ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2013-10-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cooper, Cyrus -- MC_UP_A620_1014/Medical Research Council/United Kingdom -- MC_UU_12011/1/Medical Research Council/United Kingdom -- England -- Nature. 2013 Oct 17;502(7471):304. doi: 10.1038/502304a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council Lifecourse Epidemiology Unit, University of Southampton, UK. cc@mrc.soton.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24132283" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Buruli Ulcer/etiology/history ; Cardiovascular Diseases/epidemiology/*etiology ; Chronic Disease/epidemiology ; Diabetes Mellitus/epidemiology/*etiology ; Epidemiology/*history ; Female ; Fetal Development ; Great Britain/epidemiology ; History, 20th Century ; History, 21st Century ; Humans ; Infant ; Infant, Newborn ; Maternal-Fetal Exchange/physiology ; Middle Aged ; *Models, Biological ; Pregnancy ; Prenatal Exposure Delayed Effects/*epidemiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-12-18
    Description: Genome-wide association studies (GWAS) have identified several risk variants for late-onset Alzheimer's disease (LOAD). These common variants have replicable but small effects on LOAD risk and generally do not have obvious functional effects. Low-frequency coding variants, not detected by GWAS, are predicted to include functional variants with larger effects on risk. To identify low-frequency coding variants with large effects on LOAD risk, we carried out whole-exome sequencing (WES) in 14 large LOAD families and follow-up analyses of the candidate variants in several large LOAD case-control data sets. A rare variant in PLD3 (phospholipase D3; Val232Met) segregated with disease status in two independent families and doubled risk for Alzheimer's disease in seven independent case-control series with a total of more than 11,000 cases and controls of European descent. Gene-based burden analyses in 4,387 cases and controls of European descent and 302 African American cases and controls, with complete sequence data for PLD3, reveal that several variants in this gene increase risk for Alzheimer's disease in both populations. PLD3 is highly expressed in brain regions that are vulnerable to Alzheimer's disease pathology, including hippocampus and cortex, and is expressed at significantly lower levels in neurons from Alzheimer's disease brains compared to control brains. Overexpression of PLD3 leads to a significant decrease in intracellular amyloid-beta precursor protein (APP) and extracellular Abeta42 and Abeta40 (the 42- and 40-residue isoforms of the amyloid-beta peptide), and knockdown of PLD3 leads to a significant increase in extracellular Abeta42 and Abeta40. Together, our genetic and functional data indicate that carriers of PLD3 coding variants have a twofold increased risk for LOAD and that PLD3 influences APP processing. This study provides an example of how densely affected families may help to identify rare variants with large effects on risk for disease or other complex traits.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4050701/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4050701/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cruchaga, Carlos -- Karch, Celeste M -- Jin, Sheng Chih -- Benitez, Bruno A -- Cai, Yefei -- Guerreiro, Rita -- Harari, Oscar -- Norton, Joanne -- Budde, John -- Bertelsen, Sarah -- Jeng, Amanda T -- Cooper, Breanna -- Skorupa, Tara -- Carrell, David -- Levitch, Denise -- Hsu, Simon -- Choi, Jiyoon -- Ryten, Mina -- UK Brain Expression Consortium -- Hardy, John -- Trabzuni, Daniah -- Weale, Michael E -- Ramasamy, Adaikalavan -- Smith, Colin -- Sassi, Celeste -- Bras, Jose -- Gibbs, J Raphael -- Hernandez, Dena G -- Lupton, Michelle K -- Powell, John -- Forabosco, Paola -- Ridge, Perry G -- Corcoran, Christopher D -- Tschanz, Joann T -- Norton, Maria C -- Munger, Ronald G -- Schmutz, Cameron -- Leary, Maegan -- Demirci, F Yesim -- Bamne, Mikhil N -- Wang, Xingbin -- Lopez, Oscar L -- Ganguli, Mary -- Medway, Christopher -- Turton, James -- Lord, Jenny -- Braae, Anne -- Barber, Imelda -- Brown, Kristelle -- Alzheimer's Research UK Consortium -- Passmore, Peter -- Craig, David -- Johnston, Janet -- McGuinness, Bernadette -- Todd, Stephen -- Heun, Reinhard -- Kolsch, Heike -- Kehoe, Patrick G -- Hooper, Nigel M -- Vardy, Emma R L C -- Mann, David M -- Pickering-Brown, Stuart -- Kalsheker, Noor -- Lowe, James -- Morgan, Kevin -- David Smith, A -- Wilcock, Gordon -- Warden, Donald -- Holmes, Clive -- Pastor, Pau -- Lorenzo-Betancor, Oswaldo -- Brkanac, Zoran -- Scott, Erick -- Topol, Eric -- Rogaeva, Ekaterina -- Singleton, Andrew B -- Kamboh, M Ilyas -- St George-Hyslop, Peter -- Cairns, Nigel -- Morris, John C -- Kauwe, John S K -- Goate, Alison M -- 081864/Wellcome Trust/United Kingdom -- 089698/Wellcome Trust/United Kingdom -- 089703/Wellcome Trust/United Kingdom -- 100140/Wellcome Trust/United Kingdom -- 1R01AG041797/AG/NIA NIH HHS/ -- 5U24AG026395/AG/NIA NIH HHS/ -- AG005133/AG/NIA NIH HHS/ -- AG023652/AG/NIA NIH HHS/ -- AG030653/AG/NIA NIH HHS/ -- AG041718/AG/NIA NIH HHS/ -- AG07562/AG/NIA NIH HHS/ -- G0802189/Medical Research Council/United Kingdom -- G0802462/Medical Research Council/United Kingdom -- G0901254/Medical Research Council/United Kingdom -- G1100695/Medical Research Council/United Kingdom -- K01 AG046374/AG/NIA NIH HHS/ -- MC_G1000734/Medical Research Council/United Kingdom -- NIH P50 AG05681/AG/NIA NIH HHS/ -- NIH R01039700/PHS HHS/ -- P01 AG003991/AG/NIA NIH HHS/ -- P01 AG026276/AG/NIA NIH HHS/ -- P01 AG03991/AG/NIA NIH HHS/ -- P30 NS069329/NS/NINDS NIH HHS/ -- P30-NS069329/NS/NINDS NIH HHS/ -- P50 AG005133/AG/NIA NIH HHS/ -- P50 AG005681/AG/NIA NIH HHS/ -- R01 AG011380/AG/NIA NIH HHS/ -- R01 AG030653/AG/NIA NIH HHS/ -- R01 AG035083/AG/NIA NIH HHS/ -- R01 AG039700/AG/NIA NIH HHS/ -- R01 AG041718/AG/NIA NIH HHS/ -- R01 AG041797/AG/NIA NIH HHS/ -- R01 AG042611/AG/NIA NIH HHS/ -- R01 AG044546/AG/NIA NIH HHS/ -- R01-AG035083/AG/NIA NIH HHS/ -- R01-AG042611/AG/NIA NIH HHS/ -- R01-AG044546/AG/NIA NIH HHS/ -- R01-AG11380/AG/NIA NIH HHS/ -- R01-AG18712/AG/NIA NIH HHS/ -- R01-AG21136/AG/NIA NIH HHS/ -- R01AG21136/AG/NIA NIH HHS/ -- R25 DA027995/DA/NIDA NIH HHS/ -- U24 AG021886/AG/NIA NIH HHS/ -- U24 AG026395/AG/NIA NIH HHS/ -- U24AG21886/AG/NIA NIH HHS/ -- WT089698/Wellcome Trust/United Kingdom -- ZIA AG000950-11/Intramural NIH HHS/ -- ZO1 AG000950-10/AG/NIA NIH HHS/ -- ZO1AG000950-11/AG/NIA NIH HHS/ -- Canadian Institutes of Health Research/Canada -- England -- Nature. 2014 Jan 23;505(7484):550-4. doi: 10.1038/nature12825. Epub 2013 Dec 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Psychiatry, Washington University, 425 South Euclid Avenue, St. Louis, Missouri 63110, USA [2] Hope Center Program on Protein Aggregation and Neurodegeneration, Washington University 425 South Euclid Avenue, St. Louis, Missouri 63110, USA. ; 1] Department of Psychiatry, Washington University, 425 South Euclid Avenue, St. Louis, Missouri 63110, USA [2] Hope Center Program on Protein Aggregation and Neurodegeneration, Washington University 425 South Euclid Avenue, St. Louis, Missouri 63110, USA [3]. ; 1] Department of Psychiatry, Washington University, 425 South Euclid Avenue, St. Louis, Missouri 63110, USA [2]. ; Department of Psychiatry, Washington University, 425 South Euclid Avenue, St. Louis, Missouri 63110, USA. ; 1] Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK [2] Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Building 35 Room 1A1014, 35 Lincoln Drive, Bethesda, Maryland 20892, USA. ; Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK. ; Department of Medical and Molecular Genetics, King's College London, 16 De Crespigny Park, London SE5 8AF UK. ; MRC Sudden Death Brain Bank Project, University of Edinburgh, South Bridge, Edinburgh EH8 9YL UK. ; 1] Institute of Psychiatry, King's College London, 16 De Crespigny Park, London SE5 8AF, UK [2] Neuroimaging Genetics, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Queensland 4006, Australia. ; Institute of Psychiatry, King's College London, 16 De Crespigny Park, London SE5 8AF, UK. ; Istituto di Genetica delle Popolazioni - CNR, Trav. La Crucca, 3 - Reg. Baldinca - 07100 Li Punti, Sassari, Italy. ; Department of Biology, Brigham Young University, Provo, Utah 84602, USA. ; 1] Department of Mathematics and Statistics, Utah State University, Logan, Utah 84322, USA [2] Center for Epidemiologic Studies, Utah State University, Logan, Utah 84322, USA. ; 1] Center for Epidemiologic Studies, Utah State University, Logan, Utah 84322, USA [2] Department of Psychology, Utah State University, Logan, Utah 84322, USA. ; 1] Center for Epidemiologic Studies, Utah State University, Logan, Utah 84322, USA [2] Department of Psychology, Utah State University, Logan, Utah 84322, USA [3] Department of Family Consumer and Human Development, Utah State University, Logan, Utah 84322, USA. ; 1] Department of Family Consumer and Human Development, Utah State University, Logan, Utah 84322, USA [2] Department of Nutrition, Dietetics, and Food Sciences, Utah State University, Logan, Utah 84322, USA. ; Department of Human Genetics, University of Pittsburgh, 130 Desoto Street, Pittsburgh, Pennsylvania 15261, USA. ; 1] Alzheimer's Disease Research Center, University of Pittsburgh, 130 Desoto Street, Pittsburgh, Pennsylvania 15261, USA [2] Department of Neurology, University of Pittsburgh, 130 Desoto Street, Pittsburgh, Pennsylvania 15261, USA. ; Department of Psychiatry, University of Pittsburgh, 130 Desoto Street, Pittsburgh, Pennsylvania 15261, USA. ; Human Genetics, School of Molecular Medical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK. ; Queen's University Belfast, University Road, Belfast BT7 1NN, UK. ; Royal Derby Hospital, Uttoxeter Road, Derby, DE22 3NE, UK. ; University of Bonn, Regina-Pacis-Weg 3, 53113 Bonn, Germany. ; University of Bristol, Tyndall Avenue, Bristol, City of Bristol BS8 1TH, UK. ; University of Leeds, Woodhouse Lane, Leeds, West Yorkshire LS2 9JT, UK. ; University of Newcastle, Newcastle upon Tyne, Tyne and Wear NE1 7RU, UK. ; University of Manchester, Oxford Road, Manchester, Greater Manchester M13 9PL, UK. ; University of Oxford (OPTIMA), Wellington Square, Oxford OX1 2JD, UK. ; 1] Neurogenetics Laboratory, Division of Neurosciences, Center for Applied Medical Research, University of Navarra, Avenida Pio XII, 55. 31008 Pamplona, Navarra, Spain [2] Department of Neurology, Clinica Universidad de Navarra, School of Medicine, University of Navarra Avenida Pio XII, 36. 31008 Pamplona, Spain [3] CIBERNED, Centro de Investigacion Biomedica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Spain. ; Neurogenetics Laboratory, Division of Neurosciences, Center for Applied Medical Research, University of Navarra, Avenida Pio XII, 55. 31008 Pamplona, Navarra, Spain. ; University of Washington, 325 Ninth Avenue, Seattle, Washington 98104-2499, USA. ; The Scripps Research Institute, La Jolla, California 3344 North Torrey Pines Court, La Jolla, California 92037, USA. ; Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, 60 Leonard Avenue, Toronto, Ontario M5T 2S8, Canada. ; Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Building 35 Room 1A1014, 35 Lincoln Drive, Bethesda, Maryland 20892, USA. ; 1] Department of Human Genetics, University of Pittsburgh, 130 Desoto Street, Pittsburgh, Pennsylvania 15261, USA [2] Alzheimer's Disease Research Center, University of Pittsburgh, 130 Desoto Street, Pittsburgh, Pennsylvania 15261, USA [3] Department of Neurology, University of Pittsburgh, 130 Desoto Street, Pittsburgh, Pennsylvania 15261, USA. ; 1] Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, 60 Leonard Avenue, Toronto, Ontario M5T 2S8, Canada [2] Cambridge Institute for Medical Research, and the Department of Clinical Neurosciences, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK. ; 1] Hope Center Program on Protein Aggregation and Neurodegeneration, Washington University 425 South Euclid Avenue, St. Louis, Missouri 63110, USA [2] Pathology and Immunology, Washington University, 425 South Euclid Avenue, St. Louis, Missouri 63110, USA. ; 1] Pathology and Immunology, Washington University, 425 South Euclid Avenue, St. Louis, Missouri 63110, USA [2] Department of Neurology, Washington University, 425 South Euclid Avenue, St. Louis, Missouri 63110, USA [3] Knight ADRC, Washington University, 425 South Euclid Avenue, St. Louis, Missouri 63110, USA. ; 1] Department of Psychiatry, Washington University, 425 South Euclid Avenue, St. Louis, Missouri 63110, USA [2] Hope Center Program on Protein Aggregation and Neurodegeneration, Washington University 425 South Euclid Avenue, St. Louis, Missouri 63110, USA [3] Department of Neurology, Washington University, 425 South Euclid Avenue, St. Louis, Missouri 63110, USA [4] Knight ADRC, Washington University, 425 South Euclid Avenue, St. Louis, Missouri 63110, USA [5] Department of Genetics, Washington University, 425 South Euclid Avenue, St. Louis, Missouri 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24336208" target="_blank"〉PubMed〈/a〉
    Keywords: African Americans/genetics ; Age of Onset ; Aged ; Aged, 80 and over ; Alzheimer Disease/*genetics/metabolism ; Amyloid beta-Peptides/metabolism ; Amyloid beta-Protein Precursor/metabolism ; Brain/metabolism ; Case-Control Studies ; Europe/ethnology ; Exome/genetics ; Female ; Genetic Predisposition to Disease/*genetics ; Genetic Variation/*genetics ; Humans ; Male ; Peptide Fragments/metabolism ; Phospholipase D/deficiency/*genetics/metabolism ; Protein Processing, Post-Translational/genetics ; Proteolysis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-04-19
    Description: Zebrafish have become a popular organism for the study of vertebrate gene function. The virtually transparent embryos of this species, and the ability to accelerate genetic studies by gene knockdown or overexpression, have led to the widespread use of zebrafish in the detailed investigation of vertebrate gene function and increasingly, the study of human genetic disease. However, for effective modelling of human genetic disease it is important to understand the extent to which zebrafish genes and gene structures are related to orthologous human genes. To examine this, we generated a high-quality sequence assembly of the zebrafish genome, made up of an overlapping set of completely sequenced large-insert clones that were ordered and oriented using a high-resolution high-density meiotic map. Detailed automatic and manual annotation provides evidence of more than 26,000 protein-coding genes, the largest gene set of any vertebrate so far sequenced. Comparison to the human reference genome shows that approximately 70% of human genes have at least one obvious zebrafish orthologue. In addition, the high quality of this genome assembly provides a clearer understanding of key genomic features such as a unique repeat content, a scarcity of pseudogenes, an enrichment of zebrafish-specific genes on chromosome 4 and chromosomal regions that influence sex determination.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3703927/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3703927/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Howe, Kerstin -- Clark, Matthew D -- Torroja, Carlos F -- Torrance, James -- Berthelot, Camille -- Muffato, Matthieu -- Collins, John E -- Humphray, Sean -- McLaren, Karen -- Matthews, Lucy -- McLaren, Stuart -- Sealy, Ian -- Caccamo, Mario -- Churcher, Carol -- Scott, Carol -- Barrett, Jeffrey C -- Koch, Romke -- Rauch, Gerd-Jorg -- White, Simon -- Chow, William -- Kilian, Britt -- Quintais, Leonor T -- Guerra-Assuncao, Jose A -- Zhou, Yi -- Gu, Yong -- Yen, Jennifer -- Vogel, Jan-Hinnerk -- Eyre, Tina -- Redmond, Seth -- Banerjee, Ruby -- Chi, Jianxiang -- Fu, Beiyuan -- Langley, Elizabeth -- Maguire, Sean F -- Laird, Gavin K -- Lloyd, David -- Kenyon, Emma -- Donaldson, Sarah -- Sehra, Harminder -- Almeida-King, Jeff -- Loveland, Jane -- Trevanion, Stephen -- Jones, Matt -- Quail, Mike -- Willey, Dave -- Hunt, Adrienne -- Burton, John -- Sims, Sarah -- McLay, Kirsten -- Plumb, Bob -- Davis, Joy -- Clee, Chris -- Oliver, Karen -- Clark, Richard -- Riddle, Clare -- Elliot, David -- Threadgold, Glen -- Harden, Glenn -- Ware, Darren -- Begum, Sharmin -- Mortimore, Beverley -- Kerry, Giselle -- Heath, Paul -- Phillimore, Benjamin -- Tracey, Alan -- Corby, Nicole -- Dunn, Matthew -- Johnson, Christopher -- Wood, Jonathan -- Clark, Susan -- Pelan, Sarah -- Griffiths, Guy -- Smith, Michelle -- Glithero, Rebecca -- Howden, Philip -- Barker, Nicholas -- Lloyd, Christine -- Stevens, Christopher -- Harley, Joanna -- Holt, Karen -- Panagiotidis, Georgios -- Lovell, Jamieson -- Beasley, Helen -- Henderson, Carl -- Gordon, Daria -- Auger, Katherine -- Wright, Deborah -- Collins, Joanna -- Raisen, Claire -- Dyer, Lauren -- Leung, Kenric -- Robertson, Lauren -- Ambridge, Kirsty -- Leongamornlert, Daniel -- McGuire, Sarah -- Gilderthorp, Ruth -- Griffiths, Coline -- Manthravadi, Deepa -- Nichol, Sarah -- Barker, Gary -- Whitehead, Siobhan -- Kay, Michael -- Brown, Jacqueline -- Murnane, Clare -- Gray, Emma -- Humphries, Matthew -- Sycamore, Neil -- Barker, Darren -- Saunders, David -- Wallis, Justene -- Babbage, Anne -- Hammond, Sian -- Mashreghi-Mohammadi, Maryam -- Barr, Lucy -- Martin, Sancha -- Wray, Paul -- Ellington, Andrew -- Matthews, Nicholas -- Ellwood, Matthew -- Woodmansey, Rebecca -- Clark, Graham -- Cooper, James D -- Tromans, Anthony -- Grafham, Darren -- Skuce, Carl -- Pandian, Richard -- Andrews, Robert -- Harrison, Elliot -- Kimberley, Andrew -- Garnett, Jane -- Fosker, Nigel -- Hall, Rebekah -- Garner, Patrick -- Kelly, Daniel -- Bird, Christine -- Palmer, Sophie -- Gehring, Ines -- Berger, Andrea -- Dooley, Christopher M -- Ersan-Urun, Zubeyde -- Eser, Cigdem -- Geiger, Horst -- Geisler, Maria -- Karotki, Lena -- Kirn, Anette -- Konantz, Judith -- Konantz, Martina -- Oberlander, Martina -- Rudolph-Geiger, Silke -- Teucke, Mathias -- Lanz, Christa -- Raddatz, Gunter -- Osoegawa, Kazutoyo -- Zhu, Baoli -- Rapp, Amanda -- Widaa, Sara -- Langford, Cordelia -- Yang, Fengtang -- Schuster, Stephan C -- Carter, Nigel P -- Harrow, Jennifer -- Ning, Zemin -- Herrero, Javier -- Searle, Steve M J -- Enright, Anton -- Geisler, Robert -- Plasterk, Ronald H A -- Lee, Charles -- Westerfield, Monte -- de Jong, Pieter J -- Zon, Leonard I -- Postlethwait, John H -- Nusslein-Volhard, Christiane -- Hubbard, Tim J P -- Roest Crollius, Hugues -- Rogers, Jane -- Stemple, Derek L -- 095908/Wellcome Trust/United Kingdom -- 098051/Wellcome Trust/United Kingdom -- 1 R01 DK55377-01A1/DK/NIDDK NIH HHS/ -- P01 HD022486/HD/NICHD NIH HHS/ -- P01 HD22486/HD/NICHD NIH HHS/ -- R01 GM085318/GM/NIGMS NIH HHS/ -- R01 OD011116/OD/NIH HHS/ -- R01 RR010715/RR/NCRR NIH HHS/ -- R01 RR020833/RR/NCRR NIH HHS/ -- England -- Nature. 2013 Apr 25;496(7446):498-503. doi: 10.1038/nature12111. Epub 2013 Apr 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23594743" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chromosomes/genetics ; Conserved Sequence/*genetics ; Evolution, Molecular ; Female ; Genes/genetics ; Genome/*genetics ; Genome, Human/genetics ; Genomics ; Humans ; Male ; Meiosis/genetics ; Molecular Sequence Annotation ; Pseudogenes/genetics ; Reference Standards ; Sex Determination Processes/genetics ; Zebrafish/*genetics ; Zebrafish Proteins/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-03-09
    Description: Gorillas are humans' closest living relatives after chimpanzees, and are of comparable importance for the study of human origins and evolution. Here we present the assembly and analysis of a genome sequence for the western lowland gorilla, and compare the whole genomes of all extant great ape genera. We propose a synthesis of genetic and fossil evidence consistent with placing the human-chimpanzee and human-chimpanzee-gorilla speciation events at approximately 6 and 10 million years ago. In 30% of the genome, gorilla is closer to human or chimpanzee than the latter are to each other; this is rarer around coding genes, indicating pervasive selection throughout great ape evolution, and has functional consequences in gene expression. A comparison of protein coding genes reveals approximately 500 genes showing accelerated evolution on each of the gorilla, human and chimpanzee lineages, and evidence for parallel acceleration, particularly of genes involved in hearing. We also compare the western and eastern gorilla species, estimating an average sequence divergence time 1.75 million years ago, but with evidence for more recent genetic exchange and a population bottleneck in the eastern species. The use of the genome sequence in these and future analyses will promote a deeper understanding of great ape biology and evolution.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3303130/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3303130/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Scally, Aylwyn -- Dutheil, Julien Y -- Hillier, LaDeana W -- Jordan, Gregory E -- Goodhead, Ian -- Herrero, Javier -- Hobolth, Asger -- Lappalainen, Tuuli -- Mailund, Thomas -- Marques-Bonet, Tomas -- McCarthy, Shane -- Montgomery, Stephen H -- Schwalie, Petra C -- Tang, Y Amy -- Ward, Michelle C -- Xue, Yali -- Yngvadottir, Bryndis -- Alkan, Can -- Andersen, Lars N -- Ayub, Qasim -- Ball, Edward V -- Beal, Kathryn -- Bradley, Brenda J -- Chen, Yuan -- Clee, Chris M -- Fitzgerald, Stephen -- Graves, Tina A -- Gu, Yong -- Heath, Paul -- Heger, Andreas -- Karakoc, Emre -- Kolb-Kokocinski, Anja -- Laird, Gavin K -- Lunter, Gerton -- Meader, Stephen -- Mort, Matthew -- Mullikin, James C -- Munch, Kasper -- O'Connor, Timothy D -- Phillips, Andrew D -- Prado-Martinez, Javier -- Rogers, Anthony S -- Sajjadian, Saba -- Schmidt, Dominic -- Shaw, Katy -- Simpson, Jared T -- Stenson, Peter D -- Turner, Daniel J -- Vigilant, Linda -- Vilella, Albert J -- Whitener, Weldon -- Zhu, Baoli -- Cooper, David N -- de Jong, Pieter -- Dermitzakis, Emmanouil T -- Eichler, Evan E -- Flicek, Paul -- Goldman, Nick -- Mundy, Nicholas I -- Ning, Zemin -- Odom, Duncan T -- Ponting, Chris P -- Quail, Michael A -- Ryder, Oliver A -- Searle, Stephen M -- Warren, Wesley C -- Wilson, Richard K -- Schierup, Mikkel H -- Rogers, Jane -- Tyler-Smith, Chris -- Durbin, Richard -- 062023/Wellcome Trust/United Kingdom -- 075491/Z/04/Wellcome Trust/United Kingdom -- 077009/Wellcome Trust/United Kingdom -- 077192/Wellcome Trust/United Kingdom -- 077198/Wellcome Trust/United Kingdom -- 089066/Wellcome Trust/United Kingdom -- 090532/Wellcome Trust/United Kingdom -- 095908/Wellcome Trust/United Kingdom -- 15603/Cancer Research UK/United Kingdom -- 202218/European Research Council/International -- A15603/Cancer Research UK/United Kingdom -- G0501331/Medical Research Council/United Kingdom -- G0701805/Medical Research Council/United Kingdom -- HG002385/HG/NHGRI NIH HHS/ -- U54 HG003079/HG/NHGRI NIH HHS/ -- WT062023/Wellcome Trust/United Kingdom -- WT077009/Wellcome Trust/United Kingdom -- WT077192/Wellcome Trust/United Kingdom -- WT077198/Wellcome Trust/United Kingdom -- WT089066/Wellcome Trust/United Kingdom -- Medical Research Council/United Kingdom -- Biotechnology and Biological Sciences Research Council/United Kingdom -- Howard Hughes Medical Institute/ -- Intramural NIH HHS/ -- England -- Nature. 2012 Mar 7;483(7388):169-75. doi: 10.1038/nature10842.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22398555" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Evolution, Molecular ; Female ; Gene Expression Regulation ; *Genetic Speciation ; Genetic Variation/genetics ; Genome/*genetics ; Genomics ; Gorilla gorilla/*genetics ; Humans ; Macaca mulatta/genetics ; Molecular Sequence Data ; Pan troglodytes/genetics ; Phylogeny ; Pongo/genetics ; Proteins/genetics ; Sequence Alignment ; Species Specificity ; Transcription, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: We describe the design and data analysis of the DEEP2 Galaxy Redshift Survey, the densest and largest high-precision redshift survey of galaxies at z approx. 1 completed to date. The survey was designed to conduct a comprehensive census of massive galaxies, their properties, environments, and large-scale structure down to absolute magnitude MB = 20 at z approx. 1 via approx.90 nights of observation on the Keck telescope. The survey covers an area of 2.8 Sq. deg divided into four separate fields observed to a limiting apparent magnitude of R(sub AB) = 24.1. Objects with z approx. 〈 0.7 are readily identifiable using BRI photometry and rejected in three of the four DEEP2 fields, allowing galaxies with z 〉 0.7 to be targeted approx. 2.5 times more efficiently than in a purely magnitude-limited sample. Approximately 60% of eligible targets are chosen for spectroscopy, yielding nearly 53,000 spectra and more than 38,000 reliable redshift measurements. Most of the targets that fail to yield secure redshifts are blue objects that lie beyond z approx. 1.45, where the [O ii] 3727 Ang. doublet lies in the infrared. The DEIMOS 1200 line mm(exp 1) grating used for the survey delivers high spectral resolution (R approx. 6000), accurate and secure redshifts, and unique internal kinematic information. Extensive ancillary data are available in the DEEP2 fields, particularly in the Extended Groth Strip, which has evolved into one of the richest multiwavelength regions on the sky. This paper is intended as a handbook for users of the DEEP2 Data Release 4, which includes all DEEP2 spectra and redshifts, as well as for the DEEP2 DEIMOS data reduction pipelines. Extensive details are provided on object selection, mask design, biases in target selection and redshift measurements, the spec2d two-dimensional data-reduction pipeline, the spec1d automated redshift pipeline, and the zspec visual redshift verification process, along with examples of instrumental signatures or other artifacts that in some cases remain after data reduction. Redshift errors and catastrophic failure rates are assessed through more than 2000 objects with duplicate observations. Sky subtraction is essentially photon-limited even under bright OH sky lines; we describe the strategies that permitted this, based on high image stability, accurate wavelength solutions, and powerful B-spline modeling methods. We also investigate the impact of targets that appear to be single objects in ground-based targeting imaging but prove to be composite in Hubble Space Telescope data; they constitute several percent of targets at z approx. 1, approaching approx. 5%-10% at z 〉 1.5. Summary data are given that demonstrate the superiority of DEEP2 over other deep high-precision redshift surveys at z approx. 1 in terms of redshift accuracy, sample number density, and amount of spectral information. We also provide an overview of the scientific highlights of the DEEP2 survey thus far.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN12509 , The Astrophysical Journal Supplement Series (ISSN 0067-0049); 208; 1; 5
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: In contrast to the Murchison meteorite which had a complex distribution of amino acids with a total C2 to Cs amino acid abundance of approx.14,000 parts-per-billion (ppb) [2], the Sutters Mill meteorite was found to be highly depleted in amino acids. Much lower abundances (approx.30 to 180 ppb) of glycine, beta-alanine, L-alanine and L-serine were detected in SM2 above procedural blank levels indicating that this meteorite sample experienced only minimal terrestrial amino acid contamination after its fall to Earth. Carbon isotope measurements will be necessary to establish the origin of glycine and beta-alanine in SM2. Other non-protein amino acids that are rare on Earth, yet commonly found in other CM meteorites such as aaminoisobutyric acid (alpha-AIB) and isovaline, were not identified in SM2. However, traces of beta-AIB (approx.1 ppb) were detected in SM2 and could be" extraterrestrial in origin. The low abundances of amino acids in the Sutter's Mill meteorite is consistent with mineralogical evidence that at least some parts of the Sutter's Mill meteorite parent body experienced extensive aqueous and/or thermal alteration.
    Keywords: Astrophysics
    Type: GSFC.OVPR.6657.2012 , 75th Annual Meeting of the Meteoritical Society; Aug 12, 2012 - Aug 17, 2012; Cairns; Australia
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: We present evidence from a sample of 544 galaxies from the DEEP2 Survey for evolution of the internal kinematics of blue galaxies over 0.2 〈 z 〈 1.2. DEEP2 provides a large sample of high resolution galaxy spectra and dual-band Hubble imaging from which we measure emission-line kinematics and galaxy inclinations, respectively. Our large sample allows us to overcome scatter intrinsic to galaxy properties, in order to examine trends. At a fixed stellar mass, galaxies systematically decrease in disturbed motions and increase in rotation velocity and potential well depth with time. The most massive galaxies are the most well-ordered at all times, with higher rotation velocities and less disturbed motions compared to less massive galaxies. We quantify disturbed motions with an integrated gas velocity dispersion (sigma(sub g)), which is unlike the typical pressure-supported velocity dispersion measured for early type galaxies and galaxy bulges. Due to finite slit width and seeing, sigma(sub g) integrates over unresolved velocity gradients which can correspond to non-ordered gas kinematics such as small-scale velocity gradients, gas motions due to star-formation, or super-imposed clumps along the line-of-sight. We compile surveys of galaxy kinematics over 1.2 〈 z 〈 3.8 and do not find any trends with redshift, likely because these studies are biased toward the most highly star-forming systems. In summary, over the last approx 8 billion years since z = 1.2, blue galaxies evolve from disturbed to ordered systems as they settle to become the rotation-dominated disk galaxies observed in the Universe today, with the most massive galaxies always being the most evolved at any time.
    Keywords: Astrophysics
    Type: GSFC.JA.01209.2012 , GSFC.JA.7351.2012 , The Astrophysical Journal; 758; 2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-19
    Description: Convergence of suprathermal keV-MeV proton and ion spectra approximately to the Fisk-Gloeckler (F-G) form j(E) = j(sub 0) E(sup -1.5) in Voyager land 2 heliosheath measurements is suggestive of distributed acceleration in Kolmogorov turbulence which may extend well beyond the heliopause into the local interstellar medium (LISM). Turbulence of this type is already indicated by interstellar radio scintillation measurements of electron density power spectra. Previously published extrapolations (Cooper et al., 2003, 2006) of the LISM proton spectrum from eV to GeV energies are highly consistent with the F-G power-law and further indicative of such turbulence and LISM effectiveness of the F-G cascade acceleration process. The LISM pressure computed from this spectrum well exceeds that from current estimates for the LISM magnetic field, so exchange of energy between the protons and the magnetic field would likely have a strong role in evolution of the turbulence as per the F-G theory and as long ago proposed for cosmic ray energies by Parker and others. Pressure-dependent estimates of the LISM field strength should not ignore this potentially strong and even dominant contribution from the plasma. Presence of high-beta suprathermal plasma on LISM field lines could significantly affect interactions with the heliospheric outer boundary region and might potentially account for distributed and more discrete features in ongoing measurements of energetic neutral emission from the Interstellar Boundary Explorer (IBEX) mission.
    Keywords: Astrophysics
    Type: 52nd Annual Meeting of the APS (American Physical Society) Div. of Plasma Physics; Nov 08, 2010 - Nov 12, 2010; Chicago, IL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...