ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-11-12
    Description: Mutations in the X-linked MECP2 gene, which encodes the transcriptional regulator methyl-CpG-binding protein 2 (MeCP2), cause Rett syndrome and several neurodevelopmental disorders including cognitive disorders, autism, juvenile-onset schizophrenia and encephalopathy with early lethality. Rett syndrome is characterized by apparently normal early development followed by regression, motor abnormalities, seizures and features of autism, especially stereotyped behaviours. The mechanisms mediating these features are poorly understood. Here we show that mice lacking Mecp2 from GABA (gamma-aminobutyric acid)-releasing neurons recapitulate numerous Rett syndrome and autistic features, including repetitive behaviours. Loss of MeCP2 from a subset of forebrain GABAergic neurons also recapitulates many features of Rett syndrome. MeCP2-deficient GABAergic neurons show reduced inhibitory quantal size, consistent with a presynaptic reduction in glutamic acid decarboxylase 1 (Gad1) and glutamic acid decarboxylase 2 (Gad2) levels, and GABA immunoreactivity. These data demonstrate that MeCP2 is critical for normal function of GABA-releasing neurons and that subtle dysfunction of GABAergic neurons contributes to numerous neuropsychiatric phenotypes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3057962/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3057962/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chao, Hsiao-Tuan -- Chen, Hongmei -- Samaco, Rodney C -- Xue, Mingshan -- Chahrour, Maria -- Yoo, Jong -- Neul, Jeffrey L -- Gong, Shiaoching -- Lu, Hui-Chen -- Heintz, Nathaniel -- Ekker, Marc -- Rubenstein, John L R -- Noebels, Jeffrey L -- Rosenmund, Christian -- Zoghbi, Huda Y -- 29709/PHS HHS/ -- F31MH078678/MH/NIMH NIH HHS/ -- HD024064/HD/NICHD NIH HHS/ -- HD053862/HD/NICHD NIH HHS/ -- K08 NS052240/NS/NINDS NIH HHS/ -- K08 NS052240-01/NS/NINDS NIH HHS/ -- K08 NS052240-02/NS/NINDS NIH HHS/ -- K08 NS052240-03/NS/NINDS NIH HHS/ -- K08 NS052240-04/NS/NINDS NIH HHS/ -- K08 NS052240-05/NS/NINDS NIH HHS/ -- P30 HD024064/HD/NICHD NIH HHS/ -- P30 HD024064-22/HD/NICHD NIH HHS/ -- R01 HD062553/HD/NICHD NIH HHS/ -- R01 NS048884/NS/NINDS NIH HHS/ -- R01 NS057819/NS/NINDS NIH HHS/ -- R01 NS057819-04/NS/NINDS NIH HHS/ -- R01 NS057819-05/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Nov 11;468(7321):263-9. doi: 10.1038/nature09582.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉]Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21068835" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Autistic Disorder/complications/genetics/pathology/*physiopathology ; Brain/cytology ; Compulsive Behavior/complications/genetics/physiopathology ; Disease Models, Animal ; Electroencephalography ; Genotype ; Glutamate Decarboxylase/metabolism ; Hippocampus/pathology/physiopathology ; Homeodomain Proteins/genetics ; Inhibitory Postsynaptic Potentials ; Long-Term Potentiation ; Male ; Methyl-CpG-Binding Protein 2/*deficiency/genetics/*metabolism ; Mice ; Mice, Transgenic ; Neural Inhibition ; Neuronal Plasticity ; Neurons/metabolism ; Phenotype ; Presynaptic Terminals/metabolism ; Psychomotor Disorders/complications/genetics/physiopathology ; Reflex, Startle/genetics ; Respiration ; Rett Syndrome/complications/genetics/pathology/*physiopathology ; Self-Injurious Behavior/complications/genetics/physiopathology ; *Signal Transduction ; Stereotypic Movement Disorder/complications/genetics/pathology/*physiopathology ; Survival Rate ; Synaptic Transmission ; Vesicular Inhibitory Amino Acid Transport Proteins/genetics ; gamma-Aminobutyric Acid/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-05-07
    Description: Parabiosis experiments indicate that impaired regeneration in aged mice is reversible by exposure to a young circulation, suggesting that young blood contains humoral "rejuvenating" factors that can restore regenerative function. Here, we demonstrate that the circulating protein growth differentiation factor 11 (GDF11) is a rejuvenating factor for skeletal muscle. Supplementation of systemic GDF11 levels, which normally decline with age, by heterochronic parabiosis or systemic delivery of recombinant protein, reversed functional impairments and restored genomic integrity in aged muscle stem cells (satellite cells). Increased GDF11 levels in aged mice also improved muscle structural and functional features and increased strength and endurance exercise capacity. These data indicate that GDF11 systemically regulates muscle aging and may be therapeutically useful for reversing age-related skeletal muscle and stem cell dysfunction.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4104429/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4104429/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sinha, Manisha -- Jang, Young C -- Oh, Juhyun -- Khong, Danika -- Wu, Elizabeth Y -- Manohar, Rohan -- Miller, Christine -- Regalado, Samuel G -- Loffredo, Francesco S -- Pancoast, James R -- Hirshman, Michael F -- Lebowitz, Jessica -- Shadrach, Jennifer L -- Cerletti, Massimiliano -- Kim, Mi-Jeong -- Serwold, Thomas -- Goodyear, Laurie J -- Rosner, Bernard -- Lee, Richard T -- Wagers, Amy J -- 1DP2 OD004345/OD/NIH HHS/ -- 1R01 AG033053/AG/NIA NIH HHS/ -- 1R01 AG040019/AG/NIA NIH HHS/ -- 5U01 HL100402/HL/NHLBI NIH HHS/ -- DP2 OD004345/OD/NIH HHS/ -- P30 AG038072/AG/NIA NIH HHS/ -- R01 AG032977/AG/NIA NIH HHS/ -- R01 AG033053/AG/NIA NIH HHS/ -- R01 AG040019/AG/NIA NIH HHS/ -- R01 AR042238/AR/NIAMS NIH HHS/ -- R01 AR42238/AR/NIAMS NIH HHS/ -- T32 DE007057/DE/NIDCR NIH HHS/ -- U01 HL100402/HL/NHLBI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 May 9;344(6184):649-52. doi: 10.1126/science.1251152. Epub 2014 May 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Harvard Stem Cell Institute and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24797481" target="_blank"〉PubMed〈/a〉
    Keywords: Age Factors ; Aging/blood/drug effects/*physiology ; Animals ; Bone Morphogenetic Proteins/administration & dosage/blood/*physiology ; Growth Differentiation Factors/administration & dosage/blood/*physiology ; Male ; Mice ; Mice, Inbred C57BL ; Muscle, Skeletal/*blood supply/drug effects/*physiology ; Myoblasts, Skeletal/drug effects/*physiology ; Parabiosis ; *Regeneration ; *Rejuvenation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-01-04
    Description: Long-term potentiation (LTP), a well-characterized form of synaptic plasticity, has long been postulated as a cellular correlate of learning and memory. Although LTP can persist for long periods of time, the mechanisms underlying LTP maintenance, in the midst of ongoing protein turnover and synaptic activity, remain elusive. Sustained activation of the brain-specific protein kinase C (PKC) isoform protein kinase M-zeta (PKM-zeta) has been reported to be necessary for both LTP maintenance and long-term memory. Inhibiting PKM-zeta activity using a synthetic zeta inhibitory peptide (ZIP) based on the PKC-zeta pseudosubstrate sequence reverses established LTP in vitro and in vivo. More notably, infusion of ZIP eliminates memories for a growing list of experience-dependent behaviours, including active place avoidance, conditioned taste aversion, fear conditioning and spatial learning. However, most of the evidence supporting a role for PKM-zeta in LTP and memory relies heavily on pharmacological inhibition of PKM-zeta by ZIP. To further investigate the involvement of PKM-zeta in the maintenance of LTP and memory, we generated transgenic mice lacking PKC-zeta and PKM-zeta. We find that both conventional and conditional PKC-zeta/PKM-zeta knockout mice show normal synaptic transmission and LTP at Schaffer collateral-CA1 synapses, and have no deficits in several hippocampal-dependent learning and memory tasks. Notably, ZIP still reverses LTP in PKC-zeta/PKM-zeta knockout mice, indicating that the effects of ZIP are independent of PKM-zeta.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3830948/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3830948/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Volk, Lenora J -- Bachman, Julia L -- Johnson, Richard -- Yu, Yilin -- Huganir, Richard L -- NS36715/NS/NINDS NIH HHS/ -- P30 NS050274/NS/NINDS NIH HHS/ -- R01 NS036715/NS/NINDS NIH HHS/ -- T32 EY017203/EY/NEI NIH HHS/ -- T32 MH015330/MH/NIMH NIH HHS/ -- T32MH15330/MH/NIMH NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Jan 17;493(7432):420-3. doi: 10.1038/nature11802. Epub 2013 Jan 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuroscience, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23283174" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Avoidance Learning/drug effects/physiology ; Behavior, Animal/drug effects/physiology ; Conditioning, Classical ; Fear ; Female ; Hippocampus/drug effects/*physiology ; Isoenzymes/deficiency/genetics/metabolism ; Lipopeptides/pharmacology ; Long-Term Potentiation/drug effects/genetics/physiology ; Male ; Memory, Long-Term/drug effects/*physiology ; Mice ; Mice, Knockout ; Neuronal Plasticity/genetics/*physiology ; Protein Kinase C/antagonists & inhibitors/deficiency/genetics/*metabolism ; Synapses/drug effects/*metabolism ; Synaptic Transmission/drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-06-27
    Description: Cardiac progenitor cells are multipotent and give rise to cardiac endothelium, smooth muscle, and cardiomyocytes. Here, we define and characterize the cardiomyoblast intermediate that is committed to the cardiomyocyte fate, and we characterize the niche signals that regulate commitment. Cardiomyoblasts express Hopx, which functions to coordinate local Bmp signals to inhibit the Wnt pathway, thus promoting cardiomyogenesis. Hopx integrates Bmp and Wnt signaling by physically interacting with activated Smads and repressing Wnt genes. The identification of the committed cardiomyoblast that retains proliferative potential will inform cardiac regenerative therapeutics. In addition, Bmp signals characterize adult stem cell niches in other tissues where Hopx-mediated inhibition of Wnt is likely to contribute to stem cell quiescence and to explain the role of Hopx as a tumor suppressor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jain, Rajan -- Li, Deqiang -- Gupta, Mudit -- Manderfield, Lauren J -- Ifkovits, Jamie L -- Wang, Qiaohong -- Liu, Feiyan -- Liu, Ying -- Poleshko, Andrey -- Padmanabhan, Arun -- Raum, Jeffrey C -- Li, Li -- Morrisey, Edward E -- Lu, Min Min -- Won, Kyoung-Jae -- Epstein, Jonathan A -- 5-T32-GM-007170/GM/NIGMS NIH HHS/ -- K08 HL119553/HL/NHLBI NIH HHS/ -- K08 HL119553-02/HL/NHLBI NIH HHS/ -- R01 HL071546/HL/NHLBI NIH HHS/ -- U01 HL100405/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2015 Jun 26;348(6242):aaa6071. doi: 10.1126/science.aaa6071.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell and Developmental Biology, Penn Cardiovascular Institute, Institute of Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA. ; Department of Genetics, Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA. ; Department of Cell and Developmental Biology, Penn Cardiovascular Institute, Institute of Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA. epsteinj@upenn.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26113728" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Bone Morphogenetic Proteins/genetics/*metabolism ; Cell Lineage/genetics ; Gene Expression ; *Gene Expression Regulation, Developmental ; Heart/*embryology ; Homeodomain Proteins/genetics/*metabolism ; Mice ; Mice, Mutant Strains ; Molecular Sequence Data ; Muscle, Smooth/cytology/metabolism ; Myoblasts, Cardiac/cytology/*metabolism ; Organogenesis/*genetics ; Stem Cell Niche/genetics/physiology ; Tumor Suppressor Proteins/genetics/*metabolism ; Wnt Signaling Pathway/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1981-04-03
    Description: A new autosomal recessive mutation that causes hypothyroidism has been identified in mice. The gene, herein named hypothyroid (hyt), has been mapped on chromosome 12 approximately 30 units from the centromere. The mutants are characterized by retarded growth, infertility, mild anemia, elevated serum cholesterol, very low to undetectable serum thyroxine, and elevated serum thyroid-stimulating hormone. Thyroid glands are in the normal location but are reduced in size and hypoplastic. Mutant mice respond to thyroid hormone therapy by improved growth and fertility. These findings suggest that the hyt mutant gene results in primary hypothyroidism unresponsive to thyroid-stimulating hormone.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Beamer, W J -- Eicher, E M -- Maltais, L J -- Southard, J L -- AM-17947/AM/NIADDK NIH HHS/ -- NS-09378/NS/NINDS NIH HHS/ -- RR-01138/RR/NCRR NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1981 Apr 3;212(4490):61-3.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7209519" target="_blank"〉PubMed〈/a〉
    Keywords: Anemia/etiology ; Animals ; Cholesterol/blood ; Chromosome Mapping ; Crosses, Genetic ; Female ; Genes, Recessive ; Humans ; Hypothyroidism/blood/*genetics/veterinary ; Male ; Mice ; Mice, Mutant Strains/*genetics ; Rodent Diseases/genetics ; Thyroid Gland/pathology ; Thyrotropin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1986-03-14
    Description: Human malignant melanoma cells express specific chondroitin sulfate proteoglycans (mel-CSPG) on the surface, both in vivo and in vitro. Melanocytes in normal skin show no detectable mel-CSPG but can be induced to express the antigen when cultured in the presence of cholera toxin and the tumor promoter 12-O-tetradecanoylphorbol-13-acetate. Most other cell types do not express mel-CSPG either in vivo or in vitro. A study was designed to examine regulatory signals controlling mel-CSPG expression. The gene encoding mel-CSPG was mapped to human chromosome 15, and this chromosome was introduced into rodent cells derived from distinct differentiation lineages. Three types of mel-CSPG--expressing hybrids were found: (i) hybrids derived from human melanomas; (ii) hybrids derived from human cells that do not express mel-CSPG; and (iii) hybrids derived from human cells expressing mel-CSPG that are antigen-negative but that are induced to express mel-CSPG when cultured on extracellular matrix instead of plastic surfaces. Thus, mel-CSPG expression can be controlled both through intrinsic signals, provided by the differentiation program of the rodent fusion partner, and through extrinsic signals, provided by specific cell-matrix interactions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rettig, W J -- Real, F X -- Spengler, B A -- Biedler, J L -- Old, L J -- CA-08748/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1986 Mar 14;231(4743):1281-4.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3633135" target="_blank"〉PubMed〈/a〉
    Keywords: Aggrecans ; Animals ; Antibodies, Monoclonal ; Cell Line ; Cholera Toxin/pharmacology ; Chromosome Mapping ; Chromosomes, Human, 13-15 ; Cricetinae ; Cricetulus ; *Extracellular Matrix Proteins ; Gene Expression Regulation/drug effects ; Glycoproteins/*biosynthesis/genetics ; Humans ; Hybrid Cells/drug effects/*metabolism ; Lectins, C-Type ; Lymphocytes/metabolism ; Melanocytes/drug effects/metabolism ; Melanoma/*metabolism ; Mice ; Neoplasm Proteins/*biosynthesis/genetics ; Neuroblastoma/metabolism ; *Proteoglycans ; Rats ; Tetradecanoylphorbol Acetate/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2010-07-24
    Description: Obesity induced in mice by high-fat feeding activates the protein kinase Cdk5 (cyclin-dependent kinase 5) in adipose tissues. This results in phosphorylation of the nuclear receptor PPARgamma (peroxisome proliferator-activated receptor gamma), a dominant regulator of adipogenesis and fat cell gene expression, at serine 273. This modification of PPARgamma does not alter its adipogenic capacity, but leads to dysregulation of a large number of genes whose expression is altered in obesity, including a reduction in the expression of the insulin-sensitizing adipokine, adiponectin. The phosphorylation of PPARgamma by Cdk5 is blocked by anti-diabetic PPARgamma ligands, such as rosiglitazone and MRL24. This inhibition works both in vivo and in vitro, and is completely independent of classical receptor transcriptional agonism. Similarly, inhibition of PPARgamma phosphorylation in obese patients by rosiglitazone is very tightly associated with the anti-diabetic effects of this drug. All these findings strongly suggest that Cdk5-mediated phosphorylation of PPARgamma may be involved in the pathogenesis of insulin-resistance, and present an opportunity for development of an improved generation of anti-diabetic drugs through PPARgamma.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2987584/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2987584/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Choi, Jang Hyun -- Banks, Alexander S -- Estall, Jennifer L -- Kajimura, Shingo -- Bostrom, Pontus -- Laznik, Dina -- Ruas, Jorge L -- Chalmers, Michael J -- Kamenecka, Theodore M -- Bluher, Matthias -- Griffin, Patrick R -- Spiegelman, Bruce M -- DK087853/DK/NIDDK NIH HHS/ -- DK31405/DK/NIDDK NIH HHS/ -- K99 DK087853/DK/NIDDK NIH HHS/ -- R01 GM084041/GM/NIGMS NIH HHS/ -- R01 GM084041-03/GM/NIGMS NIH HHS/ -- R01-GM084041/GM/NIGMS NIH HHS/ -- R37 DK031405/DK/NIDDK NIH HHS/ -- R37 DK031405-30/DK/NIDDK NIH HHS/ -- S10 RR027270/RR/NCRR NIH HHS/ -- U54 MH084512/MH/NIMH NIH HHS/ -- U54 MH084512-020010/MH/NIMH NIH HHS/ -- U54-MH084512/MH/NIMH NIH HHS/ -- Intramural NIH HHS/ -- England -- Nature. 2010 Jul 22;466(7305):451-6. doi: 10.1038/nature09291.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cancer Biology and Division of Metabolism and Chronic Disease, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20651683" target="_blank"〉PubMed〈/a〉
    Keywords: Adipose Tissue/drug effects/metabolism/physiopathology ; Amino Acid Sequence ; Animals ; Cell Line ; Cyclin-Dependent Kinase 5/*antagonists & inhibitors/genetics/metabolism ; Diabetes Mellitus, Experimental/complications/*drug therapy/metabolism ; Dietary Fats/pharmacology ; Humans ; Insulin/metabolism ; Ligands ; Mice ; Models, Molecular ; Obesity/chemically induced/complications/*metabolism/physiopathology ; PPAR gamma/agonists/*metabolism ; Phosphorylation/drug effects ; Phosphoserine/metabolism ; Protein Conformation ; Thiazolidinediones/*pharmacology/therapeutic use
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2009-10-10
    Description: Neurons in the central nervous system (CNS) lose their ability to regenerate early in development, but the underlying mechanisms are unknown. By screening genes developmentally regulated in retinal ganglion cells (RGCs), we identified Kruppel-like factor-4 (KLF4) as a transcriptional repressor of axon growth in RGCs and other CNS neurons. RGCs lacking KLF4 showed increased axon growth both in vitro and after optic nerve injury in vivo. Related KLF family members suppressed or enhanced axon growth to differing extents, and several growth-suppressive KLFs were up-regulated postnatally, whereas growth-enhancing KLFs were down-regulated. Thus, coordinated activities of different KLFs regulate the regenerative capacity of CNS neurons.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2882032/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2882032/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Moore, Darcie L -- Blackmore, Murray G -- Hu, Ying -- Kaestner, Klaus H -- Bixby, John L -- Lemmon, Vance P -- Goldberg, Jeffrey L -- P30 EY014801/EY/NEI NIH HHS/ -- R01 NS059866/NS/NINDS NIH HHS/ -- R01 NS059866-01A2/NS/NINDS NIH HHS/ -- R01 NS061348/NS/NINDS NIH HHS/ -- R01 NS061348-01A2/NS/NINDS NIH HHS/ -- R01 NS061348-02/NS/NINDS NIH HHS/ -- R01 NS061348-03/NS/NINDS NIH HHS/ -- R01 NS061348-04/NS/NINDS NIH HHS/ -- R03 EY016790/EY/NEI NIH HHS/ -- R03 EY016790-01/EY/NEI NIH HHS/ -- R03 EY016790-02/EY/NEI NIH HHS/ -- R03 EY016790-03/EY/NEI NIH HHS/ -- T32 NS007459/NS/NINDS NIH HHS/ -- T32 NS07492/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2009 Oct 9;326(5950):298-301. doi: 10.1126/science.1175737.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19815778" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/*physiology/ultrastructure ; Cell Count ; Cell Survival ; Cells, Cultured ; Down-Regulation ; Gene Knockout Techniques ; Growth Cones/physiology ; Hippocampus/cytology/physiology ; Kruppel-Like Transcription Factors/genetics/*physiology ; Mice ; Nerve Crush ; Nerve Regeneration ; Neurites/physiology ; Neurons/*physiology ; Optic Nerve Injuries/physiopathology ; Rats ; Retinal Ganglion Cells/cytology/*physiology ; Transcription, Genetic ; Transfection ; Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-10-30
    Description: Pancreatic cancer is a highly lethal malignancy with few effective therapies. We performed exome sequencing and copy number analysis to define genomic aberrations in a prospectively accrued clinical cohort (n = 142) of early (stage I and II) sporadic pancreatic ductal adenocarcinoma. Detailed analysis of 99 informative tumours identified substantial heterogeneity with 2,016 non-silent mutations and 1,628 copy-number variations. We define 16 significantly mutated genes, reaffirming known mutations (KRAS, TP53, CDKN2A, SMAD4, MLL3, TGFBR2, ARID1A and SF3B1), and uncover novel mutated genes including additional genes involved in chromatin modification (EPC1 and ARID2), DNA damage repair (ATM) and other mechanisms (ZIM2, MAP2K4, NALCN, SLC16A4 and MAGEA6). Integrative analysis with in vitro functional data and animal models provided supportive evidence for potential roles for these genetic aberrations in carcinogenesis. Pathway-based analysis of recurrently mutated genes recapitulated clustering in core signalling pathways in pancreatic ductal adenocarcinoma, and identified new mutated genes in each pathway. We also identified frequent and diverse somatic aberrations in genes described traditionally as embryonic regulators of axon guidance, particularly SLIT/ROBO signalling, which was also evident in murine Sleeping Beauty transposon-mediated somatic mutagenesis models of pancreatic cancer, providing further supportive evidence for the potential involvement of axon guidance genes in pancreatic carcinogenesis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3530898/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3530898/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Biankin, Andrew V -- Waddell, Nicola -- Kassahn, Karin S -- Gingras, Marie-Claude -- Muthuswamy, Lakshmi B -- Johns, Amber L -- Miller, David K -- Wilson, Peter J -- Patch, Ann-Marie -- Wu, Jianmin -- Chang, David K -- Cowley, Mark J -- Gardiner, Brooke B -- Song, Sarah -- Harliwong, Ivon -- Idrisoglu, Senel -- Nourse, Craig -- Nourbakhsh, Ehsan -- Manning, Suzanne -- Wani, Shivangi -- Gongora, Milena -- Pajic, Marina -- Scarlett, Christopher J -- Gill, Anthony J -- Pinho, Andreia V -- Rooman, Ilse -- Anderson, Matthew -- Holmes, Oliver -- Leonard, Conrad -- Taylor, Darrin -- Wood, Scott -- Xu, Qinying -- Nones, Katia -- Fink, J Lynn -- Christ, Angelika -- Bruxner, Tim -- Cloonan, Nicole -- Kolle, Gabriel -- Newell, Felicity -- Pinese, Mark -- Mead, R Scott -- Humphris, Jeremy L -- Kaplan, Warren -- Jones, Marc D -- Colvin, Emily K -- Nagrial, Adnan M -- Humphrey, Emily S -- Chou, Angela -- Chin, Venessa T -- Chantrill, Lorraine A -- Mawson, Amanda -- Samra, Jaswinder S -- Kench, James G -- Lovell, Jessica A -- Daly, Roger J -- Merrett, Neil D -- Toon, Christopher -- Epari, Krishna -- Nguyen, Nam Q -- Barbour, Andrew -- Zeps, Nikolajs -- Australian Pancreatic Cancer Genome Initiative -- Kakkar, Nipun -- Zhao, Fengmei -- Wu, Yuan Qing -- Wang, Min -- Muzny, Donna M -- Fisher, William E -- Brunicardi, F Charles -- Hodges, Sally E -- Reid, Jeffrey G -- Drummond, Jennifer -- Chang, Kyle -- Han, Yi -- Lewis, Lora R -- Dinh, Huyen -- Buhay, Christian J -- Beck, Timothy -- Timms, Lee -- Sam, Michelle -- Begley, Kimberly -- Brown, Andrew -- Pai, Deepa -- Panchal, Ami -- Buchner, Nicholas -- De Borja, Richard -- Denroche, Robert E -- Yung, Christina K -- Serra, Stefano -- Onetto, Nicole -- Mukhopadhyay, Debabrata -- Tsao, Ming-Sound -- Shaw, Patricia A -- Petersen, Gloria M -- Gallinger, Steven -- Hruban, Ralph H -- Maitra, Anirban -- Iacobuzio-Donahue, Christine A -- Schulick, Richard D -- Wolfgang, Christopher L -- Morgan, Richard A -- Lawlor, Rita T -- Capelli, Paola -- Corbo, Vincenzo -- Scardoni, Maria -- Tortora, Giampaolo -- Tempero, Margaret A -- Mann, Karen M -- Jenkins, Nancy A -- Perez-Mancera, Pedro A -- Adams, David J -- Largaespada, David A -- Wessels, Lodewyk F A -- Rust, Alistair G -- Stein, Lincoln D -- Tuveson, David A -- Copeland, Neal G -- Musgrove, Elizabeth A -- Scarpa, Aldo -- Eshleman, James R -- Hudson, Thomas J -- Sutherland, Robert L -- Wheeler, David A -- Pearson, John V -- McPherson, John D -- Gibbs, Richard A -- Grimmond, Sean M -- 13031/Cancer Research UK/United Kingdom -- 2P50CA101955/CA/NCI NIH HHS/ -- P01CA134292/CA/NCI NIH HHS/ -- P50 CA101955/CA/NCI NIH HHS/ -- P50 CA102701/CA/NCI NIH HHS/ -- P50CA062924/CA/NCI NIH HHS/ -- R01 CA097075/CA/NCI NIH HHS/ -- R01 CA97075/CA/NCI NIH HHS/ -- U54 HG003273/HG/NHGRI NIH HHS/ -- Cancer Research UK/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2012 Nov 15;491(7424):399-405. doi: 10.1038/nature11547. Epub 2012 Oct 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Kinghorn Cancer Centre, 370 Victoria Street, Darlinghurst, Sydney, New South Wales 2010, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23103869" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/*metabolism ; Carcinoma, Pancreatic Ductal/*genetics/*pathology ; Gene Dosage ; Gene Expression Regulation, Neoplastic ; Genome/*genetics ; Humans ; Kaplan-Meier Estimate ; Mice ; Mutation ; Pancreatic Neoplasms/*genetics/*pathology ; Proteins/genetics ; Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2006-04-22
    Description: G protein betagamma subunits have potential as a target for therapeutic treatment of a number of diseases. We performed virtual docking of a small-molecule library to a site on Gbetagamma subunits that mediates protein interactions. We hypothesized that differential targeting of this surface could allow for selective modulation of Gbetagamma subunit functions. Several compounds bound to Gbetagamma subunits with affinities from 0.1 to 60 muM and selectively modulated functional Gbetagamma-protein-protein interactions in vitro, chemotactic peptide signaling pathways in HL-60 leukocytes, and opioid receptor-dependent analgesia in vivo. These data demonstrate an approach for modulation of G protein-coupled receptor signaling that may represent an important therapeutic strategy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bonacci, Tabetha M -- Mathews, Jennifer L -- Yuan, Chujun -- Lehmann, David M -- Malik, Sundeep -- Wu, Dianqing -- Font, Jose L -- Bidlack, Jean M -- Smrcka, Alan V -- GM60286/GM/NIGMS NIH HHS/ -- HL-T3207949/HL/NHLBI NIH HHS/ -- HL080706/HL/NHLBI NIH HHS/ -- K05-DA00360/DA/NIDA NIH HHS/ -- R01 CA132317/CA/NCI NIH HHS/ -- R01 GM054597/GM/NIGMS NIH HHS/ -- R01 GM054597-09/GM/NIGMS NIH HHS/ -- R01 HL080706/HL/NHLBI NIH HHS/ -- R01 HL080706-10/HL/NHLBI NIH HHS/ -- R01 HL080706-11/HL/NHLBI NIH HHS/ -- T32DA07232/DA/NIDA NIH HHS/ -- New York, N.Y. -- Science. 2006 Apr 21;312(5772):443-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16627746" target="_blank"〉PubMed〈/a〉
    Keywords: Analgesics/pharmacology ; Animals ; Binding Sites ; Binding, Competitive ; Cell Line ; Computer Simulation ; Cyclohexanes/chemistry/*metabolism/*pharmacology ; Drug Evaluation, Preclinical/*methods ; Enzyme-Linked Immunosorbent Assay ; G-Protein-Coupled Receptor Kinase 2 ; GTP-Binding Protein alpha Subunits/metabolism ; GTP-Binding Protein beta Subunits/chemistry/*metabolism ; GTP-Binding Protein gamma Subunits/chemistry/*metabolism ; HL-60 Cells ; Humans ; Isoenzymes/metabolism ; Mice ; Mice, Inbred ICR ; Mitogen-Activated Protein Kinases/metabolism ; Molecular Structure ; Morphine/pharmacology ; N-Formylmethionine Leucyl-Phenylalanine/metabolism ; Peptide Library ; Peptides/*metabolism ; Phosphatidylinositol 3-Kinases/metabolism ; Phospholipase C beta ; Protein Binding ; Protein Interaction Mapping ; *Signal Transduction ; Software ; Structure-Activity Relationship ; Type C Phospholipases/metabolism ; Xanthenes/chemistry/*metabolism/*pharmacology ; beta-Adrenergic Receptor Kinases/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...