ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-07-19
    Description: Interleukin (IL)-17-producing T helper cells (T(H)17) are a recently identified CD4(+) T cell subset distinct from T helper type 1 (T(H)1) and T helper type 2 (T(H)2) cells. T(H)17 cells can drive antigen-specific autoimmune diseases and are considered the main population of pathogenic T cells driving experimental autoimmune encephalomyelitis (EAE), the mouse model for multiple sclerosis. The factors that are needed for the generation of T(H)17 cells have been well characterized. However, where and how the immune system controls T(H)17 cells in vivo remains unclear. Here, by using a model of tolerance induced by CD3-specific antibody, a model of sepsis and influenza A viral infection (H1N1), we show that pro-inflammatory T(H)17 cells can be redirected to and controlled in the small intestine. T(H)17-specific IL-17A secretion induced expression of the chemokine CCL20 in the small intestine, facilitating the migration of these cells specifically to the small intestine via the CCR6/CCL20 axis. Moreover, we found that T(H)17 cells are controlled by two different mechanisms in the small intestine: first, they are eliminated via the intestinal lumen; second, pro-inflammatory T(H)17 cells simultaneously acquire a regulatory phenotype with in vitro and in vivo immune-suppressive properties (rT(H)17). These results identify mechanisms limiting T(H)17 cell pathogenicity and implicate the gastrointestinal tract as a site for control of T(H)17 cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3148838/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3148838/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Esplugues, Enric -- Huber, Samuel -- Gagliani, Nicola -- Hauser, Anja E -- Town, Terrence -- Wan, Yisong Y -- O'Connor, William Jr -- Rongvaux, Anthony -- Van Rooijen, Nico -- Haberman, Ann M -- Iwakura, Yoichiro -- Kuchroo, Vijay K -- Kolls, Jay K -- Bluestone, Jeffrey A -- Herold, Kevan C -- Flavell, Richard A -- DK45735/DK/NIDDK NIH HHS/ -- P30 DK045735/DK/NIDDK NIH HHS/ -- P30 DK045735-20/DK/NIDDK NIH HHS/ -- R01 HL061271/HL/NHLBI NIH HHS/ -- R01 HL062052/HL/NHLBI NIH HHS/ -- R21 HL104601/HL/NHLBI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2011 Jul 17;475(7357):514-8. doi: 10.1038/nature10228.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA. enric.esplugues@yale.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21765430" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies/immunology/pharmacology ; Antigens, CD3/immunology ; CD4-Positive T-Lymphocytes/immunology/transplantation ; Cell Movement/drug effects ; Chemokine CCL20/immunology ; Disease Models, Animal ; Encephalomyelitis, Autoimmune, Experimental/immunology ; Female ; Gene Expression Profiling ; Gene Expression Regulation/immunology ; Influenza A virus/immunology ; Interleukin-17/immunology ; Intestine, Small/cytology/*immunology ; Male ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Mice, Transgenic ; Orthomyxoviridae Infections/immunology ; Receptors, CCR6/immunology ; Sepsis/immunology ; Staphylococcal Infections/immunology ; Th17 Cells/*immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-11-09
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-11-23
    Description: In diabetes mellitus, β cell destruction is largely silent and can be detected only after significant loss of insulin secretion capacity. We have developed a method for detecting β cell death in vivo by amplifying and measuring the proportion of insulin 1 DNA from β cells in the serum. By using primers that are specific for DNA methylation patterns in β cells, we have detected circulating copies of β cell-derived demethylated DNA in serum of mice by quantitative PCR. Accordingly, we have identified a relative increase of β cell-derived DNA after induction of diabetes with streptozotocin and during development of diabetes in nonobese diabetic mice. We have extended the use of this assay to measure β cell-derived insulin DNA in human tissues and serum. We found increased levels of demethylated insulin DNA in subjects with new-onset type 1 diabetes compared with age-matched control subjects. Our method provides a noninvasive approach for detecting β cell death in vivo that may be used to track the progression of diabetes and guide its treatment.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...