ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2002-07-20
    Description: Mammalian organogenesis requires the expansion of pluripotent precursor cells before the subsequent determination of specific cell types, but the tissue-specific molecular mechanisms that regulate the initial expansion of primordial cells remain poorly defined. We have genetically established that Six6 homeodomain factor, acting as a strong tissue-specific repressor, regulates early progenitor cell proliferation during mammalian retinogenesis and pituitary development. Six6, in association with Dach corepressors, regulates proliferation by directly repressing cyclin-dependent kinase inhibitors, including the p27Kip1 promoter. These data reveal a molecular mechanism by which a tissue-specific transcriptional repressor-corepressor complex can provide an organ-specific strategy for physiological expansion of precursor populations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Xue -- Perissi, Valentina -- Liu, Forrest -- Rose, David W -- Rosenfeld, Michael G -- 484/B/Telethon/Italy -- 5F32DK09814/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2002 Aug 16;297(5584):1180-3. Epub 2002 Jul 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Molecular Medicine, University of California, San Diego, School of Medicine, 9500 Gilman Drive, Room 345, La Jolla, CA 92093-0648, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12130660" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis ; Cell Cycle ; Cell Cycle Proteins/genetics/metabolism ; *Cell Division ; Cell Line ; Cyclin-Dependent Kinase Inhibitor p27 ; Cyclin-Dependent Kinases/antagonists & inhibitors ; Embryo, Mammalian/cytology ; Eye Proteins/metabolism ; Homeodomain Proteins/*genetics/*metabolism ; Mice ; Nuclear Proteins/metabolism ; Organ Specificity ; Pituitary Gland/*cytology/embryology ; Promoter Regions, Genetic ; Proto-Oncogene Proteins/genetics/metabolism ; Recombinant Fusion Proteins/metabolism ; Repressor Proteins/metabolism ; Retina/*cytology/embryology ; Retinal Ganglion Cells/cytology/physiology ; Stem Cells/*physiology ; Trans-Activators/*genetics/*metabolism ; Transcription Factors ; Transcription, Genetic ; Transfection ; Tumor Suppressor Proteins/genetics/metabolism ; Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-05-23
    Description: RNA silencing is a sequence-specific RNA degradation mechanism that is operational in plants and animals. Here, we show that flock house virus (FHV) is both an initiator and a target of RNA silencing in Drosophila host cells and that FHV infection requires suppression of RNA silencing by an FHV-encoded protein, B2. These findings establish RNA silencing as an adaptive antiviral defense in animal cells. B2 also inhibits RNA silencing in transgenic plants, providing evidence for a conserved RNA silencing pathway in the plant and animal kingdoms.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Hongwei -- Li, Wan Xiang -- Ding, Shou Wei -- New York, N.Y. -- Science. 2002 May 17;296(5571):1319-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Pathology and Center for Plant Cell Biology, University of California, Riverside, CA 92521, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12016316" target="_blank"〉PubMed〈/a〉
    Keywords: Agrobacterium tumefaciens/genetics ; Animals ; Cell Line ; Drosophila/genetics/*virology ; *Gene Silencing ; Genes, Viral ; Green Fluorescent Proteins ; Luminescent Proteins/genetics ; Nodaviridae/*genetics/*physiology ; Plant Leaves/genetics/metabolism ; Plants, Genetically Modified ; RNA, Double-Stranded/genetics/metabolism ; RNA, Small Interfering ; RNA, Untranslated/*metabolism ; RNA, Viral/genetics/metabolism ; Tobacco/*genetics/metabolism/microbiology ; Transfection ; Viral Proteins/genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-04-28
    Description: In metazoans, cells depend on extracellular growth factors for energy homeostasis. We found that glycogen synthase kinase-3 (GSK3), when deinhibited by default in cells deprived of growth factors, activates acetyltransferase TIP60 through phosphorylating TIP60-Ser(86), which directly acetylates and stimulates the protein kinase ULK1, which is required for autophagy. Cells engineered to express TIP60(S86A) that cannot be phosphorylated by GSK3 could not undergo serum deprivation-induced autophagy. An acetylation-defective mutant of ULK1 failed to rescue autophagy in ULK1(-/-) mouse embryonic fibroblasts. Cells used signaling from GSK3 to TIP60 and ULK1 to regulate autophagy when deprived of serum but not glucose. These findings uncover an activating pathway that integrates protein phosphorylation and acetylation to connect growth factor deprivation to autophagy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lin, Shu-Yong -- Li, Terytty Yang -- Liu, Qing -- Zhang, Cixiong -- Li, Xiaotong -- Chen, Yan -- Zhang, Shi-Meng -- Lian, Guili -- Liu, Qi -- Ruan, Ka -- Wang, Zhen -- Zhang, Chen-Song -- Chien, Kun-Yi -- Wu, Jiawei -- Li, Qinxi -- Han, Jiahuai -- Lin, Sheng-Cai -- New York, N.Y. -- Science. 2012 Apr 27;336(6080):477-81. doi: 10.1126/science.1217032.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22539723" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Autophagy ; Cell Line ; Cell Line, Tumor ; Culture Media ; Culture Media, Serum-Free ; Glucose/metabolism ; Glycogen Synthase Kinase 3/genetics/*metabolism ; HEK293 Cells ; Histone Acetyltransferases/genetics/*metabolism ; Humans ; Intercellular Signaling Peptides and Proteins/metabolism ; Intracellular Signaling Peptides and Proteins/genetics/*metabolism ; Mice ; Phosphorylation ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; Rats ; *Signal Transduction ; Trans-Activators/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2004-04-24
    Description: Parkin is an E3 ubiquitin ligase involved in the ubiquitination of proteins that are important in the survival of dopamine neurons in Parkinson's disease (PD). We show that parkin is S-nitrosylated in vitro, as well as in vivo in a mouse model of PD and in brains of patients with PD and diffuse Lewy body disease. Moreover, S-nitrosylation inhibits parkin's ubiquitin E3 ligase activity and its protective function. The inhibition of parkin's ubiquitin E3 ligase activity by S-nitrosylation could contribute to the degenerative process in these disorders by impairing the ubiquitination of parkin substrates.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chung, Kenny K K -- Thomas, Bobby -- Li, Xiaojie -- Pletnikova, Olga -- Troncoso, Juan C -- Marsh, Laura -- Dawson, Valina L -- Dawson, Ted M -- NS38377/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2004 May 28;304(5675):1328-31. Epub 2004 Apr 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15105460" target="_blank"〉PubMed〈/a〉
    Keywords: Alzheimer Disease/metabolism ; Animals ; Brain/metabolism ; Carrier Proteins/genetics/metabolism ; Catalytic Domain ; Cell Death ; Cell Line ; Cysteine Proteinase Inhibitors/pharmacology ; Humans ; Lewy Body Disease/metabolism ; MPTP Poisoning/metabolism ; Mice ; Mice, Knockout ; Nerve Tissue Proteins/genetics/metabolism ; Nitric Oxide/*metabolism ; Nitric Oxide Donors/pharmacology ; Nitric Oxide Synthase/genetics/metabolism ; Parkinson Disease/*metabolism ; Recombinant Proteins/metabolism ; Synucleins ; Transfection ; Ubiquitin/*metabolism ; Ubiquitin-Protein Ligases/antagonists & inhibitors/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2006-03-25
    Description: Innate immunity against bacterial and fungal pathogens is mediated by Toll and immune deficiency (Imd) pathways, but little is known about the antiviral response in Drosophila. Here, we demonstrate that an RNA interference pathway protects adult flies from infection by two evolutionarily diverse viruses. Our work also describes a molecular framework for the viral immunity, in which viral double-stranded RNA produced during infection acts as the pathogen trigger whereas Drosophila Dicer-2 and Argonaute-2 act as host sensor and effector, respectively. These findings establish a Drosophila model for studying the innate immunity against viruses in animals.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1509097/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1509097/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Xiao-Hong -- Aliyari, Roghiyh -- Li, Wan-Xiang -- Li, Hong-Wei -- Kim, Kevin -- Carthew, Richard -- Atkinson, Peter -- Ding, Shou-Wei -- AI052447/AI/NIAID NIH HHS/ -- R01 AI052447/AI/NIAID NIH HHS/ -- R01 GM068743/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2006 Apr 21;312(5772):452-4. Epub 2006 Mar 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate Program for Microbiology, University of California, Riverside, CA 92521, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16556799" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Argonaute Proteins ; Cell Line ; Drosophila Proteins/genetics/metabolism/physiology ; Drosophila melanogaster/embryology/genetics/*immunology/*virology ; Embryo, Nonmammalian/immunology/virology ; Escherichia coli/physiology ; *Immunity, Innate ; Insect Viruses/genetics/*physiology ; Micrococcus luteus/physiology ; Mutation ; Nodaviridae/*physiology ; RNA Helicases/genetics/metabolism ; *RNA Interference ; RNA Viruses/genetics/physiology ; RNA, Double-Stranded/metabolism ; RNA, Small Interfering/metabolism ; RNA, Viral/genetics/metabolism ; RNA-Binding Proteins/genetics/physiology ; RNA-Induced Silencing Complex/genetics/physiology ; Ribonuclease III ; Signal Transduction ; Toll-Like Receptors/physiology ; Transfection ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-07-15
    Description: Malignant transformation, driven by gain-of-function mutations in oncogenes and loss-of-function mutations in tumour suppressor genes, results in cell deregulation that is frequently associated with enhanced cellular stress (for example, oxidative, replicative, metabolic and proteotoxic stress, and DNA damage). Adaptation to this stress phenotype is required for cancer cells to survive, and consequently cancer cells may become dependent upon non-oncogenes that do not ordinarily perform such a vital function in normal cells. Thus, targeting these non-oncogene dependencies in the context of a transformed genotype may result in a synthetic lethal interaction and the selective death of cancer cells. Here we used a cell-based small-molecule screening and quantitative proteomics approach that resulted in the unbiased identification of a small molecule that selectively kills cancer cells but not normal cells. Piperlongumine increases the level of reactive oxygen species (ROS) and apoptotic cell death in both cancer cells and normal cells engineered to have a cancer genotype, irrespective of p53 status, but it has little effect on either rapidly or slowly dividing primary normal cells. Significant antitumour effects are observed in piperlongumine-treated mouse xenograft tumour models, with no apparent toxicity in normal mice. Moreover, piperlongumine potently inhibits the growth of spontaneously formed malignant breast tumours and their associated metastases in mice. Our results demonstrate the ability of a small molecule to induce apoptosis selectively in cells that have a cancer genotype, by targeting a non-oncogene co-dependency acquired through the expression of the cancer genotype in response to transformation-induced oxidative stress.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3316487/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3316487/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Raj, Lakshmi -- Ide, Takao -- Gurkar, Aditi U -- Foley, Michael -- Schenone, Monica -- Li, Xiaoyu -- Tolliday, Nicola J -- Golub, Todd R -- Carr, Steven A -- Shamji, Alykhan F -- Stern, Andrew M -- Mandinova, Anna -- Schreiber, Stuart L -- Lee, Sam W -- 5 RC2 CA148399-02/CA/NCI NIH HHS/ -- CA080058/CA/NCI NIH HHS/ -- CA085681/CA/NCI NIH HHS/ -- CA127247/CA/NCI NIH HHS/ -- CA142805/CA/NCI NIH HHS/ -- P01 CA080058/CA/NCI NIH HHS/ -- P01 CA080058-02/CA/NCI NIH HHS/ -- P30 DK043351/DK/NIDDK NIH HHS/ -- R01 CA085681/CA/NCI NIH HHS/ -- R01 CA085681-06/CA/NCI NIH HHS/ -- R01 CA142805/CA/NCI NIH HHS/ -- R01 CA142805-01/CA/NCI NIH HHS/ -- RL1CA133834/CA/NCI NIH HHS/ -- RL1GM084437/GM/NIGMS NIH HHS/ -- RL1HG004671/HG/NHGRI NIH HHS/ -- UL1RR024924/RR/NCRR NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2011 Jul 13;475(7355):231-4. doi: 10.1038/nature10167.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Building 149 13th Street, Charlestown, Massachusetts 02129, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21753854" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis/*drug effects ; Breast Neoplasms/*drug therapy/genetics/metabolism/*pathology ; Cell Line ; Cell Line, Tumor ; Cell Transformation, Neoplastic ; Comet Assay ; DNA Damage/drug effects ; Dioxolanes/adverse effects/chemistry/*pharmacology ; Genotype ; Mice ; Neoplasm Metastasis/drug therapy/pathology ; Oxidative Stress/*drug effects ; Reactive Oxygen Species/*metabolism ; Small Molecule Libraries/chemistry ; Xenograft Model Antitumor Assays
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-10-02
    Description: Haploids and double haploids are important resources for studying recessive traits and have large impacts on crop breeding, but natural haploids are rare in animals. Mammalian haploids are restricted to germline cells and are occasionally found in tumours with massive chromosome loss. Recent success in establishing haploid embryonic stem (ES) cells in medaka fish and mice raised the possibility of using engineered mammalian haploid cells in genetic studies. However, the availability and functional characterization of mammalian haploid ES cells are still limited. Here we show that mouse androgenetic haploid ES (ahES) cell lines can be established by transferring sperm into an enucleated oocyte. The ahES cells maintain haploidy and stable growth over 30 passages, express pluripotent markers, possess the ability to differentiate into all three germ layers in vitro and in vivo, and contribute to germlines of chimaeras when injected into blastocysts. Although epigenetically distinct from sperm cells, the ahES cells can produce viable and fertile progenies after intracytoplasmic injection into mature oocytes. The oocyte-injection procedure can also produce viable transgenic mice from genetically engineered ahES cells. Our findings show the developmental pluripotency of androgenentic haploids and provide a new tool to quickly produce genetic models for recessive traits. They may also shed new light on assisted reproduction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Wei -- Shuai, Ling -- Wan, Haifeng -- Dong, Mingzhu -- Wang, Meng -- Sang, Lisi -- Feng, Chunjing -- Luo, Guan-Zheng -- Li, Tianda -- Li, Xin -- Wang, Libin -- Zheng, Qin-Yuan -- Sheng, Chao -- Wu, Hua-Jun -- Liu, Zhonghua -- Liu, Lei -- Wang, Liu -- Wang, Xiu-Jie -- Zhao, Xiao-Yang -- Zhou, Qi -- England -- Nature. 2012 Oct 18;490(7420):407-11. doi: 10.1038/nature11435. Epub 2012 Sep 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23023130" target="_blank"〉PubMed〈/a〉
    Keywords: Androgens/*metabolism ; Animals ; Biomarkers/metabolism ; Blastocyst/cytology ; Cell Line ; Cell Nucleus ; Chimera/embryology/genetics ; Embryonic Stem Cells/cytology/*physiology ; Epigenesis, Genetic ; Female ; *Haploidy ; Male ; Mice ; Mice, Transgenic/embryology/genetics/*growth & development ; Models, Animal ; Models, Genetic ; Oocytes/cytology/growth & development/metabolism ; Pluripotent Stem Cells/cytology/physiology ; Sperm Injections, Intracytoplasmic ; Spermatozoa/metabolism/transplantation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-07-05
    Description: Human infection associated with a novel reassortant avian influenza H7N9 virus has recently been identified in China. A total of 132 confirmed cases and 39 deaths have been reported. Most patients presented with severe pneumonia and acute respiratory distress syndrome. Although the first epidemic has subsided, the presence of a natural reservoir and the disease severity highlight the need to evaluate its risk on human public health and to understand the possible pathogenesis mechanism. Here we show that the emerging H7N9 avian influenza virus poses a potentially high risk to humans. We discover that the H7N9 virus can bind to both avian-type (alpha2,3-linked sialic acid) and human-type (alpha2,6-linked sialic acid) receptors. It can invade epithelial cells in the human lower respiratory tract and type II pneumonocytes in alveoli, and replicated efficiently in ex vivo lung and trachea explant culture and several mammalian cell lines. In acute serum samples of H7N9-infected patients, increased levels of the chemokines and cytokines IP-10, MIG, MIP-1beta, MCP-1, IL-6, IL-8 and IFN-alpha were detected. We note that the human population is naive to the H7N9 virus, and current seasonal vaccination could not provide protection.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhou, Jianfang -- Wang, Dayan -- Gao, Rongbao -- Zhao, Baihui -- Song, Jingdong -- Qi, Xian -- Zhang, Yanjun -- Shi, Yonglin -- Yang, Lei -- Zhu, Wenfei -- Bai, Tian -- Qin, Kun -- Lan, Yu -- Zou, Shumei -- Guo, Junfeng -- Dong, Jie -- Dong, Libo -- Zhang, Ye -- Wei, Hejiang -- Li, Xiaodan -- Lu, Jian -- Liu, Liqi -- Zhao, Xiang -- Li, Xiyan -- Huang, Weijuan -- Wen, Leying -- Bo, Hong -- Xin, Li -- Chen, Yongkun -- Xu, Cuilin -- Pei, Yuquan -- Yang, Yue -- Zhang, Xiaodong -- Wang, Shiwen -- Feng, Zijian -- Han, Jun -- Yang, Weizhong -- Gao, George F -- Wu, Guizhen -- Li, Dexin -- Wang, Yu -- Shu, Yuelong -- England -- Nature. 2013 Jul 25;499(7459):500-3. doi: 10.1038/nature12379. Epub 2013 Jul 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Institute for Viral Disease Control and Prevention, China CDC, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23823727" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Viral/immunology ; Birds/virology ; Bronchi/cytology/metabolism/virology ; Cell Line ; Chemokines/blood ; China ; Cross Reactions/immunology ; Epithelial Cells/virology ; Host Specificity ; Humans ; In Vitro Techniques ; Influenza A Virus, H5N1 Subtype/immunology/physiology ; Influenza A virus/immunology/pathogenicity/*physiology ; Influenza Vaccines/immunology ; Influenza in Birds/transmission/*virology ; Influenza, Human/blood/immunology/virology ; Lung/virology ; N-Acetylneuraminic Acid/analogs & derivatives/chemistry/metabolism ; Organ Specificity ; Pulmonary Alveoli/cytology/metabolism/virology ; Receptors, Virus/chemistry/*metabolism ; Trachea/virology ; Virus Replication ; Zoonoses/transmission/virology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-08-06
    Description: The prevalent DNA modification in higher organisms is the methylation of cytosine to 5-methylcytosine (5mC), which is partially converted to 5-hydroxymethylcytosine (5hmC) by the Tet (ten eleven translocation) family of dioxygenases. Despite their importance in epigenetic regulation, it is unclear how these cytosine modifications are reversed. Here, we demonstrate that 5mC and 5hmC in DNA are oxidized to 5-carboxylcytosine (5caC) by Tet dioxygenases in vitro and in cultured cells. 5caC is specifically recognized and excised by thymine-DNA glycosylase (TDG). Depletion of TDG in mouse embyronic stem cells leads to accumulation of 5caC to a readily detectable level. These data suggest that oxidation of 5mC by Tet proteins followed by TDG-mediated base excision of 5caC constitutes a pathway for active DNA demethylation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3462231/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3462231/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉He, Yu-Fei -- Li, Bin-Zhong -- Li, Zheng -- Liu, Peng -- Wang, Yang -- Tang, Qingyu -- Ding, Jianping -- Jia, Yingying -- Chen, Zhangcheng -- Li, Lin -- Sun, Yan -- Li, Xiuxue -- Dai, Qing -- Song, Chun-Xiao -- Zhang, Kangling -- He, Chuan -- Xu, Guo-Liang -- 1S10RR027643-01/RR/NCRR NIH HHS/ -- GM071440/GM/NIGMS NIH HHS/ -- R01 GM071440/GM/NIGMS NIH HHS/ -- S10 RR027643/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2011 Sep 2;333(6047):1303-7. doi: 10.1126/science.1210944. Epub 2011 Aug 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Group of DNA Metabolism, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21817016" target="_blank"〉PubMed〈/a〉
    Keywords: 5-Methylcytosine/metabolism ; Animals ; Cell Line ; Cytosine/*analogs & derivatives/metabolism ; DNA/*metabolism ; DNA Methylation ; DNA-Binding Proteins/genetics/*metabolism ; Embryonic Stem Cells ; HEK293 Cells ; Humans ; Induced Pluripotent Stem Cells/metabolism ; Mice ; Oxidation-Reduction ; Proto-Oncogene Proteins/genetics/*metabolism ; RNA, Small Interfering ; Thymine DNA Glycosylase/genetics/*metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...