate/immunology ; Interleukin-17/immunology ; Langerhans Cells/cytology/immunology ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Primates ; Skin/cytology/*immunology/*microbiology ; Staphylococcus epidermidis/immunology ; Symbiosis/*immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-12-24
    Description: The kinetochore is the crucial apparatus regulating chromosome segregation in mitosis and meiosis. Particularly in meiosis I, unlike in mitosis, sister kinetochores are captured by microtubules emanating from the same spindle pole (mono-orientation) and centromeric cohesion mediated by cohesin is protected in the following anaphase. Although meiotic kinetochore factors have been identified only in budding and fission yeasts, these molecules and their functions are thought to have diverged earlier. Therefore, a conserved mechanism for meiotic kinetochore regulation remains elusive. Here we have identified in mouse a meiosis-specific kinetochore factor that we termed MEIKIN, which functions in meiosis I but not in meiosis II or mitosis. MEIKIN plays a crucial role in both mono-orientation and centromeric cohesion protection, partly by stabilizing the localization of the cohesin protector shugoshin. These functions are mediated mainly by the activity of Polo-like kinase PLK1, which is enriched to kinetochores in a MEIKIN-dependent manner. Our integrative analysis indicates that the long-awaited key regulator of meiotic kinetochore function is Meikin, which is conserved from yeasts to humans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Jihye -- Ishiguro, Kei-ichiro -- Nambu, Aya -- Akiyoshi, Bungo -- Yokobayashi, Shihori -- Kagami, Ayano -- Ishiguro, Tadashi -- Pendas, Alberto M -- Takeda, Naoki -- Sakakibara, Yogo -- Kitajima, Tomoya S -- Tanno, Yuji -- Sakuno, Takeshi -- Watanabe, Yoshinori -- England -- Nature. 2015 Jan 22;517(7535):466-71. doi: 10.1038/nature14097. Epub 2014 Dec 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1Yayoi, Tokyo 113-0032, Japan. ; Instituto de Biologia Molecular y Celular del Cancer (CSIC-USAL), 37007 Salamanca, Spain. ; Center for Animal Resources and Development, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811 Japan. ; Laboratory for Chromosome Segregation, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25533956" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Cycle Proteins/metabolism ; Centromere/metabolism ; Chromosomal Proteins, Non-Histone/deficiency/genetics/*metabolism ; *Conserved Sequence ; Female ; Humans ; Infertility/genetics/metabolism ; Kinetochores/*metabolism ; Male ; *Meiosis ; Mice ; Molecular Sequence Data ; Protein-Serine-Threonine Kinases/metabolism ; Proto-Oncogene Proteins/metabolism ; Saccharomyces cerevisiae Proteins/metabolism ; Schizosaccharomyces pombe Proteins/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-12-24
    Description: Broadly, tissue regeneration is achieved in two ways: by proliferation of common differentiated cells and/or by deployment of specialized stem/progenitor cells. Which of these pathways applies is both organ- and injury-specific. Current models in the lung posit that epithelial repair can be attributed to cells expressing mature lineage markers. By contrast, here we define the regenerative role of previously uncharacterized, rare lineage-negative epithelial stem/progenitor (LNEP) cells present within normal distal lung. Quiescent LNEPs activate a DeltaNp63 (a p63 splice variant) and cytokeratin 5 remodelling program after influenza or bleomycin injury in mice. Activated cells proliferate and migrate widely to occupy heavily injured areas depleted of mature lineages, at which point they differentiate towards mature epithelium. Lineage tracing revealed scant contribution of pre-existing mature epithelial cells in such repair, whereas orthotopic transplantation of LNEPs, isolated by a definitive surface profile identified through single-cell sequencing, directly demonstrated the proliferative capacity and multipotency of this population. LNEPs require Notch signalling to activate the DeltaNp63 and cytokeratin 5 program, and subsequent Notch blockade promotes an alveolar cell fate. Persistent Notch signalling after injury led to parenchymal 'micro-honeycombing' (alveolar cysts), indicative of failed regeneration. Lungs from patients with fibrosis show analogous honeycomb cysts with evidence of hyperactive Notch signalling. Our findings indicate that distinct stem/progenitor cell pools repopulate injured tissue depending on the extent of the injury, and the outcomes of regeneration or fibrosis may depend in part on the dynamics of LNEP Notch signalling.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4312207/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4312207/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vaughan, Andrew E -- Brumwell, Alexis N -- Xi, Ying -- Gotts, Jeffrey E -- Brownfield, Doug G -- Treutlein, Barbara -- Tan, Kevin -- Tan, Victor -- Liu, Feng Chun -- Looney, Mark R -- Matthay, Michael A -- Rock, Jason R -- Chapman, Harold A -- F32 HL117600-01/HL/NHLBI NIH HHS/ -- R01 HL44712/HL/NHLBI NIH HHS/ -- U01 HL099995/HL/NHLBI NIH HHS/ -- U01 HL099999/HL/NHLBI NIH HHS/ -- U01 HL111054/HL/NHLBI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Jan 29;517(7536):621-5. doi: 10.1038/nature14112. Epub 2014 Dec 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco (UCSF), San Francisco, California 94143, USA. ; Department of Biochemistry, Stanford University School of Medicine and Howard Hughes Medical Institute, Stanford, California 94305, USA. ; Max Planck Institute for Evolutionary Anthropology, Department of Evolutionary Genetics, Deutscher Platz 6, 04103 Leipzig, Germany. ; Department of Anatomy, School of Medicine, University of California, San Francisco (UCSF), San Francisco, California 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25533958" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bleomycin ; Cell Lineage ; Cell Proliferation ; Cell Separation ; Cysts/metabolism/pathology ; Epithelial Cells/*cytology/metabolism/*pathology ; Female ; Humans ; Keratin-5/metabolism ; Lung/*cytology/*pathology/physiology ; Lung Injury/chemically induced/*pathology/virology ; Male ; Mice ; Orthomyxoviridae Infections/pathology/virology ; Phosphoproteins/genetics/metabolism ; *Re-Epithelialization ; Receptors, Notch/metabolism ; Signal Transduction ; Stem Cell Transplantation ; Stem Cells/*cytology/metabolism ; Trans-Activators/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-12-24
    Description: Despite three decades of successful, predominantly phenotype-driven discovery of the genetic causes of monogenic disorders, up to half of children with severe developmental disorders of probable genetic origin remain without a genetic diagnosis. Particularly challenging are those disorders rare enough to have eluded recognition as a discrete clinical entity, those with highly variable clinical manifestations, and those that are difficult to distinguish from other, very similar, disorders. Here we demonstrate the power of using an unbiased genotype-driven approach to identify subsets of patients with similar disorders. By studying 1,133 children with severe, undiagnosed developmental disorders, and their parents, using a combination of exome sequencing and array-based detection of chromosomal rearrangements, we discovered 12 novel genes associated with developmental disorders. These newly implicated genes increase by 10% (from 28% to 31%) the proportion of children that could be diagnosed. Clustering of missense mutations in six of these newly implicated genes suggests that normal development is being perturbed by an activating or dominant-negative mechanism. Our findings demonstrate the value of adopting a comprehensive strategy, both genome-wide and nationwide, to elucidate the underlying causes of rare genetic disorders.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Deciphering Developmental Disorders Study -- 098395/Wellcome Trust/United Kingdom -- 100140/Wellcome Trust/United Kingdom -- CZD/16/6/Chief Scientist Office/United Kingdom -- WT098051/Wellcome Trust/United Kingdom -- Department of Health/United Kingdom -- England -- Nature. 2015 Mar 12;519(7542):223-8. doi: 10.1038/nature14135. Epub 2014 Dec 24.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25533962" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Animals ; Carrier Proteins/genetics ; Child ; Child, Preschool ; Chromosomal Proteins, Non-Histone/genetics ; Chromosome Aberrations ; DEAD-box RNA Helicases/genetics ; DNA-Binding Proteins/genetics ; Developmental Disabilities/*diagnosis/*genetics ; Dynamin I/genetics ; Exome/genetics ; Female ; Gene Expression Regulation, Developmental ; Genes, Dominant/genetics ; Genome, Human/genetics ; Great Britain ; Guanine Nucleotide Exchange Factors/genetics ; Homeodomain Proteins/genetics ; Humans ; Infant ; Infant, Newborn ; Male ; Mutation, Missense/genetics ; Nerve Tissue Proteins/genetics ; Nuclear Proteins/genetics ; Parents ; Phosphoproteins/genetics ; Polycomb Repressive Complex 1/genetics ; Protein Phosphatase 2/genetics ; Protein-Serine-Threonine Kinases/genetics ; Rare Diseases/genetics ; Transcription Factors/genetics ; Transposases/genetics ; Zebrafish/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-12-24
    Description: Models derived from human pluripotent stem cells that accurately recapitulate neural development in vitro and allow for the generation of specific neuronal subtypes are of major interest to the stem cell and biomedical community. Notch signalling, particularly through the Notch effector HES5, is a major pathway critical for the onset and maintenance of neural progenitor cells in the embryonic and adult nervous system. Here we report the transcriptional and epigenomic analysis of six consecutive neural progenitor cell stages derived from a HES5::eGFP reporter human embryonic stem cell line. Using this system, we aimed to model cell-fate decisions including specification, expansion and patterning during the ontogeny of cortical neural stem and progenitor cells. In order to dissect regulatory mechanisms that orchestrate the stage-specific differentiation process, we developed a computational framework to infer key regulators of each cell-state transition based on the progressive remodelling of the epigenetic landscape and then validated these through a pooled short hairpin RNA screen. We were also able to refine our previous observations on epigenetic priming at transcription factor binding sites and suggest here that they are mediated by combinations of core and stage-specific factors. Taken together, we demonstrate the utility of our system and outline a general framework, not limited to the context of the neural lineage, to dissect regulatory circuits of differentiation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4336237/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4336237/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ziller, Michael J -- Edri, Reuven -- Yaffe, Yakey -- Donaghey, Julie -- Pop, Ramona -- Mallard, William -- Issner, Robbyn -- Gifford, Casey A -- Goren, Alon -- Xing, Jeffrey -- Gu, Hongcang -- Cacchiarelli, Davide -- Tsankov, Alexander M -- Epstein, Charles -- Rinn, John L -- Mikkelsen, Tarjei S -- Kohlbacher, Oliver -- Gnirke, Andreas -- Bernstein, Bradley E -- Elkabetz, Yechiel -- Meissner, Alexander -- F32 DK095537/DK/NIDDK NIH HHS/ -- HG006911/HG/NHGRI NIH HHS/ -- P01 GM099117/GM/NIGMS NIH HHS/ -- P01GM099117/GM/NIGMS NIH HHS/ -- U01 ES017155/ES/NIEHS NIH HHS/ -- U01ES017155/ES/NIEHS NIH HHS/ -- U54 HG006991/HG/NHGRI NIH HHS/ -- England -- Nature. 2015 Feb 19;518(7539):355-9. doi: 10.1038/nature13990. Epub 2014 Dec 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA [2] Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA [3] Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA. ; Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Ramat Aviv 6997801, Israel. ; 1] Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA [2] Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA. ; Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA. ; 1] Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA [2] Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA [3] Center for Systems Biology and Center for Cancer Research, Massachusetts General Hospital, Boston, Massachusetts 02114, USA. ; Applied Bioinformatics, Center for Bioinformatics and Quantitative Biology Center, University of Tubingen, Tubingen 72076, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25533951" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Cell Differentiation/*genetics ; Cell Lineage/genetics ; Embryonic Stem Cells/*cytology/metabolism ; Epigenesis, Genetic/*genetics ; Epigenomics/*methods ; Humans ; Neural Stem Cells/*cytology/*metabolism ; RNA, Small Interfering/analysis/genetics ; Reproducibility of Results ; Transcription Factors/metabolism ; Transcription, Genetic/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-12-24
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tachibana-Konwalski, Kikue -- England -- Nature. 2015 Jan 22;517(7535):441-2. doi: 10.1038/nature14087. Epub 2014 Dec 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), 1030 Vienna, Austria.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25533954" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chromosomal Proteins, Non-Histone/*metabolism ; *Conserved Sequence ; Female ; Humans ; Kinetochores/*metabolism ; Male ; *Meiosis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...