ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
  • 1
    Publication Date: 2023-06-12
    Description: Data consist of global monthly-averaged maps of Hue angle, Forel-Ule index and Secchi disk depth at ~ 4 km spatial resolution at the equator. Data extend from 1997 and 2018 and were generated from the ESA-OC-CCI v4.0 multi-sensor merged remote-sensing reflectances. Two downsized subproducts are also provided: - The global dataset, reduced at 1 degree spatial resolution - A North Atlantic dataset, reduced at 0.25 degree spatial resolution
    Keywords: CCI; File format; File name; File size; Forel-Ule; Hue angle; ocean color; Secchi; Uniform resource locator/link to file
    Type: Dataset
    Format: text/tab-separated-values, 1032 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-01-06
    Description: A global compilation of in situ data is vital to evaluate the quality of ocean-colour satellite data records. Here, we describe data compiled for the validation of ocean-colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI). The data were acquired from several sources (including, inter alia, MOBY, BOUSSOLE, AERONET-OC, SeaBASS, NOMAD, MERMAID, AMT, ICES, HOT, GeP&CO) and span the period from 1997 to 2021. Observations of the following variables were compiled: spectral remote-sensing reflectance, concentration of chlorophyll-a, spectral inherent optical properties, spectral diffuse attenuation coefficient and total suspended matter. The data were obtained from multi-project archives acquired via open internet services, or from individual projects, acquired directly from data providers. Methodologies were implemented for homogenisation, quality control and merging of all data. No changes were made to the original data, other than averaging of observations that were close in time and space, elimination of some points after quality control and conversion to a standard format. The result is a merged table available in text format. Metadata of each in situ measurement (original source, cruise or experiment, principal investigator) were propagated throughout the work and made available in the final table. By making the metadata available, provenance is better documented, and it is also possible to analyse each set of data separately. This paper also describes the changes that were made to the compilation in relation to the previous version.
    Keywords: Bio-optical in-situ data; ESA_OC-CCI; Ocean Colour; Ocean Colour multi-mission algorithm prototype system; OMAPS; remote sensing
    Type: Dataset
    Format: application/zip, 7 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-01-06
    Keywords: Bio-optical in-situ data; Chlorophyll a, fluorometric or spectrophotometric determination; Chlorophyll a as carbon; Comment; DATE/TIME; DEPTH, water; ESA_OC-CCI; High Performance Liquid Chromatography (HPLC); Identification; LATITUDE; LONGITUDE; Ocean Colour; Ocean Colour multi-mission algorithm prototype system; OMAPS; Quality flag, chlorophyll; Quality flag, time; remote sensing
    Type: Dataset
    Format: text/tab-separated-values, 444442 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-01-06
    Keywords: Absorption coefficient, colored dissolved organic matter at given wavelength; Algal pigment absorption coefficient at given wavelength; Backscattering coefficient of particles at given wavelength; Bio-optical in-situ data; Comment; DATE/TIME; DEPTH, water; ESA_OC-CCI; Identification; Irradiance coefficient, diffuse downwelling at given wavelength; LATITUDE; LONGITUDE; Ocean Colour; Ocean Colour multi-mission algorithm prototype system; OMAPS; Quality flag, time; remote sensing; Suspended matter, total; Wavelength
    Type: Dataset
    Format: text/tab-separated-values, 744392 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-01-06
    Keywords: Absorption coefficient, colored dissolved organic matter at given wavelength; Algal pigment absorption coefficient at given wavelength; Backscattering coefficient of particles at given wavelength; Bio-optical in-situ data; Comment; DATE/TIME; DEPTH, water; ESA_OC-CCI; Identification; Irradiance coefficient, diffuse downwelling at given wavelength; LATITUDE; LONGITUDE; Ocean Colour; Ocean Colour multi-mission algorithm prototype system; OMAPS; Quality flag, time; remote sensing; Suspended matter, total; Wavelength
    Type: Dataset
    Format: text/tab-separated-values, 842650 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-01-06
    Keywords: Absorption coefficient, colored dissolved organic matter at given wavelength; Algal pigment absorption coefficient at given wavelength; Backscattering coefficient of particles at given wavelength; Bio-optical in-situ data; Comment; DATE/TIME; DEPTH, water; ESA_OC-CCI; Identification; Irradiance coefficient, diffuse downwelling at given wavelength; LATITUDE; LONGITUDE; Ocean Colour; Ocean Colour multi-mission algorithm prototype system; OMAPS; Quality flag, time; remote sensing; Suspended matter, total
    Type: Dataset
    Format: text/tab-separated-values, 640449 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-14
    Description: This data set composes a large amount of quality controlled in situ measurements of major pigments based on HPLC collected from various expeditions across the Atlantic Ocean spanning from 71°S to 84°N, including 11 expeditions with RV Polarstern from the North Atlantic to the Arctic Fram Strait: PS74, PSS76, PS78, PS80, PS85, PS93.2 (https://doi.org/10.1594/PANGAEA.894872), PS99.1 (https://doi.org/10.1594/PANGAEA.905502), PS99.2 ( https://doi.org/10.1594/PANGAEA.894874), PS106 (https://doi.org/10.1594/PANGAEA.899284), PS107 (https://doi.org/10.1594/PANGAEA.894860), PS121 (https://doi.org/10.1594/PANGAEA.941011), four expeditions (two with RV Polarstern and two Atlantic Meridional Transect expeditions with RRS James Clark Ross and RRS Discovery) in the trans-Atlantic Ocean: PS113 ( https://doi.org/10.1594/PANGAEA.911061), PS120, AMT28 and AMT29, and one expedition with RV Polarstern in the Southern Ocean: PS103 (https://doi.org/10.1594/PANGAEA.898941). Chlorophyll a concentration (Chl-a) of six phytoplankton functions groups (PFTs) derived from these pigments have been also included. This published data set has contributed to validate satellite PFT products available on the EU funded Copernicus Marine Service (CMEMS, https://marine.copernicus.eu/), which are derived from multi-sensor ocean colour reflectance data and sea surface temperature using an empirical orthogonal function based approach (Xi et al. 2020; 2021). Description on in situ PFT Chl-a determination from pigment data: PFT Chl-a in this data set were derived using an updated diagnostic pigment analysis (DPA) method (Soppa et al., 2014; Losa et al., 2017) with retuned coefficients by Alvarado et al (2021), that was originally developed by Vidussi et al. (2001), adapted in Uitz et al. (2006) and further refined by Hirata et al. (2011) and Brewin et al. (2015). The values of retuned DPA weighting coefficients for PFT Chl-a determination are: 1.56 for fucoxanthin, 1.53 for peridinin, 0.89 for 19'-hexanoyloxyfucoxanthin, 0.44 for 19'-butanoyloxyfucoxanthin, 1.94 for alloxanthin, 2.63 for total chlorophyll b, and 0.99 for zeaxanthin. The coefficient retuning was based on an updated global HPLC pigment data base for the open ocean (water depth 〉200 m), which was compiled based on the previously published data sets spanning from 1988 to 2012 described in Losa et al. (2017), with updates in Xi et al. (2021) and Álvarez et al. (2022), by adding other newly available HPLC pigment data collected between 2012 and 2018 mainly from SeaBASS (https://seabass.gsfc.nasa.gov/), PANGAEA, British Oceanographic Data Centre (BODC, https://www.bodc.ac.uk/), and Australian Open Access to Ocean Data (AODN, https://portal.aodn.org.au/) (as of February 2020, see Table 1 attached in the 'Additional metadata' for more details on the data sources).
    Keywords: 19-Butanoyloxyfucoxanthin; 19-Hexanoyloxyfucoxanthin; AC3; Alloxanthin; AMT28; AMT28_10-33; AMT28_1-1; AMT28_11-36; AMT28_12-41; AMT28_13-44; AMT28_14-48; AMT28_15-50; AMT28_16-57; AMT28_17-58; AMT28_18-64; AMT28_19-66; AMT28_20-71; AMT28_21-73; AMT28_22-78; AMT28_23-80; AMT28_2-4; AMT28_24-85; AMT28_25-87; AMT28_27-93; AMT28_28-95; AMT28_29-100; AMT28_30-101; AMT28_31-105; AMT28_32-111; AMT28_33-112; AMT28_34-117; AMT28_35-120; AMT28_36-124; AMT28_37-126; AMT28_3-8; AMT28_38-133; AMT28_40-137; AMT28_4-11; AMT28_41-142; AMT28_43-147; AMT28_44-150; AMT28_45-155; AMT28_46-158; AMT28_47-164; AMT28_48-166; AMT28_49-174; AMT28_50-176; AMT28_51-181; AMT28_5-13; AMT28_52-183; AMT28_53-188; AMT28_54-190; AMT28_55-198; AMT28_56-199; AMT28_57-204; AMT28_58-206; AMT28_59-210; AMT28_59-212; AMT28_61-218; AMT28_6-17; AMT28_62-220; AMT28_63-226; AMT28_64-227; AMT28_65-232; AMT28_66-234; AMT28_7-21; AMT28_8-24; AMT28_9-28; AMT29; AMT29_AA; AMT29_AB; AMT29_AC; AMT29_AD; AMT29_AE; AMT29_AF; AMT29_AG; AMT29_AH; AMT29_AI; AMT29_AJ; AMT29_AK; AMT29_AL; AMT29_AM; AMT29_AN; AMT29_AO; AMT29_AP; AMT29_AQ; AMT29_AR; AMT29_AS; AMT29_AV; AMT29_AX; AMT29_BC; AMT29_BD; AMT29_BE; AMT29_BF; AMT29_BG; AMT29_BH; AMT29_BI; AMT29_BJ; AMT29_BK; AMT29_BL; AMT29_BM; AMT29_BN; AMT29_BO; AMT29_BP; AMT29_BQ; AMT29_BR; AMT29_BS; AMT29_BT; AMT29_BU; AMT29_BV; AMT29_BW; AMT29_BX; AMT29_BY; AMT29_BZ; AMT29_CA; AMT29_CB; AMT29_CC; AMT29_CD; AMT29_CE; AMT29_CF; AMT29_CG; AMT29_CH; AMT29_CJ; AMT29_CK; AMT29_CL; AMT29_CM; AMT29_CN; AMT29_CO; AMT29_CP; AMT29_CQ; AMT29_CR; AMT29_CS; AMT29_CT; AMT29_CTD_001; AMT29_CTD_002; AMT29_CTD_003; AMT29_CTD_004; AMT29_CTD_005; AMT29_CTD_006; AMT29_CTD_007; AMT29_CTD_008; AMT29_CTD_009; AMT29_CTD_010; AMT29_CTD_011; AMT29_CTD_013; AMT29_CTD_015; AMT29_CTD_016; AMT29_CTD_017; AMT29_CTD_018; AMT29_CTD_019; AMT29_CTD_020; AMT29_CTD_021; AMT29_CTD_022; AMT29_CTD_024; AMT29_CTD_025; AMT29_CTD_026; AMT29_CTD_027; AMT29_CTD_028; AMT29_CTD_029; AMT29_CTD_030; AMT29_CTD_031; AMT29_CTD_032; AMT29_CTD_034; AMT29_CTD_035; AMT29_CTD_036; AMT29_CTD_037; AMT29_CTD_038; AMT29_CTD_039; AMT29_CTD_041; AMT29_CTD_042; AMT29_CTD_043; AMT29_CTD_044; AMT29_CTD_045; AMT29_CTD_046; AMT29_CTD_047; AMT29_CTD_048; AMT29_CTD_049; AMT29_CTD_050; AMT29_CTD_051; AMT29_CTD_052; AMT29_CTD_053; AMT29_CTD_054; AMT29_CTD_055; AMT29_CU; AMT29_CV; AMT29_CW; AMT29_CX; AMT29_CY; AMT29_CZ; AMT29_DA; AMT29_DB; AMT29_DC; AMT29_DD; AMT29_DE; AMT29_DF; AMT29_DG; AMT29_DH; AMT29_DI; AMT29_DJ; AMT29_DK; AMT29_DL; AMT29_DM; AMT29_DN; AMT29_DO; AMT29_DP; AMT29_DQ; AMT29_DR; AMT29_DS; AMT29_DT; AMT29_DU; AMT29_DV; AMT29_DZ; AMT29_EB; AMT29_EC; AMT29_EE; AMT29_EF; AMT29_EG; AMT29_EI; AMT29_EK; AMT29_EL; AMT29_EM; AMT29_EO; AMT29_EQ; AMT29_ER; AMT29_ES; AMT29_ET; AMT29_EV; ANT-XXXII/2; ANT-XXXIII/4; Arctic Amplification; Arctic Ocean; ARK-XXIV/1; ARK-XXIV/2; ARK-XXIX/2.2; ARK-XXV/1; ARK-XXV/2; ARK-XXVI/1; ARK-XXVII/1; ARK-XXVII/2; ARK-XXVIII/2; ARK-XXX/1.1; ARK-XXX/1.2; ARK-XXXI/1.1,PASCAL; ARK-XXXI/1.2; ARK-XXXI/2; AWI_BioOce; Barents Sea; Biological Oceanography @ AWI; Campaign; Canarias Sea; chlorophyll; Chlorophyll a; Chlorophyll a, Diatoms; Chlorophyll a, Dinoflagellata; Chlorophyll a, Green algae; Chlorophyll a, Haptophyta; Chlorophyll a, Prochlorococcus; Chlorophyll a, Prokaryotes; Chlorophyll a + Divinyl chlorophyll a + Chlorophyllide a; Chlorophyll b + Divinyl chlorophyll b + Chlorophyllide b; Chlorophyllide a; CT; CTD, towed system; CTD/Rosette; CTD/Rosette with Underwater Vision Profiler; CTD001; CTD002; CTD003; CTD004; CTD005; CTD006; CTD007; CTD008; CTD009; CTD010; CTD011; CTD012; CTD013; CTD014; CTD015; CTD016; CTD017; CTD018; CTD019; CTD020; CTD021; CTD022; CTD023; CTD024; CTD025; CTD026; CTD027; CTD028; CTD029; CTD030; CTD031; CTD032; CTD033; CTD034; CTD035; CTD036; CTD037; CTD038; CTD039; CTD040; CTD041; CTD042; CTD043; CTD044; CTD045; CTD046; CTD047; CTD048; CTD049; CTD050; CTD051; CTD052; CTD053; CTD054; CTD055; CTD056; CTD057; CTD058; CTD059; CTD060; CTD061; CTD062; CTD063; CTD-Acoustic Doppler Current Profiler; CTD-ADCP; CTD-RO; CTD-RO_UVP; CTD-twoyo; DATE/TIME; DEPTH, water; Diagnostic Pigment Analysis (DPA); Discovery (2013); Divinyl chlorophyll a; DPA; DY110; EG_I; EG_II; EG_III; EG_IV; Event label; Exploitation of Sentinel-5-P for Ocean Colour Products; FRAM; FRontiers in Arctic marine Monitoring; Fucoxanthin; Global Long-term Observations of Phytoplankton Functional Types from Space; GLOPHYTS; Hand net; HG_I; HG_II; HG_III; HG_IV; HG_IX; HG_V; HG_VI; HG_VIII; HGIV; High Performance Liquid Chromatography (HPLC); HN; HPLC; ICE; Ice station; James Clark Ross; JR18001; Kb0; LATITUDE; Lazarev Sea; LONGITUDE; N3; N4; N5; North Greenland Sea; North Sea; Norwegian Sea; ORDINAL NUMBER; Peridinin; phytoplankton functional types; pigments; Polarstern; PORTWIMS; Project Portugal Twinning for Innovation and Excellence in Marine Science and Earth Observation; PS103; PS103_0_Underway-3; PS103_1-1; PS103_11-1; PS103_15-1; PS103_22-5; PS103_23-5; PS103_2-4; PS103_27-2; PS103_29-3; PS103_3-1; PS103_31-2; PS103_34-6; PS103_39-3; PS103_40-3; PS103_4-1; PS103_43-4; PS103_45-3; PS103_48-1; PS103_5-2; PS103_59-2; PS103_6-6; PS103_67-1; PS103_8-3; PS103_9-1; PS106_18-2; PS106_21-2; PS106_27-6; PS106_28-2; PS106_31-2; PS106_32-2; PS106_45-1; PS106_50-1; PS106_ZODIAK_170527; PS106_ZODIAK_170529; PS106_ZODIAK_170531; PS106_ZODIAK_170601; PS106_ZODIAK_170607; PS106_ZODIAK_170608; PS106_ZODIAK_170617; PS106_ZODIAK_170618; PS106_ZODIAK_170619; PS106_ZODIAK_170624; PS106_ZODIAK_170625; PS106_ZODIAK_170626; PS106_ZODIAK_170627; PS106_ZODIAK_170629; PS106_ZODIAK_170630; PS106_ZODIAK_170701; PS106_ZODIAK_170702; PS106_ZODIAK_170703; PS106_ZODIAK_170705; PS106_ZODIAK_170706; PS106_ZODIAK_170708; PS106_ZODIAK_170709; PS106_ZODIAK_170710; PS106_ZODIAK_170711; PS106_ZODIAK_170713; PS106_ZODIAK_170714; PS106_ZODIAK_170715; PS106/1; PS106/2; PS107; PS107_0_underway-9; PS107_10-4; PS107_12-3; PS107_14-1; PS107_16-3; PS107_18-3; PS107_19-1; PS107_20-8; PS107_21-1; PS107_22-6; PS107_24-1; PS107_28-1; PS107_29-1; PS107_33-6; PS107_34-5; PS107_36-1; PS107_37-1; PS107_40-2; PS107_40-3; PS107_40-4; PS107_40-5; PS107_40-6; PS107_48-1; PS107_6-8; PS107_7-1; PS107_8-1; PS113; PS113_0_underway-5; PS113_11-2; PS113_1-2; PS113_13-2; PS113_14-2; PS113_15-1; PS113_17-2; PS113_18-2; PS113_20-1; PS113_21-1; PS113_22-2; PS113_23-2; PS113_25-1; PS113_26-2; PS113_27-1; PS113_28-1; PS113_29-2; PS113_30-2; PS113_31-1; PS113_3-2; PS113_33-1; PS113_5-2; PS113_6-2; PS113_7-2; PS113_9-2; PS120; PS120_0_underway-10; PS120_11-3; PS120_15-3; PS120_19-3; PS120_20-1; PS120_21-3; PS120_24-3; PS120_3-1; PS120_5-3; PS120_8-3; PS121; PS121_0_Underway-65; PS121_1-2; PS121_12-2; PS121_15-1; PS121_16-5; PS121_24-2; PS121_25-2; PS121_27-2; PS121_28-4; PS121_29-1; PS121_32-2; PS121_33-2; PS121_34-1; PS121_35-3; PS121_36-1; PS121_38-1; PS121_39-1; PS121_40-3; PS121_43-7; PS121_44-3; PS121_45-1; PS121_52-2; PS121_52-6; PS121_5-3; PS121_7-3; PS74; PS74/104-1; PS74/107-1; PS74/108-1; PS74/112-1; PS74/119-1; PS74/120-1; PS74/127-1; PS74/128-1; PS74/132-1; PS74/133-1; PS74/134-1; PS74/1-track; PS74/2-track; PS76; PS76/001-1; PS76/002-1; PS76/005-1; PS76/007-2; PS76/009-1; PS76/017-1; PS76/020-1; PS76/025-1; PS76/026-1; PS76/030-1; PS76/034-3; PS76/039-1; PS76/041-1; PS76/044-1; PS76/049-1; PS76/051-1; PS76/057-1; PS76/058-1; PS76/062-1; PS76/064-1; PS76/068-1; PS76/072-1; PS76/080-1; PS76/082-1; PS76/094-1; PS76/098-1; PS76/102-1; PS76/109-3; PS76/110-1; PS76/111-1; PS76/120-2; PS76/121-1; PS76/122-1; PS76/124-3; PS76/129-1; PS76/132-1; PS76/134-1; PS76/135-1; PS76/136-1; PS76/138-1; PS76/139-1; PS76/157-1; PS76/159-2; PS76/166-1; PS76/167-1; PS76/170-2; PS76/173-1; PS76/174-1; PS76/175-1; PS76/176-1; PS76/178-1; PS76/179-3; PS76/181-1; PS76/182-1; PS76/184-1; PS76/185-1; PS76/194-1; PS76/200-1; PS76/201-1; PS76/203-1; PS76/204-1; PS76/208-5; PS76/210-2; PS76/211-1; PS76/216-1; PS76/220-1; PS76/223-1; PS76/224-1; PS76/227-3; PS76/229-1; PS76/231-1; PS76/233-1; PS76/235-
    Type: Dataset
    Format: text/tab-separated-values, 37522 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Losa, Svetlana N; Soppa, Mariana A; Dinter, Tilman; Wolanin, Aleksandra; Brewin, Robert J W; Bricaud, Annick; Oelker, Julia; Peeken, Ilka; Gentili, Bernard; Rozanov, Vladimir V; Bracher, Astrid (2017): Synergistic Exploitation of Hyper- and Multi-Spectral Precursor Sentinel Measurements to Determine Phytoplankton Functional Types (SynSenPFT). Frontiers in Marine Science, 4(203), 22 pp, https://doi.org/10.3389/fmars.2017.00203
    Publication Date: 2024-02-14
    Description: We derive the chlorophyll a concentration (Chla)for three main phytoplankton functional types (PFTs)-- diatoms, coccolithophores and cyanobacteria- by combining satellite multispectral-based information, being of a high spatial and temporal resolution, with retrievals based on high resolution of PFT absorption properties derived from hyperspectral measurements. The multispectral-based PFT Chla retrievals are based on a revised version of the empirical OC-PFT algorithm (Hirata et al. 2011) applied to the Ocean Colour Climate Change Initiative (OC-CCI) total Chla product. The PhytoDOAS analytical algorithm (Bracher et al. 2009, Sadeghi et al. 2012) is used with some modifications to derive PFT Chla from SCIAMACHY hyperspectral measurements. To combine synergistically these two PFT products (OC-PFT and PhytoDOAS), an optimal interpolation is performed for each PFT in every OC-PFT sub-pixel within a PhytoDOAS pixel, given its Chla and its a priori error statistics. The synergistic product (SynSenPFT) is presented for the period of August 2002 ? March 2012 and evaluated against in situ HPLC pigment data and satellite information on phytoplankton size classes (PSC) (Brewin et al. 2010, Brewin et al. 2015) and the size fraction (Sf) by Ciotti and Bricaud (2006. The most challenging aspects of the SynSenPFT algorithm implementation are discussed. Perspectives on SynSenPFT product improvements and prolongation of the time series over the next decades by adaptation to Sentinel multi- and hyperspectral instruments are highlighted.
    Keywords: AC3; Arctic Amplification
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-01-06
    Keywords: Bio-optical in-situ data; Comment; DATE/TIME; DEPTH, water; ESA_OC-CCI; Identification; LATITUDE; LONGITUDE; Ocean Colour; Ocean Colour multi-mission algorithm prototype system; OMAPS; remote sensing; Remote sensing reflectance at given wavelength
    Type: Dataset
    Format: text/tab-separated-values, 916687 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-01-06
    Keywords: Bio-optical in-situ data; Comment; DATE/TIME; DEPTH, water; ESA_OC-CCI; Identification; LATITUDE; LONGITUDE; Ocean Colour; Ocean Colour multi-mission algorithm prototype system; OMAPS; remote sensing; Remote sensing reflectance at given wavelength; Wavelength
    Type: Dataset
    Format: text/tab-separated-values, 3782904 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...