ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Mutation  (39)
  • 2005-2009  (39)
  • 1990-1994
  • 1935-1939
  • 2008  (39)
  • 1939
  • 1
    Publication Date: 2008-11-07
    Description: Acute myeloid leukaemia is a highly malignant haematopoietic tumour that affects about 13,000 adults in the United States each year. The treatment of this disease has changed little in the past two decades, because most of the genetic events that initiate the disease remain undiscovered. Whole-genome sequencing is now possible at a reasonable cost and timeframe to use this approach for the unbiased discovery of tumour-specific somatic mutations that alter the protein-coding genes. Here we present the results obtained from sequencing a typical acute myeloid leukaemia genome, and its matched normal counterpart obtained from the same patient's skin. We discovered ten genes with acquired mutations; two were previously described mutations that are thought to contribute to tumour progression, and eight were new mutations present in virtually all tumour cells at presentation and relapse, the function of which is not yet known. Our study establishes whole-genome sequencing as an unbiased method for discovering cancer-initiating mutations in previously unidentified genes that may respond to targeted therapies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2603574/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2603574/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ley, Timothy J -- Mardis, Elaine R -- Ding, Li -- Fulton, Bob -- McLellan, Michael D -- Chen, Ken -- Dooling, David -- Dunford-Shore, Brian H -- McGrath, Sean -- Hickenbotham, Matthew -- Cook, Lisa -- Abbott, Rachel -- Larson, David E -- Koboldt, Dan C -- Pohl, Craig -- Smith, Scott -- Hawkins, Amy -- Abbott, Scott -- Locke, Devin -- Hillier, Ladeana W -- Miner, Tracie -- Fulton, Lucinda -- Magrini, Vincent -- Wylie, Todd -- Glasscock, Jarret -- Conyers, Joshua -- Sander, Nathan -- Shi, Xiaoqi -- Osborne, John R -- Minx, Patrick -- Gordon, David -- Chinwalla, Asif -- Zhao, Yu -- Ries, Rhonda E -- Payton, Jacqueline E -- Westervelt, Peter -- Tomasson, Michael H -- Watson, Mark -- Baty, Jack -- Ivanovich, Jennifer -- Heath, Sharon -- Shannon, William D -- Nagarajan, Rakesh -- Walter, Matthew J -- Link, Daniel C -- Graubert, Timothy A -- DiPersio, John F -- Wilson, Richard K -- U54 HG002042/HG/NHGRI NIH HHS/ -- U54 HG002042-05/HG/NHGRI NIH HHS/ -- England -- Nature. 2008 Nov 6;456(7218):66-72. doi: 10.1038/nature07485.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63108, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18987736" target="_blank"〉PubMed〈/a〉
    Keywords: Case-Control Studies ; Disease Progression ; Gene Expression Profiling ; Gene Expression Regulation, Neoplastic/*genetics ; Genome, Human/*genetics ; Genomics ; Humans ; Leukemia, Myeloid, Acute/*genetics ; Mutagenesis, Insertional ; Mutation ; Polymorphism, Single Nucleotide ; Recurrence ; Sequence Analysis, DNA ; Sequence Deletion ; Skin/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-09-20
    Description: FtsZ is an essential bacterial guanosine triphosphatase and homolog of mammalian beta-tubulin that polymerizes and assembles into a ring to initiate cell division. We have created a class of small synthetic antibacterials, exemplified by PC190723, which inhibits FtsZ and prevents cell division. PC190723 has potent and selective in vitro bactericidal activity against staphylococci, including methicillin- and multi-drug-resistant Staphylococcus aureus. The putative inhibitor-binding site of PC190723 was mapped to a region of FtsZ that is analogous to the Taxol-binding site of tubulin. PC190723 was efficacious in an in vivo model of infection, curing mice infected with a lethal dose of S. aureus. The data validate FtsZ as a target for antibacterial intervention and identify PC190723 as suitable for optimization into a new anti-staphylococcal therapy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Haydon, David J -- Stokes, Neil R -- Ure, Rebecca -- Galbraith, Greta -- Bennett, James M -- Brown, David R -- Baker, Patrick J -- Barynin, Vladimir V -- Rice, David W -- Sedelnikova, Sveta E -- Heal, Jonathan R -- Sheridan, Joseph M -- Aiwale, Sachin T -- Chauhan, Pramod K -- Srivastava, Anil -- Taneja, Amit -- Collins, Ian -- Errington, Jeff -- Czaplewski, Lloyd G -- Biotechnology and Biological Sciences Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2008 Sep 19;321(5896):1673-5. doi: 10.1126/science.1159961.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Prolysis, Begbroke Science Park, Oxfordshire OX5 1PF, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18801997" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Anti-Bacterial Agents/*pharmacology/therapeutic use ; Bacillus subtilis/chemistry/*drug effects/genetics ; Bacterial Proteins/*antagonists & inhibitors/chemistry/genetics/metabolism ; Binding Sites ; Cell Division/drug effects ; Crystallography, X-Ray ; Cytoskeletal Proteins/*antagonists & inhibitors/chemistry/genetics/metabolism ; Drug Resistance, Bacterial/genetics ; Drug Resistance, Multiple, Bacterial ; Ligands ; Methicillin Resistance ; Mice ; Microbial Sensitivity Tests ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Protein Conformation ; Pyridines/chemistry/metabolism/*pharmacology/therapeutic use ; Staphylococcal Infections/*drug therapy ; Staphylococcus aureus/chemistry/*drug effects ; Thiazoles/chemistry/metabolism/*pharmacology/therapeutic use ; Tubulin/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2008-09-26
    Description: Eukaryotic chromatin is separated into functional domains differentiated by post-translational histone modifications, histone variants and DNA methylation. Methylation is associated with repression of transcriptional initiation in plants and animals, and is frequently found in transposable elements. Proper methylation patterns are crucial for eukaryotic development, and aberrant methylation-induced silencing of tumour suppressor genes is a common feature of human cancer. In contrast to methylation, the histone variant H2A.Z is preferentially deposited by the Swr1 ATPase complex near 5' ends of genes where it promotes transcriptional competence. How DNA methylation and H2A.Z influence transcription remains largely unknown. Here we show that in the plant Arabidopsis thaliana regions of DNA methylation are quantitatively deficient in H2A.Z. Exclusion of H2A.Z is seen at sites of DNA methylation in the bodies of actively transcribed genes and in methylated transposons. Mutation of the MET1 DNA methyltransferase, which causes both losses and gains of DNA methylation, engenders opposite changes (gains and losses) in H2A.Z deposition, whereas mutation of the PIE1 subunit of the Swr1 complex that deposits H2A.Z leads to genome-wide hypermethylation. Our findings indicate that DNA methylation can influence chromatin structure and effect gene silencing by excluding H2A.Z, and that H2A.Z protects genes from DNA methylation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2877514/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2877514/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zilberman, Daniel -- Coleman-Derr, Devin -- Ballinger, Tracy -- Henikoff, Steven -- Howard Hughes Medical Institute/ -- England -- Nature. 2008 Nov 6;456(7218):125-9. doi: 10.1038/nature07324. Epub 2008 Sep 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University of California, 211 Koshland Hall, Berkeley, California 94720, USA. daniel.zilberman@nature.berkely.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18815594" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/enzymology/*genetics/*metabolism ; Arabidopsis Proteins/genetics/metabolism ; Chromatin/genetics/*metabolism ; DNA (Cytosine-5-)-Methyltransferase/genetics/metabolism ; *DNA Methylation ; Gene Expression Regulation, Plant ; Gene Silencing ; Histones/*metabolism ; Mutation ; Transcription Factors/genetics/metabolism ; Transcription, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2008-12-19
    Description: Cancer stem cells are remarkably similar to normal stem cells: both self-renew, are multipotent and express common surface markers, for example, prominin 1 (PROM1, also called CD133). What remains unclear is whether cancer stem cells are the direct progeny of mutated stem cells or more mature cells that reacquire stem cell properties during tumour formation. Answering this question will require knowledge of whether normal stem cells are susceptible to cancer-causing mutations; however, this has proved difficult to test because the identity of most adult tissue stem cells is not known. Here, using an inducible Cre, nuclear LacZ reporter allele knocked into the Prom1 locus (Prom1(C-L)), we show that Prom1 is expressed in a variety of developing and adult tissues. Lineage-tracing studies of adult Prom1(+/C-L) mice containing the Rosa26-YFP reporter allele showed that Prom1(+) cells are located at the base of crypts in the small intestine, co-express Lgr5 (ref. 2), generate the entire intestinal epithelium, and are therefore the small intestinal stem cell. Prom1 was reported recently to mark cancer stem cells of human intestinal tumours that arise frequently as a consequence of aberrant wingless (Wnt) signalling. Activation of endogenous Wnt signalling in Prom1(+/C-L) mice containing a Cre-dependent mutant allele of beta-catenin (Ctnnb1(lox(ex3))) resulted in a gross disruption of crypt architecture and a disproportionate expansion of Prom1(+) cells at the crypt base. Lineage tracing demonstrated that the progeny of these cells replaced the mucosa of the entire small intestine with neoplastic tissue that was characterized by focal high-grade intraepithelial neoplasia and crypt adenoma formation. Although all neoplastic cells arose from Prom1(+) cells in these mice, only 7% of tumour cells retained Prom1 expression. Our data indicate that Prom1 marks stem cells in the adult small intestine that are susceptible to transformation into tumours retaining a fraction of mutant Prom1(+) tumour cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2633030/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2633030/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhu, Liqin -- Gibson, Paul -- Currle, D Spencer -- Tong, Yiai -- Richardson, Robert J -- Bayazitov, Ildar T -- Poppleton, Helen -- Zakharenko, Stanislav -- Ellison, David W -- Gilbertson, Richard J -- P01 CA096832/CA/NCI NIH HHS/ -- P01 CA096832-01A10003/CA/NCI NIH HHS/ -- P01CA96832/CA/NCI NIH HHS/ -- P30CA021765/CA/NCI NIH HHS/ -- R01 CA129541/CA/NCI NIH HHS/ -- R01 CA129541-01/CA/NCI NIH HHS/ -- R01 CA129541-02/CA/NCI NIH HHS/ -- R01 MH079079/MH/NIMH NIH HHS/ -- R01 MH079079-01A2/MH/NIMH NIH HHS/ -- R01 MH079079-02/MH/NIMH NIH HHS/ -- R01 MH079079-03/MH/NIMH NIH HHS/ -- R01 MH079079-04/MH/NIMH NIH HHS/ -- R01 MH079079-05/MH/NIMH NIH HHS/ -- R01CA129541/CA/NCI NIH HHS/ -- England -- Nature. 2009 Jan 29;457(7229):603-7. doi: 10.1038/nature07589. Epub 2008 Dec 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Developmental Neurobiology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19092805" target="_blank"〉PubMed〈/a〉
    Keywords: Adenoma/genetics/metabolism/pathology ; Animals ; Antigens, CD/analysis/genetics/*metabolism ; Biomarkers/analysis/metabolism ; *Cell Lineage ; *Cell Transformation, Neoplastic ; Cells, Cultured ; Genes, Reporter/genetics ; Glycoproteins/analysis/genetics/*metabolism ; Intestinal Neoplasms/genetics/metabolism/pathology ; Intestine, Small/*cytology/pathology ; Mice ; Mutation ; Neoplasm Transplantation ; Neoplastic Stem Cells/cytology/*metabolism/pathology ; Peptides/analysis/genetics/*metabolism ; Receptors, G-Protein-Coupled/metabolism ; Stem Cells/cytology/*metabolism/*pathology ; Transplantation, Heterologous ; Wnt Proteins/metabolism ; beta Catenin/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2008-03-01
    Description: The blue-emissive antibody EP2-19G2 that has been elicited against trans-stilbene has unprecedented ability to produce bright luminescence and has been used as a biosensor in various applications. We show that the prolonged luminescence is not stilbene fluorescence. Instead, the emissive species is a charge-transfer excited complex of an anionic stilbene and a cationic, parallel pi-stacked tryptophan. Upon charge recombination, this complex generates exceptionally bright blue light. Complex formation is enabled by a deeply penetrating ligand-binding pocket, which in turn results from a noncanonical interface between the two variable domains of the antibody.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Debler, Erik W -- Kaufmann, Gunnar F -- Meijler, Michael M -- Heine, Andreas -- Mee, Jenny M -- Pljevaljcic, Goran -- Di Bilio, Angel J -- Schultz, Peter G -- Millar, David P -- Janda, Kim D -- Wilson, Ian A -- Gray, Harry B -- Lerner, Richard A -- DK19038/DK/NIDDK NIH HHS/ -- GM38273/GM/NIGMS NIH HHS/ -- GM56528/GM/NIGMS NIH HHS/ -- R01 GM038273/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2008 Feb 29;319(5867):1232-5. doi: 10.1126/science.1153445.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Scripps Research Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18309081" target="_blank"〉PubMed〈/a〉
    Keywords: Antibodies, Monoclonal/*chemistry/genetics/immunology ; Antigen-Antibody Complex ; Binding Sites, Antibody ; Crystallization ; Crystallography, X-Ray ; *Electrons ; Fluorescence ; Fluorescence Polarization ; Haptens/chemistry/immunology ; Hydrophobic and Hydrophilic Interactions ; Immunoglobulin Variable Region/*chemistry/immunology ; Ligands ; Luminescence ; Mutation ; Oxidation-Reduction ; Protein Structure, Tertiary ; Spectrometry, Fluorescence ; Spectrum Analysis ; Stilbenes/*chemistry/immunology ; Tryptophan/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2008-10-04
    Description: Ceramide engagement in apoptotic pathways has been a topic of controversy. To address this controversy, we tested loss-of-function (lf) mutants of conserved genes of sphingolipid metabolism in Caenorhabditis elegans. Although somatic (developmental) apoptosis was unaffected, ionizing radiation-induced apoptosis of germ cells was obliterated upon inactivation of ceramide synthase and restored upon microinjection of long-chain natural ceramide. Radiation-induced increase in the concentration of ceramide localized to mitochondria and was required for BH3-domain protein EGL-1-mediated displacement of CED-4 (an APAF-1-like protein) from the CED-9 (a Bcl-2 family member)/CED-4 complex, an obligate step in activation of the CED-3 caspase. These studies define CEP-1 (the worm homolog of the tumor suppressor p53)-mediated accumulation of EGL-1 and ceramide synthase-mediated generation of ceramide through parallel pathways that integrate at mitochondrial membranes to regulate stress-induced apoptosis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2585063/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2585063/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Deng, Xinzhu -- Yin, Xianglei -- Allan, Richard -- Lu, Diane D -- Maurer, Carine W -- Haimovitz-Friedman, Adriana -- Fuks, Zvi -- Shaham, Shai -- Kolesnick, Richard -- 2R01HD42680-06/HD/NICHD NIH HHS/ -- CA105125-03/CA/NCI NIH HHS/ -- CA85704/CA/NCI NIH HHS/ -- R01 CA085704/CA/NCI NIH HHS/ -- R01 CA085704-09/CA/NCI NIH HHS/ -- R01 HD042680/HD/NICHD NIH HHS/ -- R01 HD042680-07/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2008 Oct 3;322(5898):110-5. doi: 10.1126/science.1158111.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Signal Transduction, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18832646" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; Caenorhabditis elegans/*cytology/genetics/*metabolism/physiology ; Caenorhabditis elegans Proteins/genetics/*metabolism ; Calcium-Binding Proteins/genetics/metabolism ; Ceramides/biosynthesis/*metabolism/pharmacology ; Genes, Helminth ; Germ Cells/*cytology/metabolism/radiation effects ; Mitochondria/metabolism ; Mitochondrial Membranes/metabolism ; Mutation ; Nuclear Envelope/metabolism ; Oxidoreductases/genetics/metabolism ; Proto-Oncogene Proteins c-abl/genetics/metabolism ; Proto-Oncogene Proteins c-bcl-2/metabolism ; *Radiation, Ionizing ; Repressor Proteins/metabolism ; Tumor Suppressor Protein p53/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2008-05-24
    Description: Taguchi et al. (Reports, 20 July 2007, p. 369) reported that mice heterozygous for a null mutation in insulin receptor substrate-2 (Irs2) display a 17% increase in median life span. However, using the same mouse model, we find no evidence for life-span extension and suggest that the findings of Taguchi et al. were due to atypical life-span profiles in their study animals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Selman, Colin -- Lingard, Steven -- Gems, David -- Partridge, Linda -- Withers, Dominic J -- New York, N.Y. -- Science. 2008 May 23;320(5879):1012; author reply 1012. doi: 10.1126/science.1152366.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Diabetes and Endocrinology, Department of Medicine, University College London, Rayne Institute, 5 University Street, London WC1E 6JJ, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18497277" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/*metabolism ; Crosses, Genetic ; Diet ; Female ; Homeostasis ; Insulin Receptor Substrate Proteins ; Intracellular Signaling Peptides and Proteins/genetics/*metabolism ; Kaplan-Meier Estimate ; *Longevity ; Male ; Mice ; Mice, Inbred C57BL ; Mutation ; Phosphoproteins/genetics/*metabolism ; Research Design ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2008-10-25
    Description: During the development of multicellular organisms, organogenesis and pattern formation depend on formative divisions to specify and maintain pools of stem cells. In higher plants, these activities are essential to shape the final root architecture because the functioning of root apical meristems and the de novo formation of lateral roots entirely rely on it. We used transcript profiling on sorted pericycle cells undergoing lateral root initiation to identify the receptor-like kinase ACR4 of Arabidopsis as a key factor both in promoting formative cell divisions in the pericycle and in constraining the number of these divisions once organogenesis has been started. In the root tip meristem, ACR4 shows a similar action by controlling cell proliferation activity in the columella cell lineage. Thus, ACR4 function reveals a common mechanism of formative cell division control in the main root tip meristem and during lateral root initiation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉De Smet, Ive -- Vassileva, Valya -- De Rybel, Bert -- Levesque, Mitchell P -- Grunewald, Wim -- Van Damme, Daniel -- Van Noorden, Giel -- Naudts, Mirande -- Van Isterdael, Gert -- De Clercq, Rebecca -- Wang, Jean Y -- Meuli, Nicholas -- Vanneste, Steffen -- Friml, Jiri -- Hilson, Pierre -- Jurgens, Gerd -- Ingram, Gwyneth C -- Inze, Dirk -- Benfey, Philip N -- Beeckman, Tom -- New York, N.Y. -- Science. 2008 Oct 24;322(5901):594-7. doi: 10.1126/science.1160158.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), B-9052 Ghent, Belgium.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18948541" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/*cytology/*enzymology/genetics/growth & development ; Arabidopsis Proteins/*genetics/*metabolism ; *Cell Division ; Cell Lineage ; Gene Expression Profiling ; Gene Expression Regulation, Plant ; Genes, Plant ; Meristem/*cytology/enzymology/growth & development ; Mutation ; Plant Roots/*cytology/enzymology/growth & development ; Protein-Serine-Threonine Kinases ; Receptors, Cell Surface/*genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2008-09-06
    Description: Changes in gene regulation are thought to have contributed to the evolution of human development. However, in vivo evidence for uniquely human developmental regulatory function has remained elusive. In transgenic mice, a conserved noncoding sequence (HACNS1) that evolved extremely rapidly in humans acted as an enhancer of gene expression that has gained a strong limb expression domain relative to the orthologous elements from chimpanzee and rhesus macaque. This gain of function was consistent across two developmental stages in the mouse and included the presumptive anterior wrist and proximal thumb. In vivo analyses with synthetic enhancers, in which human-specific substitutions were introduced into the chimpanzee enhancer sequence or reverted in the human enhancer to the ancestral state, indicated that 13 substitutions clustered in an 81-base pair module otherwise highly constrained among terrestrial vertebrates were sufficient to confer the human-specific limb expression domain.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2658639/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2658639/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Prabhakar, Shyam -- Visel, Axel -- Akiyama, Jennifer A -- Shoukry, Malak -- Lewis, Keith D -- Holt, Amy -- Plajzer-Frick, Ingrid -- Morrison, Harris -- Fitzpatrick, David R -- Afzal, Veena -- Pennacchio, Len A -- Rubin, Edward M -- Noonan, James P -- 1-F32-GM074367/GM/NIGMS NIH HHS/ -- F32 GM074367/GM/NIGMS NIH HHS/ -- F32 GM074367-02/GM/NIGMS NIH HHS/ -- HG003988/HG/NHGRI NIH HHS/ -- HL066681/HL/NHLBI NIH HHS/ -- MC_U127561093/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2008 Sep 5;321(5894):1346-50. doi: 10.1126/science.1159974.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18772437" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Binding Sites ; Body Patterning/*genetics ; Conserved Sequence ; Embryonic Development ; *Enhancer Elements, Genetic ; Evolution, Molecular ; Extremities/*embryology ; Gene Expression Profiling ; *Gene Expression Regulation, Developmental ; Humans ; Limb Buds/embryology/metabolism ; Macaca mulatta/genetics ; Mice ; Mice, Transgenic ; Molecular Sequence Data ; Mutation ; PAX9 Transcription Factor/metabolism ; Pan troglodytes/genetics ; Selection, Genetic ; Transcription Factors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2008-04-12
    Description: Execution of motor behaviors relies on circuitries effectively integrating immediate sensory feedback to efferent pathways controlling muscle activity. It remains unclear how, during neuromuscular circuit assembly, sensory and motor projections become incorporated into tightly coordinated, yet functionally separate pathways. We report that, within axial nerves, establishment of discrete afferent and efferent pathways depends on coordinate signaling between coextending sensory and motor projections. These heterotypic axon-axon interactions require motor axonal EphA3/EphA4 receptor tyrosine kinases activated by cognate sensory axonal ephrin-A ligands. Genetic elimination of trans-axonal ephrin-A --〉 EphA signaling in mice triggers drastic motor-sensory miswiring, culminating in functional efferents within proximal afferent pathways. Effective assembly of a key circuit underlying motor behaviors thus critically depends on trans-axonal signaling interactions resolving motor and sensory projections into discrete pathways.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3158657/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3158657/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gallarda, Benjamin W -- Bonanomi, Dario -- Muller, Daniel -- Brown, Arthur -- Alaynick, William A -- Andrews, Shane E -- Lemke, Greg -- Pfaff, Samuel L -- Marquardt, Till -- NS031249-14A1/NS/NINDS NIH HHS/ -- NS054172-01A2/NS/NINDS NIH HHS/ -- R01 NS054172/NS/NINDS NIH HHS/ -- R01 NS054172-01A2/NS/NINDS NIH HHS/ -- R01 NS054172-02/NS/NINDS NIH HHS/ -- R01 NS054172-03/NS/NINDS NIH HHS/ -- R01 NS054172-04/NS/NINDS NIH HHS/ -- R01 NS054172-05/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2008 Apr 11;320(5873):233-6. doi: 10.1126/science.1153758.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18403711" target="_blank"〉PubMed〈/a〉
    Keywords: Afferent Pathways/physiology ; Animals ; Axons/*physiology ; Cells, Cultured ; Coculture Techniques ; Efferent Pathways/physiology ; Electrophysiology ; Ephrins/*metabolism ; Ganglia, Spinal/cytology/physiology ; Growth Cones/physiology ; Ligands ; Mice ; Mice, Transgenic ; Motor Activity ; Motor Neurons/*physiology ; Muscle, Skeletal/innervation ; Mutation ; Neurons, Afferent/*physiology ; Peripheral Nerves/cytology/physiology ; Receptor, EphA3/genetics/*metabolism ; Receptor, EphA4/genetics/*metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...