ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Mice  (63)
  • Models, Biological  (13)
  • Nature Publishing Group (NPG)  (74)
  • American Chemical Society
  • National Academy of Sciences
  • 2010-2014  (74)
  • 2011  (74)
Collection
Publisher
Years
  • 2010-2014  (74)
Year
  • 1
    Publication Date: 2011-03-29
    Description: Although the question of to whom a male directs his mating attempts is a critical one in social interactions, little is known about the molecular and cellular mechanisms controlling mammalian sexual preference. Here we report that the neurotransmitter 5-hydroxytryptamine (5-HT) is required for male sexual preference. Wild-type male mice preferred females over males, but males lacking central serotonergic neurons lost sexual preference although they were not generally defective in olfaction or in pheromone sensing. A role for 5-HT was demonstrated by the phenotype of mice lacking tryptophan hydroxylase 2 (Tph2), which is required for the first step of 5-HT synthesis in the brain. Thirty-five minutes after the injection of the intermediate 5-hydroxytryptophan (5-HTP), which circumvented Tph2 to restore 5-HT to the wild-type level, adult Tph2 knockout mice also preferred females over males. These results indicate that 5-HT and serotonergic neurons in the adult brain regulate mammalian sexual preference.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4094133/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4094133/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Yan -- Jiang, Yun'ai -- Si, Yunxia -- Kim, Ji-Young -- Chen, Zhou-Feng -- Rao, Yi -- R01 AR056318/AR/NIAMS NIH HHS/ -- England -- Nature. 2011 Apr 7;472(7341):95-9. doi: 10.1038/nature09822. Epub 2011 Mar 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Institute of Biological Sciences, Beijing 102206, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21441904" target="_blank"〉PubMed〈/a〉
    Keywords: 5-Hydroxytryptophan/metabolism/pharmacology ; Animals ; Brain/*metabolism/physiology ; Brain Chemistry ; Estrous Cycle/physiology ; Female ; Heterosexuality/physiology ; Homosexuality, Male/genetics ; Housing, Animal ; Male ; Mating Preference, Animal/*physiology ; Mice ; Mice, Knockout ; Neurons/metabolism/physiology ; Odors/analysis ; Serotonin/biosynthesis/*metabolism ; Sex Attractants/analysis ; *Sex Characteristics ; Smell ; Tryptophan Hydroxylase/deficiency/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-07-19
    Description: Interleukin (IL)-17-producing T helper cells (T(H)17) are a recently identified CD4(+) T cell subset distinct from T helper type 1 (T(H)1) and T helper type 2 (T(H)2) cells. T(H)17 cells can drive antigen-specific autoimmune diseases and are considered the main population of pathogenic T cells driving experimental autoimmune encephalomyelitis (EAE), the mouse model for multiple sclerosis. The factors that are needed for the generation of T(H)17 cells have been well characterized. However, where and how the immune system controls T(H)17 cells in vivo remains unclear. Here, by using a model of tolerance induced by CD3-specific antibody, a model of sepsis and influenza A viral infection (H1N1), we show that pro-inflammatory T(H)17 cells can be redirected to and controlled in the small intestine. T(H)17-specific IL-17A secretion induced expression of the chemokine CCL20 in the small intestine, facilitating the migration of these cells specifically to the small intestine via the CCR6/CCL20 axis. Moreover, we found that T(H)17 cells are controlled by two different mechanisms in the small intestine: first, they are eliminated via the intestinal lumen; second, pro-inflammatory T(H)17 cells simultaneously acquire a regulatory phenotype with in vitro and in vivo immune-suppressive properties (rT(H)17). These results identify mechanisms limiting T(H)17 cell pathogenicity and implicate the gastrointestinal tract as a site for control of T(H)17 cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3148838/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3148838/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Esplugues, Enric -- Huber, Samuel -- Gagliani, Nicola -- Hauser, Anja E -- Town, Terrence -- Wan, Yisong Y -- O'Connor, William Jr -- Rongvaux, Anthony -- Van Rooijen, Nico -- Haberman, Ann M -- Iwakura, Yoichiro -- Kuchroo, Vijay K -- Kolls, Jay K -- Bluestone, Jeffrey A -- Herold, Kevan C -- Flavell, Richard A -- DK45735/DK/NIDDK NIH HHS/ -- P30 DK045735/DK/NIDDK NIH HHS/ -- P30 DK045735-20/DK/NIDDK NIH HHS/ -- R01 HL061271/HL/NHLBI NIH HHS/ -- R01 HL062052/HL/NHLBI NIH HHS/ -- R21 HL104601/HL/NHLBI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2011 Jul 17;475(7357):514-8. doi: 10.1038/nature10228.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA. enric.esplugues@yale.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21765430" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies/immunology/pharmacology ; Antigens, CD3/immunology ; CD4-Positive T-Lymphocytes/immunology/transplantation ; Cell Movement/drug effects ; Chemokine CCL20/immunology ; Disease Models, Animal ; Encephalomyelitis, Autoimmune, Experimental/immunology ; Female ; Gene Expression Profiling ; Gene Expression Regulation/immunology ; Influenza A virus/immunology ; Interleukin-17/immunology ; Intestine, Small/cytology/*immunology ; Male ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Mice, Transgenic ; Orthomyxoviridae Infections/immunology ; Receptors, CCR6/immunology ; Sepsis/immunology ; Staphylococcal Infections/immunology ; Th17 Cells/*immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-10-25
    Description: Selective autophagy involves the recognition and targeting of specific cargo, such as damaged organelles, misfolded proteins, or invading pathogens for lysosomal destruction. Yeast genetic screens have identified proteins required for different forms of selective autophagy, including cytoplasm-to-vacuole targeting, pexophagy and mitophagy, and mammalian genetic screens have identified proteins required for autophagy regulation. However, there have been no systematic approaches to identify molecular determinants of selective autophagy in mammalian cells. Here, to identify mammalian genes required for selective autophagy, we performed a high-content, image-based, genome-wide small interfering RNA screen to detect genes required for the colocalization of Sindbis virus capsid protein with autophagolysosomes. We identified 141 candidate genes required for viral autophagy, which were enriched for cellular pathways related to messenger RNA processing, interferon signalling, vesicle trafficking, cytoskeletal motor function and metabolism. Ninety-six of these genes were also required for Parkin-mediated mitophagy, indicating that common molecular determinants may be involved in autophagic targeting of viral nucleocapsids and autophagic targeting of damaged mitochondria. Murine embryonic fibroblasts lacking one of these gene products, the C2-domain containing protein, SMURF1, are deficient in the autophagosomal targeting of Sindbis and herpes simplex viruses and in the clearance of damaged mitochondria. Moreover, SMURF1-deficient mice accumulate damaged mitochondria in the heart, brain and liver. Thus, our study identifies candidate determinants of selective autophagy, and defines SMURF1 as a newly recognized mediator of both viral autophagy and mitophagy.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3229641/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3229641/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Orvedahl, Anthony -- Sumpter, Rhea Jr -- Xiao, Guanghua -- Ng, Aylwin -- Zou, Zhongju -- Tang, Yi -- Narimatsu, Masahiro -- Gilpin, Christopher -- Sun, Qihua -- Roth, Michael -- Forst, Christian V -- Wrana, Jeffrey L -- Zhang, Ying E -- Luby-Phelps, Katherine -- Xavier, Ramnik J -- Xie, Yang -- Levine, Beth -- AI062773/AI/NIAID NIH HHS/ -- AI109617/AI/NIAID NIH HHS/ -- CA84254/CA/NCI NIH HHS/ -- DK043351/DK/NIDDK NIH HHS/ -- DK086502/DK/NIDDK NIH HHS/ -- DK83756/DK/NIDDK NIH HHS/ -- P30 DK040561/DK/NIDDK NIH HHS/ -- P30 DK040561-15/DK/NIDDK NIH HHS/ -- P30 DK043351/DK/NIDDK NIH HHS/ -- R01 AI051367/AI/NIAID NIH HHS/ -- R01 AI051367-06/AI/NIAID NIH HHS/ -- UL1 RR024982/RR/NCRR NIH HHS/ -- ZIA BC011168-03/Intramural NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2011 Dec 1;480(7375):113-7. doi: 10.1038/nature10546.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9113, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22020285" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Autophagy/*genetics ; Capsid Proteins/metabolism ; *Genome-Wide Association Study ; HeLa Cells ; Humans ; Lysosomes/metabolism ; Mice ; Mitochondria/metabolism ; Protein Transport/genetics ; RNA, Small Interfering/*genetics ; Sindbis Virus/metabolism ; Ubiquitin-Protein Ligases/deficiency/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-07-16
    Description: Cancer cells adapt their metabolic processes to drive macromolecular biosynthesis for rapid cell growth and proliferation. RNA interference (RNAi)-based loss-of-function screening has proven powerful for the identification of new and interesting cancer targets, and recent studies have used this technology in vivo to identify novel tumour suppressor genes. Here we developed a method for identifying novel cancer targets via negative-selection RNAi screening using a human breast cancer xenograft model at an orthotopic site in the mouse. Using this method, we screened a set of metabolic genes associated with aggressive breast cancer and stemness to identify those required for in vivo tumorigenesis. Among the genes identified, phosphoglycerate dehydrogenase (PHGDH) is in a genomic region of recurrent copy number gain in breast cancer and PHGDH protein levels are elevated in 70% of oestrogen receptor (ER)-negative breast cancers. PHGDH catalyses the first step in the serine biosynthesis pathway, and breast cancer cells with high PHGDH expression have increased serine synthesis flux. Suppression of PHGDH in cell lines with elevated PHGDH expression, but not in those without, causes a strong decrease in cell proliferation and a reduction in serine synthesis. We find that PHGDH suppression does not affect intracellular serine levels, but causes a drop in the levels of alpha-ketoglutarate, another output of the pathway and a tricarboxylic acid (TCA) cycle intermediate. In cells with high PHGDH expression, the serine synthesis pathway contributes approximately 50% of the total anaplerotic flux of glutamine into the TCA cycle. These results reveal that certain breast cancers are dependent upon increased serine pathway flux caused by PHGDH overexpression and demonstrate the utility of in vivo negative-selection RNAi screens for finding potential anticancer targets.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3353325/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3353325/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Possemato, Richard -- Marks, Kevin M -- Shaul, Yoav D -- Pacold, Michael E -- Kim, Dohoon -- Birsoy, Kivanc -- Sethumadhavan, Shalini -- Woo, Hin-Koon -- Jang, Hyun G -- Jha, Abhishek K -- Chen, Walter W -- Barrett, Francesca G -- Stransky, Nicolas -- Tsun, Zhi-Yang -- Cowley, Glenn S -- Barretina, Jordi -- Kalaany, Nada Y -- Hsu, Peggy P -- Ottina, Kathleen -- Chan, Albert M -- Yuan, Bingbing -- Garraway, Levi A -- Root, David E -- Mino-Kenudson, Mari -- Brachtel, Elena F -- Driggers, Edward M -- Sabatini, David M -- CA103866/CA/NCI NIH HHS/ -- R01 CA103866/CA/NCI NIH HHS/ -- R01 CA103866-06A1/CA/NCI NIH HHS/ -- R01 CA103866-07/CA/NCI NIH HHS/ -- R01 CA129105/CA/NCI NIH HHS/ -- R01 CA129105-02/CA/NCI NIH HHS/ -- R01 CA129105-05/CA/NCI NIH HHS/ -- T32 GM007753/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2011 Aug 18;476(7360):346-50. doi: 10.1038/nature10350.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, Massachusetts 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21760589" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biomarkers, Tumor/metabolism ; Breast Neoplasms/enzymology/*genetics/*metabolism/pathology ; Cell Line, Tumor ; Cell Proliferation ; Citric Acid Cycle/physiology ; Gene Expression Regulation, Enzymologic ; Gene Expression Regulation, Neoplastic ; *Genomics ; Glutamic Acid/metabolism ; Humans ; Ketoglutaric Acids/metabolism ; Melanoma/enzymology/genetics ; Mice ; Neoplasm Transplantation ; Phosphoglycerate Dehydrogenase/genetics/metabolism ; RNA Interference ; Serine/*biosynthesis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-02-04
    Description: Effective clinical management of prostate cancer (PCA) has been challenged by significant intratumoural heterogeneity on the genomic and pathological levels and limited understanding of the genetic elements governing disease progression. Here, we exploited the experimental merits of the mouse to test the hypothesis that pathways constraining progression might be activated in indolent Pten-null mouse prostate tumours and that inactivation of such progression barriers in mice would engender a metastasis-prone condition. Comparative transcriptomic and canonical pathway analyses, followed by biochemical confirmation, of normal prostate epithelium versus poorly progressive Pten-null prostate cancers revealed robust activation of the TGFbeta/BMP-SMAD4 signalling axis. The functional relevance of SMAD4 was further supported by emergence of invasive, metastatic and lethal prostate cancers with 100% penetrance upon genetic deletion of Smad4 in the Pten-null mouse prostate. Pathological and molecular analysis as well as transcriptomic knowledge-based pathway profiling of emerging tumours identified cell proliferation and invasion as two cardinal tumour biological features in the metastatic Smad4/Pten-null PCA model. Follow-on pathological and functional assessment confirmed cyclin D1 and SPP1 as key mediators of these biological processes, which together with PTEN and SMAD4, form a four-gene signature that is prognostic of prostate-specific antigen (PSA) biochemical recurrence and lethal metastasis in human PCA. This model-informed progression analysis, together with genetic, functional and translational studies, establishes SMAD4 as a key regulator of PCA progression in mice and humans.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3753179/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3753179/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ding, Zhihu -- Wu, Chang-Jiun -- Chu, Gerald C -- Xiao, Yonghong -- Ho, Dennis -- Zhang, Jingfang -- Perry, Samuel R -- Labrot, Emma S -- Wu, Xiaoqiu -- Lis, Rosina -- Hoshida, Yujin -- Hiller, David -- Hu, Baoli -- Jiang, Shan -- Zheng, Hongwu -- Stegh, Alexander H -- Scott, Kenneth L -- Signoretti, Sabina -- Bardeesy, Nabeel -- Wang, Y Alan -- Hill, David E -- Golub, Todd R -- Stampfer, Meir J -- Wong, Wing H -- Loda, Massimo -- Mucci, Lorelei -- Chin, Lynda -- DePinho, Ronald A -- P50 CA090381/CA/NCI NIH HHS/ -- P50 CA090381-08/CA/NCI NIH HHS/ -- P50 CA90381/CA/NCI NIH HHS/ -- R01 5R01CA136578/CA/NCI NIH HHS/ -- R01 CA131945/CA/NCI NIH HHS/ -- R01CA131945/CA/NCI NIH HHS/ -- R01CA141298/CA/NCI NIH HHS/ -- U01-CA84313/CA/NCI NIH HHS/ -- England -- Nature. 2011 Feb 10;470(7333):269-73. doi: 10.1038/nature09677. Epub 2011 Feb 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21289624" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bone Morphogenetic Proteins/metabolism ; Cell Proliferation ; Cyclin D1/genetics/metabolism ; *Disease Progression ; Gene Expression Profiling ; Gene Expression Regulation, Neoplastic ; Genes, Tumor Suppressor/physiology ; Humans ; Lung Neoplasms/secondary ; Lymphatic Metastasis ; Male ; Mice ; Mice, Transgenic ; Models, Biological ; Neoplasm Invasiveness/genetics/pathology ; Neoplasm Metastasis/genetics/*pathology ; Osteopontin/genetics/metabolism ; PTEN Phosphohydrolase/deficiency/genetics ; Penetrance ; Prognosis ; Prostate/metabolism ; Prostate-Specific Antigen/metabolism ; Prostatic Neoplasms/diagnosis/genetics/*pathology ; Smad4 Protein/deficiency/genetics/*metabolism ; Transforming Growth Factor beta
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-03-23
    Description: The genome is extensively transcribed into long intergenic noncoding RNAs (lincRNAs), many of which are implicated in gene silencing. Potential roles of lincRNAs in gene activation are much less understood. Development and homeostasis require coordinate regulation of neighbouring genes through a process termed locus control. Some locus control elements and enhancers transcribe lincRNAs, hinting at possible roles in long-range control. In vertebrates, 39 Hox genes, encoding homeodomain transcription factors critical for positional identity, are clustered in four chromosomal loci; the Hox genes are expressed in nested anterior-posterior and proximal-distal patterns colinear with their genomic position from 3' to 5'of the cluster. Here we identify HOTTIP, a lincRNA transcribed from the 5' tip of the HOXA locus that coordinates the activation of several 5' HOXA genes in vivo. Chromosomal looping brings HOTTIP into close proximity to its target genes. HOTTIP RNA binds the adaptor protein WDR5 directly and targets WDR5/MLL complexes across HOXA, driving histone H3 lysine 4 trimethylation and gene transcription. Induced proximity is necessary and sufficient for HOTTIP RNA activation of its target genes. Thus, by serving as key intermediates that transmit information from higher order chromosomal looping into chromatin modifications, lincRNAs may organize chromatin domains to coordinate long-range gene activation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3670758/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3670758/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Kevin C -- Yang, Yul W -- Liu, Bo -- Sanyal, Amartya -- Corces-Zimmerman, Ryan -- Chen, Yong -- Lajoie, Bryan R -- Protacio, Angeline -- Flynn, Ryan A -- Gupta, Rajnish A -- Wysocka, Joanna -- Lei, Ming -- Dekker, Job -- Helms, Jill A -- Chang, Howard Y -- HG003143/HG/NHGRI NIH HHS/ -- R01 HG003143/HG/NHGRI NIH HHS/ -- R01 HG003143-06/HG/NHGRI NIH HHS/ -- R01 HG003143-06S1/HG/NHGRI NIH HHS/ -- R01 HG003143-06S2/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2011 Apr 7;472(7341):120-4. doi: 10.1038/nature09819. Epub 2011 Mar 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21423168" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cells, Cultured ; Chromatin/*genetics/metabolism ; DNA, Intergenic/genetics ; Embryo, Mammalian/metabolism ; Fibroblasts/metabolism ; Gene Expression Regulation, Developmental/*genetics ; Gene Knockdown Techniques ; Genes, Homeobox/*genetics ; Histone-Lysine N-Methyltransferase/metabolism ; Histones/chemistry/metabolism ; Humans ; Lysine/metabolism ; Methylation ; Mice ; Molecular Sequence Data ; Multigene Family/genetics ; Organ Specificity ; RNA, Untranslated/*genetics ; Transcription, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-02-08
    Description: Geographic atrophy (GA), an untreatable advanced form of age-related macular degeneration, results from retinal pigmented epithelium (RPE) cell degeneration. Here we show that the microRNA (miRNA)-processing enzyme DICER1 is reduced in the RPE of humans with GA, and that conditional ablation of Dicer1, but not seven other miRNA-processing enzymes, induces RPE degeneration in mice. DICER1 knockdown induces accumulation of Alu RNA in human RPE cells and Alu-like B1 and B2 RNAs in mouse RPE. Alu RNA is increased in the RPE of humans with GA, and this pathogenic RNA induces human RPE cytotoxicity and RPE degeneration in mice. Antisense oligonucleotides targeting Alu/B1/B2 RNAs prevent DICER1 depletion-induced RPE degeneration despite global miRNA downregulation. DICER1 degrades Alu RNA, and this digested Alu RNA cannot induce RPE degeneration in mice. These findings reveal a miRNA-independent cell survival function for DICER1 involving retrotransposon transcript degradation, show that Alu RNA can directly cause human pathology, and identify new targets for a major cause of blindness.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3077055/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3077055/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaneko, Hiroki -- Dridi, Sami -- Tarallo, Valeria -- Gelfand, Bradley D -- Fowler, Benjamin J -- Cho, Won Gil -- Kleinman, Mark E -- Ponicsan, Steven L -- Hauswirth, William W -- Chiodo, Vince A -- Kariko, Katalin -- Yoo, Jae Wook -- Lee, Dong-ki -- Hadziahmetovic, Majda -- Song, Ying -- Misra, Smita -- Chaudhuri, Gautam -- Buaas, Frank W -- Braun, Robert E -- Hinton, David R -- Zhang, Qing -- Grossniklaus, Hans E -- Provis, Jan M -- Madigan, Michele C -- Milam, Ann H -- Justice, Nikki L -- Albuquerque, Romulo J C -- Blandford, Alexander D -- Bogdanovich, Sasha -- Hirano, Yoshio -- Witta, Jassir -- Fuchs, Elaine -- Littman, Dan R -- Ambati, Balamurali K -- Rudin, Charles M -- Chong, Mark M W -- Provost, Patrick -- Kugel, Jennifer F -- Goodrich, James A -- Dunaief, Joshua L -- Baffi, Judit Z -- Ambati, Jayakrishna -- NIHU10EY013729/EY/NEI NIH HHS/ -- P30 EY006360/EY/NEI NIH HHS/ -- P30 EY014800/EY/NEI NIH HHS/ -- P30 EY014800-07/EY/NEI NIH HHS/ -- P30 EY021721/EY/NEI NIH HHS/ -- P30EY003040/EY/NEI NIH HHS/ -- P30EY008571/EY/NEI NIH HHS/ -- P30EY06360/EY/NEI NIH HHS/ -- R01 EY018350/EY/NEI NIH HHS/ -- R01 EY018350-05/EY/NEI NIH HHS/ -- R01 EY018836/EY/NEI NIH HHS/ -- R01 EY018836-04/EY/NEI NIH HHS/ -- R01 EY020672/EY/NEI NIH HHS/ -- R01 EY020672-02/EY/NEI NIH HHS/ -- R01 GM068414/GM/NIGMS NIH HHS/ -- R01EY001545/EY/NEI NIH HHS/ -- R01EY011123/EY/NEI NIH HHS/ -- R01EY015240/EY/NEI NIH HHS/ -- R01EY015422/EY/NEI NIH HHS/ -- R01EY017182/EY/NEI NIH HHS/ -- R01EY017950/EY/NEI NIH HHS/ -- R01EY018350/EY/NEI NIH HHS/ -- R01EY018836/EY/NEI NIH HHS/ -- R01EY020672/EY/NEI NIH HHS/ -- R01GM068414/GM/NIGMS NIH HHS/ -- R01HD027215/HD/NICHD NIH HHS/ -- R21 EY019778/EY/NEI NIH HHS/ -- R21 EY019778-02/EY/NEI NIH HHS/ -- R21AI076757/AI/NIAID NIH HHS/ -- R21EY019778/EY/NEI NIH HHS/ -- RC1 EY020442/EY/NEI NIH HHS/ -- RC1 EY020442-02/EY/NEI NIH HHS/ -- RC1EY020442/EY/NEI NIH HHS/ -- T32HL091812/HL/NHLBI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2011 Mar 17;471(7338):325-30. doi: 10.1038/nature09830. Epub 2011 Feb 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ophthalmology & Visual Sciences, University of Kentucky, Lexington, Kentucky 40506, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21297615" target="_blank"〉PubMed〈/a〉
    Keywords: Alu Elements/*genetics ; Animals ; Cell Death ; Cell Survival ; Cells, Cultured ; DEAD-box RNA Helicases/*deficiency/genetics/metabolism ; Gene Knockdown Techniques ; Humans ; Macular Degeneration/*genetics/*pathology ; Mice ; MicroRNAs/metabolism ; Molecular Sequence Data ; Oligonucleotides, Antisense ; Phenotype ; RNA/*genetics/*metabolism ; Retinal Pigment Epithelium/enzymology/metabolism/pathology ; Ribonuclease III/*deficiency/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-04-09
    Description: Metabolomics studies hold promise for the discovery of pathways linked to disease processes. Cardiovascular disease (CVD) represents the leading cause of death and morbidity worldwide. Here we used a metabolomics approach to generate unbiased small-molecule metabolic profiles in plasma that predict risk for CVD. Three metabolites of the dietary lipid phosphatidylcholine--choline, trimethylamine N-oxide (TMAO) and betaine--were identified and then shown to predict risk for CVD in an independent large clinical cohort. Dietary supplementation of mice with choline, TMAO or betaine promoted upregulation of multiple macrophage scavenger receptors linked to atherosclerosis, and supplementation with choline or TMAO promoted atherosclerosis. Studies using germ-free mice confirmed a critical role for dietary choline and gut flora in TMAO production, augmented macrophage cholesterol accumulation and foam cell formation. Suppression of intestinal microflora in atherosclerosis-prone mice inhibited dietary-choline-enhanced atherosclerosis. Genetic variations controlling expression of flavin monooxygenases, an enzymatic source of TMAO, segregated with atherosclerosis in hyperlipidaemic mice. Discovery of a relationship between gut-flora-dependent metabolism of dietary phosphatidylcholine and CVD pathogenesis provides opportunities for the development of new diagnostic tests and therapeutic approaches for atherosclerotic heart disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3086762/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3086762/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Zeneng -- Klipfell, Elizabeth -- Bennett, Brian J -- Koeth, Robert -- Levison, Bruce S -- Dugar, Brandon -- Feldstein, Ariel E -- Britt, Earl B -- Fu, Xiaoming -- Chung, Yoon-Mi -- Wu, Yuping -- Schauer, Phil -- Smith, Jonathan D -- Allayee, Hooman -- Tang, W H Wilson -- DiDonato, Joseph A -- Lusis, Aldons J -- Hazen, Stanley L -- K99 HL102223/HL/NHLBI NIH HHS/ -- K99 HL102223-01A1/HL/NHLBI NIH HHS/ -- P01 HL028481/HL/NHLBI NIH HHS/ -- P01 HL028481-26A1/HL/NHLBI NIH HHS/ -- P01 HL030568/HL/NHLBI NIH HHS/ -- P01 HL030568-27/HL/NHLBI NIH HHS/ -- P01 HL076491/HL/NHLBI NIH HHS/ -- P01 HL076491-05/HL/NHLBI NIH HHS/ -- P01 HL087018/HL/NHLBI NIH HHS/ -- P01 HL087018-02/HL/NHLBI NIH HHS/ -- P01 HL098055/HL/NHLBI NIH HHS/ -- P01 HL098055-02/HL/NHLBI NIH HHS/ -- P01 HL28481/HL/NHLBI NIH HHS/ -- P01 HL30568/HL/NHLBI NIH HHS/ -- P01HL087018-020001/HL/NHLBI NIH HHS/ -- P20 AA017837/AA/NIAAA NIH HHS/ -- R01 DK080732/DK/NIDDK NIH HHS/ -- R01 DK080732-02/DK/NIDDK NIH HHS/ -- R01 HL098193/HL/NHLBI NIH HHS/ -- R01 HL103866/HL/NHLBI NIH HHS/ -- R01 HL103866-02/HL/NHLBI NIH HHS/ -- R01 HL103931/HL/NHLBI NIH HHS/ -- R01 HL103931-02/HL/NHLBI NIH HHS/ -- T32 DK007789/DK/NIDDK NIH HHS/ -- T32 DK007789-10/DK/NIDDK NIH HHS/ -- T32-DK07789/DK/NIDDK NIH HHS/ -- UL1 RR024989/RR/NCRR NIH HHS/ -- UL1 RR024989-05/RR/NCRR NIH HHS/ -- England -- Nature. 2011 Apr 7;472(7341):57-63. doi: 10.1038/nature09922.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Cleveland Clinic, Cleveland, Ohio 44195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21475195" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Atherosclerosis/chemically induced/genetics/metabolism/microbiology ; Betaine/blood/metabolism ; Biomarkers/blood/metabolism ; Cardiovascular Diseases/blood/diagnosis/*metabolism/*microbiology ; Cholesterol, HDL/blood ; Choline/administration & dosage/blood/metabolism/pharmacology ; Diet/adverse effects ; Dietary Fats/blood/metabolism/pharmacology ; Female ; Gastrointestinal Tract/*metabolism/*microbiology ; Gene Expression Regulation ; Germ-Free Life ; Humans ; Liver/enzymology ; Macrophages/metabolism ; Metabolomics ; Methylamines/blood/metabolism/pharmacology ; Mice ; Mice, Inbred C57BL ; Oxygenases/genetics/metabolism ; Phenotype ; Phosphatidylcholines/administration & dosage/blood/*metabolism/pharmacology ; Receptors, Scavenger/metabolism ; Risk Assessment
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-07-29
    Description: Epstein-Barr virus-induced gene 2 (EBI2, also known as GPR183) is a G-protein-coupled receptor that is required for humoral immune responses; polymorphisms in the receptor have been associated with inflammatory autoimmune diseases. The natural ligand for EBI2 has been unknown. Here we describe the identification of 7alpha,25-dihydroxycholesterol (also called 7alpha,25-OHC or 5-cholesten-3beta,7alpha,25-triol) as a potent and selective agonist of EBI2. Functional activation of human EBI2 by 7alpha,25-OHC and closely related oxysterols was verified by monitoring second messenger readouts and saturable, high-affinity radioligand binding. Furthermore, we find that 7alpha,25-OHC and closely related oxysterols act as chemoattractants for immune cells expressing EBI2 by directing cell migration in vitro and in vivo. A critical enzyme required for the generation of 7alpha,25-OHC is cholesterol 25-hydroxylase (CH25H). Similar to EBI2 receptor knockout mice, mice deficient in CH25H fail to position activated B cells within the spleen to the outer follicle and mount a reduced plasma cell response after an immune challenge. This demonstrates that CH25H generates EBI2 biological activity in vivo and indicates that the EBI2-oxysterol signalling pathway has an important role in the adaptive immune response.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4297623/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4297623/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hannedouche, Sebastien -- Zhang, Juan -- Yi, Tangsheng -- Shen, Weijun -- Nguyen, Deborah -- Pereira, Joao P -- Guerini, Danilo -- Baumgarten, Birgit U -- Roggo, Silvio -- Wen, Ben -- Knochenmuss, Richard -- Noel, Sophie -- Gessier, Francois -- Kelly, Lisa M -- Vanek, Mirka -- Laurent, Stephane -- Preuss, Inga -- Miault, Charlotte -- Christen, Isabelle -- Karuna, Ratna -- Li, Wei -- Koo, Dong-In -- Suply, Thomas -- Schmedt, Christian -- Peters, Eric C -- Falchetto, Rocco -- Katopodis, Andreas -- Spanka, Carsten -- Roy, Marie-Odile -- Detheux, Michel -- Chen, Yu Alice -- Schultz, Peter G -- Cho, Charles Y -- Seuwen, Klaus -- Cyster, Jason G -- Sailer, Andreas W -- R01 AI040098/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2011 Jul 27;475(7357):524-7. doi: 10.1038/nature10280.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Euroscreen S.A., 6041 Gosselies, Belgium.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21796212" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibody Formation/immunology ; B-Lymphocytes ; Cell Line ; Cell Movement/drug effects ; Gene Expression Profiling ; Gene Expression Regulation/drug effects/immunology ; Humans ; Hydroxycholesterols/chemistry/*pharmacology ; Liver/chemistry ; Mice ; Mice, Knockout ; Receptors, Cell Surface/*immunology ; Receptors, G-Protein-Coupled ; Sheep ; T-Lymphocytes/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-12-14
    Description: The role of deleted in colorectal carcinoma (DCC) as a tumour suppressor has been a matter of debate for the past 15 years. DCC gene expression is lost or markedly reduced in the majority of advanced colorectal cancers and, by functioning as a dependence receptor, DCC has been shown to induce apoptosis unless engaged by its ligand, netrin-1 (ref. 2). However, so far no animal model has supported the view that the DCC loss-of-function is causally implicated as predisposing to aggressive cancer development. To investigate the role of DCC-induced apoptosis in the control of tumour progression, here we created a mouse model in which the pro-apoptotic activity of DCC is genetically silenced. Although the loss of DCC-induced apoptosis in this mouse model is not associated with a major disorganization of the intestines, it leads to spontaneous intestinal neoplasia at a relatively low frequency. Loss of DCC-induced apoptosis is also associated with an increase in the number and aggressiveness of intestinal tumours in a predisposing APC mutant context, resulting in the development of highly invasive adenocarcinomas. These results demonstrate that DCC functions as a tumour suppressor via its ability to trigger tumour cell apoptosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Castets, Marie -- Broutier, Laura -- Molin, Yann -- Brevet, Marie -- Chazot, Guillaume -- Gadot, Nicolas -- Paquet, Armelle -- Mazelin, Laetitia -- Jarrosson-Wuilleme, Loraine -- Scoazec, Jean-Yves -- Bernet, Agnes -- Mehlen, Patrick -- England -- Nature. 2011 Dec 11;482(7386):534-7. doi: 10.1038/nature10708.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Apoptosis, Cancer and Development Laboratory - Equipe labellisee La Ligue, LabEx DEVweCAN, Centre de Cancerologie de Lyon, INSERM U1052-CNRS UMR5286, Universite de Lyon, Centre Leon Berard, 69008 Lyon, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22158121" target="_blank"〉PubMed〈/a〉
    Keywords: Adenocarcinoma/genetics/pathology ; Animals ; Apoptosis/genetics ; Caspases/metabolism ; Cells, Cultured ; Disease Models, Animal ; *Disease Progression ; Fibroblasts ; Gene Silencing ; Genes, APC ; HEK293 Cells ; Humans ; Intestinal Neoplasms/*genetics/metabolism/*pathology ; Mice ; Mutant Proteins/genetics/metabolism ; Mutation ; Nerve Growth Factors/deficiency/genetics ; Receptors, Cell Surface/deficiency/genetics/*metabolism ; Tumor Suppressor Proteins/deficiency/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...