ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI  (56,387)
  • MDPI Publishing  (52,519)
  • PANGAEA  (48,445)
  • 2015-2019  (157,351)
Collection
Keywords
Publisher
Language
Years
Year
  • 1
    Publication Date: 2019-12-03
    Description: Phytoplankton in the ocean are extremely diverse. The abundance of various intracellular pigments are often used to study phytoplankton physiology and ecology, and identify and quantify different phytoplankton groups. In this study, phytoplankton absorption spectra (aph(λ)) derived from underway flow-through AC-S measurements in the Fram Strait are combined with phytoplankton pigment measurements analyzed by high-performance liquid chromatography (HPLC) to evaluate the retrieval of various pigment concentrations at high spatial resolution. The performances of two approaches, Gaussian decomposition and the matrix inversion technique are investigated and compared. Our study is the first to apply the matrix inversion technique to underway spectrophotometry data. We find that Gaussian decomposition provides good estimates (median absolute percentage error, MPE 21–34%) of total chlorophyll-a (TChl-a), total chlorophyll-b (TChl-b), the combination of chlorophyll-c1 and -c2 (Chl-c1/2), photoprotective (PPC) and photosynthetic carotenoids (PSC). This method outperformed one of the matrix inversion algorithms, i.e., singular value decomposition combined with non-negative least squares (SVD-NNLS), in retrieving TChl-b, Chl-c1/2, PSC, and PPC. However, SVD-NNLS enables robust retrievals of specific carotenoids (MPE 37–65%), i.e., fucoxanthin, diadinoxanthin and 19′-hexanoyloxyfucoxanthin, which is currently not accomplished by Gaussian decomposition. More robust predictions are obtained using the Gaussian decomposition method when the observed aph(λ) is normalized by the package effect index at 675 nm. The latter is determined as a function of “packaged” aph(675) and TChl-a concentration, which shows potential for improving pigment retrieval accuracy by the combined use of aph(λ) and TChl-a concentration data. To generate robust estimation statistics for the matrix inversion technique, we combine leave-one-out cross-validation with data perturbations. We find that both approaches provide useful information on pigment distributions, and hence, phytoplankton community composition indicators, at a spatial resolution much finer than that can be achieved with discrete samples.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2019-01-30
    Description: The purpose of this list of digital platforms is to facilitate the research of scientific data (articles, books, conferences, websites, indexers, etc.) by students of all undergraduate levels. The interface of platforms have similarities and because of this, low degree of difficulty of use. I emphasize that the key to an excellent literature search on digital platforms is to choose the right "keyword".
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/zip
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2019-03-21
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2019-03-21
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2019-03-21
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2019-03-21
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2019-01-22
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2019-03-21
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-02-16
    Description: Arctic and subarctic regions are sensitive to climate change and, reversely, provide dramatic feedbacks to the global climate. With a focus on discovering paleoclimate and paleoceanographic evolution in the Arctic and Northwest Pacific Oceans during the last 20,000 years, we proposed this German–Sino cooperation program according to the announcement “Federal Ministry of Education and Research (BMBF) of the Federal Republic of Germany for a German–Sino cooperation program in the marine and polar research”. Our proposed program integrates the advantages of the Arctic and Subarctic marine sediment studies in AWI (Alfred Wegener Institute) and FIO (First Institute of Oceanography). For the first time, the collection of sediment cores can cover all climatological key regions in the Arctic and Northwest Pacific Oceans. Furthermore, the climate modeling work at AWI enables a “Data-Model Syntheses”, which are crucial for exploring the underlying mechanisms of observed changes in proxy records.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-05-28
    Description: An intercomparison of radiance and irradiance ocean color radiometers (the second laboratory comparison exercise—LCE-2) was organized within the frame of the European Space Agency funded project Fiducial Reference Measurements for Satellite Ocean Color (FRM4SOC) May 8–13, 2017 at Tartu Observatory, Estonia. LCE-2 consisted of three sub-tasks: (1) SI-traceable radiometric calibration of all the participating radiance and irradiance radiometers at the Tartu Observatory just before the comparisons; (2) indoor, laboratory intercomparison using stable radiance and irradiance sources in a controlled environment; (3) outdoor, field intercomparison of natural radiation sources over a natural water surface. The aim of the experiment was to provide a link in the chain of traceability from field measurements of water reflectance to the uniform SI-traceable calibration, and after calibration to verify whether di�erent instruments measuring the same object provide results consistent within the expected uncertainty limits. This paper describes the third phase of LCE-2: The results of the field experiment. The calibration of radiometers and laboratory comparison experiment are presented in a related paper of the same journal issue. Compared to the laboratory comparison, the field intercomparison has demonstrated substantially larger variability between freshly calibrated sensors, because the targets and environmental conditions during radiometric calibration were di�erent, both spectrally and spatially. Major di�erences were found for radiance sensors measuring a sunlit water target at viewing zenith angle of 139� because of the di�erent fields of view. Major di�erences were found for irradiance sensors because of imperfect cosine response of di�users. Variability between individual radiometers did depend significantly also on the type of the sensor and on the specific measurement target. Uniform SI traceable radiometric calibration ensuring fairly good consistency for indoor, laboratory measurements is insu�cient for outdoor, field measurements, mainly due to the di�erent angular variability of illumination. More stringent specifications and individual testing of radiometers for all relevant systematic e�ects (temperature, nonlinearity, spectral stray light, etc.) are needed to reduce biases between instruments and better quantify measurement uncertainties.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-05-28
    Description: An intercomparison of radiance and irradiance ocean color radiometers (The Second Laboratory Comparison Exercise—LCE-2) was organized within the frame of the European Space Agency funded project Fiducial Reference Measurements for Satellite Ocean Color (FRM4SOC) May 8–13, 2017 at Tartu Observatory, Estonia. LCE-2 consisted of three sub-tasks: 1) SI-traceable radiometric calibration of all the participating radiance and irradiance radiometers at the Tartu Observatory just before the comparisons; 2) Indoor intercomparison using stable radiance and irradiance sources in controlled environment; and 3) Outdoor intercomparison of natural radiation sources over terrestrial water surface. The aim of the experiment was to provide one link in the chain of traceability from field measurements of water reflectance to the uniform SI-traceable calibration, and after calibration to verify whether di�erent instruments measuring the same object provide results consistent within the expected uncertainty limits. This paper describes the activities and results of the first two phases of LCE-2: the SI-traceable radiometric calibration and indoor intercomparison, the results of outdoor experiment are presented in a related paper of the same journal issue. The indoor experiment of the LCE-2 has proven that uniform calibration just before the use of radiometers is highly e�ective. Distinct radiometers from di�erent manufacturers operated by di�erent scientists can yield quite close radiance and irradiance results (standard deviation s 〈 1%) under defined conditions. This holds when measuring stable lamp-based targets under stationary laboratory conditions with all the radiometers uniformly calibrated against the same standards just prior to the experiment. In addition, some unification of measurement and data processing must be settled. Uncertaint of radiance and irradiance measurement under these conditions largely consists of the sensor’s calibration uncertainty and of the spread of results obtained by individual sensors measuring the same object.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    MDPI
    In:  EPIC3Remote Sensing, MDPI, 11(9), pp. 1-18, ISSN: 2072-4292
    Publication Date: 2019-05-20
    Description: Real-time quality-controlled surface current data derived from X-Band marine radar (MR) measurements were evaluated to estimate their operational reliability. The presented data were acquired by the standard commercial o�-the-shelf MR-based sigma s6 WaMoS® II (WaMoS® II) deployed onboard the German Research vessel Polarstern. The measurement reliability is specified by an IQ value obtained by the WaMoS® II real-time quality control (rtQC). Data which pass the rtQC without objection are assumed to be reliable. For these data sets accuracy and correlation with corresponding vessel-mounted acoustic Doppler current profiler (ADCP) measurements are determined. To reduce potential misinterpretation due to short-term oceanic variability/turbulences, the evaluation of the WaMoS® II accuracy was carried out based on sliding means over 20 min of the reliable data only. The associated standard deviation �WaMoS = 0.02 m/s of the meanWaMoS® II measurements reflect a high precision of the measurement and the successful rtQC during di�erent wave, current and weather conditions. The direct comparison of 7272 WaMoS® II/ADCP northward and eastward velocity data pairs yield a correlation of r � 0.94, with jbiasDj � 0.06 m/s and �S = 0.05 m/s. This confirms that the MR-based surface current measurements are accurate and reliable.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-09-01
    Description: Coring sediments in subglacial aquatic environments offers unique opportunities for research on paleo-environments and paleo-climates because it can provide data from periods even earlier than ice cores, as well as the overlying ice histories, interactions between ice and the water system, life forms in extreme habitats, sedimentology, and stratigraphy. However, retrieving sediment cores from a subglacial environment faces more difficulties than sediment coring in oceans and lakes, resulting in low yields from the most current subglacial sediment coring methods. The coring tools should pass through a hot water-drilled access borehole, then the water column, to reach the sediment layers. The access boreholes are size-limited by the hot water drilling tools and techniques. These holes are drilled through ice up to 3000–4000 m thick, with diameters ranging from 10–60 cm, and with a refreezing closure rate of up to 6 mm/h after being drilled. Several purpose-built streamline corers have been developed to pass through access boreholes and collect the sediment core. The main coring objectives are as follows: (i) To obtain undisturbed water–sediment cores, either singly or as multi-cores and (ii) to obtain long cores with minimal stratigraphic deformation. Subglacial sediment coring methods use similar tools to those used in lake and ocean coring. These methods include the following: Gravity coring, push coring, piston coring, hammer or percussion coring, vibrocoring, and composite methods. Several core length records have been attained by different coring methods, including a 290 cm percussion core from the sub-ice-shelf seafloor, a 400 cm piston core from the sub-ice-stream, and a 170 cm gravity core from a subglacial lake. There are also several undisturbed water–sediment cores that have been obtained by gravity corers or hammer corers. Most current coring tools are deployed by winch and cable facilities on the ice surface. There are three main limitations for obtaining long sediment cores which determines coring tool development, as follows: Hot-water borehole radial size restriction, the sedimentary structure, and the coring techniques. In this paper, we provide a general view on current developments in coring tools, including the working principles, corer characteristics, operational methods, coring site locations, field conditions, coring results, and possible technical improvements. Future prospects in corer design and development are also discussed.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-10-21
    Description: Air temperatures in the Arctic have increased substantially over the last decades, which has extensively altered the properties of the land surface. Capturing the state and dynamics of Land Surface Temperatures (LSTs) at high spatial detail is of high interest as LST is dependent on a variety of surficial properties and characterizes the land–atmosphere exchange of energy. Accordingly, this study analyses the influence of different physical surface properties on the long-term mean of the summer LST in the Arctic Mackenzie Delta Region (MDR) using Landsat 30 m-resolution imagery between 1985 and 2018 by taking advantage of the cloud computing capabilities of the Google Earth Engine. Multispectral indices, including the Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI) and Tasseled Cap greenness (TCG), brightness (TCB), and wetness (TCW) as well as topographic features derived from the TanDEM-X digital elevation model are used in correlation and multiple linear regression analyses to reveal their influence on the LST. Furthermore, surface alteration trends of the LST, NDVI, and NDWI are revealed using the Theil-Sen (T-S) regression method. The results indicate that the mean summer LST appears to be mostly influenced by the topographic exposition as well as the prevalent moisture regime where higher evapotranspiration rates increase the latent heat flux and cause a cooling of the surface, as the variance is best explained by the TCW and northness of the terrain. However, fairly diverse model outcomes for different regions of the MDR (R2 from 0.31 to 0.74 and RMSE from 0.51 °C to 1.73 °C) highlight the heterogeneity of the landscape in terms of influential factors and suggests accounting for a broad spectrum of different factors when modeling mean LSTs. The T-S analysis revealed large-scale wetting and greening trends with a mean decadal increase of the NDVI/NDWI of approximately +0.03 between 1985 and 2018, which was mostly accompanied by a cooling of the land surface given the inverse relationship between mean LSTs and vegetation and moisture conditions. Disturbance through wildfires intensifies the surface alterations locally and lead to significantly cooler LSTs in the long-term compared to the undisturbed surroundings.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2020-03-30
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/zip
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2020-03-30
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2021-07-23
    Description: In this work, laboratory tests with live bivalves as well as the conceptual design of additively manufactured surrogate models are presented. The overall task of this work is to develop a surrogate best fitting to the live mussels tested in accordance to the identified surface descriptor, i.e., the Abbott–Firestone Curve, and to the hydrodynamic behaviour by means of drag and inertia coefficients. To date, very few investigations have focused on loads from currents as well as waves. Therefore, tests with a towing carriage were carried out in a wave flume. A custom-made rack using mounting clamps was built to facilitate carriage-run tests with minimal delays. Blue mussels (Mytilus edulis) extracted from a site in Germany, which were kept in aerated seawater to ensure their survival for the test duration, were used. A set of preliminary results showed drag and inertia coefficients CD and CM ranging from 1.16–3.03 and 0.25 to 1.25. To derive geometrical models of the mussel dropper lines, 3-D point clouds were prepared by means of 3-D laser scanning to obtain a realistic surface model. Centered on the 3-D point cloud, a suitable descriptor for the mass distribution over the surface was identified and three 3-D printed surrogates of the blue mussel were developed for further testing. These were evaluated regarding their fit to the original 3-D point cloud of the live blue mussels via the chosen surface descriptor.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2019-09-12
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2019-01-02
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2019-03-21
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-06-17
    Description: Automatic detection of icebergs in satellite images is regarded a useful tool to provide information necessary for safety in Arctic shipping or operations over large ocean areas in near-real time. In this work, we investigated the feasibility of automatic iceberg detection in Sentinel-1 Extra Wide Swath (EWS) SAR images which follow the preferred image mode in operational ice charting. As test region, we selected the Barents Sea where the size of many icebergs is on the order of the spatial resolution of the EWS-mode. We tested a new approach for a detection scheme. It is based on a combination of a filter for enhancing the contrast between icebergs and background, subsequent blob detection, and final application of a Constant False Alarm Rate (CFAR) algorithm. The filter relies mainly on the HV-polarized intensity which often reveals a larger difference between icebergs and sea ice or open water. The blob detector identifies locations of potential icebergs and thus shortens computation time. The final detection is performed on the identified blobs using the CFAR algorithm. About 2000 icebergs captured in fast ice were visually identified in Sentinel-2 Multi Spectral Imager (MSI) data and exploited for an assessment of the detection scheme performance using confusion matrices. For our performance tests, we used four Sentinel-1 EWS images. For judging the effect of spatial resolution, we carried out an additional test with one Sentinel-1 Interferometric Wide Swath (IWS) mode image. Our results show that only 8–22 percent of the icebergs could be detected in the EWS images, and over 90 percent of all detections were false alarms. In IWS mode, the number of correctly identified icebergs increased to 38 percent. However, we obtained a larger number of false alarms in the IWS image than in the corresponding EWS image. We identified two problems for iceberg detection: 1) with the given frequency–polarization combination, not all icebergs are strong scatterers at HV-polarization, and (2) icebergs and deformation structures present on fast ice can often not be distinguished since both may reveal equally strong responses at HV-polarization.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2019-01-18
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2019-03-21
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2019-03-21
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-04-23
    Description: Thermokarst lakes in the Arctic and Subarctic release carbon from thawing permafrost in the form of methane and carbon dioxide with important implications for regional and global carbon cycles. Lake ice impedes the release of gas during the winter. For instance, bubbles released from lake sediments become trapped in downward growing lake ice, resulting in vertically-oriented bubble columns in the ice that are visible on the lake surface. We here describe a classification technique using an object-based image analysis (OBIA) framework to successfully map ebullition bubbles in airborne imagery of early winter ice on an interior Alaska thermokarst lake. Ebullition bubbles appear as white patches in high-resolution optical remote sensing images of snow-free lake ice acquired in early winter and, thus, can be mapped across whole lake areas. We used high-resolution (9–11 cm) aerial images acquired two and four days following freeze-up in the years 2011 and 2012, respectively. The design of multiresolution segmentation and region-specific classification rulesets allowed the identification of bubble features and separation from other confounding factors such as snow, submerged and floating vegetation, shadows, and open water. The OBIA technique had an accuracy of 〉95% for mapping ebullition bubble patches in early winter lake ice. Overall, we mapped 1195 and 1860 ebullition bubble patches in the 2011 and 2012 images, respectively. The percent surface area of lake ice covered with ebullition bubble patches for 2011 was 2.14% and for 2012 was 2.67%, representing a conservative whole lake estimate of bubble patches compared to ground surveys usually conducted on thicker ice 10 or more days after freeze-up. Our findings suggest that the information derived from high-resolution optical images of lake ice can supplement spatially limited field sampling methods to better estimate methane flux from individual lakes. The method can also be used to improve estimates of methane ebullition from numerous lakes within larger regions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3SponGES 2019 General Assembly Meeting, Wageningen, 2019-05-19-2019-05-24Bremerhaven, PANGAEA
    Publication Date: 2019-06-03
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/zip
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2022-05-25
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Sathyendranath, S., Brewin, R. J. W., Brockmann, C., Brotas, V., Calton, B., Chuprin, A., Cipollini, P., Couto, A. B., Dingle, J., Doerffer, R., Donlon, C., Dowell, M., Farman, A., Grant, M., Groom, S., Horseman, A., Jackson, T., Krasemann, H., Lavender, S., Martinez-Vicente, V., Mazeran, C., Melin, F., Moore, T. S., Muller, D., Regner, P., Roy, S., Steele, C. J., Steinmetz, F., Swinton, J., Taberner, M., Thompson, A., Valente, A., Zuhlke, M., Brando, V. E., Feng, H., Feldman, G., Franz, B. A., Frouin, R., Gould, R. W., Hooker, S. B., Kahru, M., Kratzer, S., Mitchell, B. G., Muller-Karger, F. E., Sosik, H. M., Voss, K. J., Werdell, J., & Platt, T. An ocean-colour time series for use in climate studies: The experience of the ocean-colour climate change initiative (OC-CCI). Sensors, 19(19), (2019): 4285, doi: 10.3390/s19194285.
    Description: Ocean colour is recognised as an Essential Climate Variable (ECV) by the Global Climate Observing System (GCOS); and spectrally-resolved water-leaving radiances (or remote-sensing reflectances) in the visible domain, and chlorophyll-a concentration are identified as required ECV products. Time series of the products at the global scale and at high spatial resolution, derived from ocean-colour data, are key to studying the dynamics of phytoplankton at seasonal and inter-annual scales; their role in marine biogeochemistry; the global carbon cycle; the modulation of how phytoplankton distribute solar-induced heat in the upper layers of the ocean; and the response of the marine ecosystem to climate variability and change. However, generating a long time series of these products from ocean-colour data is not a trivial task: algorithms that are best suited for climate studies have to be selected from a number that are available for atmospheric correction of the satellite signal and for retrieval of chlorophyll-a concentration; since satellites have a finite life span, data from multiple sensors have to be merged to create a single time series, and any uncorrected inter-sensor biases could introduce artefacts in the series, e.g., different sensors monitor radiances at different wavebands such that producing a consistent time series of reflectances is not straightforward. Another requirement is that the products have to be validated against in situ observations. Furthermore, the uncertainties in the products have to be quantified, ideally on a pixel-by-pixel basis, to facilitate applications and interpretations that are consistent with the quality of the data. This paper outlines an approach that was adopted for generating an ocean-colour time series for climate studies, using data from the MERIS (MEdium spectral Resolution Imaging Spectrometer) sensor of the European Space Agency; the SeaWiFS (Sea-viewing Wide-Field-of-view Sensor) and MODIS-Aqua (Moderate-resolution Imaging Spectroradiometer-Aqua) sensors from the National Aeronautics and Space Administration (USA); and VIIRS (Visible and Infrared Imaging Radiometer Suite) from the National Oceanic and Atmospheric Administration (USA). The time series now covers the period from late 1997 to end of 2018. To ensure that the products meet, as well as possible, the requirements of the user community, marine-ecosystem modellers, and remote-sensing scientists were consulted at the outset on their immediate and longer-term requirements as well as on their expectations of ocean-colour data for use in climate research. Taking the user requirements into account, a series of objective criteria were established, against which available algorithms for processing ocean-colour data were evaluated and ranked. The algorithms that performed best with respect to the climate user requirements were selected to process data from the satellite sensors. Remote-sensing reflectance data from MODIS-Aqua, MERIS, and VIIRS were band-shifted to match the wavebands of SeaWiFS. Overlapping data were used to correct for mean biases between sensors at every pixel. The remote-sensing reflectance data derived from the sensors were merged, and the selected in-water algorithm was applied to the merged data to generate maps of chlorophyll concentration, inherent optical properties at SeaWiFS wavelengths, and the diffuse attenuation coefficient at 490 nm. The merged products were validated against in situ observations. The uncertainties established on the basis of comparisons with in situ data were combined with an optical classification of the remote-sensing reflectance data using a fuzzy-logic approach, and were used to generate uncertainties (root mean square difference and bias) for each product at each pixel.
    Description: This work was funded by the Ocean Colour Climate Change initiative of the European Space Agency (Grant Number 4000101437/10/I-LG). We acknowledge additional funding support by NERC through the National Centre for Earth Observation (Grant Number PR140015). Additional funding from a Simons Foundation Grant (549947, SS) is also gratefully acknowledged. V.B. also acknowledges funding from the European Union’s Horizon 2020 Research and Innovation Programme grant agreement N_ 810139: Project Portugal Twinning for Innovation and Excellence in Marine Science and Earth Observation – PORTWIMS.
    Keywords: ocean colour ; water-leaving radiance ; remote-sensing reflectance ; phytoplankton ; chlorophyll-a ; inherent optical properties ; Climate Change Initiative ; optical water classes ; Essential Climate Variable ; uncertainty characterisation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Coordination Workshop SPP 1158, 2019-09-25-2019-09-27Bremerhaven, PANGAEA
    Publication Date: 2019-09-30
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2020-03-30
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    facet.materialart.
    Unknown
    MDPI
    In:  EPIC3Atmosphere, MDPI, 10(12), ISSN: 2073-4433
    Publication Date: 2020-04-14
    Description: The heat imbalance is the fundamental driver for the atmospheric circulation. Therefore, it is crucially important to understand how it responds to global warming. In this study, the role of the ocean in reshaping the atmospheric meridional heat imbalance is explored based on observations and climate simulations. We found that ocean tends to strengthen the meridional heat imbalance over the mid-latitudes. This is primarily because of the uneven ocean heat uptake between the subtropical and subpolar oceans. Under global warming, the subtropical ocean absorbs relatively less heat as the water there is well stratified. In contrast, the subpolar ocean is the primary region where the ocean heat uptake takes place, because the subpolar ocean is dominated by upwelling, strong mixing, and overturning circulation. We propose that the enhanced meridional heat imbalance may potentially contribute to strengthening the water cycle, westerlies, jet stream, and mid-latitude storms.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2022-07-04
    Description: The Arctic is directly impacted by climate change. The increase in air temperature drives the thawing of permafrost and an increase in coastal erosion and river discharge. This leads to a greater input of sediment and organic matter into coastal waters, which substantially impacts the ecosystems, the subsistence economy of the local population, and the climate because of the transformation of organic matter into greenhouse gases. Yet, the patterns of sediment dispersal in the nearshore zone are not well known, because ships do not often reach shallow waters and satellite remote sensing is traditionally focused on less dynamic environments. The goal of this study is to use the extensive Landsat archive to investigate sediment dispersal patterns specifically on an exemplary Arctic nearshore environment, where field measurements are often scarce. Multiple Landsat scenes were combined to calculate means of sediment dispersal and sea surface temperature under changing seasonal wind conditions in the nearshore zone of Herschel Island Qikiqtaruk in the western Canadian Arctic since 1982. We use observations in the Landsat red and thermal wavebands, as well as a recently published water turbidity algorithm to relate archive wind data to turbidity and sea surface temperature. We map the spatial patterns of turbidity and water temperature at high spatial resolution in order to resolve transport pathways of water and sediment at the water surface. Our results show that these pathways are clearly related to the prevailing wind conditions, being ESE and NW. During easterly wind conditions, both turbidity and water temperature are significantly higher in the nearshore area. The extent of the Mackenzie River plume and coastal erosion are the main explanatory variables for sediment dispersal and sea surface temperature distributions in the study area. During northwesterly wind conditions, the influence of the Mackenzie River plume is negligible. Our results highlight the potential of high spatial resolution Landsat imagery to detect small-scale hydrodynamic processes, but also show the need to specifically tune optical models for Arctic nearshore environments.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2022-06-20
    Description: Time-variable gravity measurements from the Gravity Recovery and Climate Experiment (GRACE) and GRACE-Follow On (GRACE-FO) missions and satellite altimetry measurements from CryoSat-2 enable independent mass balance estimates of the Earth’s glaciers and ice sheets. Both approaches vary in terms of their retrieval principles and signal-to-noise characteristics. GRACE/GRACE-FO recovers the gravity disturbance caused by changes in the mass of the entire ice sheet with a spatial resolution of 300 to 400 km. In contrast, CryoSat-2measures travel times of a radar signal reflected close to the ice sheet surface, allowing changes of the surface topography to be determined with about 5 km spatial resolution. Here, we present a method to combine observations from the both sensors, taking into account the different signal and noise characteristics of each satellite observation that are dependent on the spatial wavelength. We include uncertainties introduced by the processing and corrections, such as the choice of the re-tracking algorithm and the snow/ice volume density model for CryoSat-2, or the filtering of correlated errors and the correction for glacial-isostatic adjustment (GIA) for GRACE. We apply our method to the Antarctic ice sheet and the time period 2011–2017, in which GRACE and CryoSat-2 were simultaneously operational, obtaining a total ice mass loss of 178 ± 23 Gt yr−1. We present a map of the rate of mass change with a spatial resolution of 40 km that is evaluable across all spatial scales, and more precise than estimates based on a single satellite mission.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2022-05-06
    Description: This work focuses on the study of land subsidence processes by means of multi-temporal and multi-frequency InSAR techniques. Specifically, we retrieve the long-term evolution (2003–2018) of the creeping phenomenon producing ground fissuring in the Ciudad Guzmán (Jalisco state, Mexico) urban area. The city is located on the northern side of the Volcan de Colima area, one of the most active Mexican volcanoes. On September 21 2012, Ciudad Guzmán was struck by ground fissures of about 1.5 km of length, causing the deformation of the roads and the propagation of fissures in adjacent buildings. The field surveys showed that fissures follow the escarpments produced during the central Mexico September 19 1985 Mw 8.1 earthquake. We extended the SAR (Synthetic Aperture Radar) interferometric monitoring starting with the multi-temporal analysis of ENVISAT and COSMO-SkyMed datasets, allowing the monitoring of the observed subsidence phenomena a ecting the Mexican city. We processed a new stack of Sentinel-1 TOPSAR acquisition mode images along both descending and ascending paths and spanning the 2016–2018 temporal period. The resulting long-term trend observed by satellites, together with data from volcanic bulletin and in situ surveys, seems to suggest that the subsidence is due to the exploitation of the aquifers and that the spatial arrangement of ground deformation is controlled by the position of buried faults.
    Description: Published
    Description: id 2246
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: subsidence ; multi-temporal analysis ; PS ; SBAS ; InSAR ; urban monitoring ; buried faults
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2022-09-07
    Description: Here we provide two ArcGIS map packages with georeferenced files on the spatial distribution of sponges and echinoderms in the wider Weddell Sea (Antarctica), which were created in the context of the development of a marine protected area (MPA) in the Weddell Sea. Sponges: The map of interpolated occurrence of sponges is based on quantitative abundance data (Gerdes 2014 a - o) and on semi-quantitative data obtained by W. Arntz (retired; formerly AWI) (see Teschke & Brey 2019a for presence / absence records of the latter dataset). The abundance data were classified to be merged with the semi-quantitative data and an inverse distance weighted method was performed on the united dataset. Areas with very common occurrence of sponges occurred on the shelf near Brunt Ice Shelf along Riiser - Larsen Ice Shelf to Ekstrøm Ice Shelf. Echinoderms: A cluster analysis with species x station datasets of asteroids (Teschke & Brey 2019b), ophiuroids (Teschke & Brey 2019c) and holothurians (Gutt et al. 2014) from the Antarctic Weddell Sea indicated a particular cold-water echinoderm fauna on the Filchner shelf. We approximated this potential habitat by bottom temperature ≤ -1°, based on seawater temperature data from the Finite Element Sea Ice - Ocean Model provided by R. Timmermann (AWI). More information on the spatial analysis is given in working paper WG-EMM-16/03 submitted to the CCAMLR Working Group on Ecosystem Monitoring and Management (available at https://www.ccamlr.org/en/wg-emm-16).
    Repository Name: EPIC Alfred Wegener Institut
    Type: Other , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2022-09-07
    Description: Here we provide four ArcGIS map packages with georeferenced files on the spatial distribution of demersal and pelagic fishes in the wider Weddell Sea (Antarctica), which were created in the context of the development of a marine protected area (MPA) in the Weddell Sea. Antarctic toothfish: The map of Dissostichus mawsoni occurrence probability is based on catch per unit effort (CPUE) data from the database of the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) (data request: 03-08-2016) and on bathymetric data from the International Bathymetric Chart of the Southern Ocean (IBCSO). We fitted a four-parameter Weibull model to the simulated CPUE data per depth interval by means of the R package \textquotesinglefitdistrplus\textquotesingle. The highest D. mawsoni occurrence probability was shown at depths between 1500 and 2000 m and only approximately 20 % of the Antarctic toothfish population occurred deeper than 2000 m. Antarctic silverfish: The map of interpolated abundances of Pleuragramma antarctica was based on pelagic trawl survey data, which were collected during "Polarstern" cruises ANT-I/2, ANT-III/3 and in the context of the Lazarev Sea Krill Survey (LAKRIS) ("Polarstern" cruises ANT-XXI/4, ANT-XXIII/6, ANT-XXIV/2). The first mentioned data were provided by V. Siegel (retired; formerly Th\"unen Institute), the LAKRIS data by H. Flores (AWI). Those data were complemented by benthic trawl survey data, which were collected during seven "Polarstern" cruises between 1996 and 2011 (ANT-XIII/3, ANT-XV/3, ANT-XVII/3, ANT-XIX/5, ANT-XXI/2, ANT-XXIII/8, ANT-XXVII/3) and were provided by R. Knust (AWI) as well as by data on counts of fish species from trawl and dredge samples by Drescher et. (2012), Ekau et al. (2012a, b), Hureau et al. (2012), Kock et al. (2012) and W\"ohrmann et al. (2012). An inverse distance weighted interpolation was performed for a 10 nautical mile radius around each record. Areas with highest numbers of P. antarctica (〉 36 individuals/1000 m²) occurred offshore Riiser -Larsen Ice Shelf and on the southern Weddell Sea continental shelf offshore Filchner Ice Shelf. Demersal fish: The map of predicted habitat suitability for demersal fish is based on data, which were collected during seven "Polarstern" cruises between 1996 and 2011 (ANT-XIII/3, ANT-XV/3, ANT-XVII/3, ANT-XIX/5, ANT-XXI/2, ANT-XXIII/8, ANT-XXVII/3) and were provided by R. Knust (AWI). The habitat suitability model was developed by the use of the modelling package "biomod2". Most suitable habitat conditions for demersal fish in the wider Weddell Sea occurred on the continental shelf between approx. 5° and 30°W, on the shelf west and east of the tip of the Antarctic Peninsula as well as around the South Shetland and South Orkney Islands. Nesting sites of demersal fish: The map on observation of nesting sites of demersal fish is based on data, which were collected during "Polarstern" cruises ANT-XXVII/3, ANT-XXIX/9 and ANT-XXXI/2 and were obtained by T. Lund\"alv (retired; formerly University of Gothenburg), D. Gerdes (retired; formerly AWI) and E. Riginella (University of Padova), respectively. Those data were complemented by a literature research. Most nesting sites were observed west of 25°W, north of the tip of the Antarctic Peninsula and along the west coast of the Antarctic Peninsula. More information is given in the working paper WG-EMM-16/03 submitted to the CCAMLR Working Group on Ecosystem Monitoring and Management CCAMLR (available at https://www.ccamlr.org/en/wg-emm-16). Revised versions of the spatial analysis are described in working paper WG-SAM-17/30 and WS-SM-18/13 submitted to the CCAMLR Working Group on Statistics, Assessments and Modelling and the CCAMLR Workshop on Spatial Management, respectively (available at https://www.ccamlr.org/en/wg-sam-17; https://www.ccamlr.org/en/ws-sm-1
    Repository Name: EPIC Alfred Wegener Institut
    Type: Other , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2022-09-07
    Description: Here, we provided four ArcGIS map packages with georeferenced files on the spatial distribution of Antarctic krill, Euphausia superba, (adults and larvae) and ice krill, Euphausia crystallorophias, in the wider Weddell Sea. The files were created in the context of the development of a marine protected area in the Weddell Sea. Antarctic krill (adults): The map of predicted habitat suitability for adult Antarctic krill was based on krill data from the database KRILLBASE (Atkinson et al., 2017; data request: 26-09-13). Those data were complemented by krill data, which were collected (a) during the Norwegian Antarctic research expedition 1976/77 (M/V "Polarsirkel"), (b) during two Soviet research cruises (RV "Gizhiga", 1977; RV "Volny Vetter", 1983), (c) in the context of the Lazarev Sea Krill Survey ("Polarstern" cruises ANT-XXI/4, ANT-XXIII/2, ANT-XXIII/6, ANT-XXIV/2) as well as (d) during "Polarstern" cruise ANT-XXIX/3. The habitat suitability model was developed by the use of the modelling package "biomod2". As predictor variables, we used (i) dissolved oxygen from the World Ocean Atlas 2013, (ii) ice coverage from AMSR-E sea ice maps, (iii) seawater temperature data from the Finite Element Sea Ice - Ocean Model (FESOM) provided by R. Timmermann (AWI), (iv) bathymetric data from the International Bathymetric Chart of the Southern Ocean (IBCSO) and (v) SeaWiFS chlorophyll-a concentration data. Most suitable habitat conditions for the Antarctic krill seem to occur near the tip of the Antarctic Peninsula, on the continental slope between 15°W and 15°E and on the Maud Rise plateau. Antarctic krill (larvae): The map of interpolated abundances of krill larvae is based on abundance data, which were collected (a) during the Norwegian Antarctic research expeditions 1976/77, 1977/78 and 1979/80 (M/V "Polarsirkel"), (b) in the context of the First International BIOMASS Experiment survey (FIBEX) (Walther Herwig cruise 1981) and the Lazarev Sea Krill Survey (LAKRIS) ("Polarstern" cruises ANT-XXI/4, ANT-XXIII/6) as well as (c) during "Polarstern" cruise ANT-VII/4 and the combined "Polarstern" (ANT-VIII/2) and R.V. "Akademik Fedorova" cruise. An inverse distance weighted (IDW) interpolation was performed for a 30 km radius around each krill larvae record. Areas with highest numbers of E. superba larvae (〉 1000 individuals/m²) occurred west of the Prime Meridian from approximately 65°S to the ice shelf. Ice krill (adults): The map of the potential habitat of E. crystallorophias was approximated by water depth from 0 m to 550 m, using bathymetric data from IBCSO, and mean sea surface temperature ≤ 0°C based on temperature data from FESOM provided by R. Timmermann (AWI). The map of interpolated density of individuals of E. crystallorophias is based on abundance data, which were collected (a) during the Norwegian Antarctic research expedition 1979/80 (M/V "Polarsirkel"), (b) during the German Antarctic research cruise 1975/76 with "Walther Herwig", (c) in the context of the Lazarev Sea Krill Survey ("Polarstern" cruises ANT-XXI/4, ANT-XXIII/2, ANT-XXIII/6, ANT-XXIV/2) as well as (d) during "Polarstern" cruise ANT-V/1-3, ANT-VII/4 and ANT-XXIX/3. An IDW interpolation was performed for a 30 km radius around each record of ice krill. Areas with highest densities of E. crystallorophias individuals occurred on the south-eastern Weddell Sea shelf and near the tip of the Antarctic Peninsula. Volker Siegel (retired; formerly Th\"unen Institute) provided the data for the Antarctic krill and ice krill. More information on the spatial analysis is given in working paper WG-EMM-16/03 submitted to the CCAMLR Working Group on Ecosystem Monitoring and Management (available at https://www.ccamlr.org/en/wg-emm-16)
    Repository Name: EPIC Alfred Wegener Institut
    Type: Other , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2022-09-07
    Description: Here we provide four ArcGIS map packages with georeferenced files on the spatial distribution of Antarctic petrels, Ad\'elie penguins (breeders and non-breeders) and Emperor penguins in the wider Weddell Sea (Antarctica), which were created in the context of the development of a marine protected area in the Weddell Sea. Antarctic petrel (Thalassoica antarctica): We approximated potential foraging habitats of T. antarctica according to existing literature by ice coverage from AMSR-E sea ice maps, bathymetric data from the International Bathymetric Chart of the Southern Ocean (IBCSO), and seawater temperature data from the Finite Element Sea Ice - Ocean Model (FESOM) provided by R. Timmermann (AWI). Subsequently, we combined our Antarctic petrel model with the kernel utilization distribution model from Descamps et al. (2016). The authors kindly provided us with shape files showing the kernel utilization summer and winter distribution of Antarctic petrel breeding at Svarthamaren. Breeding locations and estimated number of breeding pairs were taken from van Franeker et al. (1999). Favourable habitat conditions for Antarctic petrels were predicted for the Lazarev Sea and along the eastern coast of the Weddell Sea, particularly for the area off the Fimbul Ice Shelf and along the coast between approx. 15°E to 10°W within a water depth range from approx. 500 m to 2500 m. Breeding Ad\'elie penguins (Pygoscelis adeliae): The map of potential foraging habitats of breeding P. adeliae is based on British Antarctic Survey (BAS) Inventory data from Phil Trathan (ID 754) and Mike Dunn and P. Trathan (ID 764, 773, 779), a dataset from BAS (P. Trathan) and Instituto Ant\'artico Argentino (Mercedes Santos) (ID 753) and a dataset from the US AMLR Program from Jefferson Hinke and Wayne Trivelpiece (NOAA) (ID 910), which are stored in the Birdlife International\textquotesingles Seabird Tracking Database (data request: 20-10-2015). Suitable foraging habitats for breeding Ad\'elies from colonies from which no tracking data were not available were approximated by a 50 km buffer and a 50-100 km ring buffer around each colony according to the recommendations of a CCAMLR MPA planning workshop. Breeding locations and estimated abundance of breeding pairs were taken from Lynch and LaRue (2014). The tracking data were processed with a state-space model described by Johnson et al. (2008) and were implemented in the R package crawl (Johnson 2011). Jefferson Hinke (NOAA) kindly provided us with support running the R script. Highly suitable foraging habitats occurred about 50 km away from the colonies on King Georg Island, the colony in Hope Bay (Graham Land) and the colonies on the South Orkney Islands. Non-breeding Ad\'elie penguins (Pygoscelis adeliae): The map of potential foraging habitats of non-breeding P. adeliae is based on British Antarctic Survey (BAS) Inventory data from Phil Trathan (ID 754) and Mike Dunn and P. Trathan (ID 773, 779), a dataset from BAS (P. Trathan) and Instituto Ant\'artico Argentino (Mercedes Santos) (ID 753) and a dataset from the US AMLR Program from Jefferson Hinke and Wayne Trivelpiece (NOAA) (ID 910), which are stored in the Birdlife International\textquotesingles Seabird Tracking Database (data request: 20-10-2015). The tracking data were processed with a state-space model described by Johnson et al. (2008) and were implemented in the R package crawl (Johnson 2011). Jefferson Hinke (NOAA) kindly provided us with support running the R script. Highest habitat utilisation was concentrated in relative small areas (e.g., close to King Georg Island). However, the non-breeding Ad\'elies seemed to roam through large parts of the Weddell Sea. Emperor penguins (Aptenodytes forsteri): The probability map of A. forsteri occurrence was developed as a function of distance to colony and colony size from Fretwell et al. (2012, 2014) as well as from sea ice concentration from AMSR-E sea ice maps. Our model of emperor penguin foraging distribution during breeding season showed that the probability of occurrence is highest at the Halley and Dawson colony near Brunt Ice Shelf and at the Atka colony near Ekstrøm Ice Shelf. More information on the spatial analysis is given in working paper WG-EMM-16/03 and WG-SAM-17/30 (for T. antarctica) submitted to the CCAMLR Working Group on Ecosystem Monitoring and Management (EMM) and the CCAMLR Working Group on Statistics, Assessments and Modelling (SAM), respectively (available at https://www.ccamlr.org/en/wg-emm-16 and https://www.ccamlr.org/en/wg-s
    Repository Name: EPIC Alfred Wegener Institut
    Type: Other , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2022-09-07
    Description: Here we provide two ArcGIS map packages with georeferenced files on the spatial distribution of seals in the wider Weddell Sea (Antarctica), which were created in the context of the development of a marine protected area in the Weddell Sea. Spatial distribution of seals based on aerial surveys: The map of the spatial distribution of crabeater seals is based on modelled seal abundances from Flores et al. (2008) and Forcada et al. (2012). These modelled abundances were supplemented by abundance data derived from Bester et al. (1995, 2002) and by point data from Pl\"otz et al. (2011a-e), which were translated into abundance values by the count method for line transect data. The calculated data on seal abundances from Pl\"otz et al. (2011a-e) and Bester et al. (1995, 2002) were interpolated using the inverse distance weighted method. The combined data set of modelled and interpolated abundances showed highest absolute seal abundances offshore the Riiser-Larsen Ice Shelf and Quarisen Ice Shelf. Spatial distribution of seals based on tracking data: The map of probability of seal occurrence is based on all tracking data publicly available for the wider Weddell Sea from the MEOP data portal "Marine Mammals Exploring the Oceans Pole to Pole" (data request: 14-11-2016). In addition, we have used MEOP data (UK data: ct27, ct70; German data: ct113, wd06, wd07) for which unconditional sharing is not yet accepted. These data were provided by Lars Boehme (University of St. Andrews) and Horst Bornemann (AWI), respectively. Furthermore, the data from the MEOP data portal were complemented by tracking data sets on southern elephant seals (Tosh et al. 2009, James et al. 2012), Weddell seals (McIntyre et al. 2013) and crabeater seals (Nachtsheim et al. 2016). All tracking data united were processed with a state-space model described by Johnson et al. (2008) and were implemented in the R package crawl (Johnson 2011). The tracking data analysis indicated frequent occurrence of seals in a larger area off the Brunt and Filchner Ice Shelf (approx. 25°W-40°W), and in smaller patches along the eastern Weddell Sea ice shelfs as well as in the region around the tip of the Antarctic Peninsula. More information on the spatial analysis is given in working paper WG-EMM-16/03 and WG-SAM-17/30 submitted to the CCAMLR Working Group on Ecosystem Monitoring and Management (EMM) and the CCAMLR Working Group on Statistics, Assessments and Modelling (SAM), respectively (available at https://www.ccamlr.org/en/wg-emm-16 and https://www.ccamlr.org/en/wg-sam-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Other , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2022-09-07
    Description: Here we provide four ArcGIS map packages with georeferenced files on the spatial distribution of Antarctic petrels, Ad\'elie penguins (breeders and non-breeders) and Emperor penguins in the wider Weddell Sea (Antarctica), which were created in the context of the development of a marine protected area in the Weddell Sea. Antarctic petrel (Thalassoica antarctica): We approximated potential foraging habitats of T. antarctica according to existing literature by ice coverage from AMSR-E sea ice maps, bathymetric data from the International Bathymetric Chart of the Southern Ocean (IBCSO), and seawater temperature data from the Finite Element Sea Ice - Ocean Model (FESOM) provided by R. Timmermann (AWI). Subsequently, we combined our Antarctic petrel model with the kernel utilization distribution model from Descamps et al. (2016). The authors kindly provided us with shape files showing the kernel utilization summer and winter distribution of Antarctic petrel breeding at Svarthamaren. Breeding locations and estimated number of breeding pairs were taken from van Franeker et al. (1999). Favourable habitat conditions for Antarctic petrels were predicted for the Lazarev Sea and along the eastern coast of the Weddell Sea, particularly for the area off the Fimbul Ice Shelf and along the coast between approx. 15°E to 10°W within a water depth range from approx. 500 m to 2500 m. Breeding Ad\'elie penguins (Pygoscelis adeliae): The map of potential foraging habitats of breeding P. adeliae is based on British Antarctic Survey (BAS) Inventory data from Phil Trathan (ID 754) and Mike Dunn and P. Trathan (ID 764, 773, 779), a dataset from BAS (P. Trathan) and Instituto Ant\'artico Argentino (Mercedes Santos) (ID 753) and a dataset from the US AMLR Program from Jefferson Hinke and Wayne Trivelpiece (NOAA) (ID 910), which are stored in the Birdlife International\textquotesingles Seabird Tracking Database (data request: 20-10-2015). Suitable foraging habitats for breeding Ad\'elies from colonies from which no tracking data were not available were approximated by a 50 km buffer and a 50-100 km ring buffer around each colony according to the recommendations of a CCAMLR MPA planning workshop. Breeding locations and estimated abundance of breeding pairs were taken from Lynch and LaRue (2014). The tracking data were processed with a state-space model described by Johnson et al. (2008) and were implemented in the R package crawl (Johnson 2011). Jefferson Hinke (NOAA) kindly provided us with support running the R script. Highly suitable foraging habitats occurred about 50 km away from the colonies on King Georg Island, the colony in Hope Bay (Graham Land) and the colonies on the South Orkney Islands. Non-breeding Ad\'elie penguins (Pygoscelis adeliae): The map of potential foraging habitats of non-breeding P. adeliae is based on British Antarctic Survey (BAS) Inventory data from Phil Trathan (ID 754) and Mike Dunn and P. Trathan (ID 773, 779), a dataset from BAS (P. Trathan) and Instituto Ant\'artico Argentino (Mercedes Santos) (ID 753) and a dataset from the US AMLR Program from Jefferson Hinke and Wayne Trivelpiece (NOAA) (ID 910), which are stored in the Birdlife International\textquotesingles Seabird Tracking Database (data request: 20-10-2015). The tracking data were processed with a state-space model described by Johnson et al. (2008) and were implemented in the R package crawl (Johnson 2011). Jefferson Hinke (NOAA) kindly provided us with support running the R script. Highest habitat utilisation was concentrated in relative small areas (e.g., close to King Georg Island). However, the non-breeding Ad\'elies seemed to roam through large parts of the Weddell Sea. Emperor penguins (Aptenodytes forsteri): The probability map of A. forsteri occurrence was developed as a function of distance to colony and colony size from Fretwell et al. (2012, 2014) as well as from sea ice concentration from AMSR-E sea ice maps. Our model of emperor penguin foraging distribution during breeding season showed that the probability of occurrence is highest at the Halley and Dawson colony near Brunt Ice Shelf and at the Atka colony near Ekstrøm Ice Shelf. More information on the spatial analysis is given in working paper WG-EMM-16/03 and WG-SAM-17/30 (for T. antarctica) submitted to the CCAMLR Working Group on Ecosystem Monitoring and Management (EMM) and the CCAMLR Working Group on Statistics, Assessments and Modelling (SAM), respectively (available at https://www.ccamlr.org/en/wg-emm-16 and https://www.ccamlr.org/en/wg-s
    Repository Name: EPIC Alfred Wegener Institut
    Type: Other , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2022-09-07
    Description: Here we provide two ArcGIS map packages with georeferenced files on the spatial distribution of seals in the wider Weddell Sea (Antarctica), which were created in the context of the development of a marine protected area in the Weddell Sea. Spatial distribution of seals based on aerial surveys: The map of the spatial distribution of crabeater seals is based on modelled seal abundances from Flores et al. (2008) and Forcada et al. (2012). These modelled abundances were supplemented by abundance data derived from Bester et al. (1995, 2002) and by point data from Pl\"otz et al. (2011a-e), which were translated into abundance values by the count method for line transect data. The calculated data on seal abundances from Pl\"otz et al. (2011a-e) and Bester et al. (1995, 2002) were interpolated using the inverse distance weighted method. The combined data set of modelled and interpolated abundances showed highest absolute seal abundances offshore the Riiser-Larsen Ice Shelf and Quarisen Ice Shelf. Spatial distribution of seals based on tracking data: The map of probability of seal occurrence is based on all tracking data publicly available for the wider Weddell Sea from the MEOP data portal "Marine Mammals Exploring the Oceans Pole to Pole" (data request: 14-11-2016). In addition, we have used MEOP data (UK data: ct27, ct70; German data: ct113, wd06, wd07) for which unconditional sharing is not yet accepted. These data were provided by Lars Boehme (University of St. Andrews) and Horst Bornemann (AWI), respectively. Furthermore, the data from the MEOP data portal were complemented by tracking data sets on southern elephant seals (Tosh et al. 2009, James et al. 2012), Weddell seals (McIntyre et al. 2013) and crabeater seals (Nachtsheim et al. 2016). All tracking data united were processed with a state-space model described by Johnson et al. (2008) and were implemented in the R package crawl (Johnson 2011). The tracking data analysis indicated frequent occurrence of seals in a larger area off the Brunt and Filchner Ice Shelf (approx. 25°W-40°W), and in smaller patches along the eastern Weddell Sea ice shelfs as well as in the region around the tip of the Antarctic Peninsula. More information on the spatial analysis is given in working paper WG-EMM-16/03 and WG-SAM-17/30 submitted to the CCAMLR Working Group on Ecosystem Monitoring and Management (EMM) and the CCAMLR Working Group on Statistics, Assessments and Modelling (SAM), respectively (available at https://www.ccamlr.org/en/wg-emm-16 and https://www.ccamlr.org/en/wg-sam-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Other , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2022-10-27
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Farris, A. S., Defne, Z., & Ganju, N. K. Identifying salt marsh shorelines from remotely sensed elevation data and imagery. Remote Sensing, 11(15), (2019): 1795, doi: 10.3390/rs11151795.
    Description: Salt marshes are valuable ecosystems that are vulnerable to lateral erosion, submergence, and internal disintegration due to sea level rise, storms, and sediment deficits. Because many salt marshes are losing area in response to these factors, it is important to monitor their lateral extent at high resolution over multiple timescales. In this study we describe two methods to calculate the location of the salt marsh shoreline. The marsh edge from elevation data (MEED) method uses remotely sensed elevation data to calculate an objective proxy for the shoreline of a salt marsh. This proxy is the abrupt change in elevation that usually characterizes the seaward edge of a salt marsh, designated the “marsh scarp.” It is detected as the maximum slope along a cross-shore transect between mean high water and mean tide level. The method was tested using lidar topobathymetric and photogrammetric elevation data from Massachusetts, USA. The other method to calculate the salt marsh shoreline is the marsh edge by image processing (MEIP) method which finds the unvegetated/vegetated line. This method applies image classification techniques to multispectral imagery and elevation datasets for edge detection. The method was tested using aerial imagery and coastal elevation data from the Plum Island Estuary in Massachusetts, USA. Both methods calculate a line that closely follows the edge of vegetation seen in imagery. The two methods were compared to each other using high resolution unmanned aircraft systems (UAS) data, and to a heads-up digitized shoreline. The root-mean-square deviation was 0.6 meters between the two methods, and less than 0.43 meters from the digitized shoreline. The MEIP method was also applied to a lower resolution dataset to investigate the effect of horizontal resolution on the results. Both methods provide an accurate, efficient, and objective way to track salt marsh shorelines with spatially intensive data over large spatial scales, which is necessary to evaluate geomorphic change and wetland vulnerability.
    Description: This project was supported by the U.S. Geological Survey (USGS) Coastal/Marine Natural Hazards and Resources Program as well as the Massachusetts O ce of Coastal Zone Management under interagency agreement 16ENMALQ006000.
    Keywords: Marsh edge ; Marsh shoreline ; Unmanned aircraft system ; UAS ; UAV ; Drone ; Lidar ; Salt marsh ; Coastal wetlands ; Plum Island
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2022-10-27
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Costello, J. H., Colin, S. P., Gemmell, B. J., & Dabiri, J. O. Hydrodynamics of vortex generation during bell contraction by the hydromedusa Eutonina indicans (Romanes, 1876). Biomimetics, 4(3), (2019): 44, doi:10.3390/biomimetics4030044.
    Description: Swimming bell kinematics and hydrodynamic wake structures were documented during multiple pulsation cycles of a Eutonina indicans (Romanes, 1876) medusa swimming in a predominantly linear path. Bell contractions produced pairs of vortex rings with opposite rotational sense. Analyses of the momentum flux in these wake structures demonstrated that vortex dynamics related directly to variations in the medusa swimming speed. Furthermore, a bulk of the momentum flux in the wake was concentrated spatially at the interfaces between oppositely rotating vortices rings. Similar thrust-producing wake structures have been described in models of fish swimming, which posit vortex rings as vehicles for energy transport from locations of body bending to regions where interacting pairs of opposite-sign vortex rings accelerate the flow into linear propulsive jets. These findings support efforts toward soft robotic biomimetic propulsion
    Description: This research was supported by awards from the National Science Foundation (1536672, 1511721 to J.H.C.; 1536688, 1510929 to S.P.C., 1511996 to B.J.G. and 1511333 to J.O.D.).
    Keywords: Swimming ; Vortex rings ; Wakes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2022-10-27
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Estrada-Gomez, S., Caldas Cardoso, F., Johana Vargas-Munoz, L., Carlos Quintana-Castillo, J., Arenas Gomez, C. M., Steffany Pineda, S., & Maria Saldarriaga-Cordoba, M. Venomic, transcriptomic, and bioactivity analyses of Pamphobeteus verdolaga venom reveal complex disulfide-rich peptides that modulate calcium channels. Toxins, 11(9), (2019): 496, doi:10.3390/toxins11090496.
    Description: Pamphobeteus verdolaga is a recently described Theraphosidae spider from the Andean region of Colombia. Previous reports partially characterized its venom profile. In this study, we conducted a detailed analysis that includes reversed-phase high-performance liquid chromatography (rp-HPLC), calcium influx assays, tandem mass spectrometry analysis (tMS/MS), and venom-gland transcriptome. rp-HPLC fractions of P. verdolaga venom showed activity on CaV2.2, CaV3.2, and NaV1.7 ion channels. Active fractions contained several peptides with molecular masses ranging from 3399.4 to 3839.6 Da. The tMS/MS analysis of active fraction displaying the strongest activity to inhibit calcium channels showed sequence fragments similar to one of the translated transcripts detected in the venom-gland transcriptome. The putative peptide of this translated transcript corresponded to a toxin, here named ω-theraphositoxin-Pv3a, a potential ion channel modulator toxin that is, in addition, very similar to other theraphositoxins affecting calcium channels (i.e., ω-theraphotoxin-Asp1a). Additionally, using this holistic approach, we found that P. verdolaga venom is an important source of disulfide-rich proteins expressing at least eight superfamilies.
    Keywords: Theraphosidae ; Pamphobeteus ; Peptides ; Disulfide-rich peptide (DRP) ; Inhibitory cysteine knot (ICK) ; Venomics ; Transcriptome ; Ion channels
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2022-10-27
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Boss, E., Sherwood, C. R., Hill, P., & Milligan, T. Advantages and limitations to the use of optical measurements to study sediment properties. Applied Sciences-Basel, 8(12), (2018):2692, doi:10.3390/app8122692.
    Description: Measurements of optical properties have been used for decades to study particle distributions in the ocean. They are useful for estimating suspended mass concentration as well as particle-related properties such as size, composition, packing (particle porosity or density), and settling velocity. Measurements of optical properties are, however, biased, as certain particles, because of their size, composition, shape, or packing, contribute to a specific property more than others. Here, we study this issue both theoretically and practically, and we examine different optical properties collected simultaneously in a bottom boundary layer to highlight the utility of such measurements. We show that the biases we are likely to encounter using different optical properties can aid our studies of suspended sediment. In particular, we investigate inferences of settling velocity from vertical profiles of optical measurements, finding that the effects of aggregation dynamics can seldom be ignored.
    Description: This work was supported by the Office of Naval Research and the United States Geological Survey Coastal and Marine Geology Program. The unique instrument platform and data acquisition system was designed and built by technical staff lead by Marinna Martini at the United States Geological Survey Woods Hole Coastal and Marine Science Center. This team was also responsible for deployment and recovery of the instrumentation. We thank the Woods Hole Oceanographic Institution (WHOI) MVCO staff for support during this experiment, and we thank the captains and crews of the R/V Connecticut and the R/V Tioga. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the United States Government. This paper has benefited significantly from insightful comments from D. Stramski, A. Aretxabaleta and two anonymous reviewers.
    Keywords: Particle dynamics ; Optical properties ; Suspended sediment
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2022-10-27
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Signell, R. P., & Pothina, D. Analysis and visualization of coastal ocean model data in the cloud. Journal of Marine Science and Engineering, 7(4), (2019);110, doi:10.3390/jmse7040110.
    Description: The traditional flow of coastal ocean model data is from High-Performance Computing (HPC) centers to the local desktop, or to a file server where just the needed data can be extracted via services such as OPeNDAP. Analysis and visualization are then conducted using local hardware and software. This requires moving large amounts of data across the internet as well as acquiring and maintaining local hardware, software, and support personnel. Further, as data sets increase in size, the traditional workflow may not be scalable. Alternatively, recent advances make it possible to move data from HPC to the Cloud and perform interactive, scalable, data-proximate analysis and visualization, with simply a web browser user interface. We use the framework advanced by the NSF-funded Pangeo project, a free, open-source Python system which provides multi-user login via JupyterHub and parallel analysis via Dask, both running in Docker containers orchestrated by Kubernetes. Data are stored in the Zarr format, a Cloud-friendly n-dimensional array format that allows performant extraction of data by anyone without relying on data services like OPeNDAP. Interactive visual exploration of data on complex, large model grids is made possible by new tools in the Python PyViz ecosystem, which can render maps at screen resolution, dynamically updating on pan and zoom operations. Two examples are given: (1) Calculating the maximum water level at each grid cell from a 53-GB, 720-time-step, 9-million-node triangular mesh ADCIRC simulation of Hurricane Ike; (2) Creating a dashboard for visualizing data from a curvilinear orthogonal COAWST/ROMS forecast model.
    Description: This research benefited from National Science Foundation grant number 1740648, and EarthSim project was funded by ERDC projects PETTT BY17-094SP and PETTT BY16-091SP. This project also benefited from research credits granted by Amazon.
    Keywords: Ocean modeling ; Cloud computing ; Data analysis ; Geospatial data visualization
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2022-10-27
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Goodwin, J. D., Munroe, D. M., Defne, Z., Ganju, N. K., & Vasslides, J. Estimating connectivity of hard clam (Mercenaria mercenaria) and eastern oyster (Crassostrea virginica) larvae in Barnegat Bay. Journal of Marine Science and Engineering, 7(6), (2019): 167, doi:10.3390/jmse7060167.
    Description: Many marine organisms have a well-known adult sessile stage. Unfortunately, our lack of knowledge regarding their larval transient stage hinders our understanding of their basic ecology and connectivity. Larvae can have swimming behavior that influences their transport within the marine environment. Understanding the larval stage provides insight into population connectivity that can help strategically identify areas for restoration. Current techniques for understanding the larval stage include modeling that combines particle attributes (e.g., larval behavior) with physical processes of water movement to contribute to our understanding of connectivity trends. This study builds on those methods by using a previously developed retention clock matrix (RCM) to illustrate time dependent connectivity of two species of shellfish between areas and over a range of larval durations. The RCM was previously used on physical parameters but we expand the concept by applying it to biology. A new metric, difference RCM (DRCM), is introduced to quantify changes in connectivity under different scenarios. Broad spatial trends were similar for all behavior types with a general south to north progression of particles. The DRCMs illustrate differences between neutral particles and those with behavior in northern regions where stratification was higher, indicating that larval behavior influenced transport. Based on these findings, particle behavior led to small differences (north to south movement) in transport patterns in areas with higher salinity gradients (the northern part of the system) compared to neutral particles. Overall, the dominant direction for particle movement was from south to north, which at times was enhanced by winds from the south. Clam and oyster restoration in the southern portion of Barnegat Bay could serve as a larval supply for populations in the north. These model results show that coupled hydrodynamic and particle tracking models have implications for fisheries management and restoration activities.
    Description: This work is supported by the Barnegat Bay Partnership EPA grants CE98212311, CE98212312. We extend our deep thanks to anonymous reviewers and Lisa Lucas who provided thoughtful input that improved the manuscript. We thank Matthew Kozak and Ian Mitchell for technical advice and Elizabeth North for LTRANS guidance. Joe Caracapa and Jennifer Gius provided help running remote simulations. COAST model source code is available at https://code.usgs.gov/coawstmodel/COAWST [50]. The hydrodynamic model outoput is available at: http://geoport.whoi.edu/thredds/catalog/clay/usgs/users/zdefne/GRL/catalog.html [21] and particle tracking model outputs are available from the corresponding author upon request.
    Keywords: Bivalve connectivity ; Larval transport ; Modeling ; Retention clock ; RCM ; ROMS ; LTRANS ; Barnegat Bay ; Hard clam ; Eastern oyster
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Le Roux, V., & Liang, Y. Ophiolitic pyroxenites record boninite percolation in subduction zone mantle. Minerals, 9(9), (2019): 565, doi: 10.3390/min9090565.
    Description: The peridotite section of supra-subduction zone ophiolites is often crosscut by pyroxenite veins, reflecting the variety of melts that percolate through the mantle wedge, react, and eventually crystallize in the shallow lithospheric mantle. Understanding the nature of parental melts and the timing of formation of these pyroxenites provides unique constraints on melt infiltration processes that may occur in active subduction zones. This study deciphers the processes of orthopyroxenite and clinopyroxenite formation in the Josephine ophiolite (USA), using new trace and major element analyses of pyroxenite minerals, closure temperatures, elemental profiles, diffusion modeling, and equilibrium melt calculations. We show that multiple melt percolation events are required to explain the variable chemistry of peridotite-hosted pyroxenite veins, consistent with previous observations in the xenolith record. We argue that the Josephine ophiolite evolved in conditions intermediate between back-arc and sub-arc. Clinopyroxenites formed at an early stage of ophiolite formation from percolation of high-Ca boninites. Several million years later, and shortly before exhumation, orthopyroxenites formed through remelting of the Josephine harzburgites through percolation of ultra-depleted low-Ca boninites. Thus, we support the hypothesis that multiple types of boninites can be created at different stages of arc formation and that ophiolitic pyroxenites uniquely record the timing of boninite percolation in subduction zone mantle.
    Description: This study was supported by National Science Foundation grants EAR-1220440 to V.L.R. and EAR-1624516 to Y.L. We thank the reviewers for their helpful suggestions, as well as Taylor Hough, Gretchen Swarr, Alberto Saal, Soumen Mallick, and Nilanjan Chatterjee for help with LA-ICP-MS and EPMA analyses, and Mark Kurz for help with sample collection.
    Keywords: Ophiolite ; Boninite ; Pyroxenite ; Josephine peridotite ; REE temperatures ; Diffusion ; Melt percolation ; Subduction zones
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2022-08-12
    Description: The Arctic-Boreal regions experience strong changes of air temperature and precipitation regimes, which affect the thermal state of the permafrost. This results in widespread permafrost-thaw disturbances, some unfolding slowly and over long periods, others occurring rapidly and abruptly. Despite optical remote sensing offering a variety of techniques to assess and monitor landscape changes, a persistent cloud cover decreases the amount of usable images considerably. However, combining data from multiple platforms promises to increase the number of images drastically. We therefore assess the comparability of Landsat-8 and Sentinel-2 imagery and the possibility to use both Landsat and Sentinel-2 images together in time series analyses, achieving a temporally-dense data coverage in Arctic-Boreal regions. We determined overlapping same-day acquisitions of Landsat-8 and Sentinel-2 images for three representative study sites in Eastern Siberia. We then compared the Landsat-8 and Sentinel-2 pixel-pairs, downscaled to 60 m, of corresponding bands and derived the ordinary least squares regression for every band combination. The acquired coefficients were used for spectral bandpass adjustment between the two sensors. The spectral band comparisons showed an overall good fit between Landsat-8 and Sentinel-2 images already. The ordinary least squares regression analyses underline the generally good spectral fit with intercept values between 0.0031 and 0.056 and slope values between 0.531 and 0.877. A spectral comparison after spectral bandpass adjustment of Sentinel-2 values to Landsat-8 shows a nearly perfect alignment between the same-day images. The spectral band adjustment succeeds in adjusting Sentinel-2 spectral values to Landsat-8 very well in Eastern Siberian Arctic-Boreal landscapes. After spectral adjustment, Landsat and Sentinel-2 data can be used to create temporally-dense time series and be applied to assess permafrost landscape changes in Eastern Siberia. Remaining differences between the sensors can be attributed to several factors including heterogeneous terrain, poor cloud and cloud shadow masking, and mixed pixels.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2022-05-06
    Description: In situ and remote-sensing measurements have been used to characterize the run-up phase and the phenomena that occurred during the August–November 2014 flank eruption at Stromboli. Data comprise videos recorded by the visible and infrared camera network, ground displacement recorded by the permanent-sited Ku-band, Ground-Based Interferometric Synthetic Aperture Radar (GBInSAR) device, seismic signals (band 0.02–10 Hz), and high-resolution Digital Elevation Models (DEMs) reconstructed based on Light Detection and Ranging (LiDAR) data and tri-stereo PLEIADES-1 imagery. This work highlights the importance of considering data from in situ sensors and remote-sensing platforms in monitoring active volcanoes. Comparison of data from live-cams, tremor amplitude, localization of Very-Long-Period (VLP) source and amplitude of explosion quakes, and ground displacements recorded by GBInSAR in the crater terrace provide information about the eruptive activity, nowcasting the shift in eruptive style of explosive to effusive. At the same time, the landslide activity during the run-up and onset phases could be forecasted and tracked using the integration of data from the GBInSAR and the seismic landslide index. Finally, the use of airborne and space-borne DEMs permitted the detection of topographic changes induced by the eruptive activity, allowing for the estimation of a total volume of 3.07 ± 0.37 × 106 m3 of the 2014 lava flow field emplaced on the steep Sciara del Fuoco slope.
    Description: This work has been financially supported by the “Presidenza del Consiglio dei Ministri – Dipartimento della Protezione Civile” (Presidency of the Council of Ministers – Department of Civil Protection) within the framework of the InGrID2015-2016 and SAR.NET2017 projects (Scientific Responsibility: NC); this publication, however, does not reflect the position and the official policies of the Department. FDiT has been supported by a post-doc fellowship founded by the “Università degli Studi di Firenze – Ente Cassa di Risparmio di Firenze” (D.R. n. 127804 (1206) 2015; “Volcano Sentinel” project). This work has been financially supported by "Volcano Sentinel—extension” project (Call: “Settore ricerca scientifica e innovazione tecnologica”; founded by: Ente Cassa di Risparmio di Firenze. Scientific Responsibility: FeDiT).
    Description: Published
    Description: id 2035
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: landslides ; effusive activity ; Ground-Based InSAR ; infrared live cam ; seismic monitoring ; PLEIADES ; Digital Elevation Models ; optical sensors ; Stromboli volcano ; The 2014 effusive eruption ; Remote-sensing measurements
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2022-06-08
    Description: We collected and analysed 58 samples of groundwater from wells in the Barcellona-Milazzo Plain, one of the most important coastal aquifers of Sicily (Italy), to determine major, minor, and trace element concentrations. In this area, geogenic and anthropogenic sources of heavy metals and other pollutants co-act, making the individuation of the main pollution sources difficult. Our work was aimed at the application of geostatistical criteria for discriminating between these pollution sources. We used probability plots for separating anomalous values from background concentrations, which were plotted on maps and related to possible sources of pollutants. Our results indicate that hydrothermal fluid circulation and the water–rock interaction of country rocks that host mineralized ore deposits generate a significant flux of heavy metals to groundwater, as well as anthropogenic sources like intense agriculture and industrial activities. In particular, NO3, F, and Ni exceed the Maximum Admitted Concentrations (MACs) established by the WHO and Italian legislation for drinking-water. The spatial distributions of geogenic and anthropogenic sources were so deeply interlocked that their separation was not easy, also employing geostatistical tools. This complex scenario makes the implementation of human health risk mitigation actions difficult, since the flow of pollutants is in many cases controlled by simple water–rock interaction processes.
    Description: Published
    Description: id 285
    Description: 6A. Geochimica per l'ambiente
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Sutherland, K. R., Gemmell, B. J., Colin, S. P., & Costello, J. H. Maneuvering performance in the colonial siphonophore, Nanomia bijuga. Biomimetics, 4(3), (2019): 62, doi:10.3390/biomimetics4030062.
    Description: The colonial cnidarian, Nanomia bijuga, is highly proficient at moving in three-dimensional space through forward swimming, reverse swimming and turning. We used high speed videography, particle tracking, and particle image velocimetry (PIV) with frame rates up to 6400 s−1 to study the kinematics and fluid mechanics of N. bijuga during turning and reversing. N. bijuga achieved turns with high maneuverability (mean length–specific turning radius, R/L = 0.15 ± 0.10) and agility (mean angular velocity, ω = 104 ± 41 deg. s−1). The maximum angular velocity of N. bijuga, 215 deg. s−1, exceeded that of many vertebrates with more complex body forms and neurocircuitry. Through the combination of rapid nectophore contraction and velum modulation, N. bijuga generated high speed, narrow jets (maximum = 1063 ± 176 mm s−1; 295 nectophore lengths s−1) and thrust vectoring, which enabled high speed reverse swimming (maximum = 134 ± 28 mm s−1; 37 nectophore lengths s−1) that matched previously reported forward swimming speeds. A 1:1 ratio of forward to reverse swimming speed has not been recorded in other swimming organisms. Taken together, the colonial architecture, simple neurocircuitry, and tightly controlled pulsed jets by N. bijuga allow for a diverse repertoire of movements. Considering the further advantages of scalability and redundancy in colonies, N. bijuga is a model system for informing underwater propulsion and navigation of complex environments.
    Description: This research was funded by the National Science Foundation (NSF) 1829932 and 173764 to K.R.S., NSF 1830015, 1536672, 1511721 to J.H.C., 1455440, 1536688, 1829913 to S.P.C., NSF 1511996 to B.J.G.
    Keywords: turn ; reverse ; agility ; maneuverability ; propulsion ; Nanomia bijuga
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Foglini, F., Grande, V., Marchese, F., Bracchi, V. A., Prampolini, M., Angeletti, L., Castellan, G., Chimienti, G., Hansen, I. M., Gudmundsen, M., Meroni, A. N., Vertino, A., Badalamenti, F., Corselli, C., Erdal, I., Martorelli, E., Savini, A., & Taviani, M. (2019). Application of hyperspectral imaging to underwater habitat mapping, Southern Adriatic Sea. Sensors, 19(10), (2019): 2261, doi:10.3390/s19102261.
    Description: Hyperspectral imagers enable the collection of high-resolution spectral images exploitable for the supervised classification of habitats and objects of interest (OOI). Although this is a well-established technology for the study of subaerial environments, Ecotone AS has developed an underwater hyperspectral imager (UHI) system to explore the properties of the seafloor. The aim of the project is to evaluate the potential of this instrument for mapping and monitoring benthic habitats in shallow and deep-water environments. For the first time, we tested this system at two sites in the Southern Adriatic Sea (Mediterranean Sea): the cold-water coral (CWC) habitat in the Bari Canyon and the Coralligenous habitat off Brindisi. We created a spectral library for each site, considering the different substrates and the main OOI reaching, where possible, the lower taxonomic rank. We applied the spectral angle mapper (SAM) supervised classification to map the areal extent of the Coralligenous and to recognize the major CWC habitat-formers. Despite some technical problems, the first results demonstrate the suitability of the UHI camera for habitat mapping and seabed monitoring, through the achievement of quantifiable and repeatable classifications.
    Description: Flagship Project RITMARE (La Ricerca Italiana per il Mare) and EVER-EST projects (ID: 674907).
    Keywords: hyperspectral camera ; spectral library ; habitat mapping ; coralligenous ; cold-water coral ; Adriatic Sea
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2023-06-21
    Description: The sea-ice climatology and sea-ice trends and variability are evaluated in simulations with the new version of the coupled Arctic atmosphere-ocean-sea ice model HIRHAM–NAOSIM 2.0. This version utilizes upgraded model components for the coupled subsystems, which include physical and numerical improvements and higher horizontal and vertical resolution, and a revised coupling procedure with the aid of the coupling software YAC (Yet Another Coupler). The model performance is evaluated against observationally based data sets and compared with the previous version. Ensemble simulations for the period 1979–2016 reveal that Arctic sea ice is thicker in all seasons and closer to observations than in the previous version. Wintertime biases in sea-ice extent, upper ocean temperatures, and near-surface air temperatures are reduced, while summertime biases are of similar magnitude as in the previous version. Problematic issues of the current model configuration and potential corrective measures and further developments are discussed.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2023-06-21
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Pun, I., Chan, J. C. L., Lin, I., Chan, K. T. E., Price, J. F., Ko, D. S., Lien, C., Wu, Y., & Huang, H. Rapid intensification of Typhoon Hato (2017) over shallow water. Sustainability, 11(13), (2019): 3709, doi:10.3390/su11133709.
    Description: On 23 August, 2017, Typhoon Hato rapidly intensified by 10 kt within 3 h just prior to landfall in the city of Macau along the South China coast. Hato’s surface winds in excess of 50 m s−1 devastated the city, causing unprecedented damage and social impact. This study reveals that anomalously warm ocean conditions in the nearshore shallow water (depth 〈 30 m) likely played a key role in Hato’s fast intensification. In particular, cooling of the sea surface temperature (SST) generated by Hato at the critical landfall point was estimated to be only 0.1–0.5 °C. The results from both a simple ocean mixing scheme and full dynamical ocean model indicate that SST cooling was minimized in the shallow coastal waters due to a lack of cool water at depth. Given the nearly invariant SST in the coastal waters, we estimate a large amount of heat flux, i.e., 1.9k W m−2, during the landfall period. Experiments indicate that in the absence of shallow bathymetry, and thus, if nominal cool water had been available for vertical mixing, the SST cooling would have been enhanced from 0.1 °C to 1.4 °C, and sea to air heat flux reduced by about a quarter. Numerical simulations with an atmospheric model suggest that the intensity of Hato was very sensitive to air-sea heat flux in the coastal region, indicating the critical importance of coastal ocean hydrography.
    Description: The work of I.-F.P. is supported by Taiwan’s Ministry of Science and Technology Grant MOST 107-2111-M-008-001-MY3. The work of J.C.L.C. is supported by the Research Grants Council of Hong Kong Grant E-CityU101/16. The work of I.-I.L. is supported by Taiwan’s Ministry of Science and Technology (MOST 106-2111-M-002-011-MY3, MOST 108-2111-M-002-014-MY2). The work of K.T.F.C. is jointly supported by the National Natural Science Foundation of China (41775097), and the National Natural Science Foundation of China and Macau Science and Technology Development Joint Fund (NSFC-FDCT), China and Macau (41861164027).
    Keywords: Typhoon ; SST cooling ; Shallow water ; Vertical mixing ; Rapid intensification
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Gurumurthy, P., Orton, P. M., Talke, S. A., Georgas, N., & Booth, J. F. Mechanics and historical evolution of sea level blowouts in New York harbor. Journal of Marine Science and Engineering, 7(5), (2019): 160, doi:10.3390/jmse7050160.
    Description: Wind-induced sea level blowouts, measured as negative storm surge or extreme low water (ELW), produce public safety hazards and impose economic costs (e.g., to shipping). In this paper, we use a regional hydrodynamic numerical model to test the effect of historical environmental change and the time scale, direction, and magnitude of wind forcing on negative and positive surge events in the New York Harbor (NYH). Environmental sensitivity experiments show that dredging of shipping channels is an important factor affecting blowouts while changing ice cover and removal of other roughness elements are unimportant in NYH. Continuously measured water level records since 1860 show a trend towards smaller negative surge magnitudes (measured minus predicted water level) but do not show a significant change to ELW magnitudes after removing the sea-level trend. Model results suggest that the smaller negative surges occur in the deeper, dredged modern system due to a reduced tide-surge interaction, primarily through a reduced phase shift in the predicted tide. The sensitivity of surge to wind direction changes spatially with remote wind effects dominating local wind effects near NYH. Convergent coastlines that amplify positive surges also amplify negative surges, a process we term inverse coastal funneling.
    Description: This research was funded by the US Army Corps of Engineers (agreement no. W9127N-14-2-0015; S. Talke, PI), the NSF (Career Award 1455350; PI Talke), NASA’s Research Opportunities in Space and Earth Science ROSES-2012 (grant NNX14AD48G; Kushnir, PI), and a Provost’s Doctoral Fellowship, Stevens Institute of Technology.
    Keywords: Estuary ; Negative surge ; Blowout ; Storm surge ; Funneling ; Tide-surge interaction ; Wind set-down ; New York Harbor ; Dredging
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Al Senafi, F., Anis, A., & Menezes, V. Surface heat fluxes over the northern Arabian Gulf and the northern Red Sea: Evaluation of ECMWF-ERA5 and NASA-MERRA2 reanalyses. Atmosphere, 10(9), (2019): 504, doi:10.3390/atmos10090504.
    Description: The air–sea heat fluxes in marginal seas and under extreme weather conditions constitute an essential source for energy transport and mixing dynamics. To reproduce these effects in numerical models, we need a better understanding of these fluxes. In response to this demand, we undertook a study to examine the surface heat fluxes in the Arabian Gulf (2013 to 2014) and Red Sea (2008 to 2010)—the two salty Indian Ocean marginal seas. We use high-quality buoy observations from offshore meteorological stations and data from two reanalysis products, the Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA2) from the National Aeronautics and Space Administration (NASA) and ERA5, the fifth generation of the European Centre for Medium-Range Weather Forecasts (ECMWF) atmospheric reanalyses of global climate. Comparison of the reanalyses with the in situ-derived fluxes shows that both products underestimate the net heat fluxes in the Gulf and the Red Sea, with biases up to −45 W/m 2 in MERRA2. The reanalyses reproduce relatively well the seasonal variability in the two regions and the effects of wind events on air–sea fluxes. The results suggest that when forcing numerical models, ERA5 might provide a preferable dataset of surface heat fluxes for the Arabian Gulf while for the Red Sea the MERRA2 seems preferable.
    Description: This study was funded by the Research Sector at Kuwait University (project #ZS03/16) and by NSF (grant #OCE-1435665) supporting V.M.
    Keywords: Arabian Gulf ; Red Sea ; Persian Gulf ; Merra 2 ; ERA 5 ; Heat fluxes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2023-06-21
    Description: Histone methylation patterns are important epigenetic regulators of mammalian development, notably through stem cell identity maintenance by chromatin remodeling and transcriptional control of pluripotency genes. But, the implications of histone marks are poorly understood in distant groups outside vertebrates and ecdysozoan models. However, the development of the Pacific oyster Crassostrea gigas is under the strong epigenetic influence of DNA methylation, and Jumonji histone-demethylase orthologues are highly expressed during C. gigas early life. This suggests a physiological relevance of histone methylation regulation in oyster development, raising the question of functional conservation of this epigenetic pathway in lophotrochozoan. Quantification of histone methylation using fluorescent ELISAs during oyster early life indicated significant variations in monomethyl histone H3 lysine 4 (H3K4me), an overall decrease in H3K9 mono- and tri-methylations, and in H3K36 methylations, respectively, whereas no significant modification could be detected in H3K27 methylation. Early in vivo treatment with the JmjC-specific inhibitor Methylstat induced hypermethylation of all the examined histone H3 lysines and developmental alterations as revealed by scanning electronic microscopy. Using microarrays, we identified 376 genes that were differentially expressed under methylstat treatment, which expression patterns could discriminate between samples as indicated by principal component analysis. Furthermore, Gene Ontology revealed that these genes were related to processes potentially important for embryonic stages such as binding, cell differentiation and development. These results suggest an important physiological significance of histone methylation in the oyster embryonic and larval life, providing, to our knowledge, the first insights into epigenetic regulation by histone methylation in lophotrochozoan development.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2022-11-29
    Description: Pore water geochemistry and bulk sediment measurements of downcore profiles covering the upper 100 m-long sequence from site 1A, Lake Towuti, Indonesia
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2023-03-14
    Keywords: 64PE411; 64PE411_BY15_MUC; Baltic Fe; BY15; DEPTH, sediment/rock; Eastern Gotland Basin; GEOTRACES; Global marine biogeochemical cycles of trace elements and their isotopes; Hydrogen sulfide; MUC-OCT; Multi corer, Octopus; Oxygen; Pelagia; pH
    Type: Dataset
    Format: text/tab-separated-values, 2127 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2023-03-14
    Keywords: 64PE411; 64PE411_Site_1_MUC; Baltic Fe; DEPTH, sediment/rock; Eastern Gotland Basin; GEOTRACES; Global marine biogeochemical cycles of trace elements and their isotopes; Hydrogen sulfide; MUC-OCT; Multi corer, Octopus; Oxygen; Pelagia; pH; Site 1
    Type: Dataset
    Format: text/tab-separated-values, 2318 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2023-03-14
    Keywords: 64PE411; 64PE411_Site_2_MUC; Baltic Fe; DEPTH, sediment/rock; Eastern Gotland Basin; GEOTRACES; Global marine biogeochemical cycles of trace elements and their isotopes; Hydrogen sulfide; MUC-OCT; Multi corer, Octopus; Oxygen; Pelagia; pH; Site 2
    Type: Dataset
    Format: text/tab-separated-values, 2286 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2023-03-14
    Keywords: 64PE411; 64PE411_Site_3_MUC; Baltic Fe; DEPTH, sediment/rock; Eastern Gotland Basin; GEOTRACES; Global marine biogeochemical cycles of trace elements and their isotopes; Hydrogen sulfide; MUC-OCT; Multi corer, Octopus; Oxygen; Pelagia; pH; Site 3
    Type: Dataset
    Format: text/tab-separated-values, 2190 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2023-03-14
    Keywords: 64PE411; 64PE411_Site_4_MUC; Baltic Fe; DEPTH, sediment/rock; Eastern Gotland Basin; GEOTRACES; Global marine biogeochemical cycles of trace elements and their isotopes; Hydrogen sulfide; MUC-OCT; Multi corer, Octopus; Oxygen; Pelagia; pH; Site 4
    Type: Dataset
    Format: text/tab-separated-values, 2235 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2023-03-14
    Keywords: 64PE411; 64PE411_Site_5_MUC; Baltic Fe; DEPTH, sediment/rock; Eastern Gotland Basin; GEOTRACES; Global marine biogeochemical cycles of trace elements and their isotopes; Hydrogen sulfide; MUC-OCT; Multi corer, Octopus; Oxygen; Pelagia; pH; Site 5
    Type: Dataset
    Format: text/tab-separated-values, 1474 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2023-03-14
    Keywords: Alkalinity, total; Aragonite saturation state; Calculated; Calculated based on salinity (Jiang et al. 2014); Calculated using CO2SYS; Cape_Byron; Carbon, inorganic, dissolved; DATE/TIME; Day of the year; DEPTH, water; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); MULT; Multiple investigations; New South Wales, Australia; Ocean acidification; Omega; Oxygen; Oxygen saturation; pH; pH, standard deviation; Pressure, water; Salinity; SeaPHOX; SeapHOx, MicroCAT; Temperature, water; thresholds; Upwelling; western boundary system
    Type: Dataset
    Format: text/tab-separated-values, 84790 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2023-03-14
    Keywords: Alkalinity, total; Aragonite saturation state; Calculated; Calculated based on salinity (Jiang et al. 2014); Calculated using CO2SYS; Cape_Byron; Carbon, inorganic, dissolved; DATE/TIME; Day of the year; DEPTH, water; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); MULT; Multiple investigations; New South Wales, Australia; Ocean acidification; Omega; Oxygen; Oxygen saturation; pH; pH, standard deviation; Pressure, water; Salinity; SeaPHOX; SeapHOx, MicroCAT; Temperature, water; thresholds; Upwelling; western boundary system
    Type: Dataset
    Format: text/tab-separated-values, 88634 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2023-03-14
    Keywords: Alkalinity, total; bioindicators; Chlorophyll a; coastal pollution; Conductivity; Densu_S1; Densu_S10; Densu_S2; Densu_S3; Densu_S4; Densu_S5; Densu_S6; Densu_S7; Densu_S8; Densu_S9; DEPTH, water; Event label; Latitude of event; Longitude of event; Nitrate; Oxidation reduction (RedOx) potential; Oxygen; Oxygen saturation; pH; Phosphate; S1; S10; S2; S3; S4; S5; S6; S7; S8; S9; Salinity; Sulfate; Suspended matter, total; Temperature, water; Total dissolved solids; tropical estuarines; water quality index; Water quality index; Water sample; WS
    Type: Dataset
    Format: text/tab-separated-values, 150 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2023-03-14
    Keywords: Alkalinity, total; Aragonite saturation state; Aragonite saturation state, standard error; Area/locality; Bicarbonate ion; Bicarbonate ion, standard error; Bottle, Niskin; Calcite saturation state; Calcite saturation state, standard error; Calculated from total alkalinity (TA) and dissolved inorganic carbon (DIC); Carbon, inorganic, dissolved; Carbonate ion; Carbonate ion, standard error; carbonate system; Carbon dioxide; Carbon dioxide, partial pressure; Carbon dioxide, standard error; Central Red Sea; CO2; Coral; CTD; DATE/TIME; Difference; Error; Event label; Fugacity of carbon dioxide in seawater; Latitude of event; Longitude of event; mangrove; NIS; Normalised (Friis et al., 2003); pH; Phosphate; pH sensor, Satlantic SeaFET; Red Sea; RedSea_Coral_reef; RedSea_Mangrove; RedSea_Pelagic_reference_station; RedSea_Seagrass_bed; Salinity; Sample code/label; Seagrass; Silicate; Temperature, water
    Type: Dataset
    Format: text/tab-separated-values, 3217 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2023-03-14
    Keywords: Canada; Carbon, organic, dissolved; Carbon dioxide; Humification index; Identification; Lake; Lake_LAU; Lake_SWA; Laurentian; MESO; Mesocosm experiment; Methane; pH; Position; Specific ultraviolet absorbance per mass Carbon; Swan; Treatment
    Type: Dataset
    Format: text/tab-separated-values, 275 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2023-03-14
    Keywords: acid-sulfate; argillic alteration; back-arc; BAMBUS; basalt; Bismarck Sea; Boron; Center for Marine Environmental Sciences; Chloride; Event label; hydrothermal circulation; J2-220; J2-221; J2-223; J2-227; J2-228; Li isotopes; Lithium; Lithium/Magnesium ratio; Location; Location type; MAGELLAN-06; magmatic degassing; Magnesium; Manus Basin; MARUM; Melville; Mg isotopes; MGLN06MV; pH; Potassium/Magnesium ratio; Remote operated vehicle; Remote operated vehicle Jason II; ROV; ROVJ; Sample ID; Silicon dioxide; SO216; SO216-19-1; SO216-21-1; SO216-23-1; SO216-45-1; SO216-47-1; Sodium/Magnesium ratio; Sonne; Sr isotopes. alteration; Strontium; Strontium-87/Strontium-86 ratio; Strontium-87/Strontium-86 ratio, error; Sulfate; Temperature, water; vent fluids; Years; δ11B; δ11B, standard deviation; δ26Mg; δ26Mg, standard deviation; δ7Li; δ7Li, standard deviation
    Type: Dataset
    Format: text/tab-separated-values, 588 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2023-03-14
    Keywords: DEPTH, soil; digital soil mapping; Elbe Estuary; GEOP; Geophysics; Germany, Saxony; LATITUDE; LONGITUDE; Organic carbon, soil; pH; Sample ID; Sample method; Selbitz; Soil; Soil moisture; Soil Moisture; UTM Easting, Universal Transverse Mercator; UTM Northing, Universal Transverse Mercator; UTM Zone, Universal Transverse Mercator
    Type: Dataset
    Format: text/tab-separated-values, 1120 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2023-03-13
    Keywords: DEEP SOUTH NATIONAL SCIENCE CHALLENGE: Targeted observation and process-informed modelling of Antarctic sea ice; Electromagnetic induction/laser; Electromagnetic sounding (EM), Geonics Ltd EM31-MK2; EML; K063_2011; LATITUDE; LONGITUDE; McMurdo Sound; ORDINAL NUMBER; Sea ice thickness; Sub-ice platelet-layer thickness; TOPIMASI
    Type: Dataset
    Format: text/tab-separated-values, 141426 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2023-03-13
    Keywords: C-GJKB; DEEP SOUTH NATIONAL SCIENCE CHALLENGE: Targeted observation and process-informed modelling of Antarctic sea ice; Electromagnetic induction/laser; Electromagnetic sounding (EM), Geonics Ltd EM31-MK2; EML; K066_2016; K066_2016a; LATITUDE; LONGITUDE; McMurdo Sound; ORDINAL NUMBER; Sea ice thickness; Sub-ice platelet-layer thickness; TOPIMASI
    Type: Dataset
    Format: text/tab-separated-values, 567258 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2023-03-10
    Keywords: 17; 21; 25; 3; 6; Angeles Alvarino; Area/locality; Bay of Biscay; Biological sample; BIOS; Campaign; Carter_St-25; Carvalho_St-17; Carvalho_St-21; Collection; Comment; DATE/TIME; Deep-sea Sponge Grounds Ecosystems of the North Atlantic; Depth, description; DEPTH, water; DR15; DR4; DR7; DR9; ECOMARG_0717; ECOMARG_0717_TF17; ECOMARG_0717_TF24; ECOMARG_0717_TF51; ECOMARG_0717_TF52; ECOMARG_0717_TF53; ECOMARG_0717_TF54; ECOMARG_0717_TF55; ECOMARG_0717_TV17; ECOMARG_2019; ECOMARG_2019_TF11; ECOMARG_2019_TF12; ECOMARG_2019_TF13; ECOMARG_2019_TF2; ECOMARG_2019_TF20; ECOMARG_2019_TF21; ECOMARG_2019_TF22; ECOMARG_2019_TF3; ECOMARG_2019_TF4; ECOMARG_2019_TF5; ESMAREC_0514; ESMAREC_0514_TF13; ESMAREC_0514_TF16; ESMAREC_0514_TF20; ESMAREC_0514_TF30; ESMAREC_0514_TF9; Habitat; INDEMARES_AV0511; INDERMARES_AV0511_DR7; Johnson; Latitude of event; Longitude of event; Name; Pisera_Vacelet; Pouliquen_St-3; Pouliquen_St-6; Ramon Margalef; South Atlantic Ocean; Species; SponGES; SponGES_0617; SponGES_0617_DR15; SponGES_0617_DR4; SponGES_0617_DR9; Station label; TF11; TF12; TF13; TF16; TF17; TF2; TF20; TF21; TF22; TF24; TF3; TF30; TF4; TF5; TF51; TF52; TF53; TF54; TF55; TF9; TV17; Type; Vizconde de Eza; Western Basin
    Type: Dataset
    Format: text/tab-separated-values, 215 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2023-03-13
    Keywords: DEEP SOUTH NATIONAL SCIENCE CHALLENGE: Targeted observation and process-informed modelling of Antarctic sea ice; Electromagnetic induction/laser; Electromagnetic sounding (EM), Geonics Ltd EM31-MK2; EML; K063_2013; LATITUDE; LONGITUDE; McMurdo Sound; ORDINAL NUMBER; Sea ice thickness; Sub-ice platelet-layer thickness; TOPIMASI
    Type: Dataset
    Format: text/tab-separated-values, 48968 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2023-03-13
    Keywords: C-GJKB; DEEP SOUTH NATIONAL SCIENCE CHALLENGE: Targeted observation and process-informed modelling of Antarctic sea ice; Electromagnetic induction/laser; Electromagnetic sounding (EM), Geonics Ltd EM31-MK2; EML; K066_2017; K066-1718-A; LATITUDE; LONGITUDE; McMurdo Sound; ORDINAL NUMBER; Sea ice thickness; Sub-ice platelet-layer thickness; TOPIMASI
    Type: Dataset
    Format: text/tab-separated-values, 480766 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2023-03-14
    Description: The CO2 fluxes were obtained in three cruises in RV Mexican Navy Altair in September 2016 in Navachiste, Sinaloa and Guaymas, Sonora in the Gulf of California.
    Keywords: Alkalinity, total; Altair; Altair_2016-09; Altair_2016-09_A; Altair_2016-09_B; Altair_2016-09_C; Altair_2016-09_G01; Altair_2016-09_G07; Altair_2016-09_G08; Altair_2016-09_G09; Altair_2016-09_G13; Altair_2016-09_NV3; Altair_2016-09_NV6; Altair_2016-09_NV7; Altair_2016-09_NV8; Altair_2016-09_NV9; Area/locality; Carbon, inorganic, dissolved; Carbon dioxide, partial pressure; carbon system; CO2 flux; Date/Time of event; DEPTH, water; Event label; Fugacity of carbon dioxide in seawater, per carbon; Gulf of California; Latitude of event; Longitude of event; MULT; Multiple investigations; pH; Δ partial pressure of carbon dioxide
    Type: Dataset
    Format: text/tab-separated-values, 91 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Reese, Anna; Zimmermann, Tristan; Pröfrock, Daniel; Irrgeher, Johanna (2019): Extreme spatial variation of Sr, Nd and Pb isotopic signatures and 48 element mass fractions in surface sediment of the Elbe River Estuary - Suitable tracers for processes in dynamic environments? Science of the Total Environment, 668, 512-523, https://doi.org/10.1016/j.scitotenv.2019.02.401
    Publication Date: 2023-03-14
    Description: The Elbe River was long considered as one of the most anthropogenically impacted rivers in Europe. Its estuary is characterized by strong tidal effects, continuous dredging and dumping of sediments and intense ship traffic between the North Sea and the Port of Hamburg. These activities make the estuary a highly dynamic study area of interest to numerous parties. The aim of this study was to elucidate if a combined multi-element fingerprinting and isotopic tracer approach represents a suitable tool to investigate transport and mixing processes of inorganic contaminants within a complex and highly dynamic estuarine environment. Therefore, a total of 37 surface sediment samples (〈63 µm grain size fraction) of the Elbe River Estuary were characterized in a comprehensive survey by determining the mass fractions of 48 elements and the isotopic signatures of stable Sr, Nd and Pb. By the combination of multi-element and isotopic data, statistical data analysis resolved four discrete clusters of sampling locations in the estuary: One cluster upstream of the city of Hamburg, two clusters within the mixing zone between Hamburg and the mouth of the Elbe Estuary and one cluster in the mouth of the estuary. Our results indicate that river sediments entering the estuary carry significantly higher loads of heavy metals (e.g. Cu, Zn, Sb, Cd and Pb), which are rapidly “diluted” by lower elemental mass fractions in marine sediments on a remarkably small regional scale (investigated river transect: 144 km). The cluster within the mouth of the estuary is mainly characterized by extreme isotopic variations of n(208Pb)/n(204Pb) ranging from 38.67 ± 0.15 to 73.86 ± 0.29, beside high mass fractions of U, Th and some rare-earth elements. Determined Pb isotope ratios are among the highest reported values for terrestrial materials. These extreme variations are unique as they occur on a small spatial scale and cannot be explained by the underlying geology of the Elbe Estuary solely. Hence, it can be assumed that this material is not exclusively original to the area but was transported into the Elbe Estuary either by tidal dynamics or human activities. In summary, this study indicates the general potential of combined element fingerprinting and isotope tracer approaches to elucidate processes in complex river systems. Moreover does it represent an initial characterization of the catchment area of the Elbe River as basis for future studies on river and harbor management.
    Keywords: Alte Harb. Elbbruecke; Aluminium; Aluminium, uncertainty; Antimony; Antimony, uncertainty; Arsenic; Arsenic, uncertainty; Barium; Barium, uncertainty; BC; Beryllium; Beryllium, uncertainty; Bielenberg Leuchtf.; Billwerder Inseln; Bismuth; Bismuth, uncertainty; Blankenese; Box corer; Brunsbuettel Elbhafen; Bunthausspitze; Cadmium; Cadmium, uncertainty; Caesium; Caesium, uncertainty; Calcium; Calcium, uncertainty; Cerium; Cerium, uncertainty; Chromium; Chromium, uncertainty; Cobalt; Cobalt, uncertainty; Copper; Copper, uncertainty; Date/Time of event; DEPTH, sediment/rock; DEPTH, water; Dysprosium; Dysprosium, uncertainty; Elbe and North Sea; Elbstorf; Element analysis grain size fraction 〈63 µm via ICP-MS (total digest); Elevation of event; Erbium; Erbium, uncertainty; Europium; Europium, uncertainty; Europium anomaly; Event label; Gadolinium; Gadolinium, uncertainty; Gallium; Gallium, uncertainty; Geesthacht; Glameyer; Glueckstadt; Grain size, LASER Particle Sizer; Grauerort; Helmholtz-Zentrum Geesthacht, Institute of Coastal Research; Hollerwettern; Holmium; Holmium, uncertainty; HZG; Iron; Iron, uncertainty; Koehlbrand; Kugelbake; Lanthanum; Lanthanum, uncertainty; Latitude of event; Lead; Lead, uncertainty; Lead-206/Lead-204 ratio; Lead-206/Lead-204 ratio, uncertainty; Lead-207/Lead-204 ratio; Lead-207/Lead-204 ratio, uncertainty; Lead-207/Lead-206, uncertainty; Lead-207/Lead-206 ratio; Lead-208/Lead-204 ratio; Lead-208/Lead-204 ratio, uncertainty; Lead-208/Lead-206 ratio; Lead-208/Lead-206 ratio, uncertainty; Longitude of event; LP_2015_08_S_1; LP_2015_08_S_10; LP_2015_08_S_11; LP_2015_08_S_12; LP_2015_08_S_13; LP_2015_08_S_14; LP_2015_08_S_15; LP_2015_08_S_16; LP_2015_08_S_17; LP_2015_08_S_18; LP_2015_08_S_19; LP_2015_08_S_2; LP_2015_08_S_20; LP_2015_08_S_21; LP_2015_08_S_22; LP_2015_08_S_23; LP_2015_08_S_24; LP_2015_08_S_25; LP_2015_08_S_26; LP_2015_08_S_27; LP_2015_08_S_28_1; LP_2015_08_S_28_2; LP_2015_08_S_29; LP_2015_08_S_3; LP_2015_08_S_30_1; LP_2015_08_S_30_2; LP_2015_08_S_31_1; LP_2015_08_S_31_2; LP_2015_08_S_32; LP_2015_08_S_33_2; LP_2015_08_S_33_3; LP_2015_08_S_34_1; LP_2015_08_S_34_2; LP_2015_08_S_35_1; LP_2015_08_S_35_2; LP_2015_08_S_36; LP_2015_08_S_4; LP_2015_08_S_5; LP_2015_08_S_6; LP_2015_08_S_7; LP_2015_08_S_71_1; LP_2015_08_S_71_2; LP_2015_08_S_8; LP_2015_08_S_9; LP201508; Lt. Vogelsand; Ludwig Prandtl; Luehemuendung; Lutetium; Lutetium, uncertainty; Magnesium; Magnesium, uncertainty; Manganese; Manganese, uncertainty; Molybdenum; Molybdenum, uncertainty; Multi-collector ICP-MS (MC-ICP-MS), Nu Plasma II; Multimeter 3430 WTW; Neodymium; Neodymium, uncertainty; Neodymium-143/Neodymium-144 ratio; Neodymium-143/Neodymium-144 ratio, uncertainty; Neue Elbbruecken; Neufeld; Neuland; Neumuehlen; Nickel; Nickel, uncertainty; Nienstedten; Oste; Otterndorf; Pegel Brockdorf; pH; Phosphorus; Phosphorus, uncertainty; Potassium; Potassium, uncertainty; Praseodymium; Praseodymium, uncertainty; Rubidium; Rubidium, uncertainty; Salinity; Samarium; Samarium, uncertainty; Scandium; Scandium, uncertainty; Scharhoernriff; Schulau; Schwinge; Seemannshoeft; Silver; Silver, uncertainty; Size fraction 〈 0.063 mm, mud, silt+clay; Size fraction 〈 0.125 mm; Size fraction 〈 0.250 mm; St. Magarethen; Stoer; Strontium; Strontium, uncertainty; Strontium-87/Strontium-86 ratio; Strontium-87/Strontium-86 ratio, uncertainty; Tellurium; Tellurium, uncertainty; Terbium; Terbium, uncertainty; Thallium; Thallium, uncertainty; Thorium; Thorium, uncertainty; Thulium; Thulium, uncertainty; Titanium; Titanium, uncertainty; Tonne 107; Tonne 112; Tonne 53; Tonne 57; Tonne 91 gruen; Tonne 96 rot; Tungsten; Tungsten, uncertainty; Uranium; Uranium, uncertainty; Vanadium; Vanadium, uncertainty; Ytterbium; Ytterbium, uncertainty; Zinc; Zinc, uncertainty; Zirconium; Zirconium, uncertainty; Zollenspieker
    Type: Dataset
    Format: text/tab-separated-values, 4314 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Brett, Gemma Marie; Irvin, Anne; Rack, Wolfgang; Haas, Christian; Langhorne, Patricia J; Leonard, Greg H (2020): Variability in the Distribution of Fast Ice and the Sub‐ice Platelet Layer Near McMurdo Ice Shelf. Journal of Geophysical Research: Oceans, 125(3), e2019JC015678, https://doi.org/10.1029/2019JC015678
    Publication Date: 2023-03-13
    Description: Ground-based electromagnetic induction (EM) surveys of sea ice and sub-ice platelet layer thicknesses were carried out on land-fast sea ice in McMurdo Sound, Antarctica in November of 2011, 2013, 2016 and 2017. The EM data was acquired using a frequency-domain Geonics Ltd EM31-MK2 instrument mounted on a sledge and towed by skidoo. The thicknesses of total ice (sea ice plus the snow layer) and the SPL were simultaneously retrieved from the EM31 measured response using the processing method of Irvin (2018) (refer to pages 89-98). A correction for the addition of the snow layer was applied to obtain to EM measured Sea Ice (emSI) thickness according to section 2.3 of Brett et al. 2019.
    Keywords: C-GJKB; DEEP SOUTH NATIONAL SCIENCE CHALLENGE: Targeted observation and process-informed modelling of Antarctic sea ice; Electromagnetic induction/laser; EML; K063_2011; K063_2013; K066_2016; K066_2016a; K066_2017; K066-1718-A; McMurdo Sound; TOPIMASI
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2023-03-14
    Description: The CO2 fluxes were obtained in front of Navachiste Coastal System, Sinaloa in March 2017, a board a little ship from Laboratorio de Productividad Primaria y Sistema del Carbono (IPN-LPPSC).
    Keywords: Alkalinity, total; Area/locality; Carbon, inorganic, dissolved; Carbon dioxide, partial pressure; carbon system; CO2 flux; DEPTH, water; Event label; Fugacity of carbon dioxide in seawater, per carbon; Gulf of California; Latitude of event; Longitude of event; LPPSC_2017_E01; LPPSC_2017_E02; LPPSC_2017_E03; LPPSC_2017_E04; LPPSC_2017_E05; LPPSC_2017_E06; LPPSC_2017_E07; LPPSC_2017_E08; LPPSC_2017_E09; MULT; Multiple investigations; pH; Δ partial pressure of carbon dioxide
    Type: Dataset
    Format: text/tab-separated-values, 63 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Abed, Raeid M M; Tamm, Susanne; Hassenrück, Christiane; Al-Rawahi, Ahmed N; Rodríguez-Caballero, Emilio; Fiedler, Stephanie; Maier, Stefanie; Weber, Bettina (2019): Habitat-dependent composition of bacterial and fungal communities in biological soil crusts from Oman. Scientific Reports, 9(1), https://doi.org/10.1038/s41598-019-42911-6
    Publication Date: 2023-03-14
    Description: Biological soil crusts (biocrusts) occur within drylands throughout the world, covering ~12% of the global terrestrial soil surface. Their occurrence in the deserts of the Arabian Peninsula has rarely been reported and their spatial distribution, diversity, and microbial composition remained largely unexplored. We investigated biocrusts at six different locations in the coastal and central deserts of Oman. The biocrust types were characterized, and the bacterial and fungal community compositions of biocrusts and uncrusted soils were analysed by amplicon sequencing. For each sample two different libraries were prepared: one for the V3V4 hypervariable region of the 16S rRNA gene (bacteria), and the other for the internal transcribed spacer 1 (ITS1; fungi). Sequences were processed in R using dada2. The code for sequence processing as well as statistical analysis, final OTU and taxonomy tables were archived on PANGAEA alongside the environmental information.
    Keywords: Area/locality; Carbon, total; Carbon/Nitrogen ratio; Conductivity, specific; Country; Date/Time of event; Depth, bottom/max; Depth, top/min; ELEVATION; Environment; Event label; Guidelines for soil description; Impact; Latitude of event; Longitude of event; Minitrode, Hamilton Messetechnik GmbH, Höchst, Germany; Nitrogen, total; Oman; Oman_20160125; Oman_20160126; Oman_20160127-01; Oman_20160127-02; Oman_20160127-03; Oman_20160127-04; Oman_20160129; pH; Replicates; Sample code/label; Sample comment; Soil properties; Soil type; Type
    Type: Dataset
    Format: text/tab-separated-values, 908 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Baxter, Allix J; Hopmans, Ellen C; Russell, James M; Sinninghe Damsté, Jaap S (2019): Bacterial GMGTs in East African lake sediments: Their potential as palaeotemperature indicators. Geochimica et Cosmochimica Acta, 259, 155-169, https://doi.org/10.1016/j.gca.2019.05.039
    Publication Date: 2023-03-14
    Description: Glycerol monoalkyl glycerol tetraethers (GMGTs) are a group of membrane spanning lipids produced by some species of archaea and bacteria. They differ from the more commonly studied glycerol dialkyl glycerol tetraethers (GDGTs) in having an additional covalent carbon-carbon bond connecting the two alkyl chain. The relative abundance and distribution of bacterial branched GMGTs (brGMGTs) in surface sediments from a set of East African lakes were studied. The abundance of brGMGTs relative to the brGDGTs is positively correlated to measured mean annual air temperature (MAAT), although with a significant amount of scatter. BrGMGT abundance was not correlated to lake water pH. Seven major brGMGTs that vary in degree of methylation were identified, with m/z 1020, 1034 and 1048. Further, the mass chromatograms of the m/z 1020 and 1034 brGMGTs show an interesting distribution of peaks, which likely relates to the occurrence of distinct brGMGT isomers. This structural complexity is higher than previously observed in peats and marine sediments. Principal component analysis of the fractional abundance of bacterial tetraether lipids revealed the brGMGTs behave similarly to one another but differently from both the 5- or 6-methyl brGDGTs. This suggests the brGMGTs are produced by a common source organism and are methylated at a different position. The distribution of the seven brGMGTs showed considerable correlation with MAAT. This variability was captured in a new proxy index (the brGMGTI), which showed a strong positive linear relationship with MAAT. Lacustrine brGMGTs show potential to be applied to ancient settings to provide information about paleoclimate.
    Keywords: Albert_Lake; Bandara_Lake; Batoda_Lake; Bigata_Lake; Branched glycerol dialkyl glycerol tetraether, Ia; Branched glycerol dialkyl glycerol tetraether, Ia (peak area); Branched glycerol dialkyl glycerol tetraether, Ib; Branched glycerol dialkyl glycerol tetraether, Ib (peak area); Branched glycerol dialkyl glycerol tetraether, Ic; Branched glycerol dialkyl glycerol tetraether, Ic (peak area); Branched glycerol dialkyl glycerol tetraether, IIa; Branched glycerol dialkyl glycerol tetraether, IIa'; Branched glycerol dialkyl glycerol tetraether, IIa' (peak area); Branched glycerol dialkyl glycerol tetraether, IIa (peak area); Branched glycerol dialkyl glycerol tetraether, IIb; Branched glycerol dialkyl glycerol tetraether, IIb'; Branched glycerol dialkyl glycerol tetraether, IIb' (peak area); Branched glycerol dialkyl glycerol tetraether, IIb (peak area); Branched glycerol dialkyl glycerol tetraether, IIIa; Branched glycerol dialkyl glycerol tetraether, IIIa'; Branched glycerol dialkyl glycerol tetraether, IIIa' (peak area); Branched glycerol dialkyl glycerol tetraether, IIIa (peak area); Branched glycerol monoalkyl glycerol tetraethers, H1020a; Branched glycerol monoalkyl glycerol tetraethers, H1020a (peak area); Branched glycerol monoalkyl glycerol tetraethers, H1020b; Branched glycerol monoalkyl glycerol tetraethers, H1020b (peak area); Branched glycerol monoalkyl glycerol tetraethers, H1020c; Branched glycerol monoalkyl glycerol tetraethers, H1020c (peak area); Branched glycerol monoalkyl glycerol tetraethers, H1034a; Branched glycerol monoalkyl glycerol tetraethers, H1034a (peak area); Branched glycerol monoalkyl glycerol tetraethers, H1034b; Branched glycerol monoalkyl glycerol tetraethers, H1034b (peak area); Branched glycerol monoalkyl glycerol tetraethers, H1034c; Branched glycerol monoalkyl glycerol tetraethers, H1034c (peak area); Branched glycerol monoalkyl glycerol tetraethers, H1048; Branched glycerol monoalkyl glycerol tetraethers, H1048 (peak area); Bugwagi_Lake; Bukurungu_East_Lake; Central_Lake; Chibwera_Lake; Country; Crane_Lake; DEPTH, water; Dimtu_Lake; Edward_Lake; Elevation of event; Enchanted_Lake__Lake; Event label; Gallery_Tarn_Lake; Garba_Gurach_Lake; GDGTs; GMGT; Hanging_Tarn_Lake; Hara_Laki_Lake; Hara_Lucas_Lake; Haro_Lakota_Lake; Harris_Tarn_Lake; Hausburg_Tarn_Lake; H-GDGT; Hut_Tarn_Lake; Ibamba_Lake; Kacuba_Lake; Kako_Lake; Kamweru_Lake; Kanyabutetere_Lake; Kanyanchu_Lake; Kasirya_Lake; Katanda_Lake; Katunda_Lake; Kifuruka_Lake; Kisibendi_Lake; Kitere_Lake; Kopello_Lake; Koromi_Lake; Kuware_Lake; Kyasunduka_Lake; Kyerbwato_Lake; Kyogo_Lake; Lake; Lake_Ellis; lakes; Lake surface area; Large_Hall_Tarn_Lake; Latitude of event; Longitude of event; Lower_Kachope_Lake; Lower_Simba_Lake; Mahoma_Lake; Mahuhura_Lake; Mbayo_Lake; membrane lipids; Middle_Kachope_Lake; Mirambi_Lake; MULT; Multiple investigations; Murabio_Lake; Murusi_Lake; Mwengenyi_Lake; Nanyuki_Tarn_Lake; NIOZ_UU; NIOZ Royal Netherlands Institute for Sea Research, and Utrecht University; Njarayabana_Lake; Nkuruba_Lake; Nyamugosani_Lake; Nyamusingere_Lake; Nyantonde_Lake; Oblong_Tarn_Lake; palaeotemperature; pH; Ruhandika_Lake; Rutundu_Lake; sediments; Small_Hall_Tarn_Lake; Square_Tarn_Lake; Sum; Tanganyika_Lake; Teleki_Tarn_Lake; Temperature, air, annual mean; Temperature, water; tetraethers; Thompson_Lake_Lake; Togona_Lake; Veggi_Tarn_Lake; Wandakara_Lake; Wankenzi_Lake
    Type: Dataset
    Format: text/tab-separated-values, 2991 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2023-03-16
    Keywords: ANT-XXXI/3; AWI_BioOce; Biological Oceanography @ AWI; Coccolithophores; CTD/Rosette; CTD-RO; DEPTH, water; Drake Passage; Elevation of event; Emiliania huxleyi; Event label; Latitude of event; Longitude of event; Polarstern; PS97; PS97/016-1; PS97/017-1; PS97/018-1; PS97/029-1; PS97/030-1; PS97/031-1; PS97/032-1; PS97/033-1; PS97/034-2; PS97/035-1; PS97/036-1; PS97/037-1; PS97/038-1; PS97/039-1; PS97/040-1; PS97/041-1; PS97/043-2; PS97/047-1; PS97/050-2; Southern Ocean; South Pacific Ocean
    Type: Dataset
    Format: text/tab-separated-values, 768 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2023-03-16
    Keywords: ANT-XXXI/3; AWI_BioOce; AWI_PhyOce; Biological Oceanography @ AWI; Coccolithophores; CTD/Rosette; CTD-RO; Density, sigma-theta (0); DEPTH, water; Drake Passage; Elevation of event; Event label; Fluorescence, chlorophyll; Latitude of event; Longitude of event; Oxygen; Physical Oceanography @ AWI; Polarstern; PS97; PS97/016-1; PS97/017-1; PS97/018-1; PS97/029-1; PS97/030-1; PS97/031-1; PS97/032-1; PS97/033-1; PS97/034-2; PS97/035-1; PS97/036-1; PS97/037-1; PS97/038-1; PS97/039-1; PS97/040-1; PS97/041-1; PS97/043-2; PS97/047-1; PS97/050-2; Salinity; Southern Ocean; South Pacific Ocean; Temperature, water
    Type: Dataset
    Format: text/tab-separated-values, 480 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publication Date: 2023-03-16
    Keywords: ALERT2018; ALERT2018_08_2; ALTITUDE; DATE/TIME; Hyperspectral radiometer, TriOS Mess- und Datentechnik GmbH, RAMSES; Irradiance, incident; Irradiance, incident, photosynthetically active; Irradiance, incident, photosynthetically active, absolute; LATITUDE; Lincoln Sea; LONGITUDE; Remote operated vehicle; ROV; Sampling on land; Spectral irradiance, incident at 320 nm; Spectral irradiance, incident at 321 nm; Spectral irradiance, incident at 322 nm; Spectral irradiance, incident at 323 nm; Spectral irradiance, incident at 324 nm; Spectral irradiance, incident at 325 nm; Spectral irradiance, incident at 326 nm; Spectral irradiance, incident at 327 nm; Spectral irradiance, incident at 328 nm; Spectral irradiance, incident at 329 nm; Spectral irradiance, incident at 330 nm; Spectral irradiance, incident at 331 nm; Spectral irradiance, incident at 332 nm; Spectral irradiance, incident at 333 nm; Spectral irradiance, incident at 334 nm; Spectral irradiance, incident at 335 nm; Spectral irradiance, incident at 336 nm; Spectral irradiance, incident at 337 nm; Spectral irradiance, incident at 338 nm; Spectral irradiance, incident at 339 nm; Spectral irradiance, incident at 340 nm; Spectral irradiance, incident at 341 nm; Spectral irradiance, incident at 342 nm; Spectral irradiance, incident at 343 nm; Spectral irradiance, incident at 344 nm; Spectral irradiance, incident at 345 nm; Spectral irradiance, incident at 346 nm; Spectral irradiance, incident at 347 nm; Spectral irradiance, incident at 348 nm; Spectral irradiance, incident at 349 nm; Spectral irradiance, incident at 350 nm; Spectral irradiance, incident at 351 nm; Spectral irradiance, incident at 352 nm; Spectral irradiance, incident at 353 nm; Spectral irradiance, incident at 354 nm; Spectral irradiance, incident at 355 nm; Spectral irradiance, incident at 356 nm; Spectral irradiance, incident at 357 nm; Spectral irradiance, incident at 358 nm; Spectral irradiance, incident at 359 nm; Spectral irradiance, incident at 360 nm; Spectral irradiance, incident at 361 nm; Spectral irradiance, incident at 362 nm; Spectral irradiance, incident at 363 nm; Spectral irradiance, incident at 364 nm; Spectral irradiance, incident at 365 nm; Spectral irradiance, incident at 366 nm; Spectral irradiance, incident at 367 nm; Spectral irradiance, incident at 368 nm; Spectral irradiance, incident at 369 nm; Spectral irradiance, incident at 370 nm; Spectral irradiance, incident at 371 nm; Spectral irradiance, incident at 372 nm; Spectral irradiance, incident at 373 nm; Spectral irradiance, incident at 374 nm; Spectral irradiance, incident at 375 nm; Spectral irradiance, incident at 376 nm; Spectral irradiance, incident at 377 nm; Spectral irradiance, incident at 378 nm; Spectral irradiance, incident at 379 nm; Spectral irradiance, incident at 380 nm; Spectral irradiance, incident at 381 nm; Spectral irradiance, incident at 382 nm; Spectral irradiance, incident at 383 nm; Spectral irradiance, incident at 384 nm; Spectral irradiance, incident at 385 nm; Spectral irradiance, incident at 386 nm; Spectral irradiance, incident at 387 nm; Spectral irradiance, incident at 388 nm; Spectral irradiance, incident at 389 nm; Spectral irradiance, incident at 390 nm; Spectral irradiance, incident at 391 nm; Spectral irradiance, incident at 392 nm; Spectral irradiance, incident at 393 nm; Spectral irradiance, incident at 394 nm; Spectral irradiance, incident at 395 nm; Spectral irradiance, incident at 396 nm; Spectral irradiance, incident at 397 nm; Spectral irradiance, incident at 398 nm; Spectral irradiance, incident at 399 nm; Spectral irradiance, incident at 400 nm; Spectral irradiance, incident at 401 nm; Spectral irradiance, incident at 402 nm; Spectral irradiance, incident at 403 nm; Spectral irradiance, incident at 404 nm; Spectral irradiance, incident at 405 nm; Spectral irradiance, incident at 406 nm; Spectral irradiance, incident at 407 nm; Spectral irradiance, incident at 408 nm; Spectral irradiance, incident at 409 nm; Spectral irradiance, incident at 410 nm; Spectral irradiance, incident at 411 nm; Spectral irradiance, incident at 412 nm; Spectral irradiance, incident at 413 nm; Spectral irradiance, incident at 414 nm; Spectral irradiance, incident at 415 nm; Spectral irradiance, incident at 416 nm; Spectral irradiance, incident at 417 nm; Spectral irradiance, incident at 418 nm; Spectral irradiance, incident at 419 nm; Spectral irradiance, incident at 420 nm; Spectral irradiance, incident at 421 nm; Spectral irradiance, incident at 422 nm; Spectral irradiance, incident at 423 nm; Spectral irradiance, incident at 424 nm; Spectral irradiance, incident at 425 nm; Spectral irradiance, incident at 426 nm; Spectral irradiance, incident at 427 nm; Spectral irradiance, incident at 428 nm; Spectral irradiance, incident at 429 nm; Spectral irradiance, incident at 430 nm; Spectral irradiance, incident at 431 nm; Spectral irradiance, incident at 432 nm; Spectral irradiance, incident at 433 nm; Spectral irradiance, incident at 434 nm; Spectral irradiance, incident at 435 nm; Spectral irradiance, incident at 436 nm; Spectral irradiance, incident at 437 nm; Spectral irradiance, incident at 438 nm; Spectral irradiance, incident at 439 nm; Spectral irradiance, incident at 440 nm; Spectral irradiance, incident at 441 nm; Spectral irradiance, incident at 442 nm; Spectral irradiance, incident at 443 nm; Spectral irradiance, incident at 444 nm; Spectral irradiance, incident at 445 nm; Spectral irradiance, incident at 446 nm; Spectral irradiance, incident at 447 nm; Spectral irradiance, incident at 448 nm; Spectral irradiance, incident at 449 nm; Spectral irradiance, incident at 450 nm; Spectral irradiance, incident at 451 nm; Spectral irradiance, incident at 452 nm; Spectral irradiance, incident at 453 nm; Spectral irradiance, incident at 454 nm; Spectral irradiance, incident at 455 nm; Spectral irradiance, incident at 456 nm; Spectral irradiance, incident at 457 nm; Spectral irradiance, incident at 458 nm; Spectral irradiance, incident at 459 nm; Spectral irradiance, incident at 460 nm; Spectral irradiance, incident at 461 nm; Spectral irradiance, incident at 462 nm; Spectral irradiance, incident at 463 nm; Spectral irradiance, incident at 464 nm; Spectral irradiance, incident at 465 nm; Spectral irradiance, incident at 466 nm; Spectral irradiance, incident at 467 nm; Spectral irradiance, incident at 468 nm; Spectral irradiance, incident at 469 nm; Spectral irradiance, incident at 470 nm; Spectral irradiance, incident at 471 nm; Spectral irradiance, incident at 472 nm; Spectral irradiance, incident at 473 nm; Spectral irradiance, incident at 474 nm; Spectral irradiance, incident at 475 nm; Spectral irradiance, incident at 476 nm; Spectral irradiance, incident at 477 nm; Spectral irradiance, incident at 478 nm; Spectral irradiance, incident at 479 nm; Spectral irradiance, incident at 480 nm; Spectral irradiance, incident at 481 nm; Spectral irradiance, incident at 482 nm; Spectral irradiance, incident at 483 nm; Spectral irradiance, incident at 484 nm; Spectral irradiance, incident at 485 nm; Spectral irradiance, incident at 486 nm; Spectral irradiance, incident at 487 nm; Spectral irradiance, incident at 488 nm; Spectral irradiance, incident at 489 nm; Spectral irradiance, incident at 490 nm; Spectral irradiance, incident at 491 nm; Spectral irradiance, incident at 492 nm; Spectral irradiance, incident at 493 nm; Spectral irradiance, incident at 494 nm; Spectral irradiance, incident at 495 nm; Spectral irradiance, incident at 496 nm; Spectral irradiance, incident at 497 nm; Spectral irradiance, incident at 498 nm; Spectral irradiance, incident at 499 nm; Spectral irradiance, incident at 500 nm; Spectral irradiance, incident at 501 nm; Spectral irradiance, incident at 502 nm; Spectral irradiance, incident at 503 nm; Spectral irradiance, incident at 504 nm; Spectral irradiance, incident at 505 nm; Spectral irradiance, incident at 506 nm;
    Type: Dataset
    Format: text/tab-separated-values, 3663886 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publication Date: 2023-03-16
    Keywords: ALERT2018; ALERT2018_12_1; ALTITUDE; DATE/TIME; Hyperspectral radiometer, TriOS Mess- und Datentechnik GmbH, RAMSES; Irradiance, incident; Irradiance, incident, photosynthetically active; Irradiance, incident, photosynthetically active, absolute; LATITUDE; Lincoln Sea; LONGITUDE; Remote operated vehicle; ROV; Sampling on land; Spectral irradiance, incident at 320 nm; Spectral irradiance, incident at 321 nm; Spectral irradiance, incident at 322 nm; Spectral irradiance, incident at 323 nm; Spectral irradiance, incident at 324 nm; Spectral irradiance, incident at 325 nm; Spectral irradiance, incident at 326 nm; Spectral irradiance, incident at 327 nm; Spectral irradiance, incident at 328 nm; Spectral irradiance, incident at 329 nm; Spectral irradiance, incident at 330 nm; Spectral irradiance, incident at 331 nm; Spectral irradiance, incident at 332 nm; Spectral irradiance, incident at 333 nm; Spectral irradiance, incident at 334 nm; Spectral irradiance, incident at 335 nm; Spectral irradiance, incident at 336 nm; Spectral irradiance, incident at 337 nm; Spectral irradiance, incident at 338 nm; Spectral irradiance, incident at 339 nm; Spectral irradiance, incident at 340 nm; Spectral irradiance, incident at 341 nm; Spectral irradiance, incident at 342 nm; Spectral irradiance, incident at 343 nm; Spectral irradiance, incident at 344 nm; Spectral irradiance, incident at 345 nm; Spectral irradiance, incident at 346 nm; Spectral irradiance, incident at 347 nm; Spectral irradiance, incident at 348 nm; Spectral irradiance, incident at 349 nm; Spectral irradiance, incident at 350 nm; Spectral irradiance, incident at 351 nm; Spectral irradiance, incident at 352 nm; Spectral irradiance, incident at 353 nm; Spectral irradiance, incident at 354 nm; Spectral irradiance, incident at 355 nm; Spectral irradiance, incident at 356 nm; Spectral irradiance, incident at 357 nm; Spectral irradiance, incident at 358 nm; Spectral irradiance, incident at 359 nm; Spectral irradiance, incident at 360 nm; Spectral irradiance, incident at 361 nm; Spectral irradiance, incident at 362 nm; Spectral irradiance, incident at 363 nm; Spectral irradiance, incident at 364 nm; Spectral irradiance, incident at 365 nm; Spectral irradiance, incident at 366 nm; Spectral irradiance, incident at 367 nm; Spectral irradiance, incident at 368 nm; Spectral irradiance, incident at 369 nm; Spectral irradiance, incident at 370 nm; Spectral irradiance, incident at 371 nm; Spectral irradiance, incident at 372 nm; Spectral irradiance, incident at 373 nm; Spectral irradiance, incident at 374 nm; Spectral irradiance, incident at 375 nm; Spectral irradiance, incident at 376 nm; Spectral irradiance, incident at 377 nm; Spectral irradiance, incident at 378 nm; Spectral irradiance, incident at 379 nm; Spectral irradiance, incident at 380 nm; Spectral irradiance, incident at 381 nm; Spectral irradiance, incident at 382 nm; Spectral irradiance, incident at 383 nm; Spectral irradiance, incident at 384 nm; Spectral irradiance, incident at 385 nm; Spectral irradiance, incident at 386 nm; Spectral irradiance, incident at 387 nm; Spectral irradiance, incident at 388 nm; Spectral irradiance, incident at 389 nm; Spectral irradiance, incident at 390 nm; Spectral irradiance, incident at 391 nm; Spectral irradiance, incident at 392 nm; Spectral irradiance, incident at 393 nm; Spectral irradiance, incident at 394 nm; Spectral irradiance, incident at 395 nm; Spectral irradiance, incident at 396 nm; Spectral irradiance, incident at 397 nm; Spectral irradiance, incident at 398 nm; Spectral irradiance, incident at 399 nm; Spectral irradiance, incident at 400 nm; Spectral irradiance, incident at 401 nm; Spectral irradiance, incident at 402 nm; Spectral irradiance, incident at 403 nm; Spectral irradiance, incident at 404 nm; Spectral irradiance, incident at 405 nm; Spectral irradiance, incident at 406 nm; Spectral irradiance, incident at 407 nm; Spectral irradiance, incident at 408 nm; Spectral irradiance, incident at 409 nm; Spectral irradiance, incident at 410 nm; Spectral irradiance, incident at 411 nm; Spectral irradiance, incident at 412 nm; Spectral irradiance, incident at 413 nm; Spectral irradiance, incident at 414 nm; Spectral irradiance, incident at 415 nm; Spectral irradiance, incident at 416 nm; Spectral irradiance, incident at 417 nm; Spectral irradiance, incident at 418 nm; Spectral irradiance, incident at 419 nm; Spectral irradiance, incident at 420 nm; Spectral irradiance, incident at 421 nm; Spectral irradiance, incident at 422 nm; Spectral irradiance, incident at 423 nm; Spectral irradiance, incident at 424 nm; Spectral irradiance, incident at 425 nm; Spectral irradiance, incident at 426 nm; Spectral irradiance, incident at 427 nm; Spectral irradiance, incident at 428 nm; Spectral irradiance, incident at 429 nm; Spectral irradiance, incident at 430 nm; Spectral irradiance, incident at 431 nm; Spectral irradiance, incident at 432 nm; Spectral irradiance, incident at 433 nm; Spectral irradiance, incident at 434 nm; Spectral irradiance, incident at 435 nm; Spectral irradiance, incident at 436 nm; Spectral irradiance, incident at 437 nm; Spectral irradiance, incident at 438 nm; Spectral irradiance, incident at 439 nm; Spectral irradiance, incident at 440 nm; Spectral irradiance, incident at 441 nm; Spectral irradiance, incident at 442 nm; Spectral irradiance, incident at 443 nm; Spectral irradiance, incident at 444 nm; Spectral irradiance, incident at 445 nm; Spectral irradiance, incident at 446 nm; Spectral irradiance, incident at 447 nm; Spectral irradiance, incident at 448 nm; Spectral irradiance, incident at 449 nm; Spectral irradiance, incident at 450 nm; Spectral irradiance, incident at 451 nm; Spectral irradiance, incident at 452 nm; Spectral irradiance, incident at 453 nm; Spectral irradiance, incident at 454 nm; Spectral irradiance, incident at 455 nm; Spectral irradiance, incident at 456 nm; Spectral irradiance, incident at 457 nm; Spectral irradiance, incident at 458 nm; Spectral irradiance, incident at 459 nm; Spectral irradiance, incident at 460 nm; Spectral irradiance, incident at 461 nm; Spectral irradiance, incident at 462 nm; Spectral irradiance, incident at 463 nm; Spectral irradiance, incident at 464 nm; Spectral irradiance, incident at 465 nm; Spectral irradiance, incident at 466 nm; Spectral irradiance, incident at 467 nm; Spectral irradiance, incident at 468 nm; Spectral irradiance, incident at 469 nm; Spectral irradiance, incident at 470 nm; Spectral irradiance, incident at 471 nm; Spectral irradiance, incident at 472 nm; Spectral irradiance, incident at 473 nm; Spectral irradiance, incident at 474 nm; Spectral irradiance, incident at 475 nm; Spectral irradiance, incident at 476 nm; Spectral irradiance, incident at 477 nm; Spectral irradiance, incident at 478 nm; Spectral irradiance, incident at 479 nm; Spectral irradiance, incident at 480 nm; Spectral irradiance, incident at 481 nm; Spectral irradiance, incident at 482 nm; Spectral irradiance, incident at 483 nm; Spectral irradiance, incident at 484 nm; Spectral irradiance, incident at 485 nm; Spectral irradiance, incident at 486 nm; Spectral irradiance, incident at 487 nm; Spectral irradiance, incident at 488 nm; Spectral irradiance, incident at 489 nm; Spectral irradiance, incident at 490 nm; Spectral irradiance, incident at 491 nm; Spectral irradiance, incident at 492 nm; Spectral irradiance, incident at 493 nm; Spectral irradiance, incident at 494 nm; Spectral irradiance, incident at 495 nm; Spectral irradiance, incident at 496 nm; Spectral irradiance, incident at 497 nm; Spectral irradiance, incident at 498 nm; Spectral irradiance, incident at 499 nm; Spectral irradiance, incident at 500 nm; Spectral irradiance, incident at 501 nm; Spectral irradiance, incident at 502 nm; Spectral irradiance, incident at 503 nm; Spectral irradiance, incident at 504 nm; Spectral irradiance, incident at 505 nm; Spectral irradiance, incident at 506 nm;
    Type: Dataset
    Format: text/tab-separated-values, 11061398 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publication Date: 2023-03-16
    Keywords: ALERT2018; ALERT2018_08_1; DATE/TIME; DEPTH, water; Distance, relative, X; Distance, relative, Y; Hyperspectral radiometer, TriOS Mess- und Datentechnik GmbH, RAMSES; Irradiance, downward; Irradiance, downward, photosynthetically active; Irradiance, downward, photosynthetically active, absolute; LATITUDE; Lincoln Sea; LONGITUDE; Remote operated vehicle; ROV; Sampling on land; Spectral irradiance, downward at 320 nm; Spectral irradiance, downward at 321 nm; Spectral irradiance, downward at 322 nm; Spectral irradiance, downward at 323 nm; Spectral irradiance, downward at 324 nm; Spectral irradiance, downward at 325 nm; Spectral irradiance, downward at 326 nm; Spectral irradiance, downward at 327 nm; Spectral irradiance, downward at 328 nm; Spectral irradiance, downward at 329 nm; Spectral irradiance, downward at 330 nm; Spectral irradiance, downward at 331 nm; Spectral irradiance, downward at 332 nm; Spectral irradiance, downward at 333 nm; Spectral irradiance, downward at 334 nm; Spectral irradiance, downward at 335 nm; Spectral irradiance, downward at 336 nm; Spectral irradiance, downward at 337 nm; Spectral irradiance, downward at 338 nm; Spectral irradiance, downward at 339 nm; Spectral irradiance, downward at 340 nm; Spectral irradiance, downward at 341 nm; Spectral irradiance, downward at 342 nm; Spectral irradiance, downward at 343 nm; Spectral irradiance, downward at 344 nm; Spectral irradiance, downward at 345 nm; Spectral irradiance, downward at 346 nm; Spectral irradiance, downward at 347 nm; Spectral irradiance, downward at 348 nm; Spectral irradiance, downward at 349 nm; Spectral irradiance, downward at 350 nm; Spectral irradiance, downward at 351 nm; Spectral irradiance, downward at 352 nm; Spectral irradiance, downward at 353 nm; Spectral irradiance, downward at 354 nm; Spectral irradiance, downward at 355 nm; Spectral irradiance, downward at 356 nm; Spectral irradiance, downward at 357 nm; Spectral irradiance, downward at 358 nm; Spectral irradiance, downward at 359 nm; Spectral irradiance, downward at 360 nm; Spectral irradiance, downward at 361 nm; Spectral irradiance, downward at 362 nm; Spectral irradiance, downward at 363 nm; Spectral irradiance, downward at 364 nm; Spectral irradiance, downward at 365 nm; Spectral irradiance, downward at 366 nm; Spectral irradiance, downward at 367 nm; Spectral irradiance, downward at 368 nm; Spectral irradiance, downward at 369 nm; Spectral irradiance, downward at 370 nm; Spectral irradiance, downward at 371 nm; Spectral irradiance, downward at 372 nm; Spectral irradiance, downward at 373 nm; Spectral irradiance, downward at 374 nm; Spectral irradiance, downward at 375 nm; Spectral irradiance, downward at 376 nm; Spectral irradiance, downward at 377 nm; Spectral irradiance, downward at 378 nm; Spectral irradiance, downward at 379 nm; Spectral irradiance, downward at 380 nm; Spectral irradiance, downward at 381 nm; Spectral irradiance, downward at 382 nm; Spectral irradiance, downward at 383 nm; Spectral irradiance, downward at 384 nm; Spectral irradiance, downward at 385 nm; Spectral irradiance, downward at 386 nm; Spectral irradiance, downward at 387 nm; Spectral irradiance, downward at 388 nm; Spectral irradiance, downward at 389 nm; Spectral irradiance, downward at 390 nm; Spectral irradiance, downward at 391 nm; Spectral irradiance, downward at 392 nm; Spectral irradiance, downward at 393 nm; Spectral irradiance, downward at 394 nm; Spectral irradiance, downward at 395 nm; Spectral irradiance, downward at 396 nm; Spectral irradiance, downward at 397 nm; Spectral irradiance, downward at 398 nm; Spectral irradiance, downward at 399 nm; Spectral irradiance, downward at 400 nm; Spectral irradiance, downward at 401 nm; Spectral irradiance, downward at 402 nm; Spectral irradiance, downward at 403 nm; Spectral irradiance, downward at 404 nm; Spectral irradiance, downward at 405 nm; Spectral irradiance, downward at 406 nm; Spectral irradiance, downward at 407 nm; Spectral irradiance, downward at 408 nm; Spectral irradiance, downward at 409 nm; Spectral irradiance, downward at 410 nm; Spectral irradiance, downward at 411 nm; Spectral irradiance, downward at 412 nm; Spectral irradiance, downward at 413 nm; Spectral irradiance, downward at 414 nm; Spectral irradiance, downward at 415 nm; Spectral irradiance, downward at 416 nm; Spectral irradiance, downward at 417 nm; Spectral irradiance, downward at 418 nm; Spectral irradiance, downward at 419 nm; Spectral irradiance, downward at 420 nm; Spectral irradiance, downward at 421 nm; Spectral irradiance, downward at 422 nm; Spectral irradiance, downward at 423 nm; Spectral irradiance, downward at 424 nm; Spectral irradiance, downward at 425 nm; Spectral irradiance, downward at 426 nm; Spectral irradiance, downward at 427 nm; Spectral irradiance, downward at 428 nm; Spectral irradiance, downward at 429 nm; Spectral irradiance, downward at 430 nm; Spectral irradiance, downward at 431 nm; Spectral irradiance, downward at 432 nm; Spectral irradiance, downward at 433 nm; Spectral irradiance, downward at 434 nm; Spectral irradiance, downward at 435 nm; Spectral irradiance, downward at 436 nm; Spectral irradiance, downward at 437 nm; Spectral irradiance, downward at 438 nm; Spectral irradiance, downward at 439 nm; Spectral irradiance, downward at 440 nm; Spectral irradiance, downward at 441 nm; Spectral irradiance, downward at 442 nm; Spectral irradiance, downward at 443 nm; Spectral irradiance, downward at 444 nm; Spectral irradiance, downward at 445 nm; Spectral irradiance, downward at 446 nm; Spectral irradiance, downward at 447 nm; Spectral irradiance, downward at 448 nm; Spectral irradiance, downward at 449 nm; Spectral irradiance, downward at 450 nm; Spectral irradiance, downward at 451 nm; Spectral irradiance, downward at 452 nm; Spectral irradiance, downward at 453 nm; Spectral irradiance, downward at 454 nm; Spectral irradiance, downward at 455 nm; Spectral irradiance, downward at 456 nm; Spectral irradiance, downward at 457 nm; Spectral irradiance, downward at 458 nm; Spectral irradiance, downward at 459 nm; Spectral irradiance, downward at 460 nm; Spectral irradiance, downward at 461 nm; Spectral irradiance, downward at 462 nm; Spectral irradiance, downward at 463 nm; Spectral irradiance, downward at 464 nm; Spectral irradiance, downward at 465 nm; Spectral irradiance, downward at 466 nm; Spectral irradiance, downward at 467 nm; Spectral irradiance, downward at 468 nm; Spectral irradiance, downward at 469 nm; Spectral irradiance, downward at 470 nm; Spectral irradiance, downward at 471 nm; Spectral irradiance, downward at 472 nm; Spectral irradiance, downward at 473 nm; Spectral irradiance, downward at 474 nm; Spectral irradiance, downward at 475 nm; Spectral irradiance, downward at 476 nm; Spectral irradiance, downward at 477 nm; Spectral irradiance, downward at 478 nm; Spectral irradiance, downward at 479 nm; Spectral irradiance, downward at 480 nm; Spectral irradiance, downward at 481 nm; Spectral irradiance, downward at 482 nm; Spectral irradiance, downward at 483 nm; Spectral irradiance, downward at 484 nm; Spectral irradiance, downward at 485 nm; Spectral irradiance, downward at 486 nm; Spectral irradiance, downward at 487 nm; Spectral irradiance, downward at 488 nm; Spectral irradiance, downward at 489 nm; Spectral irradiance, downward at 490 nm; Spectral irradiance, downward at 491 nm; Spectral irradiance, downward at 492 nm; Spectral irradiance, downward at 493 nm; Spectral irradiance, downward at 494 nm; Spectral irradiance, downward at 495 nm; Spectral irradiance, downward at 496 nm; Spectral irradiance, downward at 497 nm; Spectral irradiance, downward at 498 nm; Spectral irradiance, downward at 499 nm; Spectral irradiance, downward at 500 nm; Spectral irradiance, downward at 501 nm; Spectral irradiance, downward at 502 nm; Spectral irradiance, downward at 503 nm; Spectral irradiance, downward at 504 nm; Spectral irradiance, downward at
    Type: Dataset
    Format: text/tab-separated-values, 382236 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publication Date: 2023-03-16
    Keywords: ALERT2018; ALERT2018_14_2; ALTITUDE; DATE/TIME; Hyperspectral radiometer, TriOS Mess- und Datentechnik GmbH, RAMSES; Irradiance, incident; Irradiance, incident, photosynthetically active; Irradiance, incident, photosynthetically active, absolute; LATITUDE; Lincoln Sea; LONGITUDE; Remote operated vehicle; ROV; Sampling on land; Spectral irradiance, incident at 320 nm; Spectral irradiance, incident at 321 nm; Spectral irradiance, incident at 322 nm; Spectral irradiance, incident at 323 nm; Spectral irradiance, incident at 324 nm; Spectral irradiance, incident at 325 nm; Spectral irradiance, incident at 326 nm; Spectral irradiance, incident at 327 nm; Spectral irradiance, incident at 328 nm; Spectral irradiance, incident at 329 nm; Spectral irradiance, incident at 330 nm; Spectral irradiance, incident at 331 nm; Spectral irradiance, incident at 332 nm; Spectral irradiance, incident at 333 nm; Spectral irradiance, incident at 334 nm; Spectral irradiance, incident at 335 nm; Spectral irradiance, incident at 336 nm; Spectral irradiance, incident at 337 nm; Spectral irradiance, incident at 338 nm; Spectral irradiance, incident at 339 nm; Spectral irradiance, incident at 340 nm; Spectral irradiance, incident at 341 nm; Spectral irradiance, incident at 342 nm; Spectral irradiance, incident at 343 nm; Spectral irradiance, incident at 344 nm; Spectral irradiance, incident at 345 nm; Spectral irradiance, incident at 346 nm; Spectral irradiance, incident at 347 nm; Spectral irradiance, incident at 348 nm; Spectral irradiance, incident at 349 nm; Spectral irradiance, incident at 350 nm; Spectral irradiance, incident at 351 nm; Spectral irradiance, incident at 352 nm; Spectral irradiance, incident at 353 nm; Spectral irradiance, incident at 354 nm; Spectral irradiance, incident at 355 nm; Spectral irradiance, incident at 356 nm; Spectral irradiance, incident at 357 nm; Spectral irradiance, incident at 358 nm; Spectral irradiance, incident at 359 nm; Spectral irradiance, incident at 360 nm; Spectral irradiance, incident at 361 nm; Spectral irradiance, incident at 362 nm; Spectral irradiance, incident at 363 nm; Spectral irradiance, incident at 364 nm; Spectral irradiance, incident at 365 nm; Spectral irradiance, incident at 366 nm; Spectral irradiance, incident at 367 nm; Spectral irradiance, incident at 368 nm; Spectral irradiance, incident at 369 nm; Spectral irradiance, incident at 370 nm; Spectral irradiance, incident at 371 nm; Spectral irradiance, incident at 372 nm; Spectral irradiance, incident at 373 nm; Spectral irradiance, incident at 374 nm; Spectral irradiance, incident at 375 nm; Spectral irradiance, incident at 376 nm; Spectral irradiance, incident at 377 nm; Spectral irradiance, incident at 378 nm; Spectral irradiance, incident at 379 nm; Spectral irradiance, incident at 380 nm; Spectral irradiance, incident at 381 nm; Spectral irradiance, incident at 382 nm; Spectral irradiance, incident at 383 nm; Spectral irradiance, incident at 384 nm; Spectral irradiance, incident at 385 nm; Spectral irradiance, incident at 386 nm; Spectral irradiance, incident at 387 nm; Spectral irradiance, incident at 388 nm; Spectral irradiance, incident at 389 nm; Spectral irradiance, incident at 390 nm; Spectral irradiance, incident at 391 nm; Spectral irradiance, incident at 392 nm; Spectral irradiance, incident at 393 nm; Spectral irradiance, incident at 394 nm; Spectral irradiance, incident at 395 nm; Spectral irradiance, incident at 396 nm; Spectral irradiance, incident at 397 nm; Spectral irradiance, incident at 398 nm; Spectral irradiance, incident at 399 nm; Spectral irradiance, incident at 400 nm; Spectral irradiance, incident at 401 nm; Spectral irradiance, incident at 402 nm; Spectral irradiance, incident at 403 nm; Spectral irradiance, incident at 404 nm; Spectral irradiance, incident at 405 nm; Spectral irradiance, incident at 406 nm; Spectral irradiance, incident at 407 nm; Spectral irradiance, incident at 408 nm; Spectral irradiance, incident at 409 nm; Spectral irradiance, incident at 410 nm; Spectral irradiance, incident at 411 nm; Spectral irradiance, incident at 412 nm; Spectral irradiance, incident at 413 nm; Spectral irradiance, incident at 414 nm; Spectral irradiance, incident at 415 nm; Spectral irradiance, incident at 416 nm; Spectral irradiance, incident at 417 nm; Spectral irradiance, incident at 418 nm; Spectral irradiance, incident at 419 nm; Spectral irradiance, incident at 420 nm; Spectral irradiance, incident at 421 nm; Spectral irradiance, incident at 422 nm; Spectral irradiance, incident at 423 nm; Spectral irradiance, incident at 424 nm; Spectral irradiance, incident at 425 nm; Spectral irradiance, incident at 426 nm; Spectral irradiance, incident at 427 nm; Spectral irradiance, incident at 428 nm; Spectral irradiance, incident at 429 nm; Spectral irradiance, incident at 430 nm; Spectral irradiance, incident at 431 nm; Spectral irradiance, incident at 432 nm; Spectral irradiance, incident at 433 nm; Spectral irradiance, incident at 434 nm; Spectral irradiance, incident at 435 nm; Spectral irradiance, incident at 436 nm; Spectral irradiance, incident at 437 nm; Spectral irradiance, incident at 438 nm; Spectral irradiance, incident at 439 nm; Spectral irradiance, incident at 440 nm; Spectral irradiance, incident at 441 nm; Spectral irradiance, incident at 442 nm; Spectral irradiance, incident at 443 nm; Spectral irradiance, incident at 444 nm; Spectral irradiance, incident at 445 nm; Spectral irradiance, incident at 446 nm; Spectral irradiance, incident at 447 nm; Spectral irradiance, incident at 448 nm; Spectral irradiance, incident at 449 nm; Spectral irradiance, incident at 450 nm; Spectral irradiance, incident at 451 nm; Spectral irradiance, incident at 452 nm; Spectral irradiance, incident at 453 nm; Spectral irradiance, incident at 454 nm; Spectral irradiance, incident at 455 nm; Spectral irradiance, incident at 456 nm; Spectral irradiance, incident at 457 nm; Spectral irradiance, incident at 458 nm; Spectral irradiance, incident at 459 nm; Spectral irradiance, incident at 460 nm; Spectral irradiance, incident at 461 nm; Spectral irradiance, incident at 462 nm; Spectral irradiance, incident at 463 nm; Spectral irradiance, incident at 464 nm; Spectral irradiance, incident at 465 nm; Spectral irradiance, incident at 466 nm; Spectral irradiance, incident at 467 nm; Spectral irradiance, incident at 468 nm; Spectral irradiance, incident at 469 nm; Spectral irradiance, incident at 470 nm; Spectral irradiance, incident at 471 nm; Spectral irradiance, incident at 472 nm; Spectral irradiance, incident at 473 nm; Spectral irradiance, incident at 474 nm; Spectral irradiance, incident at 475 nm; Spectral irradiance, incident at 476 nm; Spectral irradiance, incident at 477 nm; Spectral irradiance, incident at 478 nm; Spectral irradiance, incident at 479 nm; Spectral irradiance, incident at 480 nm; Spectral irradiance, incident at 481 nm; Spectral irradiance, incident at 482 nm; Spectral irradiance, incident at 483 nm; Spectral irradiance, incident at 484 nm; Spectral irradiance, incident at 485 nm; Spectral irradiance, incident at 486 nm; Spectral irradiance, incident at 487 nm; Spectral irradiance, incident at 488 nm; Spectral irradiance, incident at 489 nm; Spectral irradiance, incident at 490 nm; Spectral irradiance, incident at 491 nm; Spectral irradiance, incident at 492 nm; Spectral irradiance, incident at 493 nm; Spectral irradiance, incident at 494 nm; Spectral irradiance, incident at 495 nm; Spectral irradiance, incident at 496 nm; Spectral irradiance, incident at 497 nm; Spectral irradiance, incident at 498 nm; Spectral irradiance, incident at 499 nm; Spectral irradiance, incident at 500 nm; Spectral irradiance, incident at 501 nm; Spectral irradiance, incident at 502 nm; Spectral irradiance, incident at 503 nm; Spectral irradiance, incident at 504 nm; Spectral irradiance, incident at 505 nm; Spectral irradiance, incident at 506 nm;
    Type: Dataset
    Format: text/tab-separated-values, 248528 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publication Date: 2023-03-16
    Keywords: ALERT2018; ALERT2018_11_1; DATE/TIME; DEPTH, water; Distance, relative, X; Distance, relative, Y; Hyperspectral radiometer, TriOS Mess- und Datentechnik GmbH, RAMSES; Irradiance, downward; Irradiance, downward, photosynthetically active; Irradiance, downward, photosynthetically active, absolute; LATITUDE; Lincoln Sea; LONGITUDE; Remote operated vehicle; ROV; Sampling on land; Spectral irradiance, downward at 320 nm; Spectral irradiance, downward at 321 nm; Spectral irradiance, downward at 322 nm; Spectral irradiance, downward at 323 nm; Spectral irradiance, downward at 324 nm; Spectral irradiance, downward at 325 nm; Spectral irradiance, downward at 326 nm; Spectral irradiance, downward at 327 nm; Spectral irradiance, downward at 328 nm; Spectral irradiance, downward at 329 nm; Spectral irradiance, downward at 330 nm; Spectral irradiance, downward at 331 nm; Spectral irradiance, downward at 332 nm; Spectral irradiance, downward at 333 nm; Spectral irradiance, downward at 334 nm; Spectral irradiance, downward at 335 nm; Spectral irradiance, downward at 336 nm; Spectral irradiance, downward at 337 nm; Spectral irradiance, downward at 338 nm; Spectral irradiance, downward at 339 nm; Spectral irradiance, downward at 340 nm; Spectral irradiance, downward at 341 nm; Spectral irradiance, downward at 342 nm; Spectral irradiance, downward at 343 nm; Spectral irradiance, downward at 344 nm; Spectral irradiance, downward at 345 nm; Spectral irradiance, downward at 346 nm; Spectral irradiance, downward at 347 nm; Spectral irradiance, downward at 348 nm; Spectral irradiance, downward at 349 nm; Spectral irradiance, downward at 350 nm; Spectral irradiance, downward at 351 nm; Spectral irradiance, downward at 352 nm; Spectral irradiance, downward at 353 nm; Spectral irradiance, downward at 354 nm; Spectral irradiance, downward at 355 nm; Spectral irradiance, downward at 356 nm; Spectral irradiance, downward at 357 nm; Spectral irradiance, downward at 358 nm; Spectral irradiance, downward at 359 nm; Spectral irradiance, downward at 360 nm; Spectral irradiance, downward at 361 nm; Spectral irradiance, downward at 362 nm; Spectral irradiance, downward at 363 nm; Spectral irradiance, downward at 364 nm; Spectral irradiance, downward at 365 nm; Spectral irradiance, downward at 366 nm; Spectral irradiance, downward at 367 nm; Spectral irradiance, downward at 368 nm; Spectral irradiance, downward at 369 nm; Spectral irradiance, downward at 370 nm; Spectral irradiance, downward at 371 nm; Spectral irradiance, downward at 372 nm; Spectral irradiance, downward at 373 nm; Spectral irradiance, downward at 374 nm; Spectral irradiance, downward at 375 nm; Spectral irradiance, downward at 376 nm; Spectral irradiance, downward at 377 nm; Spectral irradiance, downward at 378 nm; Spectral irradiance, downward at 379 nm; Spectral irradiance, downward at 380 nm; Spectral irradiance, downward at 381 nm; Spectral irradiance, downward at 382 nm; Spectral irradiance, downward at 383 nm; Spectral irradiance, downward at 384 nm; Spectral irradiance, downward at 385 nm; Spectral irradiance, downward at 386 nm; Spectral irradiance, downward at 387 nm; Spectral irradiance, downward at 388 nm; Spectral irradiance, downward at 389 nm; Spectral irradiance, downward at 390 nm; Spectral irradiance, downward at 391 nm; Spectral irradiance, downward at 392 nm; Spectral irradiance, downward at 393 nm; Spectral irradiance, downward at 394 nm; Spectral irradiance, downward at 395 nm; Spectral irradiance, downward at 396 nm; Spectral irradiance, downward at 397 nm; Spectral irradiance, downward at 398 nm; Spectral irradiance, downward at 399 nm; Spectral irradiance, downward at 400 nm; Spectral irradiance, downward at 401 nm; Spectral irradiance, downward at 402 nm; Spectral irradiance, downward at 403 nm; Spectral irradiance, downward at 404 nm; Spectral irradiance, downward at 405 nm; Spectral irradiance, downward at 406 nm; Spectral irradiance, downward at 407 nm; Spectral irradiance, downward at 408 nm; Spectral irradiance, downward at 409 nm; Spectral irradiance, downward at 410 nm; Spectral irradiance, downward at 411 nm; Spectral irradiance, downward at 412 nm; Spectral irradiance, downward at 413 nm; Spectral irradiance, downward at 414 nm; Spectral irradiance, downward at 415 nm; Spectral irradiance, downward at 416 nm; Spectral irradiance, downward at 417 nm; Spectral irradiance, downward at 418 nm; Spectral irradiance, downward at 419 nm; Spectral irradiance, downward at 420 nm; Spectral irradiance, downward at 421 nm; Spectral irradiance, downward at 422 nm; Spectral irradiance, downward at 423 nm; Spectral irradiance, downward at 424 nm; Spectral irradiance, downward at 425 nm; Spectral irradiance, downward at 426 nm; Spectral irradiance, downward at 427 nm; Spectral irradiance, downward at 428 nm; Spectral irradiance, downward at 429 nm; Spectral irradiance, downward at 430 nm; Spectral irradiance, downward at 431 nm; Spectral irradiance, downward at 432 nm; Spectral irradiance, downward at 433 nm; Spectral irradiance, downward at 434 nm; Spectral irradiance, downward at 435 nm; Spectral irradiance, downward at 436 nm; Spectral irradiance, downward at 437 nm; Spectral irradiance, downward at 438 nm; Spectral irradiance, downward at 439 nm; Spectral irradiance, downward at 440 nm; Spectral irradiance, downward at 441 nm; Spectral irradiance, downward at 442 nm; Spectral irradiance, downward at 443 nm; Spectral irradiance, downward at 444 nm; Spectral irradiance, downward at 445 nm; Spectral irradiance, downward at 446 nm; Spectral irradiance, downward at 447 nm; Spectral irradiance, downward at 448 nm; Spectral irradiance, downward at 449 nm; Spectral irradiance, downward at 450 nm; Spectral irradiance, downward at 451 nm; Spectral irradiance, downward at 452 nm; Spectral irradiance, downward at 453 nm; Spectral irradiance, downward at 454 nm; Spectral irradiance, downward at 455 nm; Spectral irradiance, downward at 456 nm; Spectral irradiance, downward at 457 nm; Spectral irradiance, downward at 458 nm; Spectral irradiance, downward at 459 nm; Spectral irradiance, downward at 460 nm; Spectral irradiance, downward at 461 nm; Spectral irradiance, downward at 462 nm; Spectral irradiance, downward at 463 nm; Spectral irradiance, downward at 464 nm; Spectral irradiance, downward at 465 nm; Spectral irradiance, downward at 466 nm; Spectral irradiance, downward at 467 nm; Spectral irradiance, downward at 468 nm; Spectral irradiance, downward at 469 nm; Spectral irradiance, downward at 470 nm; Spectral irradiance, downward at 471 nm; Spectral irradiance, downward at 472 nm; Spectral irradiance, downward at 473 nm; Spectral irradiance, downward at 474 nm; Spectral irradiance, downward at 475 nm; Spectral irradiance, downward at 476 nm; Spectral irradiance, downward at 477 nm; Spectral irradiance, downward at 478 nm; Spectral irradiance, downward at 479 nm; Spectral irradiance, downward at 480 nm; Spectral irradiance, downward at 481 nm; Spectral irradiance, downward at 482 nm; Spectral irradiance, downward at 483 nm; Spectral irradiance, downward at 484 nm; Spectral irradiance, downward at 485 nm; Spectral irradiance, downward at 486 nm; Spectral irradiance, downward at 487 nm; Spectral irradiance, downward at 488 nm; Spectral irradiance, downward at 489 nm; Spectral irradiance, downward at 490 nm; Spectral irradiance, downward at 491 nm; Spectral irradiance, downward at 492 nm; Spectral irradiance, downward at 493 nm; Spectral irradiance, downward at 494 nm; Spectral irradiance, downward at 495 nm; Spectral irradiance, downward at 496 nm; Spectral irradiance, downward at 497 nm; Spectral irradiance, downward at 498 nm; Spectral irradiance, downward at 499 nm; Spectral irradiance, downward at 500 nm; Spectral irradiance, downward at 501 nm; Spectral irradiance, downward at 502 nm; Spectral irradiance, downward at 503 nm; Spectral irradiance, downward at 504 nm; Spectral irradiance, downward at
    Type: Dataset
    Format: text/tab-separated-values, 1285356 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publication Date: 2023-03-16
    Keywords: ALERT2018; ALERT2018_12_1; DATE/TIME; DEPTH, water; Distance, relative, X; Distance, relative, Y; Hyperspectral radiometer, TriOS Mess- und Datentechnik GmbH, RAMSES; Irradiance, downward; Irradiance, downward, photosynthetically active; Irradiance, downward, photosynthetically active, absolute; LATITUDE; Lincoln Sea; LONGITUDE; Remote operated vehicle; ROV; Sampling on land; Spectral irradiance, downward at 320 nm; Spectral irradiance, downward at 321 nm; Spectral irradiance, downward at 322 nm; Spectral irradiance, downward at 323 nm; Spectral irradiance, downward at 324 nm; Spectral irradiance, downward at 325 nm; Spectral irradiance, downward at 326 nm; Spectral irradiance, downward at 327 nm; Spectral irradiance, downward at 328 nm; Spectral irradiance, downward at 329 nm; Spectral irradiance, downward at 330 nm; Spectral irradiance, downward at 331 nm; Spectral irradiance, downward at 332 nm; Spectral irradiance, downward at 333 nm; Spectral irradiance, downward at 334 nm; Spectral irradiance, downward at 335 nm; Spectral irradiance, downward at 336 nm; Spectral irradiance, downward at 337 nm; Spectral irradiance, downward at 338 nm; Spectral irradiance, downward at 339 nm; Spectral irradiance, downward at 340 nm; Spectral irradiance, downward at 341 nm; Spectral irradiance, downward at 342 nm; Spectral irradiance, downward at 343 nm; Spectral irradiance, downward at 344 nm; Spectral irradiance, downward at 345 nm; Spectral irradiance, downward at 346 nm; Spectral irradiance, downward at 347 nm; Spectral irradiance, downward at 348 nm; Spectral irradiance, downward at 349 nm; Spectral irradiance, downward at 350 nm; Spectral irradiance, downward at 351 nm; Spectral irradiance, downward at 352 nm; Spectral irradiance, downward at 353 nm; Spectral irradiance, downward at 354 nm; Spectral irradiance, downward at 355 nm; Spectral irradiance, downward at 356 nm; Spectral irradiance, downward at 357 nm; Spectral irradiance, downward at 358 nm; Spectral irradiance, downward at 359 nm; Spectral irradiance, downward at 360 nm; Spectral irradiance, downward at 361 nm; Spectral irradiance, downward at 362 nm; Spectral irradiance, downward at 363 nm; Spectral irradiance, downward at 364 nm; Spectral irradiance, downward at 365 nm; Spectral irradiance, downward at 366 nm; Spectral irradiance, downward at 367 nm; Spectral irradiance, downward at 368 nm; Spectral irradiance, downward at 369 nm; Spectral irradiance, downward at 370 nm; Spectral irradiance, downward at 371 nm; Spectral irradiance, downward at 372 nm; Spectral irradiance, downward at 373 nm; Spectral irradiance, downward at 374 nm; Spectral irradiance, downward at 375 nm; Spectral irradiance, downward at 376 nm; Spectral irradiance, downward at 377 nm; Spectral irradiance, downward at 378 nm; Spectral irradiance, downward at 379 nm; Spectral irradiance, downward at 380 nm; Spectral irradiance, downward at 381 nm; Spectral irradiance, downward at 382 nm; Spectral irradiance, downward at 383 nm; Spectral irradiance, downward at 384 nm; Spectral irradiance, downward at 385 nm; Spectral irradiance, downward at 386 nm; Spectral irradiance, downward at 387 nm; Spectral irradiance, downward at 388 nm; Spectral irradiance, downward at 389 nm; Spectral irradiance, downward at 390 nm; Spectral irradiance, downward at 391 nm; Spectral irradiance, downward at 392 nm; Spectral irradiance, downward at 393 nm; Spectral irradiance, downward at 394 nm; Spectral irradiance, downward at 395 nm; Spectral irradiance, downward at 396 nm; Spectral irradiance, downward at 397 nm; Spectral irradiance, downward at 398 nm; Spectral irradiance, downward at 399 nm; Spectral irradiance, downward at 400 nm; Spectral irradiance, downward at 401 nm; Spectral irradiance, downward at 402 nm; Spectral irradiance, downward at 403 nm; Spectral irradiance, downward at 404 nm; Spectral irradiance, downward at 405 nm; Spectral irradiance, downward at 406 nm; Spectral irradiance, downward at 407 nm; Spectral irradiance, downward at 408 nm; Spectral irradiance, downward at 409 nm; Spectral irradiance, downward at 410 nm; Spectral irradiance, downward at 411 nm; Spectral irradiance, downward at 412 nm; Spectral irradiance, downward at 413 nm; Spectral irradiance, downward at 414 nm; Spectral irradiance, downward at 415 nm; Spectral irradiance, downward at 416 nm; Spectral irradiance, downward at 417 nm; Spectral irradiance, downward at 418 nm; Spectral irradiance, downward at 419 nm; Spectral irradiance, downward at 420 nm; Spectral irradiance, downward at 421 nm; Spectral irradiance, downward at 422 nm; Spectral irradiance, downward at 423 nm; Spectral irradiance, downward at 424 nm; Spectral irradiance, downward at 425 nm; Spectral irradiance, downward at 426 nm; Spectral irradiance, downward at 427 nm; Spectral irradiance, downward at 428 nm; Spectral irradiance, downward at 429 nm; Spectral irradiance, downward at 430 nm; Spectral irradiance, downward at 431 nm; Spectral irradiance, downward at 432 nm; Spectral irradiance, downward at 433 nm; Spectral irradiance, downward at 434 nm; Spectral irradiance, downward at 435 nm; Spectral irradiance, downward at 436 nm; Spectral irradiance, downward at 437 nm; Spectral irradiance, downward at 438 nm; Spectral irradiance, downward at 439 nm; Spectral irradiance, downward at 440 nm; Spectral irradiance, downward at 441 nm; Spectral irradiance, downward at 442 nm; Spectral irradiance, downward at 443 nm; Spectral irradiance, downward at 444 nm; Spectral irradiance, downward at 445 nm; Spectral irradiance, downward at 446 nm; Spectral irradiance, downward at 447 nm; Spectral irradiance, downward at 448 nm; Spectral irradiance, downward at 449 nm; Spectral irradiance, downward at 450 nm; Spectral irradiance, downward at 451 nm; Spectral irradiance, downward at 452 nm; Spectral irradiance, downward at 453 nm; Spectral irradiance, downward at 454 nm; Spectral irradiance, downward at 455 nm; Spectral irradiance, downward at 456 nm; Spectral irradiance, downward at 457 nm; Spectral irradiance, downward at 458 nm; Spectral irradiance, downward at 459 nm; Spectral irradiance, downward at 460 nm; Spectral irradiance, downward at 461 nm; Spectral irradiance, downward at 462 nm; Spectral irradiance, downward at 463 nm; Spectral irradiance, downward at 464 nm; Spectral irradiance, downward at 465 nm; Spectral irradiance, downward at 466 nm; Spectral irradiance, downward at 467 nm; Spectral irradiance, downward at 468 nm; Spectral irradiance, downward at 469 nm; Spectral irradiance, downward at 470 nm; Spectral irradiance, downward at 471 nm; Spectral irradiance, downward at 472 nm; Spectral irradiance, downward at 473 nm; Spectral irradiance, downward at 474 nm; Spectral irradiance, downward at 475 nm; Spectral irradiance, downward at 476 nm; Spectral irradiance, downward at 477 nm; Spectral irradiance, downward at 478 nm; Spectral irradiance, downward at 479 nm; Spectral irradiance, downward at 480 nm; Spectral irradiance, downward at 481 nm; Spectral irradiance, downward at 482 nm; Spectral irradiance, downward at 483 nm; Spectral irradiance, downward at 484 nm; Spectral irradiance, downward at 485 nm; Spectral irradiance, downward at 486 nm; Spectral irradiance, downward at 487 nm; Spectral irradiance, downward at 488 nm; Spectral irradiance, downward at 489 nm; Spectral irradiance, downward at 490 nm; Spectral irradiance, downward at 491 nm; Spectral irradiance, downward at 492 nm; Spectral irradiance, downward at 493 nm; Spectral irradiance, downward at 494 nm; Spectral irradiance, downward at 495 nm; Spectral irradiance, downward at 496 nm; Spectral irradiance, downward at 497 nm; Spectral irradiance, downward at 498 nm; Spectral irradiance, downward at 499 nm; Spectral irradiance, downward at 500 nm; Spectral irradiance, downward at 501 nm; Spectral irradiance, downward at 502 nm; Spectral irradiance, downward at 503 nm; Spectral irradiance, downward at 504 nm; Spectral irradiance, downward at
    Type: Dataset
    Format: text/tab-separated-values, 1853304 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publication Date: 2023-03-16
    Keywords: ALERT2018; ALERT2018_14_1; DATE/TIME; DEPTH, water; Distance, relative, X; Distance, relative, Y; Hyperspectral radiometer, TriOS Mess- und Datentechnik GmbH, RAMSES; Irradiance, downward; Irradiance, downward, photosynthetically active; Irradiance, downward, photosynthetically active, absolute; LATITUDE; Lincoln Sea; LONGITUDE; Remote operated vehicle; ROV; Sampling on land; Spectral irradiance, downward at 320 nm; Spectral irradiance, downward at 321 nm; Spectral irradiance, downward at 322 nm; Spectral irradiance, downward at 323 nm; Spectral irradiance, downward at 324 nm; Spectral irradiance, downward at 325 nm; Spectral irradiance, downward at 326 nm; Spectral irradiance, downward at 327 nm; Spectral irradiance, downward at 328 nm; Spectral irradiance, downward at 329 nm; Spectral irradiance, downward at 330 nm; Spectral irradiance, downward at 331 nm; Spectral irradiance, downward at 332 nm; Spectral irradiance, downward at 333 nm; Spectral irradiance, downward at 334 nm; Spectral irradiance, downward at 335 nm; Spectral irradiance, downward at 336 nm; Spectral irradiance, downward at 337 nm; Spectral irradiance, downward at 338 nm; Spectral irradiance, downward at 339 nm; Spectral irradiance, downward at 340 nm; Spectral irradiance, downward at 341 nm; Spectral irradiance, downward at 342 nm; Spectral irradiance, downward at 343 nm; Spectral irradiance, downward at 344 nm; Spectral irradiance, downward at 345 nm; Spectral irradiance, downward at 346 nm; Spectral irradiance, downward at 347 nm; Spectral irradiance, downward at 348 nm; Spectral irradiance, downward at 349 nm; Spectral irradiance, downward at 350 nm; Spectral irradiance, downward at 351 nm; Spectral irradiance, downward at 352 nm; Spectral irradiance, downward at 353 nm; Spectral irradiance, downward at 354 nm; Spectral irradiance, downward at 355 nm; Spectral irradiance, downward at 356 nm; Spectral irradiance, downward at 357 nm; Spectral irradiance, downward at 358 nm; Spectral irradiance, downward at 359 nm; Spectral irradiance, downward at 360 nm; Spectral irradiance, downward at 361 nm; Spectral irradiance, downward at 362 nm; Spectral irradiance, downward at 363 nm; Spectral irradiance, downward at 364 nm; Spectral irradiance, downward at 365 nm; Spectral irradiance, downward at 366 nm; Spectral irradiance, downward at 367 nm; Spectral irradiance, downward at 368 nm; Spectral irradiance, downward at 369 nm; Spectral irradiance, downward at 370 nm; Spectral irradiance, downward at 371 nm; Spectral irradiance, downward at 372 nm; Spectral irradiance, downward at 373 nm; Spectral irradiance, downward at 374 nm; Spectral irradiance, downward at 375 nm; Spectral irradiance, downward at 376 nm; Spectral irradiance, downward at 377 nm; Spectral irradiance, downward at 378 nm; Spectral irradiance, downward at 379 nm; Spectral irradiance, downward at 380 nm; Spectral irradiance, downward at 381 nm; Spectral irradiance, downward at 382 nm; Spectral irradiance, downward at 383 nm; Spectral irradiance, downward at 384 nm; Spectral irradiance, downward at 385 nm; Spectral irradiance, downward at 386 nm; Spectral irradiance, downward at 387 nm; Spectral irradiance, downward at 388 nm; Spectral irradiance, downward at 389 nm; Spectral irradiance, downward at 390 nm; Spectral irradiance, downward at 391 nm; Spectral irradiance, downward at 392 nm; Spectral irradiance, downward at 393 nm; Spectral irradiance, downward at 394 nm; Spectral irradiance, downward at 395 nm; Spectral irradiance, downward at 396 nm; Spectral irradiance, downward at 397 nm; Spectral irradiance, downward at 398 nm; Spectral irradiance, downward at 399 nm; Spectral irradiance, downward at 400 nm; Spectral irradiance, downward at 401 nm; Spectral irradiance, downward at 402 nm; Spectral irradiance, downward at 403 nm; Spectral irradiance, downward at 404 nm; Spectral irradiance, downward at 405 nm; Spectral irradiance, downward at 406 nm; Spectral irradiance, downward at 407 nm; Spectral irradiance, downward at 408 nm; Spectral irradiance, downward at 409 nm; Spectral irradiance, downward at 410 nm; Spectral irradiance, downward at 411 nm; Spectral irradiance, downward at 412 nm; Spectral irradiance, downward at 413 nm; Spectral irradiance, downward at 414 nm; Spectral irradiance, downward at 415 nm; Spectral irradiance, downward at 416 nm; Spectral irradiance, downward at 417 nm; Spectral irradiance, downward at 418 nm; Spectral irradiance, downward at 419 nm; Spectral irradiance, downward at 420 nm; Spectral irradiance, downward at 421 nm; Spectral irradiance, downward at 422 nm; Spectral irradiance, downward at 423 nm; Spectral irradiance, downward at 424 nm; Spectral irradiance, downward at 425 nm; Spectral irradiance, downward at 426 nm; Spectral irradiance, downward at 427 nm; Spectral irradiance, downward at 428 nm; Spectral irradiance, downward at 429 nm; Spectral irradiance, downward at 430 nm; Spectral irradiance, downward at 431 nm; Spectral irradiance, downward at 432 nm; Spectral irradiance, downward at 433 nm; Spectral irradiance, downward at 434 nm; Spectral irradiance, downward at 435 nm; Spectral irradiance, downward at 436 nm; Spectral irradiance, downward at 437 nm; Spectral irradiance, downward at 438 nm; Spectral irradiance, downward at 439 nm; Spectral irradiance, downward at 440 nm; Spectral irradiance, downward at 441 nm; Spectral irradiance, downward at 442 nm; Spectral irradiance, downward at 443 nm; Spectral irradiance, downward at 444 nm; Spectral irradiance, downward at 445 nm; Spectral irradiance, downward at 446 nm; Spectral irradiance, downward at 447 nm; Spectral irradiance, downward at 448 nm; Spectral irradiance, downward at 449 nm; Spectral irradiance, downward at 450 nm; Spectral irradiance, downward at 451 nm; Spectral irradiance, downward at 452 nm; Spectral irradiance, downward at 453 nm; Spectral irradiance, downward at 454 nm; Spectral irradiance, downward at 455 nm; Spectral irradiance, downward at 456 nm; Spectral irradiance, downward at 457 nm; Spectral irradiance, downward at 458 nm; Spectral irradiance, downward at 459 nm; Spectral irradiance, downward at 460 nm; Spectral irradiance, downward at 461 nm; Spectral irradiance, downward at 462 nm; Spectral irradiance, downward at 463 nm; Spectral irradiance, downward at 464 nm; Spectral irradiance, downward at 465 nm; Spectral irradiance, downward at 466 nm; Spectral irradiance, downward at 467 nm; Spectral irradiance, downward at 468 nm; Spectral irradiance, downward at 469 nm; Spectral irradiance, downward at 470 nm; Spectral irradiance, downward at 471 nm; Spectral irradiance, downward at 472 nm; Spectral irradiance, downward at 473 nm; Spectral irradiance, downward at 474 nm; Spectral irradiance, downward at 475 nm; Spectral irradiance, downward at 476 nm; Spectral irradiance, downward at 477 nm; Spectral irradiance, downward at 478 nm; Spectral irradiance, downward at 479 nm; Spectral irradiance, downward at 480 nm; Spectral irradiance, downward at 481 nm; Spectral irradiance, downward at 482 nm; Spectral irradiance, downward at 483 nm; Spectral irradiance, downward at 484 nm; Spectral irradiance, downward at 485 nm; Spectral irradiance, downward at 486 nm; Spectral irradiance, downward at 487 nm; Spectral irradiance, downward at 488 nm; Spectral irradiance, downward at 489 nm; Spectral irradiance, downward at 490 nm; Spectral irradiance, downward at 491 nm; Spectral irradiance, downward at 492 nm; Spectral irradiance, downward at 493 nm; Spectral irradiance, downward at 494 nm; Spectral irradiance, downward at 495 nm; Spectral irradiance, downward at 496 nm; Spectral irradiance, downward at 497 nm; Spectral irradiance, downward at 498 nm; Spectral irradiance, downward at 499 nm; Spectral irradiance, downward at 500 nm; Spectral irradiance, downward at 501 nm; Spectral irradiance, downward at 502 nm; Spectral irradiance, downward at 503 nm; Spectral irradiance, downward at 504 nm; Spectral irradiance, downward at
    Type: Dataset
    Format: text/tab-separated-values, 2803488 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publication Date: 2023-03-16
    Keywords: ALERT2018; ALERT2018_18_1; ALTITUDE; DATE/TIME; Hyperspectral radiometer, TriOS Mess- und Datentechnik GmbH, RAMSES; Irradiance, incident; Irradiance, incident, photosynthetically active; Irradiance, incident, photosynthetically active, absolute; LATITUDE; Lincoln Sea; LONGITUDE; Remote operated vehicle; ROV; Sampling on land; Spectral irradiance, incident at 320 nm; Spectral irradiance, incident at 321 nm; Spectral irradiance, incident at 322 nm; Spectral irradiance, incident at 323 nm; Spectral irradiance, incident at 324 nm; Spectral irradiance, incident at 325 nm; Spectral irradiance, incident at 326 nm; Spectral irradiance, incident at 327 nm; Spectral irradiance, incident at 328 nm; Spectral irradiance, incident at 329 nm; Spectral irradiance, incident at 330 nm; Spectral irradiance, incident at 331 nm; Spectral irradiance, incident at 332 nm; Spectral irradiance, incident at 333 nm; Spectral irradiance, incident at 334 nm; Spectral irradiance, incident at 335 nm; Spectral irradiance, incident at 336 nm; Spectral irradiance, incident at 337 nm; Spectral irradiance, incident at 338 nm; Spectral irradiance, incident at 339 nm; Spectral irradiance, incident at 340 nm; Spectral irradiance, incident at 341 nm; Spectral irradiance, incident at 342 nm; Spectral irradiance, incident at 343 nm; Spectral irradiance, incident at 344 nm; Spectral irradiance, incident at 345 nm; Spectral irradiance, incident at 346 nm; Spectral irradiance, incident at 347 nm; Spectral irradiance, incident at 348 nm; Spectral irradiance, incident at 349 nm; Spectral irradiance, incident at 350 nm; Spectral irradiance, incident at 351 nm; Spectral irradiance, incident at 352 nm; Spectral irradiance, incident at 353 nm; Spectral irradiance, incident at 354 nm; Spectral irradiance, incident at 355 nm; Spectral irradiance, incident at 356 nm; Spectral irradiance, incident at 357 nm; Spectral irradiance, incident at 358 nm; Spectral irradiance, incident at 359 nm; Spectral irradiance, incident at 360 nm; Spectral irradiance, incident at 361 nm; Spectral irradiance, incident at 362 nm; Spectral irradiance, incident at 363 nm; Spectral irradiance, incident at 364 nm; Spectral irradiance, incident at 365 nm; Spectral irradiance, incident at 366 nm; Spectral irradiance, incident at 367 nm; Spectral irradiance, incident at 368 nm; Spectral irradiance, incident at 369 nm; Spectral irradiance, incident at 370 nm; Spectral irradiance, incident at 371 nm; Spectral irradiance, incident at 372 nm; Spectral irradiance, incident at 373 nm; Spectral irradiance, incident at 374 nm; Spectral irradiance, incident at 375 nm; Spectral irradiance, incident at 376 nm; Spectral irradiance, incident at 377 nm; Spectral irradiance, incident at 378 nm; Spectral irradiance, incident at 379 nm; Spectral irradiance, incident at 380 nm; Spectral irradiance, incident at 381 nm; Spectral irradiance, incident at 382 nm; Spectral irradiance, incident at 383 nm; Spectral irradiance, incident at 384 nm; Spectral irradiance, incident at 385 nm; Spectral irradiance, incident at 386 nm; Spectral irradiance, incident at 387 nm; Spectral irradiance, incident at 388 nm; Spectral irradiance, incident at 389 nm; Spectral irradiance, incident at 390 nm; Spectral irradiance, incident at 391 nm; Spectral irradiance, incident at 392 nm; Spectral irradiance, incident at 393 nm; Spectral irradiance, incident at 394 nm; Spectral irradiance, incident at 395 nm; Spectral irradiance, incident at 396 nm; Spectral irradiance, incident at 397 nm; Spectral irradiance, incident at 398 nm; Spectral irradiance, incident at 399 nm; Spectral irradiance, incident at 400 nm; Spectral irradiance, incident at 401 nm; Spectral irradiance, incident at 402 nm; Spectral irradiance, incident at 403 nm; Spectral irradiance, incident at 404 nm; Spectral irradiance, incident at 405 nm; Spectral irradiance, incident at 406 nm; Spectral irradiance, incident at 407 nm; Spectral irradiance, incident at 408 nm; Spectral irradiance, incident at 409 nm; Spectral irradiance, incident at 410 nm; Spectral irradiance, incident at 411 nm; Spectral irradiance, incident at 412 nm; Spectral irradiance, incident at 413 nm; Spectral irradiance, incident at 414 nm; Spectral irradiance, incident at 415 nm; Spectral irradiance, incident at 416 nm; Spectral irradiance, incident at 417 nm; Spectral irradiance, incident at 418 nm; Spectral irradiance, incident at 419 nm; Spectral irradiance, incident at 420 nm; Spectral irradiance, incident at 421 nm; Spectral irradiance, incident at 422 nm; Spectral irradiance, incident at 423 nm; Spectral irradiance, incident at 424 nm; Spectral irradiance, incident at 425 nm; Spectral irradiance, incident at 426 nm; Spectral irradiance, incident at 427 nm; Spectral irradiance, incident at 428 nm; Spectral irradiance, incident at 429 nm; Spectral irradiance, incident at 430 nm; Spectral irradiance, incident at 431 nm; Spectral irradiance, incident at 432 nm; Spectral irradiance, incident at 433 nm; Spectral irradiance, incident at 434 nm; Spectral irradiance, incident at 435 nm; Spectral irradiance, incident at 436 nm; Spectral irradiance, incident at 437 nm; Spectral irradiance, incident at 438 nm; Spectral irradiance, incident at 439 nm; Spectral irradiance, incident at 440 nm; Spectral irradiance, incident at 441 nm; Spectral irradiance, incident at 442 nm; Spectral irradiance, incident at 443 nm; Spectral irradiance, incident at 444 nm; Spectral irradiance, incident at 445 nm; Spectral irradiance, incident at 446 nm; Spectral irradiance, incident at 447 nm; Spectral irradiance, incident at 448 nm; Spectral irradiance, incident at 449 nm; Spectral irradiance, incident at 450 nm; Spectral irradiance, incident at 451 nm; Spectral irradiance, incident at 452 nm; Spectral irradiance, incident at 453 nm; Spectral irradiance, incident at 454 nm; Spectral irradiance, incident at 455 nm; Spectral irradiance, incident at 456 nm; Spectral irradiance, incident at 457 nm; Spectral irradiance, incident at 458 nm; Spectral irradiance, incident at 459 nm; Spectral irradiance, incident at 460 nm; Spectral irradiance, incident at 461 nm; Spectral irradiance, incident at 462 nm; Spectral irradiance, incident at 463 nm; Spectral irradiance, incident at 464 nm; Spectral irradiance, incident at 465 nm; Spectral irradiance, incident at 466 nm; Spectral irradiance, incident at 467 nm; Spectral irradiance, incident at 468 nm; Spectral irradiance, incident at 469 nm; Spectral irradiance, incident at 470 nm; Spectral irradiance, incident at 471 nm; Spectral irradiance, incident at 472 nm; Spectral irradiance, incident at 473 nm; Spectral irradiance, incident at 474 nm; Spectral irradiance, incident at 475 nm; Spectral irradiance, incident at 476 nm; Spectral irradiance, incident at 477 nm; Spectral irradiance, incident at 478 nm; Spectral irradiance, incident at 479 nm; Spectral irradiance, incident at 480 nm; Spectral irradiance, incident at 481 nm; Spectral irradiance, incident at 482 nm; Spectral irradiance, incident at 483 nm; Spectral irradiance, incident at 484 nm; Spectral irradiance, incident at 485 nm; Spectral irradiance, incident at 486 nm; Spectral irradiance, incident at 487 nm; Spectral irradiance, incident at 488 nm; Spectral irradiance, incident at 489 nm; Spectral irradiance, incident at 490 nm; Spectral irradiance, incident at 491 nm; Spectral irradiance, incident at 492 nm; Spectral irradiance, incident at 493 nm; Spectral irradiance, incident at 494 nm; Spectral irradiance, incident at 495 nm; Spectral irradiance, incident at 496 nm; Spectral irradiance, incident at 497 nm; Spectral irradiance, incident at 498 nm; Spectral irradiance, incident at 499 nm; Spectral irradiance, incident at 500 nm; Spectral irradiance, incident at 501 nm; Spectral irradiance, incident at 502 nm; Spectral irradiance, incident at 503 nm; Spectral irradiance, incident at 504 nm; Spectral irradiance, incident at 505 nm; Spectral irradiance, incident at 506 nm;
    Type: Dataset
    Format: text/tab-separated-values, 10202962 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publication Date: 2023-03-16
    Keywords: ALERT2018; ALERT2018_22_1; ALTITUDE; DATE/TIME; Hyperspectral radiometer, TriOS Mess- und Datentechnik GmbH, RAMSES; Irradiance, incident; Irradiance, incident, photosynthetically active; Irradiance, incident, photosynthetically active, absolute; LATITUDE; Lincoln Sea; LONGITUDE; Remote operated vehicle; ROV; Sampling on land; Spectral irradiance, incident at 320 nm; Spectral irradiance, incident at 321 nm; Spectral irradiance, incident at 322 nm; Spectral irradiance, incident at 323 nm; Spectral irradiance, incident at 324 nm; Spectral irradiance, incident at 325 nm; Spectral irradiance, incident at 326 nm; Spectral irradiance, incident at 327 nm; Spectral irradiance, incident at 328 nm; Spectral irradiance, incident at 329 nm; Spectral irradiance, incident at 330 nm; Spectral irradiance, incident at 331 nm; Spectral irradiance, incident at 332 nm; Spectral irradiance, incident at 333 nm; Spectral irradiance, incident at 334 nm; Spectral irradiance, incident at 335 nm; Spectral irradiance, incident at 336 nm; Spectral irradiance, incident at 337 nm; Spectral irradiance, incident at 338 nm; Spectral irradiance, incident at 339 nm; Spectral irradiance, incident at 340 nm; Spectral irradiance, incident at 341 nm; Spectral irradiance, incident at 342 nm; Spectral irradiance, incident at 343 nm; Spectral irradiance, incident at 344 nm; Spectral irradiance, incident at 345 nm; Spectral irradiance, incident at 346 nm; Spectral irradiance, incident at 347 nm; Spectral irradiance, incident at 348 nm; Spectral irradiance, incident at 349 nm; Spectral irradiance, incident at 350 nm; Spectral irradiance, incident at 351 nm; Spectral irradiance, incident at 352 nm; Spectral irradiance, incident at 353 nm; Spectral irradiance, incident at 354 nm; Spectral irradiance, incident at 355 nm; Spectral irradiance, incident at 356 nm; Spectral irradiance, incident at 357 nm; Spectral irradiance, incident at 358 nm; Spectral irradiance, incident at 359 nm; Spectral irradiance, incident at 360 nm; Spectral irradiance, incident at 361 nm; Spectral irradiance, incident at 362 nm; Spectral irradiance, incident at 363 nm; Spectral irradiance, incident at 364 nm; Spectral irradiance, incident at 365 nm; Spectral irradiance, incident at 366 nm; Spectral irradiance, incident at 367 nm; Spectral irradiance, incident at 368 nm; Spectral irradiance, incident at 369 nm; Spectral irradiance, incident at 370 nm; Spectral irradiance, incident at 371 nm; Spectral irradiance, incident at 372 nm; Spectral irradiance, incident at 373 nm; Spectral irradiance, incident at 374 nm; Spectral irradiance, incident at 375 nm; Spectral irradiance, incident at 376 nm; Spectral irradiance, incident at 377 nm; Spectral irradiance, incident at 378 nm; Spectral irradiance, incident at 379 nm; Spectral irradiance, incident at 380 nm; Spectral irradiance, incident at 381 nm; Spectral irradiance, incident at 382 nm; Spectral irradiance, incident at 383 nm; Spectral irradiance, incident at 384 nm; Spectral irradiance, incident at 385 nm; Spectral irradiance, incident at 386 nm; Spectral irradiance, incident at 387 nm; Spectral irradiance, incident at 388 nm; Spectral irradiance, incident at 389 nm; Spectral irradiance, incident at 390 nm; Spectral irradiance, incident at 391 nm; Spectral irradiance, incident at 392 nm; Spectral irradiance, incident at 393 nm; Spectral irradiance, incident at 394 nm; Spectral irradiance, incident at 395 nm; Spectral irradiance, incident at 396 nm; Spectral irradiance, incident at 397 nm; Spectral irradiance, incident at 398 nm; Spectral irradiance, incident at 399 nm; Spectral irradiance, incident at 400 nm; Spectral irradiance, incident at 401 nm; Spectral irradiance, incident at 402 nm; Spectral irradiance, incident at 403 nm; Spectral irradiance, incident at 404 nm; Spectral irradiance, incident at 405 nm; Spectral irradiance, incident at 406 nm; Spectral irradiance, incident at 407 nm; Spectral irradiance, incident at 408 nm; Spectral irradiance, incident at 409 nm; Spectral irradiance, incident at 410 nm; Spectral irradiance, incident at 411 nm; Spectral irradiance, incident at 412 nm; Spectral irradiance, incident at 413 nm; Spectral irradiance, incident at 414 nm; Spectral irradiance, incident at 415 nm; Spectral irradiance, incident at 416 nm; Spectral irradiance, incident at 417 nm; Spectral irradiance, incident at 418 nm; Spectral irradiance, incident at 419 nm; Spectral irradiance, incident at 420 nm; Spectral irradiance, incident at 421 nm; Spectral irradiance, incident at 422 nm; Spectral irradiance, incident at 423 nm; Spectral irradiance, incident at 424 nm; Spectral irradiance, incident at 425 nm; Spectral irradiance, incident at 426 nm; Spectral irradiance, incident at 427 nm; Spectral irradiance, incident at 428 nm; Spectral irradiance, incident at 429 nm; Spectral irradiance, incident at 430 nm; Spectral irradiance, incident at 431 nm; Spectral irradiance, incident at 432 nm; Spectral irradiance, incident at 433 nm; Spectral irradiance, incident at 434 nm; Spectral irradiance, incident at 435 nm; Spectral irradiance, incident at 436 nm; Spectral irradiance, incident at 437 nm; Spectral irradiance, incident at 438 nm; Spectral irradiance, incident at 439 nm; Spectral irradiance, incident at 440 nm; Spectral irradiance, incident at 441 nm; Spectral irradiance, incident at 442 nm; Spectral irradiance, incident at 443 nm; Spectral irradiance, incident at 444 nm; Spectral irradiance, incident at 445 nm; Spectral irradiance, incident at 446 nm; Spectral irradiance, incident at 447 nm; Spectral irradiance, incident at 448 nm; Spectral irradiance, incident at 449 nm; Spectral irradiance, incident at 450 nm; Spectral irradiance, incident at 451 nm; Spectral irradiance, incident at 452 nm; Spectral irradiance, incident at 453 nm; Spectral irradiance, incident at 454 nm; Spectral irradiance, incident at 455 nm; Spectral irradiance, incident at 456 nm; Spectral irradiance, incident at 457 nm; Spectral irradiance, incident at 458 nm; Spectral irradiance, incident at 459 nm; Spectral irradiance, incident at 460 nm; Spectral irradiance, incident at 461 nm; Spectral irradiance, incident at 462 nm; Spectral irradiance, incident at 463 nm; Spectral irradiance, incident at 464 nm; Spectral irradiance, incident at 465 nm; Spectral irradiance, incident at 466 nm; Spectral irradiance, incident at 467 nm; Spectral irradiance, incident at 468 nm; Spectral irradiance, incident at 469 nm; Spectral irradiance, incident at 470 nm; Spectral irradiance, incident at 471 nm; Spectral irradiance, incident at 472 nm; Spectral irradiance, incident at 473 nm; Spectral irradiance, incident at 474 nm; Spectral irradiance, incident at 475 nm; Spectral irradiance, incident at 476 nm; Spectral irradiance, incident at 477 nm; Spectral irradiance, incident at 478 nm; Spectral irradiance, incident at 479 nm; Spectral irradiance, incident at 480 nm; Spectral irradiance, incident at 481 nm; Spectral irradiance, incident at 482 nm; Spectral irradiance, incident at 483 nm; Spectral irradiance, incident at 484 nm; Spectral irradiance, incident at 485 nm; Spectral irradiance, incident at 486 nm; Spectral irradiance, incident at 487 nm; Spectral irradiance, incident at 488 nm; Spectral irradiance, incident at 489 nm; Spectral irradiance, incident at 490 nm; Spectral irradiance, incident at 491 nm; Spectral irradiance, incident at 492 nm; Spectral irradiance, incident at 493 nm; Spectral irradiance, incident at 494 nm; Spectral irradiance, incident at 495 nm; Spectral irradiance, incident at 496 nm; Spectral irradiance, incident at 497 nm; Spectral irradiance, incident at 498 nm; Spectral irradiance, incident at 499 nm; Spectral irradiance, incident at 500 nm; Spectral irradiance, incident at 501 nm; Spectral irradiance, incident at 502 nm; Spectral irradiance, incident at 503 nm; Spectral irradiance, incident at 504 nm; Spectral irradiance, incident at 505 nm; Spectral irradiance, incident at 506 nm;
    Type: Dataset
    Format: text/tab-separated-values, 11755628 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publication Date: 2023-03-16
    Keywords: ALERT2018; ALERT2018_23_1; ALTITUDE; DATE/TIME; Hyperspectral radiometer, TriOS Mess- und Datentechnik GmbH, RAMSES; Irradiance, incident; Irradiance, incident, photosynthetically active; Irradiance, incident, photosynthetically active, absolute; LATITUDE; Lincoln Sea; LONGITUDE; Remote operated vehicle; ROV; Sampling on land; Spectral irradiance, incident at 320 nm; Spectral irradiance, incident at 321 nm; Spectral irradiance, incident at 322 nm; Spectral irradiance, incident at 323 nm; Spectral irradiance, incident at 324 nm; Spectral irradiance, incident at 325 nm; Spectral irradiance, incident at 326 nm; Spectral irradiance, incident at 327 nm; Spectral irradiance, incident at 328 nm; Spectral irradiance, incident at 329 nm; Spectral irradiance, incident at 330 nm; Spectral irradiance, incident at 331 nm; Spectral irradiance, incident at 332 nm; Spectral irradiance, incident at 333 nm; Spectral irradiance, incident at 334 nm; Spectral irradiance, incident at 335 nm; Spectral irradiance, incident at 336 nm; Spectral irradiance, incident at 337 nm; Spectral irradiance, incident at 338 nm; Spectral irradiance, incident at 339 nm; Spectral irradiance, incident at 340 nm; Spectral irradiance, incident at 341 nm; Spectral irradiance, incident at 342 nm; Spectral irradiance, incident at 343 nm; Spectral irradiance, incident at 344 nm; Spectral irradiance, incident at 345 nm; Spectral irradiance, incident at 346 nm; Spectral irradiance, incident at 347 nm; Spectral irradiance, incident at 348 nm; Spectral irradiance, incident at 349 nm; Spectral irradiance, incident at 350 nm; Spectral irradiance, incident at 351 nm; Spectral irradiance, incident at 352 nm; Spectral irradiance, incident at 353 nm; Spectral irradiance, incident at 354 nm; Spectral irradiance, incident at 355 nm; Spectral irradiance, incident at 356 nm; Spectral irradiance, incident at 357 nm; Spectral irradiance, incident at 358 nm; Spectral irradiance, incident at 359 nm; Spectral irradiance, incident at 360 nm; Spectral irradiance, incident at 361 nm; Spectral irradiance, incident at 362 nm; Spectral irradiance, incident at 363 nm; Spectral irradiance, incident at 364 nm; Spectral irradiance, incident at 365 nm; Spectral irradiance, incident at 366 nm; Spectral irradiance, incident at 367 nm; Spectral irradiance, incident at 368 nm; Spectral irradiance, incident at 369 nm; Spectral irradiance, incident at 370 nm; Spectral irradiance, incident at 371 nm; Spectral irradiance, incident at 372 nm; Spectral irradiance, incident at 373 nm; Spectral irradiance, incident at 374 nm; Spectral irradiance, incident at 375 nm; Spectral irradiance, incident at 376 nm; Spectral irradiance, incident at 377 nm; Spectral irradiance, incident at 378 nm; Spectral irradiance, incident at 379 nm; Spectral irradiance, incident at 380 nm; Spectral irradiance, incident at 381 nm; Spectral irradiance, incident at 382 nm; Spectral irradiance, incident at 383 nm; Spectral irradiance, incident at 384 nm; Spectral irradiance, incident at 385 nm; Spectral irradiance, incident at 386 nm; Spectral irradiance, incident at 387 nm; Spectral irradiance, incident at 388 nm; Spectral irradiance, incident at 389 nm; Spectral irradiance, incident at 390 nm; Spectral irradiance, incident at 391 nm; Spectral irradiance, incident at 392 nm; Spectral irradiance, incident at 393 nm; Spectral irradiance, incident at 394 nm; Spectral irradiance, incident at 395 nm; Spectral irradiance, incident at 396 nm; Spectral irradiance, incident at 397 nm; Spectral irradiance, incident at 398 nm; Spectral irradiance, incident at 399 nm; Spectral irradiance, incident at 400 nm; Spectral irradiance, incident at 401 nm; Spectral irradiance, incident at 402 nm; Spectral irradiance, incident at 403 nm; Spectral irradiance, incident at 404 nm; Spectral irradiance, incident at 405 nm; Spectral irradiance, incident at 406 nm; Spectral irradiance, incident at 407 nm; Spectral irradiance, incident at 408 nm; Spectral irradiance, incident at 409 nm; Spectral irradiance, incident at 410 nm; Spectral irradiance, incident at 411 nm; Spectral irradiance, incident at 412 nm; Spectral irradiance, incident at 413 nm; Spectral irradiance, incident at 414 nm; Spectral irradiance, incident at 415 nm; Spectral irradiance, incident at 416 nm; Spectral irradiance, incident at 417 nm; Spectral irradiance, incident at 418 nm; Spectral irradiance, incident at 419 nm; Spectral irradiance, incident at 420 nm; Spectral irradiance, incident at 421 nm; Spectral irradiance, incident at 422 nm; Spectral irradiance, incident at 423 nm; Spectral irradiance, incident at 424 nm; Spectral irradiance, incident at 425 nm; Spectral irradiance, incident at 426 nm; Spectral irradiance, incident at 427 nm; Spectral irradiance, incident at 428 nm; Spectral irradiance, incident at 429 nm; Spectral irradiance, incident at 430 nm; Spectral irradiance, incident at 431 nm; Spectral irradiance, incident at 432 nm; Spectral irradiance, incident at 433 nm; Spectral irradiance, incident at 434 nm; Spectral irradiance, incident at 435 nm; Spectral irradiance, incident at 436 nm; Spectral irradiance, incident at 437 nm; Spectral irradiance, incident at 438 nm; Spectral irradiance, incident at 439 nm; Spectral irradiance, incident at 440 nm; Spectral irradiance, incident at 441 nm; Spectral irradiance, incident at 442 nm; Spectral irradiance, incident at 443 nm; Spectral irradiance, incident at 444 nm; Spectral irradiance, incident at 445 nm; Spectral irradiance, incident at 446 nm; Spectral irradiance, incident at 447 nm; Spectral irradiance, incident at 448 nm; Spectral irradiance, incident at 449 nm; Spectral irradiance, incident at 450 nm; Spectral irradiance, incident at 451 nm; Spectral irradiance, incident at 452 nm; Spectral irradiance, incident at 453 nm; Spectral irradiance, incident at 454 nm; Spectral irradiance, incident at 455 nm; Spectral irradiance, incident at 456 nm; Spectral irradiance, incident at 457 nm; Spectral irradiance, incident at 458 nm; Spectral irradiance, incident at 459 nm; Spectral irradiance, incident at 460 nm; Spectral irradiance, incident at 461 nm; Spectral irradiance, incident at 462 nm; Spectral irradiance, incident at 463 nm; Spectral irradiance, incident at 464 nm; Spectral irradiance, incident at 465 nm; Spectral irradiance, incident at 466 nm; Spectral irradiance, incident at 467 nm; Spectral irradiance, incident at 468 nm; Spectral irradiance, incident at 469 nm; Spectral irradiance, incident at 470 nm; Spectral irradiance, incident at 471 nm; Spectral irradiance, incident at 472 nm; Spectral irradiance, incident at 473 nm; Spectral irradiance, incident at 474 nm; Spectral irradiance, incident at 475 nm; Spectral irradiance, incident at 476 nm; Spectral irradiance, incident at 477 nm; Spectral irradiance, incident at 478 nm; Spectral irradiance, incident at 479 nm; Spectral irradiance, incident at 480 nm; Spectral irradiance, incident at 481 nm; Spectral irradiance, incident at 482 nm; Spectral irradiance, incident at 483 nm; Spectral irradiance, incident at 484 nm; Spectral irradiance, incident at 485 nm; Spectral irradiance, incident at 486 nm; Spectral irradiance, incident at 487 nm; Spectral irradiance, incident at 488 nm; Spectral irradiance, incident at 489 nm; Spectral irradiance, incident at 490 nm; Spectral irradiance, incident at 491 nm; Spectral irradiance, incident at 492 nm; Spectral irradiance, incident at 493 nm; Spectral irradiance, incident at 494 nm; Spectral irradiance, incident at 495 nm; Spectral irradiance, incident at 496 nm; Spectral irradiance, incident at 497 nm; Spectral irradiance, incident at 498 nm; Spectral irradiance, incident at 499 nm; Spectral irradiance, incident at 500 nm; Spectral irradiance, incident at 501 nm; Spectral irradiance, incident at 502 nm; Spectral irradiance, incident at 503 nm; Spectral irradiance, incident at 504 nm; Spectral irradiance, incident at 505 nm; Spectral irradiance, incident at 506 nm;
    Type: Dataset
    Format: text/tab-separated-values, 10104058 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publication Date: 2023-03-16
    Keywords: ALERT2018; ALERT2018_15_1; DATE/TIME; DEPTH, water; Distance, relative, X; Distance, relative, Y; Hyperspectral radiometer, TriOS Mess- und Datentechnik GmbH, RAMSES; Irradiance, downward; Irradiance, downward, photosynthetically active; Irradiance, downward, photosynthetically active, absolute; LATITUDE; Lincoln Sea; LONGITUDE; Remote operated vehicle; ROV; Sampling on land; Spectral irradiance, downward at 320 nm; Spectral irradiance, downward at 321 nm; Spectral irradiance, downward at 322 nm; Spectral irradiance, downward at 323 nm; Spectral irradiance, downward at 324 nm; Spectral irradiance, downward at 325 nm; Spectral irradiance, downward at 326 nm; Spectral irradiance, downward at 327 nm; Spectral irradiance, downward at 328 nm; Spectral irradiance, downward at 329 nm; Spectral irradiance, downward at 330 nm; Spectral irradiance, downward at 331 nm; Spectral irradiance, downward at 332 nm; Spectral irradiance, downward at 333 nm; Spectral irradiance, downward at 334 nm; Spectral irradiance, downward at 335 nm; Spectral irradiance, downward at 336 nm; Spectral irradiance, downward at 337 nm; Spectral irradiance, downward at 338 nm; Spectral irradiance, downward at 339 nm; Spectral irradiance, downward at 340 nm; Spectral irradiance, downward at 341 nm; Spectral irradiance, downward at 342 nm; Spectral irradiance, downward at 343 nm; Spectral irradiance, downward at 344 nm; Spectral irradiance, downward at 345 nm; Spectral irradiance, downward at 346 nm; Spectral irradiance, downward at 347 nm; Spectral irradiance, downward at 348 nm; Spectral irradiance, downward at 349 nm; Spectral irradiance, downward at 350 nm; Spectral irradiance, downward at 351 nm; Spectral irradiance, downward at 352 nm; Spectral irradiance, downward at 353 nm; Spectral irradiance, downward at 354 nm; Spectral irradiance, downward at 355 nm; Spectral irradiance, downward at 356 nm; Spectral irradiance, downward at 357 nm; Spectral irradiance, downward at 358 nm; Spectral irradiance, downward at 359 nm; Spectral irradiance, downward at 360 nm; Spectral irradiance, downward at 361 nm; Spectral irradiance, downward at 362 nm; Spectral irradiance, downward at 363 nm; Spectral irradiance, downward at 364 nm; Spectral irradiance, downward at 365 nm; Spectral irradiance, downward at 366 nm; Spectral irradiance, downward at 367 nm; Spectral irradiance, downward at 368 nm; Spectral irradiance, downward at 369 nm; Spectral irradiance, downward at 370 nm; Spectral irradiance, downward at 371 nm; Spectral irradiance, downward at 372 nm; Spectral irradiance, downward at 373 nm; Spectral irradiance, downward at 374 nm; Spectral irradiance, downward at 375 nm; Spectral irradiance, downward at 376 nm; Spectral irradiance, downward at 377 nm; Spectral irradiance, downward at 378 nm; Spectral irradiance, downward at 379 nm; Spectral irradiance, downward at 380 nm; Spectral irradiance, downward at 381 nm; Spectral irradiance, downward at 382 nm; Spectral irradiance, downward at 383 nm; Spectral irradiance, downward at 384 nm; Spectral irradiance, downward at 385 nm; Spectral irradiance, downward at 386 nm; Spectral irradiance, downward at 387 nm; Spectral irradiance, downward at 388 nm; Spectral irradiance, downward at 389 nm; Spectral irradiance, downward at 390 nm; Spectral irradiance, downward at 391 nm; Spectral irradiance, downward at 392 nm; Spectral irradiance, downward at 393 nm; Spectral irradiance, downward at 394 nm; Spectral irradiance, downward at 395 nm; Spectral irradiance, downward at 396 nm; Spectral irradiance, downward at 397 nm; Spectral irradiance, downward at 398 nm; Spectral irradiance, downward at 399 nm; Spectral irradiance, downward at 400 nm; Spectral irradiance, downward at 401 nm; Spectral irradiance, downward at 402 nm; Spectral irradiance, downward at 403 nm; Spectral irradiance, downward at 404 nm; Spectral irradiance, downward at 405 nm; Spectral irradiance, downward at 406 nm; Spectral irradiance, downward at 407 nm; Spectral irradiance, downward at 408 nm; Spectral irradiance, downward at 409 nm; Spectral irradiance, downward at 410 nm; Spectral irradiance, downward at 411 nm; Spectral irradiance, downward at 412 nm; Spectral irradiance, downward at 413 nm; Spectral irradiance, downward at 414 nm; Spectral irradiance, downward at 415 nm; Spectral irradiance, downward at 416 nm; Spectral irradiance, downward at 417 nm; Spectral irradiance, downward at 418 nm; Spectral irradiance, downward at 419 nm; Spectral irradiance, downward at 420 nm; Spectral irradiance, downward at 421 nm; Spectral irradiance, downward at 422 nm; Spectral irradiance, downward at 423 nm; Spectral irradiance, downward at 424 nm; Spectral irradiance, downward at 425 nm; Spectral irradiance, downward at 426 nm; Spectral irradiance, downward at 427 nm; Spectral irradiance, downward at 428 nm; Spectral irradiance, downward at 429 nm; Spectral irradiance, downward at 430 nm; Spectral irradiance, downward at 431 nm; Spectral irradiance, downward at 432 nm; Spectral irradiance, downward at 433 nm; Spectral irradiance, downward at 434 nm; Spectral irradiance, downward at 435 nm; Spectral irradiance, downward at 436 nm; Spectral irradiance, downward at 437 nm; Spectral irradiance, downward at 438 nm; Spectral irradiance, downward at 439 nm; Spectral irradiance, downward at 440 nm; Spectral irradiance, downward at 441 nm; Spectral irradiance, downward at 442 nm; Spectral irradiance, downward at 443 nm; Spectral irradiance, downward at 444 nm; Spectral irradiance, downward at 445 nm; Spectral irradiance, downward at 446 nm; Spectral irradiance, downward at 447 nm; Spectral irradiance, downward at 448 nm; Spectral irradiance, downward at 449 nm; Spectral irradiance, downward at 450 nm; Spectral irradiance, downward at 451 nm; Spectral irradiance, downward at 452 nm; Spectral irradiance, downward at 453 nm; Spectral irradiance, downward at 454 nm; Spectral irradiance, downward at 455 nm; Spectral irradiance, downward at 456 nm; Spectral irradiance, downward at 457 nm; Spectral irradiance, downward at 458 nm; Spectral irradiance, downward at 459 nm; Spectral irradiance, downward at 460 nm; Spectral irradiance, downward at 461 nm; Spectral irradiance, downward at 462 nm; Spectral irradiance, downward at 463 nm; Spectral irradiance, downward at 464 nm; Spectral irradiance, downward at 465 nm; Spectral irradiance, downward at 466 nm; Spectral irradiance, downward at 467 nm; Spectral irradiance, downward at 468 nm; Spectral irradiance, downward at 469 nm; Spectral irradiance, downward at 470 nm; Spectral irradiance, downward at 471 nm; Spectral irradiance, downward at 472 nm; Spectral irradiance, downward at 473 nm; Spectral irradiance, downward at 474 nm; Spectral irradiance, downward at 475 nm; Spectral irradiance, downward at 476 nm; Spectral irradiance, downward at 477 nm; Spectral irradiance, downward at 478 nm; Spectral irradiance, downward at 479 nm; Spectral irradiance, downward at 480 nm; Spectral irradiance, downward at 481 nm; Spectral irradiance, downward at 482 nm; Spectral irradiance, downward at 483 nm; Spectral irradiance, downward at 484 nm; Spectral irradiance, downward at 485 nm; Spectral irradiance, downward at 486 nm; Spectral irradiance, downward at 487 nm; Spectral irradiance, downward at 488 nm; Spectral irradiance, downward at 489 nm; Spectral irradiance, downward at 490 nm; Spectral irradiance, downward at 491 nm; Spectral irradiance, downward at 492 nm; Spectral irradiance, downward at 493 nm; Spectral irradiance, downward at 494 nm; Spectral irradiance, downward at 495 nm; Spectral irradiance, downward at 496 nm; Spectral irradiance, downward at 497 nm; Spectral irradiance, downward at 498 nm; Spectral irradiance, downward at 499 nm; Spectral irradiance, downward at 500 nm; Spectral irradiance, downward at 501 nm; Spectral irradiance, downward at 502 nm; Spectral irradiance, downward at 503 nm; Spectral irradiance, downward at 504 nm; Spectral irradiance, downward at
    Type: Dataset
    Format: text/tab-separated-values, 1910919 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publication Date: 2023-03-16
    Keywords: ALERT2018; ALERT2018_19_1; ALTITUDE; DATE/TIME; Hyperspectral radiometer, TriOS Mess- und Datentechnik GmbH, RAMSES; Irradiance, incident; Irradiance, incident, photosynthetically active; Irradiance, incident, photosynthetically active, absolute; LATITUDE; Lincoln Sea; LONGITUDE; Remote operated vehicle; ROV; Sampling on land; Spectral irradiance, incident at 320 nm; Spectral irradiance, incident at 321 nm; Spectral irradiance, incident at 322 nm; Spectral irradiance, incident at 323 nm; Spectral irradiance, incident at 324 nm; Spectral irradiance, incident at 325 nm; Spectral irradiance, incident at 326 nm; Spectral irradiance, incident at 327 nm; Spectral irradiance, incident at 328 nm; Spectral irradiance, incident at 329 nm; Spectral irradiance, incident at 330 nm; Spectral irradiance, incident at 331 nm; Spectral irradiance, incident at 332 nm; Spectral irradiance, incident at 333 nm; Spectral irradiance, incident at 334 nm; Spectral irradiance, incident at 335 nm; Spectral irradiance, incident at 336 nm; Spectral irradiance, incident at 337 nm; Spectral irradiance, incident at 338 nm; Spectral irradiance, incident at 339 nm; Spectral irradiance, incident at 340 nm; Spectral irradiance, incident at 341 nm; Spectral irradiance, incident at 342 nm; Spectral irradiance, incident at 343 nm; Spectral irradiance, incident at 344 nm; Spectral irradiance, incident at 345 nm; Spectral irradiance, incident at 346 nm; Spectral irradiance, incident at 347 nm; Spectral irradiance, incident at 348 nm; Spectral irradiance, incident at 349 nm; Spectral irradiance, incident at 350 nm; Spectral irradiance, incident at 351 nm; Spectral irradiance, incident at 352 nm; Spectral irradiance, incident at 353 nm; Spectral irradiance, incident at 354 nm; Spectral irradiance, incident at 355 nm; Spectral irradiance, incident at 356 nm; Spectral irradiance, incident at 357 nm; Spectral irradiance, incident at 358 nm; Spectral irradiance, incident at 359 nm; Spectral irradiance, incident at 360 nm; Spectral irradiance, incident at 361 nm; Spectral irradiance, incident at 362 nm; Spectral irradiance, incident at 363 nm; Spectral irradiance, incident at 364 nm; Spectral irradiance, incident at 365 nm; Spectral irradiance, incident at 366 nm; Spectral irradiance, incident at 367 nm; Spectral irradiance, incident at 368 nm; Spectral irradiance, incident at 369 nm; Spectral irradiance, incident at 370 nm; Spectral irradiance, incident at 371 nm; Spectral irradiance, incident at 372 nm; Spectral irradiance, incident at 373 nm; Spectral irradiance, incident at 374 nm; Spectral irradiance, incident at 375 nm; Spectral irradiance, incident at 376 nm; Spectral irradiance, incident at 377 nm; Spectral irradiance, incident at 378 nm; Spectral irradiance, incident at 379 nm; Spectral irradiance, incident at 380 nm; Spectral irradiance, incident at 381 nm; Spectral irradiance, incident at 382 nm; Spectral irradiance, incident at 383 nm; Spectral irradiance, incident at 384 nm; Spectral irradiance, incident at 385 nm; Spectral irradiance, incident at 386 nm; Spectral irradiance, incident at 387 nm; Spectral irradiance, incident at 388 nm; Spectral irradiance, incident at 389 nm; Spectral irradiance, incident at 390 nm; Spectral irradiance, incident at 391 nm; Spectral irradiance, incident at 392 nm; Spectral irradiance, incident at 393 nm; Spectral irradiance, incident at 394 nm; Spectral irradiance, incident at 395 nm; Spectral irradiance, incident at 396 nm; Spectral irradiance, incident at 397 nm; Spectral irradiance, incident at 398 nm; Spectral irradiance, incident at 399 nm; Spectral irradiance, incident at 400 nm; Spectral irradiance, incident at 401 nm; Spectral irradiance, incident at 402 nm; Spectral irradiance, incident at 403 nm; Spectral irradiance, incident at 404 nm; Spectral irradiance, incident at 405 nm; Spectral irradiance, incident at 406 nm; Spectral irradiance, incident at 407 nm; Spectral irradiance, incident at 408 nm; Spectral irradiance, incident at 409 nm; Spectral irradiance, incident at 410 nm; Spectral irradiance, incident at 411 nm; Spectral irradiance, incident at 412 nm; Spectral irradiance, incident at 413 nm; Spectral irradiance, incident at 414 nm; Spectral irradiance, incident at 415 nm; Spectral irradiance, incident at 416 nm; Spectral irradiance, incident at 417 nm; Spectral irradiance, incident at 418 nm; Spectral irradiance, incident at 419 nm; Spectral irradiance, incident at 420 nm; Spectral irradiance, incident at 421 nm; Spectral irradiance, incident at 422 nm; Spectral irradiance, incident at 423 nm; Spectral irradiance, incident at 424 nm; Spectral irradiance, incident at 425 nm; Spectral irradiance, incident at 426 nm; Spectral irradiance, incident at 427 nm; Spectral irradiance, incident at 428 nm; Spectral irradiance, incident at 429 nm; Spectral irradiance, incident at 430 nm; Spectral irradiance, incident at 431 nm; Spectral irradiance, incident at 432 nm; Spectral irradiance, incident at 433 nm; Spectral irradiance, incident at 434 nm; Spectral irradiance, incident at 435 nm; Spectral irradiance, incident at 436 nm; Spectral irradiance, incident at 437 nm; Spectral irradiance, incident at 438 nm; Spectral irradiance, incident at 439 nm; Spectral irradiance, incident at 440 nm; Spectral irradiance, incident at 441 nm; Spectral irradiance, incident at 442 nm; Spectral irradiance, incident at 443 nm; Spectral irradiance, incident at 444 nm; Spectral irradiance, incident at 445 nm; Spectral irradiance, incident at 446 nm; Spectral irradiance, incident at 447 nm; Spectral irradiance, incident at 448 nm; Spectral irradiance, incident at 449 nm; Spectral irradiance, incident at 450 nm; Spectral irradiance, incident at 451 nm; Spectral irradiance, incident at 452 nm; Spectral irradiance, incident at 453 nm; Spectral irradiance, incident at 454 nm; Spectral irradiance, incident at 455 nm; Spectral irradiance, incident at 456 nm; Spectral irradiance, incident at 457 nm; Spectral irradiance, incident at 458 nm; Spectral irradiance, incident at 459 nm; Spectral irradiance, incident at 460 nm; Spectral irradiance, incident at 461 nm; Spectral irradiance, incident at 462 nm; Spectral irradiance, incident at 463 nm; Spectral irradiance, incident at 464 nm; Spectral irradiance, incident at 465 nm; Spectral irradiance, incident at 466 nm; Spectral irradiance, incident at 467 nm; Spectral irradiance, incident at 468 nm; Spectral irradiance, incident at 469 nm; Spectral irradiance, incident at 470 nm; Spectral irradiance, incident at 471 nm; Spectral irradiance, incident at 472 nm; Spectral irradiance, incident at 473 nm; Spectral irradiance, incident at 474 nm; Spectral irradiance, incident at 475 nm; Spectral irradiance, incident at 476 nm; Spectral irradiance, incident at 477 nm; Spectral irradiance, incident at 478 nm; Spectral irradiance, incident at 479 nm; Spectral irradiance, incident at 480 nm; Spectral irradiance, incident at 481 nm; Spectral irradiance, incident at 482 nm; Spectral irradiance, incident at 483 nm; Spectral irradiance, incident at 484 nm; Spectral irradiance, incident at 485 nm; Spectral irradiance, incident at 486 nm; Spectral irradiance, incident at 487 nm; Spectral irradiance, incident at 488 nm; Spectral irradiance, incident at 489 nm; Spectral irradiance, incident at 490 nm; Spectral irradiance, incident at 491 nm; Spectral irradiance, incident at 492 nm; Spectral irradiance, incident at 493 nm; Spectral irradiance, incident at 494 nm; Spectral irradiance, incident at 495 nm; Spectral irradiance, incident at 496 nm; Spectral irradiance, incident at 497 nm; Spectral irradiance, incident at 498 nm; Spectral irradiance, incident at 499 nm; Spectral irradiance, incident at 500 nm; Spectral irradiance, incident at 501 nm; Spectral irradiance, incident at 502 nm; Spectral irradiance, incident at 503 nm; Spectral irradiance, incident at 504 nm; Spectral irradiance, incident at 505 nm; Spectral irradiance, incident at 506 nm;
    Type: Dataset
    Format: text/tab-separated-values, 2183496 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publication Date: 2023-03-16
    Keywords: ALERT2018; ALERT2018_19_1; DATE/TIME; DEPTH, water; Distance, relative, X; Distance, relative, Y; Hyperspectral radiometer, TriOS Mess- und Datentechnik GmbH, RAMSES; Irradiance, downward; Irradiance, downward, photosynthetically active; Irradiance, downward, photosynthetically active, absolute; LATITUDE; Lincoln Sea; LONGITUDE; Remote operated vehicle; ROV; Sampling on land; Spectral irradiance, downward at 320 nm; Spectral irradiance, downward at 321 nm; Spectral irradiance, downward at 322 nm; Spectral irradiance, downward at 323 nm; Spectral irradiance, downward at 324 nm; Spectral irradiance, downward at 325 nm; Spectral irradiance, downward at 326 nm; Spectral irradiance, downward at 327 nm; Spectral irradiance, downward at 328 nm; Spectral irradiance, downward at 329 nm; Spectral irradiance, downward at 330 nm; Spectral irradiance, downward at 331 nm; Spectral irradiance, downward at 332 nm; Spectral irradiance, downward at 333 nm; Spectral irradiance, downward at 334 nm; Spectral irradiance, downward at 335 nm; Spectral irradiance, downward at 336 nm; Spectral irradiance, downward at 337 nm; Spectral irradiance, downward at 338 nm; Spectral irradiance, downward at 339 nm; Spectral irradiance, downward at 340 nm; Spectral irradiance, downward at 341 nm; Spectral irradiance, downward at 342 nm; Spectral irradiance, downward at 343 nm; Spectral irradiance, downward at 344 nm; Spectral irradiance, downward at 345 nm; Spectral irradiance, downward at 346 nm; Spectral irradiance, downward at 347 nm; Spectral irradiance, downward at 348 nm; Spectral irradiance, downward at 349 nm; Spectral irradiance, downward at 350 nm; Spectral irradiance, downward at 351 nm; Spectral irradiance, downward at 352 nm; Spectral irradiance, downward at 353 nm; Spectral irradiance, downward at 354 nm; Spectral irradiance, downward at 355 nm; Spectral irradiance, downward at 356 nm; Spectral irradiance, downward at 357 nm; Spectral irradiance, downward at 358 nm; Spectral irradiance, downward at 359 nm; Spectral irradiance, downward at 360 nm; Spectral irradiance, downward at 361 nm; Spectral irradiance, downward at 362 nm; Spectral irradiance, downward at 363 nm; Spectral irradiance, downward at 364 nm; Spectral irradiance, downward at 365 nm; Spectral irradiance, downward at 366 nm; Spectral irradiance, downward at 367 nm; Spectral irradiance, downward at 368 nm; Spectral irradiance, downward at 369 nm; Spectral irradiance, downward at 370 nm; Spectral irradiance, downward at 371 nm; Spectral irradiance, downward at 372 nm; Spectral irradiance, downward at 373 nm; Spectral irradiance, downward at 374 nm; Spectral irradiance, downward at 375 nm; Spectral irradiance, downward at 376 nm; Spectral irradiance, downward at 377 nm; Spectral irradiance, downward at 378 nm; Spectral irradiance, downward at 379 nm; Spectral irradiance, downward at 380 nm; Spectral irradiance, downward at 381 nm; Spectral irradiance, downward at 382 nm; Spectral irradiance, downward at 383 nm; Spectral irradiance, downward at 384 nm; Spectral irradiance, downward at 385 nm; Spectral irradiance, downward at 386 nm; Spectral irradiance, downward at 387 nm; Spectral irradiance, downward at 388 nm; Spectral irradiance, downward at 389 nm; Spectral irradiance, downward at 390 nm; Spectral irradiance, downward at 391 nm; Spectral irradiance, downward at 392 nm; Spectral irradiance, downward at 393 nm; Spectral irradiance, downward at 394 nm; Spectral irradiance, downward at 395 nm; Spectral irradiance, downward at 396 nm; Spectral irradiance, downward at 397 nm; Spectral irradiance, downward at 398 nm; Spectral irradiance, downward at 399 nm; Spectral irradiance, downward at 400 nm; Spectral irradiance, downward at 401 nm; Spectral irradiance, downward at 402 nm; Spectral irradiance, downward at 403 nm; Spectral irradiance, downward at 404 nm; Spectral irradiance, downward at 405 nm; Spectral irradiance, downward at 406 nm; Spectral irradiance, downward at 407 nm; Spectral irradiance, downward at 408 nm; Spectral irradiance, downward at 409 nm; Spectral irradiance, downward at 410 nm; Spectral irradiance, downward at 411 nm; Spectral irradiance, downward at 412 nm; Spectral irradiance, downward at 413 nm; Spectral irradiance, downward at 414 nm; Spectral irradiance, downward at 415 nm; Spectral irradiance, downward at 416 nm; Spectral irradiance, downward at 417 nm; Spectral irradiance, downward at 418 nm; Spectral irradiance, downward at 419 nm; Spectral irradiance, downward at 420 nm; Spectral irradiance, downward at 421 nm; Spectral irradiance, downward at 422 nm; Spectral irradiance, downward at 423 nm; Spectral irradiance, downward at 424 nm; Spectral irradiance, downward at 425 nm; Spectral irradiance, downward at 426 nm; Spectral irradiance, downward at 427 nm; Spectral irradiance, downward at 428 nm; Spectral irradiance, downward at 429 nm; Spectral irradiance, downward at 430 nm; Spectral irradiance, downward at 431 nm; Spectral irradiance, downward at 432 nm; Spectral irradiance, downward at 433 nm; Spectral irradiance, downward at 434 nm; Spectral irradiance, downward at 435 nm; Spectral irradiance, downward at 436 nm; Spectral irradiance, downward at 437 nm; Spectral irradiance, downward at 438 nm; Spectral irradiance, downward at 439 nm; Spectral irradiance, downward at 440 nm; Spectral irradiance, downward at 441 nm; Spectral irradiance, downward at 442 nm; Spectral irradiance, downward at 443 nm; Spectral irradiance, downward at 444 nm; Spectral irradiance, downward at 445 nm; Spectral irradiance, downward at 446 nm; Spectral irradiance, downward at 447 nm; Spectral irradiance, downward at 448 nm; Spectral irradiance, downward at 449 nm; Spectral irradiance, downward at 450 nm; Spectral irradiance, downward at 451 nm; Spectral irradiance, downward at 452 nm; Spectral irradiance, downward at 453 nm; Spectral irradiance, downward at 454 nm; Spectral irradiance, downward at 455 nm; Spectral irradiance, downward at 456 nm; Spectral irradiance, downward at 457 nm; Spectral irradiance, downward at 458 nm; Spectral irradiance, downward at 459 nm; Spectral irradiance, downward at 460 nm; Spectral irradiance, downward at 461 nm; Spectral irradiance, downward at 462 nm; Spectral irradiance, downward at 463 nm; Spectral irradiance, downward at 464 nm; Spectral irradiance, downward at 465 nm; Spectral irradiance, downward at 466 nm; Spectral irradiance, downward at 467 nm; Spectral irradiance, downward at 468 nm; Spectral irradiance, downward at 469 nm; Spectral irradiance, downward at 470 nm; Spectral irradiance, downward at 471 nm; Spectral irradiance, downward at 472 nm; Spectral irradiance, downward at 473 nm; Spectral irradiance, downward at 474 nm; Spectral irradiance, downward at 475 nm; Spectral irradiance, downward at 476 nm; Spectral irradiance, downward at 477 nm; Spectral irradiance, downward at 478 nm; Spectral irradiance, downward at 479 nm; Spectral irradiance, downward at 480 nm; Spectral irradiance, downward at 481 nm; Spectral irradiance, downward at 482 nm; Spectral irradiance, downward at 483 nm; Spectral irradiance, downward at 484 nm; Spectral irradiance, downward at 485 nm; Spectral irradiance, downward at 486 nm; Spectral irradiance, downward at 487 nm; Spectral irradiance, downward at 488 nm; Spectral irradiance, downward at 489 nm; Spectral irradiance, downward at 490 nm; Spectral irradiance, downward at 491 nm; Spectral irradiance, downward at 492 nm; Spectral irradiance, downward at 493 nm; Spectral irradiance, downward at 494 nm; Spectral irradiance, downward at 495 nm; Spectral irradiance, downward at 496 nm; Spectral irradiance, downward at 497 nm; Spectral irradiance, downward at 498 nm; Spectral irradiance, downward at 499 nm; Spectral irradiance, downward at 500 nm; Spectral irradiance, downward at 501 nm; Spectral irradiance, downward at 502 nm; Spectral irradiance, downward at 503 nm; Spectral irradiance, downward at 504 nm; Spectral irradiance, downward at
    Type: Dataset
    Format: text/tab-separated-values, 466540 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publication Date: 2023-03-16
    Keywords: ALERT2018; ALERT2018_17_1; DATE/TIME; DEPTH, water; Distance, relative, X; Distance, relative, Y; Hyperspectral radiometer, TriOS Mess- und Datentechnik GmbH, RAMSES; Irradiance, downward; Irradiance, downward, photosynthetically active; Irradiance, downward, photosynthetically active, absolute; LATITUDE; Lincoln Sea; LONGITUDE; Remote operated vehicle; ROV; Sampling on land; Spectral irradiance, downward at 320 nm; Spectral irradiance, downward at 321 nm; Spectral irradiance, downward at 322 nm; Spectral irradiance, downward at 323 nm; Spectral irradiance, downward at 324 nm; Spectral irradiance, downward at 325 nm; Spectral irradiance, downward at 326 nm; Spectral irradiance, downward at 327 nm; Spectral irradiance, downward at 328 nm; Spectral irradiance, downward at 329 nm; Spectral irradiance, downward at 330 nm; Spectral irradiance, downward at 331 nm; Spectral irradiance, downward at 332 nm; Spectral irradiance, downward at 333 nm; Spectral irradiance, downward at 334 nm; Spectral irradiance, downward at 335 nm; Spectral irradiance, downward at 336 nm; Spectral irradiance, downward at 337 nm; Spectral irradiance, downward at 338 nm; Spectral irradiance, downward at 339 nm; Spectral irradiance, downward at 340 nm; Spectral irradiance, downward at 341 nm; Spectral irradiance, downward at 342 nm; Spectral irradiance, downward at 343 nm; Spectral irradiance, downward at 344 nm; Spectral irradiance, downward at 345 nm; Spectral irradiance, downward at 346 nm; Spectral irradiance, downward at 347 nm; Spectral irradiance, downward at 348 nm; Spectral irradiance, downward at 349 nm; Spectral irradiance, downward at 350 nm; Spectral irradiance, downward at 351 nm; Spectral irradiance, downward at 352 nm; Spectral irradiance, downward at 353 nm; Spectral irradiance, downward at 354 nm; Spectral irradiance, downward at 355 nm; Spectral irradiance, downward at 356 nm; Spectral irradiance, downward at 357 nm; Spectral irradiance, downward at 358 nm; Spectral irradiance, downward at 359 nm; Spectral irradiance, downward at 360 nm; Spectral irradiance, downward at 361 nm; Spectral irradiance, downward at 362 nm; Spectral irradiance, downward at 363 nm; Spectral irradiance, downward at 364 nm; Spectral irradiance, downward at 365 nm; Spectral irradiance, downward at 366 nm; Spectral irradiance, downward at 367 nm; Spectral irradiance, downward at 368 nm; Spectral irradiance, downward at 369 nm; Spectral irradiance, downward at 370 nm; Spectral irradiance, downward at 371 nm; Spectral irradiance, downward at 372 nm; Spectral irradiance, downward at 373 nm; Spectral irradiance, downward at 374 nm; Spectral irradiance, downward at 375 nm; Spectral irradiance, downward at 376 nm; Spectral irradiance, downward at 377 nm; Spectral irradiance, downward at 378 nm; Spectral irradiance, downward at 379 nm; Spectral irradiance, downward at 380 nm; Spectral irradiance, downward at 381 nm; Spectral irradiance, downward at 382 nm; Spectral irradiance, downward at 383 nm; Spectral irradiance, downward at 384 nm; Spectral irradiance, downward at 385 nm; Spectral irradiance, downward at 386 nm; Spectral irradiance, downward at 387 nm; Spectral irradiance, downward at 388 nm; Spectral irradiance, downward at 389 nm; Spectral irradiance, downward at 390 nm; Spectral irradiance, downward at 391 nm; Spectral irradiance, downward at 392 nm; Spectral irradiance, downward at 393 nm; Spectral irradiance, downward at 394 nm; Spectral irradiance, downward at 395 nm; Spectral irradiance, downward at 396 nm; Spectral irradiance, downward at 397 nm; Spectral irradiance, downward at 398 nm; Spectral irradiance, downward at 399 nm; Spectral irradiance, downward at 400 nm; Spectral irradiance, downward at 401 nm; Spectral irradiance, downward at 402 nm; Spectral irradiance, downward at 403 nm; Spectral irradiance, downward at 404 nm; Spectral irradiance, downward at 405 nm; Spectral irradiance, downward at 406 nm; Spectral irradiance, downward at 407 nm; Spectral irradiance, downward at 408 nm; Spectral irradiance, downward at 409 nm; Spectral irradiance, downward at 410 nm; Spectral irradiance, downward at 411 nm; Spectral irradiance, downward at 412 nm; Spectral irradiance, downward at 413 nm; Spectral irradiance, downward at 414 nm; Spectral irradiance, downward at 415 nm; Spectral irradiance, downward at 416 nm; Spectral irradiance, downward at 417 nm; Spectral irradiance, downward at 418 nm; Spectral irradiance, downward at 419 nm; Spectral irradiance, downward at 420 nm; Spectral irradiance, downward at 421 nm; Spectral irradiance, downward at 422 nm; Spectral irradiance, downward at 423 nm; Spectral irradiance, downward at 424 nm; Spectral irradiance, downward at 425 nm; Spectral irradiance, downward at 426 nm; Spectral irradiance, downward at 427 nm; Spectral irradiance, downward at 428 nm; Spectral irradiance, downward at 429 nm; Spectral irradiance, downward at 430 nm; Spectral irradiance, downward at 431 nm; Spectral irradiance, downward at 432 nm; Spectral irradiance, downward at 433 nm; Spectral irradiance, downward at 434 nm; Spectral irradiance, downward at 435 nm; Spectral irradiance, downward at 436 nm; Spectral irradiance, downward at 437 nm; Spectral irradiance, downward at 438 nm; Spectral irradiance, downward at 439 nm; Spectral irradiance, downward at 440 nm; Spectral irradiance, downward at 441 nm; Spectral irradiance, downward at 442 nm; Spectral irradiance, downward at 443 nm; Spectral irradiance, downward at 444 nm; Spectral irradiance, downward at 445 nm; Spectral irradiance, downward at 446 nm; Spectral irradiance, downward at 447 nm; Spectral irradiance, downward at 448 nm; Spectral irradiance, downward at 449 nm; Spectral irradiance, downward at 450 nm; Spectral irradiance, downward at 451 nm; Spectral irradiance, downward at 452 nm; Spectral irradiance, downward at 453 nm; Spectral irradiance, downward at 454 nm; Spectral irradiance, downward at 455 nm; Spectral irradiance, downward at 456 nm; Spectral irradiance, downward at 457 nm; Spectral irradiance, downward at 458 nm; Spectral irradiance, downward at 459 nm; Spectral irradiance, downward at 460 nm; Spectral irradiance, downward at 461 nm; Spectral irradiance, downward at 462 nm; Spectral irradiance, downward at 463 nm; Spectral irradiance, downward at 464 nm; Spectral irradiance, downward at 465 nm; Spectral irradiance, downward at 466 nm; Spectral irradiance, downward at 467 nm; Spectral irradiance, downward at 468 nm; Spectral irradiance, downward at 469 nm; Spectral irradiance, downward at 470 nm; Spectral irradiance, downward at 471 nm; Spectral irradiance, downward at 472 nm; Spectral irradiance, downward at 473 nm; Spectral irradiance, downward at 474 nm; Spectral irradiance, downward at 475 nm; Spectral irradiance, downward at 476 nm; Spectral irradiance, downward at 477 nm; Spectral irradiance, downward at 478 nm; Spectral irradiance, downward at 479 nm; Spectral irradiance, downward at 480 nm; Spectral irradiance, downward at 481 nm; Spectral irradiance, downward at 482 nm; Spectral irradiance, downward at 483 nm; Spectral irradiance, downward at 484 nm; Spectral irradiance, downward at 485 nm; Spectral irradiance, downward at 486 nm; Spectral irradiance, downward at 487 nm; Spectral irradiance, downward at 488 nm; Spectral irradiance, downward at 489 nm; Spectral irradiance, downward at 490 nm; Spectral irradiance, downward at 491 nm; Spectral irradiance, downward at 492 nm; Spectral irradiance, downward at 493 nm; Spectral irradiance, downward at 494 nm; Spectral irradiance, downward at 495 nm; Spectral irradiance, downward at 496 nm; Spectral irradiance, downward at 497 nm; Spectral irradiance, downward at 498 nm; Spectral irradiance, downward at 499 nm; Spectral irradiance, downward at 500 nm; Spectral irradiance, downward at 501 nm; Spectral irradiance, downward at 502 nm; Spectral irradiance, downward at 503 nm; Spectral irradiance, downward at 504 nm; Spectral irradiance, downward at
    Type: Dataset
    Format: text/tab-separated-values, 2188474 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publication Date: 2023-03-16
    Keywords: ALERT2018; ALERT2018_07_3; DATE/TIME; DEPTH, water; Distance, relative, X; Distance, relative, Y; Hyperspectral radiometer, TriOS Mess- und Datentechnik GmbH, RAMSES; LATITUDE; Lincoln Sea; LONGITUDE; Radiance, downward; Radiance, downward, photosynthetically active; Radiance, downward, photosynthetically active, absolute; Remote operated vehicle; ROV; Sampling on land; Spectral radiance, downward at 320 nm; Spectral radiance, downward at 321 nm; Spectral radiance, downward at 322 nm; Spectral radiance, downward at 323 nm; Spectral radiance, downward at 324 nm; Spectral radiance, downward at 325 nm; Spectral radiance, downward at 326 nm; Spectral radiance, downward at 327 nm; Spectral radiance, downward at 328 nm; Spectral radiance, downward at 329 nm; Spectral radiance, downward at 330 nm; Spectral radiance, downward at 331 nm; Spectral radiance, downward at 332 nm; Spectral radiance, downward at 333 nm; Spectral radiance, downward at 334 nm; Spectral radiance, downward at 335 nm; Spectral radiance, downward at 336 nm; Spectral radiance, downward at 337 nm; Spectral radiance, downward at 338 nm; Spectral radiance, downward at 339 nm; Spectral radiance, downward at 340 nm; Spectral radiance, downward at 341 nm; Spectral radiance, downward at 342 nm; Spectral radiance, downward at 343 nm; Spectral radiance, downward at 344 nm; Spectral radiance, downward at 345 nm; Spectral radiance, downward at 346 nm; Spectral radiance, downward at 347 nm; Spectral radiance, downward at 348 nm; Spectral radiance, downward at 349 nm; Spectral radiance, downward at 350 nm; Spectral radiance, downward at 351 nm; Spectral radiance, downward at 352 nm; Spectral radiance, downward at 353 nm; Spectral radiance, downward at 354 nm; Spectral radiance, downward at 355 nm; Spectral radiance, downward at 356 nm; Spectral radiance, downward at 357 nm; Spectral radiance, downward at 358 nm; Spectral radiance, downward at 359 nm; Spectral radiance, downward at 360 nm; Spectral radiance, downward at 361 nm; Spectral radiance, downward at 362 nm; Spectral radiance, downward at 363 nm; Spectral radiance, downward at 364 nm; Spectral radiance, downward at 365 nm; Spectral radiance, downward at 366 nm; Spectral radiance, downward at 367 nm; Spectral radiance, downward at 368 nm; Spectral radiance, downward at 369 nm; Spectral radiance, downward at 370 nm; Spectral radiance, downward at 371 nm; Spectral radiance, downward at 372 nm; Spectral radiance, downward at 373 nm; Spectral radiance, downward at 374 nm; Spectral radiance, downward at 375 nm; Spectral radiance, downward at 376 nm; Spectral radiance, downward at 377 nm; Spectral radiance, downward at 378 nm; Spectral radiance, downward at 379 nm; Spectral radiance, downward at 380 nm; Spectral radiance, downward at 381 nm; Spectral radiance, downward at 382 nm; Spectral radiance, downward at 383 nm; Spectral radiance, downward at 384 nm; Spectral radiance, downward at 385 nm; Spectral radiance, downward at 386 nm; Spectral radiance, downward at 387 nm; Spectral radiance, downward at 388 nm; Spectral radiance, downward at 389 nm; Spectral radiance, downward at 390 nm; Spectral radiance, downward at 391 nm; Spectral radiance, downward at 392 nm; Spectral radiance, downward at 393 nm; Spectral radiance, downward at 394 nm; Spectral radiance, downward at 395 nm; Spectral radiance, downward at 396 nm; Spectral radiance, downward at 397 nm; Spectral radiance, downward at 398 nm; Spectral radiance, downward at 399 nm; Spectral radiance, downward at 400 nm; Spectral radiance, downward at 401 nm; Spectral radiance, downward at 402 nm; Spectral radiance, downward at 403 nm; Spectral radiance, downward at 404 nm; Spectral radiance, downward at 405 nm; Spectral radiance, downward at 406 nm; Spectral radiance, downward at 407 nm; Spectral radiance, downward at 408 nm; Spectral radiance, downward at 409 nm; Spectral radiance, downward at 410 nm; Spectral radiance, downward at 411 nm; Spectral radiance, downward at 412 nm; Spectral radiance, downward at 413 nm; Spectral radiance, downward at 414 nm; Spectral radiance, downward at 415 nm; Spectral radiance, downward at 416 nm; Spectral radiance, downward at 417 nm; Spectral radiance, downward at 418 nm; Spectral radiance, downward at 419 nm; Spectral radiance, downward at 420 nm; Spectral radiance, downward at 421 nm; Spectral radiance, downward at 422 nm; Spectral radiance, downward at 423 nm; Spectral radiance, downward at 424 nm; Spectral radiance, downward at 425 nm; Spectral radiance, downward at 426 nm; Spectral radiance, downward at 427 nm; Spectral radiance, downward at 428 nm; Spectral radiance, downward at 429 nm; Spectral radiance, downward at 430 nm; Spectral radiance, downward at 431 nm; Spectral radiance, downward at 432 nm; Spectral radiance, downward at 433 nm; Spectral radiance, downward at 434 nm; Spectral radiance, downward at 435 nm; Spectral radiance, downward at 436 nm; Spectral radiance, downward at 437 nm; Spectral radiance, downward at 438 nm; Spectral radiance, downward at 439 nm; Spectral radiance, downward at 440 nm; Spectral radiance, downward at 441 nm; Spectral radiance, downward at 442 nm; Spectral radiance, downward at 443 nm; Spectral radiance, downward at 444 nm; Spectral radiance, downward at 445 nm; Spectral radiance, downward at 446 nm; Spectral radiance, downward at 447 nm; Spectral radiance, downward at 448 nm; Spectral radiance, downward at 449 nm; Spectral radiance, downward at 450 nm; Spectral radiance, downward at 451 nm; Spectral radiance, downward at 452 nm; Spectral radiance, downward at 453 nm; Spectral radiance, downward at 454 nm; Spectral radiance, downward at 455 nm; Spectral radiance, downward at 456 nm; Spectral radiance, downward at 457 nm; Spectral radiance, downward at 458 nm; Spectral radiance, downward at 459 nm; Spectral radiance, downward at 460 nm; Spectral radiance, downward at 461 nm; Spectral radiance, downward at 462 nm; Spectral radiance, downward at 463 nm; Spectral radiance, downward at 464 nm; Spectral radiance, downward at 465 nm; Spectral radiance, downward at 466 nm; Spectral radiance, downward at 467 nm; Spectral radiance, downward at 468 nm; Spectral radiance, downward at 469 nm; Spectral radiance, downward at 470 nm; Spectral radiance, downward at 471 nm; Spectral radiance, downward at 472 nm; Spectral radiance, downward at 473 nm; Spectral radiance, downward at 474 nm; Spectral radiance, downward at 475 nm; Spectral radiance, downward at 476 nm; Spectral radiance, downward at 477 nm; Spectral radiance, downward at 478 nm; Spectral radiance, downward at 479 nm; Spectral radiance, downward at 480 nm; Spectral radiance, downward at 481 nm; Spectral radiance, downward at 482 nm; Spectral radiance, downward at 483 nm; Spectral radiance, downward at 484 nm; Spectral radiance, downward at 485 nm; Spectral radiance, downward at 486 nm; Spectral radiance, downward at 487 nm; Spectral radiance, downward at 488 nm; Spectral radiance, downward at 489 nm; Spectral radiance, downward at 490 nm; Spectral radiance, downward at 491 nm; Spectral radiance, downward at 492 nm; Spectral radiance, downward at 493 nm; Spectral radiance, downward at 494 nm; Spectral radiance, downward at 495 nm; Spectral radiance, downward at 496 nm; Spectral radiance, downward at 497 nm; Spectral radiance, downward at 498 nm; Spectral radiance, downward at 499 nm; Spectral radiance, downward at 500 nm; Spectral radiance, downward at 501 nm; Spectral radiance, downward at 502 nm; Spectral radiance, downward at 503 nm; Spectral radiance, downward at 504 nm; Spectral radiance, downward at 505 nm; Spectral radiance, downward at 506 nm; Spectral radiance, downward at 507 nm; Spectral radiance, downward at 508 nm; Spectral radiance, downward at 509 nm; Spectral radiance, downward at 510 nm; Spectral radiance, downward at 511 nm; Spectral radiance, downward at 512 nm; Spectral radiance, downward at 513 nm; Spectral radiance, downward at 514 nm; Spectral radiance,
    Type: Dataset
    Format: text/tab-separated-values, 656296 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...