ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • nitrogen  (287)
  • Springer  (287)
  • Krefeld : Geologischer Dienst Nordhein-Westfalen
  • PANGAEA
  • Wien : Geolog. Bundesanst.
  • 2005-2009
  • 2000-2004  (60)
  • 1990-1994  (227)
Collection
Publisher
  • Springer  (287)
  • Krefeld : Geologischer Dienst Nordhein-Westfalen
  • PANGAEA
  • Wien : Geolog. Bundesanst.
  • Wiley-Blackwell  (1)
Years
Year
  • 1
    ISSN: 1570-7458
    Keywords: EPG ; stylectomy ; phloem amino acids ; nitrogen ; aphid-plant interaction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Effects of nitrogen deficiency in hydroponically grown barley seedlings (Hordeum vulgare L.) on the development and reproduction of the aphid Rhopalosiphum padi (L.) (Hemiptera: Aphididae) were investigated. Plant growth was significantly reduced in seedlings grown without nitrogen. Aphid intrinsic rate of increase (r m) was also significantly lower on these plants compared with that on plants grown with 8 mol m−3 nitrogen. Phloem sap was collected from seedling stems by aphid stylectomy and amino acids quantified by HPLC. There was a significant reduction in the concentration of non-essential amino acids as a group, but not of essential amino acids. Electrical penetration graphs (EPG) indicated that aphids reached the phloem more quickly and fed for longer on plants grown with nitrogen. This is the first reported study in which this combination of techniques has been used to understand the interactions of an aphid and plant under different environmental conditions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1572-8862
    Keywords: acetylene ion ; complex ; hydrogen ; nitrogen ; argon
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract The complexes formed by the positive acetylene ion with the hydrogen molecule, the nitrogen molecule, and the argon atom are investigated with ab initio calculations using the 6-311G** and the 6-31+G(2df,2pd) basis sets. MP2/6-311G** energies and optimum geometries are obtained, as well as single-point MP3, MP4, and QCISD(T) energies with the MP2/6-311G** optimized geometries. Single-point calculations are performed with the 6-31+G(2df,2pd) basis set at MP2/6-311G** optimized geometries.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 56 (2000), S. 139-152 
    ISSN: 1573-0867
    Keywords: nitrogen ; N leaching ; liquid manure ; catch crops ; N mineralization
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Results are presented from five years (1990–1995) of a field leaching experiment on a sandy soil in south-west Sweden. The aim was to study N leaching, change in soil organic N and N mineralization in cropping systems with continuous use of liquid manure (two application rates) and catch crops. N leaching from drains, N uptake in crops and mineral N in the soil were measured. Simulation models were used to calculate the N budget and N mineralization in the soil and to make predictions of improved fertilization strategies in relation to manure applications and changing the time for incorporation of catch crops. In treatments without catch crops, a normal and a double application of manure increased average N leaching by 15 and 34%, respectively, compared to treatment with commercial fertilizer. Catch crops reduced N leaching by, on average, 60% in treatments with a normal application of manure and commercial fertilizer, but only by 35% in the treatment with double the normal application rate of manure. Incorporation of catch crops in spring increased simulated net N mineralization during the crop vegetation period, and also during early autumn. In conclusion, manured systems resulted in larger N leaching than those receiving commercial fertilizer, mainly due to larger applications of mineral N in spring. More careful adaptation of commercial N fertilization with respect to the amounts of NH4-N applied with manure could, according to the simulations, reduce N leaching. Under-sown ryegrass catch crops effectively reduced N leaching in manured systems. Incorporating catch crop residues in late autumn instead of spring might be preferable with respect to N availability in the soil for the next crop, and would not increase N leaching.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Landscape ecology 15 (2000), S. 187-199 
    ISSN: 1572-9761
    Keywords: BOD5 ; catchment ; empirical model ; land use change ; land use scenarios ; nitrogen ; phosphorus ; runoff ; SO4
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Due largely to unprecedented land-use changes in the Porijõgi River catchment (southern Estonia) losses of nutrients and organic matter have decreased significantly. During the period 1987–1997 abandoned lands increased from 1.7 to 10.5% and arable lands decreased from 41.8 to 23.9%. At the same time, the runoff of total-N, total-P, SO4 and organic matter (after BOD5) decreased from 25.9 to 5.1, 0.32 to 0.13, 78 to 48, and 7.4 to 3.5 kg ha−1 yr−1, respectively. The most significant decreases occurred in agricultural subcatchments while the changes were insignificant in the forested upper course catchment. A simple empirical model which incorporates land-use pattern, fertilization intensity, soil parameters and water discharge accurately described the variations of total-N and total-P runoff in both the whole catchment and its agricultural subcatchments (R 2 varies from 0.95–0.99 for N to 0.49–0.93 for P). In small agricultural subcatchments the rate of fertilization is found the most important factor for nitrogen runoff, whereas in larger mosaic watersheds land use pattern plays the main role. Seven alternative scenarios compiled on the base of the empirical model allow to forecast potential nitrogen and phosphorus losses from the catchment. This information can be used in further landscape and regional planning of the whole region.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Plasma chemistry and plasma processing 20 (2000), S. 87-110 
    ISSN: 1572-8986
    Keywords: striations ; nitrogen ; spherical discharge ; spatially inhomogeneous Boltzmann equation ; electron velocity distribution function ; dc glow discharge
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Technology
    Notes: Abstract Recent observations of spherical striations in large-volume nitrogen dcdischarges with a central anode have stimulated investigations of thenonlocal electron kinetics in these striations by solving the spatiallyinhomogeneous Boltzmann equation adapted to spherical geometry. Becausethe radial course of the electric potential is largely unknown in thisdischarge, different models concerning its radial course have been developedand used. These models are based on the measured radii of the striationsand the assumption that the potential drop between successive striationsdoes not change. As a consequence, with decreasing distance between thestriations the electric field strongly increases toward the centralanode. It has been found that spherical striations are only obtained ifthe electric field is strongly modulated. In this case, a highly nonlocalbehavior of the velocity distribution function and strongly modulatedradial courses of the macroscopic quantities have been obtained.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Journal of chemical ecology 26 (2000), S. 1749-1763 
    ISSN: 1573-1561
    Keywords: Conversion factor ; free amino acids ; fruits ; Kjeldahl ; nitrogen ; nutrition ; protein ; pulp ; secondary metabolites
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract Protein content of plant tissues is usually estimated by multiplying total nitrogen by a conversion factor of 6.25. This technique assumes that all nitrogen originates from protein. When applied to fruit pulp, it overestimates protein content because pulp typically contains free amino acids and many nitrogenous secondary metabolites. At issue is the extent of error and, consequently, what the conversion factor between nitrogen and protein should be. We calculated a conversion factor based on pulp samples from 18 species collected in the southeastern United States. We also report a new and simple method of estimating protein and free amino acids in fruit pulp. Because previous studies have found high variation in protein and secondary metabolite content among fruit species, use of a single conversion factor for all species will generate error. In an attempt to reduce such error, we calculated protein contents and conversion factors separately for two common fruit types: lipid-rich/carbohydrate-poor and lipid-poor/carbohydrate-rich. We found no difference between these types of fruit and hence combined results in calculating an average conversion factor of 5.64. Use of an accurate conversion factor is important in estimating protein consumption by wild animals and in formulating diets of captive animals. It can also reveal whether loss of body mass in captive animals on fruit diets is due to insufficient protein consumption, secondary metabolite toxicity, or an imbalance of amino acids.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Journal of applied phycology 12 (2000), S. 331-339 
    ISSN: 1573-5176
    Keywords: algal biomass ; algal uptake ; ammonia stripping ; biological nutrient removal ; high rate algal ponds ; nitrogen ; nutrients ; nitrification ; urban wastewater treatment ; waste stabilisation ponds
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Two experimental high rate algal ponds (HRAPs) (1.5m2, 570 L per unit), each with a secondaryclarifier for algal biomass separation (0.025 m2,without recirculation), were fed with urban wastewaterfor a one-year period (June 1993 to July 1994). TheHRAPs were installed on the roof of the Department ofHydraulic, Coastal and Environmental Engineering ofthe Technical University of Catalonia, Barcelona,Spain (lat. 41° 24′ 42″ N; long. 2° 7′42″ E). Nitrogen removal efficiency and changes intotal nitrogen, total organic nitrogen,NH4 +-N, and oxidized nitrogen underdifferent hydraulic retention times (HRTs) werecompared. HRAP A was always operated at a higherHRT than HRAP B. Both HRAPs were subjected to thesame environmental conditions of solar radiation, airtemperature and influent water quality. Grab samplesof influent, effluent of the HRAP (mixed liquor) andfinal effluent from the clarifiers were taken once aweek. The annual average nitrogen removal was 73% forHRAP A, and 57% for HRAP B. Higher removal in HRAP Awas due to a lower inorganic nitrogen concentration inits effluent. Significant differences (p〉 0.05) inthe relative proportions of nitrogen forms between thetwo HRAPs were observed only in autumn and winter.This was mainly because HRAP B did not achieve a highlevel of NH4 +-N removal by stripping andalgal uptake, as observed in HRAP A. NH4 +-Nstripping was the most important mechanism fornitrogen removal (mean efficiency of 47% and 32% inHRAP A and B, respectively) followed by algal uptake,and subsequent algal separation in the clarifiers(mean efficiency of 26% and 25% in HRAP A and Brespectively). The conclusion of this study is thatHRT determines both the nitrogen removal efficiencyand the distribution of nitrogen forms in the effluentof a HRAP. The nitrogen removal level can becontrolled through suitable HRT operating strategies.By operating at a HRT of 4 days in spring and summer,and 10 days in autumn and winter, nitrogenconcentration in the effluent of a HRAP system can bereduced to less than 15 mg L-1 N.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1573-143X
    Keywords: nitrogen ; organic matter ; shrimp culture ; sulphur cycle bacteria ; water quality
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1573-1642
    Keywords: nitrogen ; phosphorus ; macroalgae ; estuary ; anthropogenic
    Source: Springer Online Journal Archives 1860-2000
    Topics: Architecture, Civil Engineering, Surveying , Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Our objective was to begin to investigate sources, sinks, and flux rates of nitrogen (N) and phosphorus (P) in Famosa Slough, a small (12 ha) highly modified urban estuary in San Diego, California, U.S.A. The hydrology of Famosa Slough has been modified by culverts that dampen tidal influence and seasonal runoff from two urban watersheds, each of which has been implicated as a nutrient source that generates nuisance algal blooms. In 1995 and 1996, the ranges of nutrients measured in the water column were extremely wide; upper values exceeded those in other estuaries identified as eutrophic. Average dissolved inorganic nitrogen ranged from 2 to 250 μM, while dissolved inorganic phosphorus ranged from 〈1 to 15 μM. Nutrient content of the water changed rapidly both spatially and temporally depending on the tides and rainfall. While tidal water dominated this system, especially in the dry season, our results indicate that Famosa Slough's small watershed, not the larger watershed of the San Diego River, was the major source of nutrients during rainfall. Sediment nutrients were also high (∼3 mg N g dry wt−1 and 0.600 mg P g dry wt−1). Short-term flux studies suggest that the large accumulations of opportunistic green macroalgae commonly found in this estuary, and possibly the sediments, may act as a large and rapid sink for nutrients during times of high nutrient supply. We suggest that small, shallow estuaries in urban settings may have more complex and rapid nutrient dynamics than those found in larger systems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1573-8469
    Keywords: carbon ; cellulose ; cover crop ; damping-off ; discriminant analysis ; lignin ; nitrogen
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Stages of oat–vetch cover crop decomposition were characterized over time in terms of carbon and nitrogen cycling, microbial activity and damping-off pathogen dynamics in organically and conventionally managed soils in a field and a controlled incubation experiment. A measurement of relative growth consisting of radial growth of a fungal colony over non-sterilized soil divided by that over sterilized soil was used as an assay of suppressiveness. No differences in relative growth of Pythium aphanidermatum and Rhizoctonia solani were detected between organic and conventionally managed soils amended with cover crop residue. Significant effects of cover crop decomposition stage on the relative growth of both pathogens were obtained. Relative growth of P. aphanidermatum was highest just after incorporation and decreased 3 weeks after incorporation. Relative growth of R. solani was highest about 20 days after incorporation, and decreased 2 weeks later in the organic system, but continued to increase in the conventional system. In both experiments, the N or C content, C:N ratio or dry weight of retrieved debris were significantly correlated with relative growth of P. aphanidermatum. Relative growth of R. solani was significantly correlated with the C:N ratio of soil or the C or N content of debris. Microbial activity was not consistently associated with relative growth of either pathogen.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Electronic Resource
    Electronic Resource
    Springer
    Wetlands ecology and management 8 (2000), S. 197-207 
    ISSN: 1572-9834
    Keywords: benthic invertebrates ; mitigation ; nitrogen ; organic matter ; pedogenesis ; phosphorus ; plant productivity ; restoration and rehabilitation ; salt marsh ; wetland creation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The development of wetland soil characteristics andbenthic invertebrate communities were evaluated increated Spartina alterniflorasalt marshes inNorth Carolina ranging in age from 1 to 25 years-old.A combination of measurements from different-agecreated marshes as well as periodic measurements overtime on two marshes were used to (1) document rates ofwetland pedogenesis, especially soil organic matter,and, (2) explore relationships between soil andbenthic invertebrate community development. Soilmacro-organic matter (MOM, the living and dead rootand rhizome mat), organic C and N increased and bulkdensity decreased during the 25 years following marshestablishment. The most dramatic changes in bulkdensity, MOM, C and N occurred within the upper 10 cmof the soil with lesser changes below this depth.Created marshes were sinks for organic C (90–140g·m-2·yr-1) and N (7–11g·m-2·yr-1) but not for P (0–1g·m-2·yr-1). The density of benthicinvertebrates (〉250 μm) and subsurface-depositfeeding oligochaetes also increased over time oncreated salt marshes. Invertebrate and oligochaetedensity were strongly related to MOM content(r2= 0.83–0.87) and soil organic C(r2= 0.52–0.82) and N (r2= 0.62–0.84). Thesefindings suggest that, in created salt marshes,development of the benthic invertebrate community istied to marsh soil formation, especially accumulationof organic matter as MOM and soil. Field studies thatmanipulate the quantity and quality of soil organicmatter are needed to elucidate the relationshipbetween salt marsh pedogenesis and benthicinvertebrate community development.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    ISSN: 1573-5036
    Keywords: ammonia exchange ; apoplast ; atmosphere ; glutamine synthetase ; nitrogen ; photorespiration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Plants have a compensation point for NH3 which ranges from 0.1 to 20 nmol mol-1, and may be several-fold higher or lower than naturally occurring atmospheric NH3 concentrations. This implies that NH3 fluxes over vegetated surfaces are bi-directional and that ammonia exchange with the atmosphere in many cases contributes significantly to the nitrogen economy of vegetation. Physiological regulation of plant–atmosphere NH3 fluxes is mediated via processes involved in nitrogen uptake, transport and metabolism. A rapid turnover of NH3 + in plant leaves leads to the establishment of a finite NH3 + concentration in the leaf apoplastic solution. This concentration determines, together with that of H+, the size of the NH3 compensation point. Barley and oilseed rape plants with access to NH3 + in the root medium have higher apoplastic NH3 + concentrations than plants absorbing NO3 -. Furthermore, the apoplastic NH3 + concentration increases with the external NH3 + concentration. Inhibition of GS leads to a rapid and substantial increase in apoplastic NH3 + and barley mutants with reduced GS activity have higher apoplastic NH3 + than wild-type plants. Increasing rates of photorespiration do not affect the steady-state NH3 + or H+ concentration in tissue or apoplast of oilseed rape, indicating that the NH3 + produced is assimilated efficiently. Nevertheless, NH3 emission increases due to a temperature-mediated displacement of the chemical equilibrium between gaseous and aqueous NH3 in the apoplast. Sugarbeet plants grown with NO3 - seem to be temporarily C-limited in the light due to a repression of respiration. As a consequence, the activity of chloroplastic GS declines during the day causing a major part of NH3 + liberated in photorespiration to be assimilated during darkness when 2-oxoglutarate is supplied in high rates by respiration.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    ISSN: 1573-5036
    Keywords: cereal ; cereal quality ; cereal yields ; natural regeneration ; nitrogen ; nitrogen uptake ; rye-grass ; set-aside ; white clover
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract During the period 1993–1997, at six contrasting sites located throughout England, two successive cereal test crops were grown both with and without nitrogen fertiliser after three or five years of set-aside or after continuous arable cropping. Vegetation during set-aside included natural regeneration and perennial rye-grass (Lolium perenne) with or without white clover (Trifolium repens), managed by mowing on one or more occasions per year. Establishment of the successive cereal test crops after destruction of the set-aside was generally not a problem. Fertile tiller numbers were increased by inclusion of clover in the set-aside cover or application of inorganic nitrogen. The presence of couch grass (Elytrigia repens) or volunteer cereals in the set-aside covers provided alternative hosts for take-all (Gaeumanomyces graminis) and eyespot (Pseudocercosporella herpotrichoides) and take-all caused some yield reductions in following cereal crops. Management during the set-aside period significantly affected grain yields of the subsequent cereal crops in the majority of the site-year combinations. However, these effects were not as large as would be expected after traditional break crops and were frequently masked by the application of nitrogen fertiliser. Mean yields increased by 80% due to the application nitrogen at the optimum rate compared to nil nitrogen. Most of the effects of set-aside treatment on grain yield were shown to be attributable to soil mineral nitrogen content, but at some sites, infections by take-all or eyespot also accounted for some of the variation. There were no effects of pests that could be related to treatment. The presence of sown clover during the set-aside period had the most consistent effect across sites, affecting tiller populations, grain yield and grain quality of cereal crops. At some sites, establishing a sown cover during the set-aside period, or cutting the cover more than once a year, improved grain yield and quality, and reduced the incidence of some specific weeds and disease.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 226 (2000), S. 57-69 
    ISSN: 1573-5036
    Keywords: ABA ; K/Na selectivity ; nitrate reduction ; nitrogen ; phloem ; phosphate ; root-shoot interactions ; salinity ; xylem
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract In this paper four classes of co-operative root-shoot interations are addressed. (I) Nitrogen concentrations in the xylem sap originating from the root and in the phloem sap as exported from source leaves are much lower than those required for growth by apices and developing organs. Enrichment of xylem sap N is achieved by xylem to xylem (X-X) transfer, by which reduced N, but not nitrate, is abstracted from the xylem of leaf traces and loaded into xylem vessels serving the shoot apex. Nitrogen enrichment of phloem sap from source leaves is enacted by transfer of reduced N from xylem to phloem (X-P transfer). Quantitative data for the extent of the contribution of X-X and X-P transfer to the nutrition of young organs of Ricinus communis L. and for their change with time are presented. (II) Shoot and root cooperate in nitrate reduction and assimilation. The partitioning of this process between shoot and root is shifted towards the root under conditions of nitrate- and K-deficiency and under salt stress, while P deficiency shifts nitrate reduction almost totally to the shoot. All four changes in partitioning can be attributed to the need for cation-anion balance during xylem transport and the change in electrical charge occurring with nitrate reduction. (III) Even maintenance of the specificity of ion uptake by the root may – in addition to its need for energy – require a shoot-root interaction. This is shown to be needed in the case of the maintenance of K/Na selectivity under the highly adverse condition of salt stress and absence of K supply from the soil. (IV) Hormonal root to shoot interactions are required in the whole plant for sensing mineral imbalances in the soil. This is shown and addressed for conditions of salt stress and of P deficiency, both of which lead to a strong ABA signalling from root to shoot but result in different patterns of response in the shoot.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 219 (2000), S. 177-185 
    ISSN: 1573-5036
    Keywords: alfalfa ; growth ; Medicago sativa L. ; nitrogen
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The dynamics of biomass and N accumulation following defoliation of alfalfa and the application of N fertilization has rarely been studied under field conditions, particularly in the seeding year. Our objectives were to determine the effect of N fertilization on the dynamics of biomass and N accumulation during the first regrowth of alfalfa in the seeding year, and to determine if a model describing critical N concentration developed for established stands could be used in the seeding year. In two separate experiments conducted in 1992 and 1993, the biomass and N accumulation of alfalfa grown with three N rates (0, 40 and 80 kg N ha-1) were determined weekly. Maximum shoot growth was reached with 40 kg N ha-1 in 1992, and maximum shoot growth was not reached with the highest N fertilization rate in 1993. Nitrogen fixation, root N reserves and soil inorganic N uptake when no N was applied were, therefore, not sufficient to ensure non-limiting N conditions, particularly when growth rates were the highest between 14 to 21 d after defoliation. Nitrogen fertilization increased shoot biomass accumulation in the first 21 d of regrowth, biomass partitioning to the shoots and shoot and taproot N concentrations. The model parameters of critical N concentration developed by Lemaire et al. (1985) for established stands of alfalfa were not adequate in the seeding year. The N requirements per unit of shoot biomass produced are greater in the seeding year than on established stands, and this was attributed to a greater proportion of leaves in the seeding year.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 219 (2000), S. 273-278 
    ISSN: 1573-5036
    Keywords: cellulose ; lignin ; litter ; nitrogen ; Pinus radiata ; tannins
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The quality of substrates in plantation forest litter, and their chemistry, can influence decomposition and N cycling. We studied the decomposition of Pinus radiata D. Don needles suspended on branches in windrows, for 3 yr after clear-cutting, using improved solid-state 13C NMR and chemical analysis. The NMR spectra suggested that the concentration of condensed tannins was 12–22%, and showed they were chemically altered during the period 4–12 months after clear-cutting. The spectra showed no evidence for further chemical modification of the tannins during the second or third years. Data for P. radiata needle decomposition in New Zealand indicated rapid loss of mass in the first 3 months, and condensed tannins did not appear to prevent mineralization of C or N. The tannin and lignin concentrations increased with decomposition of the needles, which was consistent with the early mineralization of readily available C compounds.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    ISSN: 1573-5036
    Keywords: cations ; fire ; nitrogen ; nutrients ; phosphorus ; slash-and-burn ; soil ; tropical forests
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The most commonly observed change in soil following slash-and-burn clearing of tropical forest is a short-term increase in nutrient availability. Studies of shifting cultivation commonly cite the incorporation of nutrient-rich ash from consumed aboveground biomass into soil as the reason for this change. The effects of soil heating on nutrient availability have been examined only rarely in field studies of slash-and-burn, and soil heating as a mechanism of nutrient release is most often assumed to be of minor importance in the field. Few budgets for above and belowground nutrient flux have been developed in the tropics, and a survey of results from field and laboratory studies indicates that soils are sufficiently heated during most slash-and-burn events, particularly in dry and monsoonal climates, to cause significant, even substantial release of nutrients from non-plant-available into plant-available forms in soil. Conversely, large aboveground losses of nutrients during and after burning often result in low quantities of nutrients that are released to soil. Assessing the biophysical sustainability of an agricultural practice requires detailed information about nutrient flux and loss incurred during management. To this end, current conceptual models of shifting cultivation should be revised to more accurately describe these fluxes and losses.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 223 (2000), S. 47-61 
    ISSN: 1573-5036
    Keywords: correlograms ; nitrogen ; soil arthropods ; soil resource islands ; variograms ; vesicular-arbuscular mycorrhizae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract This study compared the sizes, spacings and properties (soil moisture, pH, nitrogen, soil arthropods and VAM) of soil resource islands and bare patches in sagebrush-grass communities invaded by western juniper versus those without juniper. We analyzed 1000 surface soil samples taken from nine 50-m radius circular plots sampled in December of 1991 and May of 1992 on ‘The Island’, one of the few undisturbed areas of sagebrush-grass shrubland in Oregon. Spatial structure was interpreted from correlograms (Moran's I) and standardized semivariograms. The presence of juniper was associated with increased bare area and smaller, more widely spaced grass and sagebrush plants. Soil arthropod numbers and biomass in plots with juniper were only roughly one-fifth of those in sagebrush-grass plots in December. The dominant soil pattern in both sagebrush-grass and juniper-sagebrush-grass plots was regularly-distributed patches spanning a range of sizes and spacings. Plots with juniper had greater patchiness at shorter lags (〈3 m), and patchiness was more developed for soil moisture, net nitrification, and net N mineralization, whereas sagebrush-grass plots had greater patchiness at longer lags (3 – 9 m) and patchiness was more developed for NO3–N, arthropod numbers and biomass. These differences in soil patterns with and without juniper indicate that juniper responds to, or causes, changes in the size of resource islands under sage and grass when it invades sage-grass communities.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    ISSN: 1573-5036
    Keywords: crop residues ; nitrogen ; organic residues
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Experiments were conducted to test a new approach to the 15N isotope dilution technique for estimating crop N uptake from organic inputs. Soils were pre-labelled with 15N fertiliser and a carbon source. These were then incubated until there was stabilisation of the 15N abundance of the inorganic N pool and resumption of inorganic N concentrations. Residues were then applied to the soils and planted with ryegrass (Lolium perenneL.) to determine the nitrogen derived from the residue (Ndfr) using the isotope dilution equations. This method was compared with the direct method, i.e. where 15N-labelled residues were added to the soil and Ndfr in the ryegrass calculated directly. Estimates of percentage nitrogen derived from the residue (%Ndfr) alfalfa (Medicago sativaL.) in the ryegrass, were similar, 22 and 23% for the direct and soil pre-labelling methods, respectively, in the Wechsel sandy loam. Also, estimates of the %Ndfr from soybean (Glycine max (L.) Merr) residues in the Krumbach sandy loam were similar 34% (direct) and 36% (soil pre-labelling approach). However, in the Seibersdorf clay loam, the %Ndfr from soybean was 49% using the direct method and 61% using the soil pre-labelling method; yet Ndfr from common bean residue was 46% using the direct approach and 40% using the pre-labelling, not significantly different (P 〉 0.05). The soil pre-labelling approach appears to give realistic values for Ndfr. It was not possible to obtain an estimate of Ndfr using the soil pre-labelling method from the maize residues (Zea mays L.) in two of the soils, as there was no increase in the total N of the ryegrass over the growing period. This was probably due to microbial immobilisation of inorganic N, as a result of the wide C:N ratio of the residue added. The results suggest that the new soil pre-labelling method is feasible and that it is a potentially useful technique for measuring N release from a wide range or organic residues, but it requires further field-testing.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    ISSN: 1573-5036
    Keywords: carbon ; functional types ; leaf tensile strength ; litter quality ; mass loss ; nitrogen
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Litter decomposition, a major determinant of ecosystem functioning, is strongly influenced by the litter quality of different species. We aimed at (1) relating interspecific variation in leaf litter decomposition rate to the functional types different species belong to; and (2) understanding the chemical and/or physical basis for such variation and its robustness to environmental factors. We selected 52 Angiosperms from a climatic gradient in central-western Argentina, representing the widest range of functional types and habitats published so far. Ten litter samples of each species were simultaneously buried for 9 weeks during the 1996 summer in an experimental decomposition bed. Decomposition rate was defined as the percentage of dry mass loss after incubation. Chemical litter quality was measured as carbon (C) content, nitrogen (N) content, and C-to-N ratio. Since tensile strength of litter and living leaves were strongly correlated, the latter was chosen as an indicator of physical litter quality. A subset of 15 species representing different functional types was also incubated in England for 15 weeks, following a similar experimental procedure. Litter C-to-N and leaf tensile strength of the leaves showed the strongest negative associations with decomposition rate, both at the species and at the functional-type level. Decomposition rates of the same species in Argentina and in England were strongly correlated. This reinforces previous evidence that species rankings in terms of litter decomposition rates are robust to methodological and environmental factors. This paper has shown new evidence of plant control over the turnover of organic matter through litter quality, and confirms, over a broad spectrum of functional types, general models of resource allocation. The strong correlations between leaf tensile strength – a trait that is easy and quick to measure in a large number of species – decomposition rate, and C-to-N ratio indicate that leaf tensile strength can be useful in linking plant quality to decomposition patterns at the ecosystem level.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 219 (2000), S. 57-69 
    ISSN: 1573-5036
    Keywords: decomposition ; litter quality ; mycorrhiza ; nitrogen ; phosphorus ; saprotrophic microorganisms ; tannins ; forest soils ; acidification
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract We studied variation in forest floor thickness in four plantations of red pine (Pinus resinosa Ait.) which were similar in age, soil type and associated vegetation. The plantations were located (west to east) in the Clear Creek, Moshannon, Sproul and Tiadaghton State Forests of Pennsylvania, USA. A gradient in forest floor thickness exists across these plantations; the forest floor is thickest in the west and it becomes progressively thinner toward the east. Decomposition of imported litter increased from west to east, suggesting that the variation in forest floor thickness is related to variation in the rate of decomposition. Decomposition rates were related to saprotroph abundance. Variation in forest floor N and phenolic concentrations, in overall mycorrhiza density and in the relative proportions of three common mycorrhiza morphotypes could not explain the variation in decomposition rate. The P concentrations and pH of the forest floor were significantly lower at Clear Creek and Moshannon, where decomposition rates were lowest, compared to Sproul and Tiadaghton, where decomposition rates were most rapid. This suggests that P concentration and pH may have exerted some control on decomposition.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    ISSN: 1573-5036
    Keywords: climate change ; immobilisation ; mineralisation ; N-turnover ; nitrogen ; soil organic matter
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The following arguments are outlined and then illustrated by the response of the Hurley Pasture Model to [CO2] doubling in the climate of southern Britain. 1. The growth of N-limited vegetation is determined by the concentration of N in the soil mineral N pools and high turnover rates of these pools (i.e., large input and output fluxes) contribute positively to growth. 2. The size and turnover rates of the soil mineral N pools are determined overwhelmingly by N cycling into all forms of organic matter (plants, animals, soil biomass and soil organic matter — `immobilisation' in a broad sense) and back again by mineralisation. Annual system N gains (by N2 fixation and atmospheric deposition) and losses (by leaching, volatilisation, nitrification and denitrification) are small by comparison. 3. Elevated [CO2] enriches the organic matter in plants and soils with C, which leads directly to increased removal of N from the soil mineral N pools into plant biomass, soil biomass and soil organic matter (SOM). ‘Immobilisation’ in the broad sense then exceeds mineralisation. This is a transient state and as long as it exists the soil mineral N pools are depleted, N gaseous and leaching losses are reduced and the ecosystem gains N. Thus, net immobilisation gradually increases the N status of the ecosystem. 4. At the same time, elevated [CO2] increases symbiotic and non-symbiotic N2 fixation. Thus, more N is gained each year as well as less lost. Effectively, the extra C fixed in elevated [CO2] is used to capture and retain more N and so the N cycle tracks the C cycle. 5. However, the amount of extra N fixed and retained by the ecosystem each year will always be small (ca. 5–10 kg N ha-1 yr-1) compared with amount of N in the immobilisation-mineralisation cycle (ca. 1000 kg N ha-1 yr-1). Consequently, the ecosystem can take decades to centuries to gear up to a new equilibrium higher-N state. 6. The extent and timescale of the depletion of the mineral N pools in elevated [CO2] depends on the N status of the system and the magnitude of the overall system N gains and losses. Small changes in the large immobilisation—mineralisation cycle have large effects on the small mineral N pools. Consequently, it is possible to obtain a variety of growth responses within 1–10 year experiments. Ironically, ecosystem models — artificial constructs — may be the best or only way of determining what is happening in the real world.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    ISSN: 1573-5036
    Keywords: deciduous tree ; foliar pigmentation ; fungus ; litter mass loss ; nitrogen ; phosphorus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract We tested the hypothesis that there is a causal connection between autumn colour, nutrient concentration and decomposibility of fresh leaf litter. Samples from patches of different autumn colours within the leaves of the deciduous tree sycamore (Acer pseudoplatanus) were sealed into litter bags and incubated for one winter in an outdoor leaf mould bed. Green leaf patches were decomposed faster than yellow or brown patches and this corresponded with the higher N and P concentrations in the former. Black patches, indicating colonisation by the tar spot fungus Rhytisma acerinum, were particularly high in P, but were decomposed very slowly, owing probably to resource immobilisation by the fungus. The results supported the hypothesis and were consistent with a previous study reporting an interspecific link between autumn coloration and decomposition rate. Autumn leaf colour of deciduous woody plants may serve as a useful predictor of litter decomposibility in ecosystem or biome scale studies where extensive direct measurements of litter chemistry and decomposition are not feasible.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    ISSN: 1573-5117
    Keywords: Stable isotope tracers ; carbon ; nitrogen ; mangroves ; litterfall ; suspended matter ; zooplankton ; macrobenthos
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Stable carbon isotopic composition and C/N ratio were used to trace the input of carbon associated with mangrove litter into the estuary of the Godavari–Gautami delta system and Kakinada bay (Andhra Pradesh, India). Suspended organic matter in the mangrove channels was more depleted in 13C (average δ13C = −24.5‰) than in Kakinada bay which showed δ13C values for suspended matter (average δ13C = −22.7‰) closer to those expected for marine phytoplankton. Suspended organic matter from mangrove channels was enriched in nitrogen (average C/N atom ratio ≤ 12.7) and 13C (average δ13C = −24.5‰) relative to mangrove leaf litter, which had a C/N ratio of 75 and a δ13C value of −28‰. Lowest C/N ratios for suspended matter were observed during southwest monsoon when rainfall was highest. Although in general, mangrove litter fall was also lower during this period, no clear correlation was observed between litter fall and C/N ratio of suspended matter. In general, the composition of suspended matter pointed towards phytoplankton as a major component. Isotopic composition of zooplankton suggested selective feeding on 13C-enriched, marine phytoplankton in open Kakinada bay and on 13C-depleted organic matter, such as estuarine phytoplankton and mangrove litter, in the mangrove channels. From the δ13C signature, it appeared that mangrove carbon was present to some extent in zooplankton and macrofauna from the mangrove mudflats and channels, but the signal rapidly decreased in Kakinada bay. Nitrogen isotopic composition of zooplankton and macrofauna indicated a progressive enrichment of 15N away from the mangrove forest towards the northern part of Kakinada bay, in approach of Kakinada city. This is thought to reflect input of anthropogenic nitrogen enriched in 15N and subsequent uptake of this enriched nitrogen into the aquatic food chain.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    ISSN: 1573-515X
    Keywords: Bouteloua eriopoda ; Chihuahuan Desert ; desertification ; hydrology ; Larrea tridentata ; nitrogen ; nutrient budgets ; phosphorus ; runoff
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Losses of dissolved nutrients (N, P, K, Ca, Mg, Na,Cl, and SO4) in runoff were measured on grasslandand shrubland plots in the Chihuahuan desert ofsouthern New Mexico. Runoff began at a lowerthreshold of rainfall in shrublands than ingrasslands, and the runoff coefficient averaged 18.6%in shrubland plots over a 7-year period. In contrast,grassland plots lost 5.0 to 6.3% of incidentprecipitation in runoff during a 5.5-year period. Nutrient losses from shrubland plots were greater thanfrom grassland plots, with nitrogen losses averaging0.33 kg ha−1 yr−1 vs0.15 kg ha−1 yr−1, respectively, during a 3-year period. Thegreater nutrient losses in shrublands were due tohigher runoff, rather than higher nutrientconcentrations in runoff. In spite of these nutrientlosses in runoff, all plots showed net accumulationsof most elements due to inputs from atmosphericdeposition. Therefore, loss of soil nutrients byhillslope runoff cannot, by itself, account for thedepletion of soil fertility associated withdesertification in the Chihuahuan desert.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    ISSN: 1573-5117
    Keywords: nutrient flux ; nitrogen ; phosphate ; tidal flats ; temperature ; geographical comparison
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract During an annual cycle, flux rates of oxygen, nitrate, nitrite, ammonium, phosphate and silicate were measured in light and dark bell jars at three sites in Ria Formosa (Algarve, Portugal) enclosing either a natural macrophytic community (macroalgae on sand or mud, a seagrass bed of Zostera noltii) or bare sediments. The results are compared with a preceeding study in which the same bell jar technique has been applied in the Sylt-Rømø Bay of the northern Wadden Sea. Nitrate flux was mainly directed from the water column to the benthic communities in Ria Formosa, as well as in the Sylt-Rømø Bay. However, nitrate uptake was higher in the northern, more eutrophic study area. In Ria Formosa, nutrient concentrations were lower than in the Sylt-Rømø Bay possibly due to strong water exchange with Atlantic waters. High temperatures and strong insolation had a greater impact on nitrate fluxes in Ria Formosa than in the Sylt-Rømø Bay. Bioturbating macrofauna increased ammonium efflux in the Sylt- Rømø Bay while this effect was not as pronounced in the Ria Formosa study sites. Benthic phosphate uptake dominated in the Ria Formosa and was correlated to initial phosphate concentrations in incoming waters. At both study sites, oxygen and nutrient fluxes were correlated with temperature. Additionally, flux rates were strongly influenced by biotic components and levels of eutrophication. A literature survey showed that mainly in temperate regions, material fluxes increase with temperature, whereas in warmer areas, ammonium and phosphate fluxes between sediment and water were generally lower.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    ISSN: 1573-1561
    Keywords: Nicotiana sylvestris ; nitrogen ; nicotine ; allocation ; growth ; reproduction ; induced defenses ; costs of defense
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract We present the first evidence for a fitness cost of an inducible response that is detectable in a nitrogen (N) currency. Nicotine is an induced defense in Nicotiana sylvestris that can utilize 5–8% of the plant's total N, an investment that apparently cannot be recouped by metabolism. Induced nicotine production is endogenously regulated by jasmonic acid (JA), and we treated leaves with the methyl ester of this wound hormone (MeJA) in quantities (0, 25, 250 μg) known to elicit changes in endogenous JA and subsequent nicotine responses comparable to those elicited by mechanical wounding and herbivory in this species. We grew plants in competition chambers (CCs) in which three same-sized plants could compete for a communal but fixed pool of 15NO3 to quantify the outcome of competition for this fitness-limiting resource that is used both in defense and seed production. Competition profoundly increased all measures of growth and reproductive performance measured per milligram of N acquired. While plants acquired all the N supplied to them in the hydroponic solution, plants grown in CCs (as compared those grown in individual chambers—ICs) retained more of this N and produced more biomass, had larger nicotine contents, allocated less of their N to nicotine, produced larger floral stalks with more flowers, aborted fewer flowers, matured more capsules, and produced a greater mass of seed. Plants grown in ICs produced heavier seed, but this difference did not translate into a difference in seed viability. MeJA treatment increased nicotine concentrations in proportion to the amount applied and significantly reduced growth (13–23%) and reproductive (31–44%) performance for plants grown with uninduced competitors, reflecting a large opportunity cost of induction. The effects of MeJA treatment on growth and reproduction were significantly less pronounced for plants grown in ICs. MeJA treatment significantly reduced the ability of plants to compete for [15N]KNO3 (reducing uptake by 9.5% and 23.7% for 25- and 250-μg MeJA-treated plants, respectively); no reductions in N acquisition were found in IC grown plants treated with MeJA. This impairment of competitive ability could account for 41–47% of the jasmonate-induced reductions in biomass by the day 15 harvest and 12–20% of the reductions in seed set and, in addition, created by "opportunity benefit" for neighboring uninduced plants, which grew larger, aborted fewer flowers, and matured more seed (a 28% increase) than did uninduced plants competing with similarly uninduced plants. Competition dramatically increased plant growth and reproductive performance, and MeJA treatment of these high-performing plants significantly reduced their competitive ability, which translated into opportunity costs for induced plants and opportunity benefits for neighboring uninduced plants. Induced plants minimized these fitness costs by reducing their use of recently acquired N for nicotine biosynthesis when growing with competitors. MeJA treatments also altered stalk length, flower production, flower abortion, and allocation to seed mass. In spite of all this plasticity, induced responses incur large fitness costs, costs that could be in part attributed to reductions in competitive ability for N. We conclude that inducibility functions to minimize these costs.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 56 (2000), S. 79-85 
    ISSN: 1573-0867
    Keywords: exchangeable cations ; nitrogen ; soil carbon ; soil quality
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The long term impact of excreta return on some chemical and biological properties of a pasture soil fertilised with sulphur and phosphate was studied in a system that had been with or without excreta for 23 years. Excreta free areas that had developed under electric fencelines, and parallel transects in the paddocks, were sampled to provide this comparison. Sampling was to 300 mm depth in 0–75, 75–150 and 150–300 mm sections. Total carbon and nitrogen were 20% higher in the 0–150 mm soil layer of areas receiving excreta but did not differ in the 150–300 mm layer. Carbon:nitrogen ratios were similar in both systems as was mineralisable nitrogen, both absolutely and as a percentage of total in the 0–75 mm layer. Significantly more N was mineralised in the 75–150 mm layers of the areas receiving excreta but this was reversed in the 150–300 mm layer. Nitrification rate was higher in all layers of the excreta areas. Inorganic and organic P fractions did not differ significantly. Total P was significantly higher in the 0–75 mm layer and significantly lower in the 150–300 mm layer of the excreta areas. Exchangeable potassium was much higher throughout the excreta areas while this was offset by calcium. The sum of the cations was similar in both areas. Excreta affected most of the diagnostic soil tests used for fertiliser recommendations. The soil properties measured did not reflect clearly the differences in productivity that were obvious in the two areas. It is concluded that excreta return has a impact resulting in increased organic matter storage. Short-term effects of urine have a greater impact on productivity. The major effect is on the disposition of cations and available P.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 57 (2000), S. 75-82 
    ISSN: 1573-0867
    Keywords: nitrogen ; leaching ; paddy soil ; wheat ; rice
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Nitrogen in percolation water was observed in paddy field soil under rice/wheat rotation. Different N-application rates were designed. Porous pipes were installed in triplicate at depths of 30, 60 and 90 cm to collect the water in the period of wheat growth. Suction cups were installed in triplicate at the same depths to collect the water during the period of rice growth. NH4 +, NO3 - and total N in the water were analysed with a continuous-flow nitrogen analyzer. Results showed that nitrate was the predominant form of nitrogen in percolation water during the period of wheat growth. Nitrate leaching was high in early spring after the `tillering fertilisation'. More than 50 mg l-1 of nitrate concentration in percolation water was observed for 30 and 60 cm in depth and more than 15 mg l-1 were observed for 90 cm. The concentration decreased quickly and was very low, less than 2 mg l-1 usually, in the earring stage of wheat. Nitrate in water was low, less than 1.5 mg l-1 usually, when the field was flooded during the period of rice growth. Some soluble organic N existed in the water. Nitrate in percolation water increased when the field was drained. The leaching loss of nitrogen during winter wheat growth period was estimated to be about 3.4% of the N-fertiliser applied at the normal application rate of farmers; for the rice growth period it was around 1.8%. Although a reduced N-application decreased N leaching, it caused a marked decrease in crop yield.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 56 (2000), S. 231-240 
    ISSN: 1573-0867
    Keywords: nitrogen ; N ; nitrate ; ammonia ; dairy farming ; systems research ; environment ; sandy soils ; groundwater ; leaching
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract In the sandy regions of The Netherlands, high losses of N from intensified dairy farms are threatening the environment. Therefore, government defined decreasing maximum levy-free N surplusses for the period 1998–2008. On most dairy farms, the current N surplus has to be reduced by half at least. Farmers fear that realizing these surplusses will be expensive, because it limits application of animal manure, which then has to be exported or additional land has to be bought. Moreover, farmers are worried about the impact on soil fertility. To explore the possibilities for reducing surplusses of average intensive farms by improved nutrient management, farming systems research is carried out at prototype farm ‘De Marke’. Results are compared with results of a commercial farm in the mid-1980s, the moment that systems research started and introduction of the milk quota system put a halt to further intensification. Results indicate that average intensive farms can realise a reduction in N surplus to a level below the defined final maximum, without the need to buy land or to export slurry. Inputs of N in purchased feeds and fertilisers decreased by 56 and 78%, respectively. Important factors are reduced feed intake per unit milk, as a result of a higher milk yield per cow, less young stock and judicious feeding, an improved utilization of ‘home-made’ manure and a considered balance between the grassland and maize area. Changed soil fertility status did not constrain crop production. Nitrate concentration in the upper groundwater decreased from 200 to 50 mg l-1, within a few years.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 57 (2000), S. 13-22 
    ISSN: 1573-0867
    Keywords: biogeochemistry ; estuary ; nitrogen ; river ; transport
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Long-term results of the monthly measurement of dissolved inorganic nitrogen (DIN) concentrations in three major rivers in China are presented. These data are combined with river discharge data to calculate the DIN loads discharged into the ocean. About 774.90 × 103, 55.38 × 103and 144.55 × 103tons of DIN were transported to their respective estuaries each year by the Changjiang, the Huanghe and the Zhujiang in 1980–1989, mainly in the form of nitrate (〉 80 percent). The annual transport of DIN and mean concentration of nitrate in the Changjiang had increased drastically (four-fold) in the last 29 years, especially during the 1980s. Although nitrate concentrations of the Zhujiang and the Huanghe had also increased in the 1980s, their total annual loads of DIN varied mainly with annual runoff volumes, showing no obvious uptrends. Our results also demonstrate that the majority of the DIN load of each river was transported in the high-flow period (70–80 percent). A positive relationship is observed between the annual DIN transport of the Changjiang and the annual application of chemical fertilizers in its catchment. The annual DIN loads of the Huanghe and the Zhujiang were influenced mainly by runoff volume, and also by application of chemical fertilizers.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 57 (2000), S. 1-12 
    ISSN: 1573-0867
    Keywords: Asia ; fertilizer ; ammonia ; food ; greenhouse effect ; nitrogen
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The addition of anthropogenic N by food and energy production to the global environment contributes to the greenhouse effect, acid deposition, photochemical smog, stratospheric ozone depletion and eutrophication of fresh and marine waters. On a global basis, anthropogenic N mobilization is greater then natural sources of bio-reactive N. Currently, Asia is a hotspot of N mobilization and distribution to downwind and downstream environments, primarily due to food production. Asia's contribution will continue to increase, not only due to population growth, but also to increases in the per capita consumption of food and energy. This paper provides an overview of the global N cycle, presents an analysis of N dynamics within agroecosystems, examines N mobilization in Asia and discusses possible rates of N mobilization in the future.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Electronic Resource
    Electronic Resource
    Springer
    Agroforestry systems 50 (2000), S. 59-75 
    ISSN: 1572-9680
    Keywords: below-ground competition ; carbohydrates ; nitrogen ; nutrient leaching ; resin cores
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Tree pruning is a common management practice in agroforestry for mulching and reducing competition between the annual and perennial crop. The below-ground effects of pruning, however, are poorly understood. Therefore, nutrient dynamics and root distribution were assessed in hedgerow plantings of Acacia saligna (Labill.) H.L. Wendl. after tree pruning. Pruning to a height of 1.5 m was carried out in March and September 1996. In July and October 1996, the fine root distribution (〈 2 mm) and their carbohydrate contents were determined at three distances to the tree row by soil coring. At the same time, foliar nutrient contents were assessed, whereas nutrient leaching was measured continuously. The highest root length density (RLD) was always found in the topsoil (0–0.15 m) directly under the hedgerow (0–0.25 m distance to trees). Pruning diminished the RLD in the acacia plots at all depths and positions. The relative vertical distribution of total roots did not differ between trees with or without pruning, but live root abundance in the subsoil was comparatively lower when trees were pruned than without pruning. In the dry season, the proportion of dead roots of pruned acacias was higher than of unpruned ones, while the fine roots of unpruned trees contained more glucose than those of pruned trees. Pruning effectively reduced root development and may decrease potential below-ground competition with intercropped plants, but the reduction in subsoil roots also increased the danger of nutrient losses by leaching. Leaching losses of such mobile nutrients as NO3− were likely to occur especially in the alley between pruned hedgerows and tended to be higher after pruning. The reduced size of the root system of pruned acacias negatively affected their P and Mn nutrition. Pruning also reduced the function of the trees as a safety net against the leaching of nutrients for both NO3− and Mn, though not for other studied elements. If nutrient capture is an important aim of an agroforestry system, the concept of alley cropping with pruning should be revised for a more efficient nutrient recycling in the system described here.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Electronic Resource
    Electronic Resource
    Springer
    International journal of thermophysics 21 (2000), S. 1033-1044 
    ISSN: 1572-9567
    Keywords: intermolecular potential ; nitrogen ; speed of sound ; virial coefficients
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Speeds of sound in nitrogen were measured at temperatures between 170 and 400 K at amount-of-substance densities between 40 and 400 mol·m−3. From these measurements, second and third acoustic virial coefficients were obtained. The parameters of two- and three-body isotropic intermolecular potential-energy models were optimized in a simultaneous fit to the second and third acoustic virial coefficients and the ordinary second and third virial coefficients of nitrogen reported by Nowak et al. The results, which shows that the acoustic and ordinary virial coefficients are mutually consistent, may be used to predict second and third virial coefficients, and their acoustic counterparts, over a wide range of temperatures. The parameters of an anisotropic site-site potential-energy model were also obtained from a fit to the acoustic and ordinary second virial coefficients alone.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Electronic Resource
    Electronic Resource
    Springer
    International journal of thermophysics 21 (2000), S. 983-997 
    ISSN: 1572-9567
    Keywords: acoustic resonator ; argon ; Greenspan viscometer ; helium ; helium-xenon mixture ; methane ; nitrogen ; speed of sound ; viscosity of gases ; xenon
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract An improved Greenspan acoustic viscometer (double Helmholtz resonator) was used to measure the viscosity of gases at temperatures from 250 to 400 K and at pressures up to 3.4 MPa. The improvements include a vibration damping suspension and the relocation of the fill duct. The fill duct, which is needed to supply gas to the resonator, was connected to the center of the resonator to eliminate acoustic coupling between the resonator and the manifold. In anticipation of handling corrosive gases, all surfaces of the apparatus that are exposed to the test gas are made of metal. The viscometer was tested with argon, helium, xenon, nitrogen, and methane. Isothermal measurements were carried out at 298.15 and 348.15 K and at pressures up to 3.2 MPa. Without calibration, the results differed from published viscosity data by −0.8% to +0.3% (0.47% r.m.s.). These results are significantly better than previous results from Greenspan viscometers. The measurements also yielded the speed of sound, which differed from literature data by +0.16% to +0.20% (0.18% r.m.s.). Adding empirical effective-area and effective-volume corrections to the data analysis decreased the r.m.s. deviations to 0.12% for the viscosity and to 0.006% for the speed of sound. No unusual phenomena were encountered when the viscometer was tested with a helium-xenon mixture between 250 and 375 K.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    ISSN: 1572-9680
    Keywords: biomass transfer ; integrated nutrient management ; nitrogen ; nutrient cycling ; phosphorus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Tithonia diversifolia, a shrub in the family Asteraceae, is widely distributed along farm boundaries in the humid and subhumid tropics of Africa. Green biomass of tithonia has been recognized as an effective source of nutrients for lowland rice (Oryza sativa) in Asia and more recently for maize (Zea mays) and vegetables in eastern and southern Africa. This paper reviews the potential of tithonia green biomass for soil fertility improvement based on recent research in western Kenya. Green leaf biomass of tithonia is high in nutrients, averaging about 3.5% N, 0.37% P and 4.1% K on a dry matter basis. Boundary hedges of sole tithonia can produce about 1 kg biomass (tender stems + leaves) m−1 yr−1 on a dry weight basis. Tithonia biomass decomposes rapidly after application to soil, and incorporated biomass can be an effective source of N, P and K for crops. In some cases, maize yields were even higher with incorporation of tithonia biomass than with commercial mineral fertilizer at equivalent rates of N, P and K. In addition to providing nutrients, tithonia incorporated at 5 t dry matter ha−1 can reduce P sorption and increase soil microbial biomass. Because of high labor requirements for cutting and carrying the biomass to fields, the use of tithonia biomass as a nutrient source is more profitable with high-value crops such as vegetables than with relatively low-valued maize. The transfer of tithonia biomass to fields constitutes the redistribution of nutrients within the landscape rather than a net input of nutrients. External inputs of nutrients would eventually be required to sustain production of tithonia when biomass is continually cut and transferred to agricultural land.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    ISSN: 1573-5036
    Keywords: Carbohydrates ; CO2 ; lignin ; nitrogen ; proanthocyanidins ; soil respiration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Increased atmospheric carbon dioxide (CO2) concentration will likely cause changes in plant productivity and composition that might affect soil decomposition processes. The objective of this study was to test to what extent elevated CO2 and N fertility-induced changes in residue quality controlled decomposition rates. Cotton (Gossypium hirsutum L.) was grown in 8-l pots and exposed to two concentrations of CO2 (390 or 722 μmol mol-1) and two levels of N fertilization (1.0 or 0.25 g l-1 soil) within greenhouse chambers for 8 wks. Plants were then chemically defoliated and air-dried. Leaf, stem and root residues were assayed for total non-structural carbohydrates (TNC), lignin (LTGA), proanthocyanidins (PA), C and N. Respiration rates of an unsterilized sandy soil (Lakeland Sand) mixed with residues from the various treatments were determined using a soda lime trap to measure CO2 release. At harvest, TNC and PA concentrations were 17 to 45% higher in residues previously treated with elevated CO2 compared with controls. Leaf and stem residue LTGA concentrations were not significantly affected by either the elevated CO2 or N fertilization treatments, although root residue LTGA concentration was 30% greater in plants treated with elevated CO2. The concentration of TNC in leaf residues from the low N fertilization treatment was 2.3 times greater than that in the high N fertilization treatment, although TNC concentration in root and stem residues was suppressed 13 to 23% by the low soil N treatment. PA and LTGA concentrations in leaf, root and stem residues were affected by less than 10% by the low N fertilization treatment. N concentration was 14 to 44% lower in residues obtained from the elevated CO2 and low N fertilization treatments. In the soil microbial respiration assay, cumulative CO2 release was 10 to 14% lower in soils amended with residues from the elevated CO2 and low N fertility treatments, although treatment differences diminished as the experiment progressed. Treatment effects on residue N concentration and C:N ratios appeared to be the most important factors affecting soil microbial respiration. The results of our study strongly suggest that, although elevated CO2 and N fertility may have significant impact on post-harvest plant residue quality of cotton, neither factor is likely to substantially affect decomposition. Thus, C cycling might not be affected in this way, but via simple increases in plant biomass production.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 220 (2000), S. 35-47 
    ISSN: 1573-5036
    Keywords: drainage ; fertilisation ; nature management ; nitrogen ; nutrient contents ; nutrients ; peat ; phosphate ; potassium ; restoration ; rewetting ; shoot biomass ; species richness ; wetlands
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Restoration of wet grassland communities on peat soils involves management of nutrient supply and hydrology. The concept of nutrient limitation was discussed as well as its interaction with drainage and rewetting of severely drained peat soils. Different methods of assessing nutrient limitation were compared and the type and extent of nutrient limitation were determined for several wet grassland communities. It was concluded that a full-factorial field fertilisation experiment is the most preferable method. Plant tissue analyses and soil chemical analyses were considered less suitable, although they may provide helpful additional information. Fertilisation experiments in the laboratory using sods or using test plants appear to be the proper means to study mechanisms or processes, but have a restricted predictive value for field situations. Generalising the results, it seems that many relativily undisturbed grassland plant communities on peaty soils are characterised by N limitation. Phosphate limitation for vegetation on peat soils is mainly observed in specific circumstances such as extreme calcium richness, high concentrations of Fe or as a result of drainage or long-term hay cropping. The latter two may also cause K limitation. Rewetting is regarded as a prerequisite in restoring wet grassland communities. Further restoration measures to influence nutrient availability depend on aims of the management and the individual site conditions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    ISSN: 1573-5036
    Keywords: carbon ; defoliation ; nitrogen ; phosphorus ; sheep urine ; soil solution
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract We have determined the temporal changes in the concentration of dissolved organic carbon (DOC) and P and N components in soil solution following application of synthetic sheep urine (500 kg N ha-1) to a brown forest soil in boxes sown with Agrostis capillaris. Three contrasting defoliation treatments (no cutting, single cut before urine application and regular cutting twice per week) plus a fallow soil were studied. The synthetic urine contained 15N labelled urea and was P-free. Intact soil cores were taken after 2, 7, 14, 21 and 56 d and centrifuged to obtain soil solution. The urea in the synthetic urine was rapidly hydrolysed in the soil, increasing soil solution pH, DOC and total dissolved phosphorus (TDP) concentrations. For the regularly defoliated sward, DOC and P reached maximum concentrations (4000 mg DOC L-1 and 59 mg TDP L-1) on day 7. From their peak values, pH and DOC and P concentrations generally decreased with time and at day 56 were near those of the control. Concentrations of NH4 + and NO3 - in the no-urine treatments fluctuated and the greatest treatment differences were between the fallow soil and the soil sown with grass. Adding synthetic urine increased NH4 + concentrations during the first week, but NO3 - concentrations decreased. This was consistent with the 15N labelling of the NO3 - pool which required 3 weeks to reach that of 15NH4 +. Dissolved organic nitrogen (DON) reached a maximum value at day 7 with a concentration of 409 mg N L-1. The DON in soil solution contained no detectable amounts of 15N label indicating that it was derived from sources in the soil. Differences in soil solution composition related to the effect of the other cutting treatments and the fallow treatment were small compared to the effect of synthetic urine addition.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    ISSN: 1573-5036
    Keywords: carbon ; geostatistics ; nitrification potential ; nitrogen ; pH ; root biomass ; soil respiration ; spatial Heterogeneity ; variability scale
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Geostatistical techniques were used to quantify the scale and degree of soil heterogeneity in 2 m2 plots around 9-year-old poplar trees and within a wheat field. Samples were taken during two years, on an unaligned grid, for analysis of soil respiration, C and N content, available P, gravimetric moisture, pH, nitrification potential, and root biomass. Kriged maps of soil respiration, moisture, and C content showed strong spatial structure associated with poplar trees but not with wheat rows. All soil properties showed higher autocorrelation in June than in April. Isopleth patchiness for all variates was less in June. This was associated with lower respiration rates due to lower litter decomposition. From the degree and scale of heterogeneity seen in this study, we conclude that the main causes of soil heterogeneity at this scale (2 m2) are likely to be found at micro scales controlled in part by plant root and plant residue patterns. These must be understood in the evaluation of ecosystem processes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    ISSN: 1573-5036
    Keywords: carbon ; CO2 enrichment ; nitrogen ; particulate organic matter ; roots ; tallgrass prairie
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract We determined the effects of elevated [CO2] on the quantity and quality of below-ground biomass and several soil organic matter pools at the conclusion of an eight-year CO2 enrichment experiment on native tallgrass prairie. Plots in open-top chambers were exposed continuously to ambient and twice-ambient [CO2] from early April through late October of each year. Soil was sampled to a depth of 30 cm beneath and next to the crowns of C4 grasses in these plots and in unchambered plots. Elevated [CO2] increased the standing crops of rhizomes (87%), coarse roots (46%), and fibrous roots (40%) but had no effect on root litter (mostly fine root fragments and sloughed cortex material 〉500 μm). Soil C and N stocks also increased under elevated [CO2], with accumulations in the silt/clay fraction over twice that of particulate organic matter (POM; 〉53 μm). The mostly root-like, light POM (density ≤1.8 Mg m-3) appeared to turn over more rapidly, while the more amorphous and rendered heavy POM (density 〉1.8 Mg m-3) accumulated under elevated [CO2]. Overall, rhizome and root C:N ratios were not greatly affected by CO2 enrichment. However, elevated [CO2] increased the C:N ratios of root litter and POM in the surface 5 cm and induced a small but significant increase in the C:N ratio of the silt/clay fraction to a depth of 15 cm. Our data suggest that 8 years of CO2 enrichment may have affected elements of the N cycle (including mineralization, immobilization, and asymbiotic fixation) but that any changes in N dynamics were insufficient to prevent significant plant growth responses.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 225 (2000), S. 153-165 
    ISSN: 1573-5036
    Keywords: carbon ; decomposer food web ; indirect effects ; microbes ; nitrogen ; plant growth
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract We studied the sensitivity of soil microbial communities and ecosystem processes to variation in the vertical and horizontal structure of decomposer food web under nitrogen poor and N-enriched conditions. Microcosms with humus and litter layer of boreal forest floor, birch seedlings infected with mycorrhizal fungi, and decomposer food webs with differing trophic group and species composition of soil fauna were constructed. During the second growing period for the birch, we irrigated half of the microcosms with urea solution, and the other half with de-ionised water to create two levels of N concentration in the substrate. During the experiment night time respirations of the microcosms were measured, and the water leached through the microcosms was analysed for concentration of mineral N, and nematode numbers. The microcosms were destructively sampled after 37 weeks for plant biomass and N uptake, structure of soil animal and microbial community (indicated by PLFA profiles), and physical and chemical properties of the humus and litter materials. Predatory mites and nematodes had a negative influence on the biomass of their microbivorous and microbi-detritivorous prey, and microbi-detritivores affected the biomass and community structure of microbes (indicated by PLFA-analysis). Moreover, predatory mites and nematodes increased microbial biomass and changed the microbial community structure. The decomposer food web structure affected also N uptake and growth of plants. Microbi-detritivorous fauna had a positive effect, whereas predators of microbial and detritus feeding fauna exerted a negative influence on plant N uptake and biomass production. The impact of a trophic group on the microbes and plant was also strongly dependent on species composition within the group. Nitrogen addition magnified the influence of food web structure on microbial biomass and plant N uptake. We suggest that addition of urea-N to the soil modified the animal-microbe interaction by increasing microbial growth and altering community structure of microbes. The presence of microbi-detritivores and predators reduced loss of carbon from the microcosms, and the food web structure influenced also water holding capacity of the materials. The changes in plant growth, nutrient cycling, size of N and C pools, and in the physical properties of the soil emphasize the importance and diversity of indirect consequences of decomposer food web structure.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Electronic Resource
    Electronic Resource
    Springer
    Plant cell, tissue and organ culture 61 (2000), S. 59-67 
    ISSN: 1573-5044
    Keywords: alar ; in vitro plantlet ; mannitol ; nitrogen ; rooting ; temperature
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The importance of leaf area of in vitro propagated potato (Solanum tuberosum L.) plantlets for further growth during acclimatisation and the after-effects of in vitro treatments on growth were examined. The in vitro treatments included different levels of alar, nitrogen or mannitol or different temperatures during the last in vitro phase, the rooting phase. Leaf area or ground cover was recorded one day after planting to soil and at the end of the first phase of ex vitro growth, the acclimatisation phase. Regression analysis showed that leaf area of a transplant at the end of acclimatisation phase was positively influenced by leaf area of the same plantlet at the beginning of the phase. The relative increase in leaf area during acclimatisation (increase/early leaf area) was linearly related to the inverse of the early leaf area, indicating almost comparable relative increases for plantlets having larger early leaf areas, but more variable responses for plantlets having smaller early leaf areas. In vitro treatments mainly affected leaf area of transplants through their effects on early leaf area. Adding alar, reducing nitrogen and reducing temperature increased leaf area. Reducing mannitol increased ground cover. A lower nitrogen concentration and higher temperature in some cultivars had slight negative effects on the relative increase in leaf area after acclimatisation. For nitrogen these negative effects were less significant than the positive effects through early leaf area. Results stress the importance of manipulation of leaf area in vitro to enhance plant performance in later stages of growth.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 426 (2000), S. 185-192 
    ISSN: 1573-5117
    Keywords: nutrient competition ; periphyton ; nitrogen ; silicate ; eutrophication ; benthic microalgae ; hard substrates
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In order to understand the effect of changing nutrient conditions on benthic microalgae on hard substrates, in-situ experiments with artificial substrates were conducted in Kiel Fjord, Western Baltic Sea. As an extension of previous investigations, we used artificial substrates without silicate and thus were able to supply nutrient media with different Si:N ratios to porous substrates, from where they trickled out continuously. The biofilm developing on these substrates showed a significant increase in biovolume due to N + P enrichment, while Si alone had only minor effects. The stoichiometric composition of the biomass indicated nitrogen limitation during most of the year. The C:N ratios were lowered by the N + P addition. The algae were dominated by diatoms in most cases, but rhodophytes and chlorophytes also became important. The nutrient treatment affected the taxonomic composition mostly at the species level. The significance of the results with regard to coastal eutrophication is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Electronic Resource
    Electronic Resource
    Springer
    Journal of aquatic ecosystem stress and recovery 8 (2000), S. 53-66 
    ISSN: 1573-5141
    Keywords: Canada ; nitrogen ; periphyton ; phosphorus ; pulp mill effluent ; rivers ; sewage
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract To evaluate the effects of pulp mill and municipal sewageeffluents on the nitrogen (N) and phosphorus (P) status of northernCanadian rivers, the Northern River Basins Study required an integratedresearch and assessment program consisting of field observation andexperimentation. Analysis of monitoring data collected over 3–13 yshowed that on an annual basis, pulp mills contributed 22% of theP and 20% of the N load discharged from the Wapiti to the Smokyriver, and 6 to 16% of the P load and 4 to 10% of the Nload in the Athabasca River. Despite these low contributions, N and Pconcentrations were elevated below pulp mill discharges on all threerivers during the low discharge period of September to April. Insitu experiments conducted with nutrient diffusing substrata showedthat periphyton biomass was maintained at low levels by insufficient Pin the upper reaches of the Athabasca River and insufficient N+P inthe Wapiti River upstream of point-source discharges. In contrast,effluent loading from pulp mill and sewage inputs alleviated nutrientlimitation downstream of major discharges on both rivers. Experimentsconducted in artificial streams located beside the Athabasca Riverupstream of the first pulp mill showed that P addition increasedperiphyton biomass (expressed as chlorophyll a content) suchthat biomass increased sharply at low P concentrations (2–5µg/L soluble reactive P) and approached saturation at 35µg/L soluble reactive P. As a result of recommendations fromthis integrated program of river monitoring and experimentation,nutrient loading has been reduced to the most affected river(Wapiti-Smoky) and federal and provincial departments of environment arereviewing loading limits for other river reaches.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    ISSN: 1573-5117
    Keywords: Ascophyllum ; Fucus ; CNBM ; light ; nitrogen ; phlorotannins
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Phlorotannins, C-based defence compounds in brown seaweeds, show a high degree of spatial and temporal variation within seaweed species. One important model explaining this variation is the Carbon Nutrient Balance Model (CNBM), which states that the relative supply of carbon and limiting nutrients will determine the level of defence compounds in plants. Nitrogen is often considered to be the limiting nutrient for marine macroalgal growth and the CNBM thus predicts that when the carbon:nitrogen ratio is high, photosynthetically fixed carbon will be allocated to production of phlorotannins. In the present study, we evaluated the effects of light (i.e. carbon) and nitrogen on the phlorotannin content of two intertidal brown seaweeds, Ascophyllum nodosum and Fucus vesiculosus. This was done in an observational field study, as well as in a manipulative experiment where plants from habitats with different light regimes were subjected to different nitrogen and light treatments, and their phlorotannin content was measured after 14 days. The results showed that there was a negative relationship between tissue nitrogen and phlorotannin content in natural populations of F. vesiculosus, but not in A. nodosum. In the short term, the phlorotannin content in both algal species was not affected by changes in nitrogen availability. Exposure to sunlight had a positive effect on the phlorotannin content in natural populations of both algal species but, in the manipulative experiment, only F. vesiculosus showed a rapid response to changes in light intensities. Plants subjected to sunlight contained higher phlorotannin content than shaded plants. In conclusion, the results imply that nitrogen availability explains some of the natural variation in the phlorotannin content of F. vesiculosus, but the light environment has greater importance than nitrogen availability in predicting the phlorotannin content of each species.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 432 (2000), S. 101-111 
    ISSN: 1573-5117
    Keywords: Hawaii ; light ; nitrogen ; nutrients ; periphyton ; phosphorus ; spate ; stream
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract To date, most studies of light- and nutrient-limited primary productivity in forested streams have been carried out in deciduous forests of temperate, continental regions. Conceptual models of light and nutrient limitation have been developed from these studies, but their restricted geographic range reduces the generality of such models. Unlike temperate continental streams, streams on tropical high islands are characterized by flashy, unpredictable discharge and riparian canopies that do not vary seasonally. These contrasting conditions suggest that patterns of light and nutrient limitation in tropical streams may differ from those in temperate streams. The effects of light, and nitrogen and phosphorus availability on periphyton accrual (measured as chlorophyll a per unit area) were investigated using field experiments in 4 low-order streams on the island of Oahu, Hawaii. Levels of chlorophyll a in partially-shaded stream pools were significantly greater than in heavily-shaded pools, and nutrient-enrichment increased the level of chlorophyll a in partially-shaded pools but not in heavily-shaded pools. In each stream, phosphate enrichment resulted in an increase in the level of chlorophyll a, but nitrate enrichment had no effect. Spates following rainstorms occur frequently in these streams, and may increase periphyton productivity by increasing the flux of nutrients to algal cells. However, differences in inorganic nitrogen and phosphorus concentrations measured during spates and baseflow were small, and during some spates, concentrations of these two nutrients declined relative to baseflow concentrations. These observations suggest that phosphorus limitation was not alleviated by spates.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    ISSN: 1573-515X
    Keywords: C:N ratio ; dissolved organic carbon ; dissolved organic nitrogen ; nitrogen ; stream chemistry ; watershed
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Relatively high deposition ofnitrogen (N) in the northeastern United States hascaused concern because sites could become N saturated.In the past, mass-balance studies have been used tomonitor the N status of sites and to investigate theimpact of increased N deposition. Typically, theseefforts have focused on dissolved inorganic forms ofN (DIN = NH4-N + NO3-N) and have largelyignored dissolved organic nitrogen (DON) due todifficulties in its analysis. Recent advances in themeasurement of total dissolved nitrogen (TDN) havefacilitated measurement of DON as the residual of TDN− DIN. We calculated DON and DIN budgets using data onprecipitation and streamwater chemistry collected from9 forested watersheds at 4 sites in New England. TDNin precipitation was composed primarily of DIN. Netretention of TDN ranged from 62 to 89% (4.7 to 10 kghaminus 1 yrminus 1) of annual inputs. DON made up themajority of TDN in stream exports, suggesting thatinclusion of DON is critical to assessing N dynamicseven in areas with large anthropogenic inputs of DIN.Despite the dominance of DON in streamwater,precipitation inputs of DON were approximately equalto outputs. DON concentrations in streamwater did notappear significantly influenced by seasonal biologicalcontrols, but did increase with discharge on somewatersheds. Streamwater NO3-N was the onlyfraction of N that exhibited a seasonal pattern, withconcentrations increasing during the winter months andpeaking during snowmelt runoff. Concentrations ofNO3-N varied considerably among watersheds andare related to DOC:DON ratios in streamwater. AnnualDIN exports were negatively correlated withstreamwater DOC:DON ratios, indicating that theseratios might be a useful index of N status of uplandforests.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    ISSN: 1573-515X
    Keywords: acid deposition ; atmospheric deposition ; nitrate ; nitrification ; nitrogen ; soil carbon ; soil chemistry ; stream water acidification
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Cumulative effects of atmospheric N deposition mayincrease N export from watersheds and contribute tothe acidification of surface waters, but naturalfactors (such as forest productivity and soildrainage) that affect forest N cycling can alsocontrol watershed N export. To identify factors thatare related to stream-water export of N, elevationalgradients in atmospheric deposition and naturalprocesses were evaluated in a steep, first-orderwatershed in the Catskill Mountains of New York, from1991 to 1994. Atmospheric deposition of SO 4 2− , andprobably N, increased with increasing elevation withinthis watershed. Stream-water concentrations ofSO 4 2− increased with increasing elevationthroughout the year, whereas stream-waterconcentrations of NO 3 − decreased withincreasing elevation during the winter and springsnowmelt period, and showed no relation with elevationduring the growing season or the fall. Annual exportof N in stream water for the overall watershed equaled12% to 17% of the total atmospheric input on thebasis of two methods of estimation. This percentagedecreased with increasing elevation, from about 25%in the lowest subwatershed to 7% in the highestsubwatershed; a probable result of an upslope increasein the thickness of the surface organic horizon,attributable to an elevational gradient in temperaturethat slows decomposition rates at upper elevations. Balsam fir stands, more prevalent at upper elevationsthan lower elevations, may also affect the gradient ofsubwatershed N export by altering nitrification ratesin the soil. Variations in climate and vegetationmust be considered to determine how future trends inatmospheric deposition will effect watershed export ofnitrogen.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    ISSN: 1573-515X
    Keywords: carbon ; landscape geochemical flows ; model ; nitrogen ; phosphorus ; wetland
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract The importance of landscape geochemical flows wasinvestigated using a dynamic model simulating carbon,nitrogen and phosphorus cycling in riverine wetlands,which has been described in a previous paper. Thehydro-geomorphic unit (HGMU) concept was incorporatedin the model by defining a separate, completeunit-model for each unit (HGMU) within the wetland.These unit-models were connected by defining the flowsof nitrogen and phosphorus between them. These flows,also called landscape geochemical flows, usuallyconsist of flows of water containing N and P. The model was applied to a site at Kismeldon Meadows,in south-western England. This site consists of twounits, a slope and a floodplain, separated by a ditch,which catches most of the run off and shallowgroundwater flows from the slope. Only an estimated1% of the N and P that leaves the slope unit in thewater outflow reaches the floodplain unit; the rest iscaught in the system of ditches, which prevent thegeochemical flows taking their natural course. Toexamine the influence of this system of ditches, themodel was run for the same site, but without theditches. This is comparable to a situation of arestored site, where run off and shallow groundwaterflows containing nutrients, can freely get from theslope to the floodplain. The computer simulation experiment reconnecting theslope and floodplain showed that this (1) increasedthe nutrient input into the floodplain, causing ahigher biomass production, and (2) increased thewetness of the floodplain, causing slowerdecomposition, which together (3) led to a faster soilorganic matter accumulation in the floodplain.Nutrient inflows became relatively more importantcompared to atmospheric deposition, especially forphosphorus. By connecting the slope and the floodplainmore nitrogen and less phosphorus flowed into theriver.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    ISSN: 1573-515X
    Keywords: chloride ; internal eutrophication ; nitrogen ; peat soil ; phosphorus ; phytometer ; sulphate
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Inputs of surface waters high in chloride and sulphateincreased the availability of nutrients in fenpeatlands. This `internal eutrophication' wasdemonstrated with test plants (`phytometers') andthrough water and soil analysis. Three experiments arepresented in which the level of chloride and/orsulphate was increased to 3 mmolc l−1. Inexperiment 1 chloride levels were increased from 0.5to 3 mmolc l−1 as CaCl2 or NaCl. Inexperiment 2 and 3 similar increased levels forchloride and sulphate (3 mmolc l−1; as NaCland Na2SO4) were used. The following resultswere found: (i) No differences in soil total-N and total-P werefound before and after the treatments in any of thethree experiments. (ii) Experiment 1 showed a significant increase inBio-Available P (BAP) in pots planted with Anthoxanthum odoratum as well as in bare pots for theNaCl and CaCl2 treatments. The plants in thesetreatments had taken up much more P. (iii) Experiment 2 showed an increase in soil BAPafter treatment with chloride and sulphate in potsplanted with Anthoxanthum odoratum. The chloridetreatment had no effect on plant biomass, whereas thesulphate treatment resulted in a reduction in rootbiomass and root N and P content. The shoots showedan increase in P content in the sulphate and chloridetreatments, while N content remained the same. (iv) In experiment 3, treatments with chloride andsulphate led to significantly increased biomass and Puptake of Anthoxanthum odoratum. Again, noeffects on N uptake were found. These experiments provide evidence for distinctlyincreased availability of phosphate in peat soils whenthese come into contact with water with evenmoderately increased sulphate or chloride levels.Surface water originating from the Rhine river, whichis enriched in chloride and sulphate, is oftensupplied to fen reserves in The Netherlands, tocompensate for water losses due to agriculturaldrainage in the region. The results of this study showthat phosphate availability to the vegetation may risedrastically, with detrimental effects on the speciesdensity and the occurrence of rare species in thevegetation. Hence, supply of this water should beavoided.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Electronic Resource
    Electronic Resource
    Springer
    Environmental monitoring and assessment 63 (2000), S. 431-446 
    ISSN: 1573-2959
    Keywords: aquatic bacteria ; benthic macroinvertebrates ; bioindicator ; eutrophication ; nitrogen ; phosphorus ; stream pollution
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract A combination field and laboratorystudy was conducted to evaluate the ability of arecently developed bioindicator to detect detrimentalnutrient conditions in streams. The method utilizesbacterial growth on aquatic insects to determinenutrient impacts. Field investigations indicated thatelevated concentrations of nitrate and phosphate wereassociated with growth of filamentous bacteria oninsect body surfaces, and that there was a significantreduction in the density of major insect taxa in thenutrient-enriched stream reaches. Laboratoryinvestigations confirmed a strong linkage betweenbacterial growth and reduced survival of insects. Survival was examined for insects with bacterialinfestation ranging from 0% to greater than 50%coverage of the body surface. A threshold forcatastrophic mortality occurred at about 25% bodycoverage; there were few survivors above that amount. Based on these findings, the diagnostic endpoint forthe bioindicator is 25% body coverage by bacterialgrowth, a level that signifies major impacts and isalso easy to detect visually. This study providesadditional evidence that the insect-bacteriabioindicator is a reliable tool for assessing nutrientimpacts on stream macroinvertebrate communities. Thebioindicator should prove useful for identifyingnutrient-impacted sites as well as monitoring thesuccess of management actions to improve water quality.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Electronic Resource
    Electronic Resource
    Springer
    Water, air & soil pollution 119 (2000), S. 121-137 
    ISSN: 1573-2932
    Keywords: nitrogen ; wet deposition
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract We measured concentrations and fluxesof major ions in wet deposition, throughfall andstream water in a forested watershed on the AlleghenyPlateau of western Maryland to investigatecanopy-atmosphere interactions and to calculate input–output budgets. Wet deposition was dominated byH+, SO 4 2− , NO 3 − andNH 4 + ions. Hydrogen and SO 4 2− accounted for 70 and 58% of the total cation andanion equivalents, respectively. Annual wet depositionrates of SO 4 2− (0.56 keq ha−1 yr−1), NO 3 − (0.31 keq ha−1 yr −1)and NH 4 + (0.17 keq ha−1 yr −1)were at the high end of the range in wet depositionrates reported for other sites in the eastern UnitedStates. On an annual basis, the forest canopy consumed20% of the free acidity in incident precipitation,had no net effect on Na+ and NH 4 + deposition, and was a net source of K+,Ca2+, Mg2+, SO 4 2− andNO 3 − ; 1.5 to 22 times greater than the wetdeposition rates. On an annual basis, the watershed ofthe unnamed tributary to Herrington Creek (HCWS)retained essentially all of the throughfall H+ andNH 4 + inputs, 35% of the throughfall K+input and 62% of the throughfall NO 3 − input. In contrast, HCWS was a net source ofSO 4 2− , Cl−, Ca2+, Mg2+ andNa+; export rates were 2 to 5 times greater thanthroughfall inputs. Sulfate was the dominant anionassociated with cation leaching, accounting for 78%of the total anion export of 1.8 keq ha−1 yr −1 in 1996–1997.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    ISSN: 1573-9058
    Keywords: carbon ; C/N ; direct and indirect effects ; nitrogen ; soluble sugars ; starch ; specific leaf area
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Dark respiration rate in the night (R D) was measured in five-year-old Scots pine (Pinus sylvestris L.) trees grown for two years under ambient (AC) and elevated (AC + 400 µmol mol−1 = EC) CO2 concentrations in open top chambers. Two needle age classes (i.e., current-year and one-year-old) were measured at AC and EC in both AC- and EC-grown pines. Additionally different chemical characteristics were determined on the needles, such as nitrogen (N), carbon (C), starch, and soluble sugar concentrations as well as specific leaf area. The direct, short-term and indirect, long-term effects of EC on R D for the two needle age classes were examined. R D was expressed on a per needle area, needle mass, N, C, and C/N bases. Direct effects were only pronounced in the AC treatment where inhibition of R D was found at EC in both current- and one-year-old needles. Indirect effects were only significant in one-year-old needles where a decrease was found in the EC grown trees as compared with AC ones when R D was expressed per unit needle mass, C, or C/N. R D per unit needle area and needle N were not sensitive to long-term EC, in any needle age class. Long-term EC treatment also influenced the response of the two needle age classes. One-year-old needles from the EC treatment had significantly lower R D than current-year needles, but no such response was observed in the AC treatment. Our experiment re-emphasised the importance of expressing R D on different bases for a correct interpretation of the responses to EC. Moreover, we showed that different needle age classes can respond differently to a CO2 enrichment.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    ISSN: 1573-2932
    Keywords: eutrophication ; nitrogen ; phosphorus ; river ; sediment
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Nitrogen (N) and phosphorus (P) concentrations were determined in sediment samples along the bed of Catatumbo river in both Colombian and Venezuelan territories until the river outlet in Maracaibo lake. Total phosphorus was determined by digestion with HCl followed by analysis using the ascorbic acid method and total nitrogen was done using the standard microkjeldahl method plus nitrate-nitrite. Ammonium, orthophosphate and nitrate were determined using standard methods after extraction steps. The mean concentrations along the river bed were found in an interval of 0.035 and 1.492 mg g-1 dry sed. for nitrogen and 0.027 and 1.039 mg g-1 dry sed. for phosphorus at 95% confidence level. The mean molar ratio N/P in the river bed was 4.42 and 3.46 for river outlet zones in the lake, which indicates that nitrogen is the limiting nutrient. For comparison with previous results of lake sediments from sites near the river outlet it was concluded that Catatumbo river is a significant source of nutrients to the Maracaibo Lake system because sediment nutrients concentrations from Catatumbo river were higher than the ones in Maracaibo Lake. Statistic studies showed significant differences between countries, zones and similar behaviour in the river bed as related to the affluent rivers.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    ISSN: 1573-2932
    Keywords: nitrification ; nitrogen ; nitrogen mineralization ; soil water ; stream chemistry ; wilderness area
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Nitrogen (N) deposition and its impact on terrestrial and aquatic ecosystems is a concern facing federal land managers at the Lye Brook Wilderness in Vermont and other protected aras throughout the northeastern United States. In this study, we compared N production in soils with N concentrations and outputs in leachates to determine how forest cover types differ in regulating N losses. Also, precipitation inputs and modeled estimates of streamwater outputs were used to calculate a watershed N budget. Most ammonium and nitrate were produced in organic soils with deciduous cover. Softwood stands had low net nitrification rates and minimal N leaching. A comparison of watershed inputs and outputs showed a net gain in total dissolved N (5.5 kg ha-1 yr-1) due to an accumulation of dissolved inorganic N. The Lye Brook Wilderness ecosystem has N budgets similar to other forested ecosystems in the region, and appears to be assimilating the accumulating N. However seasonal losses of nitrate observed in mineral soils and streamwater may be early warnings of the initial stages of N saturation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    ISSN: 1573-2932
    Keywords: on-site treatment ; fecal coliform bacteria ; nitrate leaching ; nitrogen ; on-site treatment ; septic effluent
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Groundwater effluent sample collectors(zero-tension lysimeters) were installed directlybelow the drainfields of three residential onsitetreatment systems in the Clover/Chambers Creek aquiferregion of Pierce County near Tacoma, WA. The use of asplit effluent delivery system from the septic tank,where half the effluent was delivered under pressureto a normal native soil-only filter system and halfwas delivered to a sand filter system, allowed thedirect comparison of the two commonly-utilized septicsystems for treatment levels. Septic tank effluent(from the septic tank) and percolating water (between0.3 and 0.9 m beneath the effluent distributionlines) was collected between May 1991 and April 1994on 30 occasions. Samples were analyzed for fecalcoliform bacteria, nitrate, nitrite, ammonium andtotal reduced (Kjeldahl) nitrogen. Results of thisstudy indicate that the use of sand filters greatlyincreased removal of fecal coliform bacteria and totalnitrogen. Soil-only filter systems had an average of91% removal of fecal coliforms and 47%of total N; whereas sand filter systems had an averageof 99.8% removal of fecal coliforms and 80% of total N.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Electronic Resource
    Electronic Resource
    Springer
    Environmental and resource economics 16 (2000), S. 347-362 
    ISSN: 1573-1502
    Keywords: cost-effectiveness ; nitrogen ; nonpoint ; policy ; value ; wetlands
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Economics
    Notes: Abstract Wetlands, in Sweden and elsewhere, have been suggestedas effective and low-cost sinks for agriculturalpollution. This paper estimates the value of usingwetlands for abatement of agricultural nitrogen loadon the Baltic Sea. A replacement value of wetlands isestimated for Sweden. The replacement value is definedand estimated as the difference between twocost-effective reductions of agricultural nitrogenpollution: one that uses wetlands for nitrogenabatement, and one that does not. It is shown that theuse of wetlands as nitrogen sinks can reduce the totalabatement costs of nitrogen emissions by 30% forSwedish agricultural sources of nitrogen pollution.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Electronic Resource
    Electronic Resource
    Springer
    Biologia plantarum 43 (2000), S. 611-613 
    ISSN: 1573-8264
    Keywords: carbon ; hydrogen ; nitrogen ; reducing sugars ; starch ; summer and winter temperature regime
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Two-year-old plants of Karwinskia humboldtiana Zucc. and Karwinskia parvifolia Rose grown from the seeds in greenhouse were transferred to the growth cabinet and cultivated for two months under different temperature regimes (35/20 °C - the summer temperature regime, SR, and 20/5 °C - the winter temperature regime, WR). These temperatures were similar to the temperature conditions in the natural areas of the species studied (Nuevo León, Mexico). The root respiration rate was higher in the plants cultivated under SR than in those under WR. Roots of K. parvifolia res faster in both temperature regimes than roots of K. humboldtiana. Starch content in roots was higher in the plan cultivated under SR, however, concentrations of the other investigated organic and inorganic compounds were higher in the plants cultivated under WR. In K. humboldtiana roots, higher concentration of reducing sugars, carbon and hydrogen were found than in K. parvifolia.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    ISSN: 1573-8264
    Keywords: alfalfa ; arbuscular mycorrhizal fungi ; nitrogen ; nitrogen-fixing bacteria ; phosphorus ; plant growth
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The aim of this research was to carry out a critical study of the method of obtaining size equivalence between non-symbiotic alfalfa and alfalfa associated with Glomus and/or Rhizobium by applying fixed addition rates of nutrients to the non-symbiotic controls. The experimental design included three nutrient response curves in which the levels of added phosphorus and/or nitrogen were constant during the whole plant growth process: 1) a phosphorus response curve, in order to compare the growth of double symbiotic plants with that of only-Rhizobium inoculated ones; 2) a nitrogen response curve, that consisted of a comparison between the growth of double symbiotic alfalfa and four treatments associated only with Glomus; 3) a phosphorus and nitrogen response curve, to compare the growth of non-inoculated alfalfa with that of double symbiotic plants. Although similar size was achieved among some treatments at harvest, shoot growth over time and nutrient concentrations in tissues differed, indicating that growth equivalence did not mean functional equivalence. A second experimental design was performed taking into account the establishment of microsymbionts for determining the adequate moment to add supplemental phosphorus and/or nitrogen. It included four treatments: a) double symbiotic plants (MR); b) plants inoculated with Rhizobium only (R); c) plants inoculated with Glomus only (M), and d) non-inoculated plants (N). Great similarity in terms of plant growth and nutrient contents in tissues were obtained. Moreover, symbiotic plants were able to produce similar dry matter than non-symbiotic ones under P and N limitations.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    ISSN: 1573-0417
    Keywords: Great Basin ; climatic variations ; productivity ; organic matter ; nitrogen ; phosphorus ; hardwater lake
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences
    Notes: Abstract Sediment cores from the shallow and deep basins of Pyramid Lake, Nevada, revealed variations in composition with depth reflecting changes in lake level, river inflow, and lake productivity. Recent sediments from the period of historical record indicate: (1) CaCO3 and organic content of sediment in the shallow basin decrease at lower lake level, (2) CaCO3 content of deep basin sediments increases when lake level decreases rapidly, and (3) the inorganic P content of sediments increases with decreasing lake volume. Variations in sediment composition also indicate several periods for which productivity in Pyramid Lake may have been elevated over the past 1000 years. Our data provide strong evidence for increased productivity during the first half of the 20th Century, although the typical pattern for cultural eutrophication was not observed. The organic content of sediments also suggests periods of increased productivity in the lake prior to the discovery and development of the region by white settlers. Indeed, a broad peak in organic fractions during the 1800's originates as an increase starting around 1600. However, periods of changing organic content of sediments also correspond to periods when inflow to the lake was probably at extremes (e.g. drought or flood) indicating that fluctuations in river inflow may be an important factor affecting sediment composition in Pyramid Lake.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 38 (1994), S. 53-59 
    ISSN: 1573-0867
    Keywords: controlled-release fertilizer ; gel ; iron ; manganese ; nitrogen ; polyacrylamide
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Using diverse technological approaches, many types of delivery devices have been used to supply plant nutrients at a controlled rate in the soil. One new approach is the use of hydrophilic polymers as carriers of plant nutrients. These polymers may be generally classified as 1) natural polymers derived from polysaccharides, 2) semi-synthetic polymers (primarily cellulose derivatives), and 3) synthetic polymers. By controlling the reaction conditions when forming the polymers, various degrees of cross-linking, anionic charge, and cationic charge can be added, thereby changing their effectiveness as fertilizer carriers. When fertilizer-containing solutions are mixed with hydrophilic polymers to form a “gel” prior to application in the soil, the release of soluble nutrients can be substantially delayed compared with soluble fertilizer alone. The effectiveness of a specific controlled-release polymeric system is determined in part by its specific chemical and physical properties, its biodegradation rate, and the fertilizer source used. Addition of some polymers with nutrients has been shown to reduce N and K leaching from well-drained soils and to increase the plant recovery of added N, P, Fe, and Mn in some circumstances
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 40 (1994), S. 165-173 
    ISSN: 1573-0867
    Keywords: Animal manure ; eutrophication ; ground water ; nitrogen ; phosphorus ; surface runoff
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract With the rapid growth of the poultry industry in Oklahoma, U.S.A., more litter is applied to farm land. Thus, information is required on the impact of applications on regional soil and water resources. The effect of soil and poultry litter management on nitrogen (N) and phosphorus (P) loss in runoff and subsurface flow from four 16 m2 plots (Ruston fine sandy loam, 6 to 8% slope) was investigated under natural rainfall. Plots under Bermudagrass (Cynodon dactylon) received 11 Mg litter ha−1, which amounts to contributions of approximately 410 kg N and 140 kg P ha−1 yr−1. In spring, litter was broadcast on 3 of the plots; the upper half of one and total area of the other two. One of the total-area broadcast plots was tilled to 6 cm, the other remained as no till. The fourth plot served as a control. Relative to the control, litter application increased mean concentrations of total N and total P in runoff during the 16-week study for no-till (15.4 and 5.8 mg L−1) and tilled treatments (16.7 and 6.1 mg L−1). However, values for the half-area application (5.6 and 2.0 mg L−1) were similar to the control (5.7 and 1.3 mg L−1). Interflow (subsurface lateral flow at 70 cm depth) P was not affected by litter application; however, nitrate-N concentrations increased from 0.6 (control) to 2.9 mg L−1 (no till). In all cases, 〈 2 % litter N and P was lost in runoff and interflow, maintaining acceptable water quality concentrations. Although litter increased grass yield (8518 kg ha−1) compared to the control (3501 kg ha−1), yields were not affected by litter management. An 8-fold increase in the plant available P content of surface soil indicates long-term litter management and application rates will be critical to the environmentally sound use of this nutrient resource.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 37 (1994), S. 107-113 
    ISSN: 1573-0867
    Keywords: Ensete ventricosum ; fertilizer response ; nitrogen ; phosphorus ; potassium ; sulphur ; starch
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Ensete (Ensete ventricosum W. Cheesm.) is a root crop which stores starch in the root and in the lower part of the stem. It is grown in the southwest of Ethiopia and due to its drought resistance, it is of outstanding importance for the supply of food to the local population. Until now virtually nothing is known about the response of Ensete to fertilizer application. Field trials carried out on three representative soils in Ethiopia showed that Ensete biomass yields were increased significantly on all three soils by nitrogen and phosphorus application. Potassium had only marginal effect on biomass growth but favourably influenced starch production. Sulfate application had no major impact on growth and starch yield. The yield response was well related to the level of available nutrients in the soil, as determined by electroultrafiltration (EUF). Leaf analysis provided preliminary evidence that optimum levels of N, P, and K may be 3.8%, 0.3%, and 4.8%, respectively.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 37 (1994), S. 227-234 
    ISSN: 1573-0867
    Keywords: catch crop ; mineralization ; nitrogen ; plant species ; residual effects ; soil depletion ; winter hardiness
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Ten widely different plant species were compared for their ability to reduce soil mineral nitrogen levels in the autumn and their ability to improve the nitrogen nutrition of the succeeding crop. The species included monocots and dicots, crops that survived the winter (persistent) or were winter killed (non-persistent) as well as legumes and non legumes. Their ability to reduce soil mineral nitrogen content was dependent on both root depth and persistency of the crops in the autumn. For non-persistent catch crops most of the mineralization of plant nitrogen occurred during the winter, and for some of these so early as to allow leaching of some mineralized nitrogen. For persistent crops most of the mineralization occurred shortly after incorporation in the spring. The effect of the catch crops on nitrogen uptake by the succeeding barley crop varied from 13 to 66 kg N ha−1 and the differences between the crops could not be related to any single character, but to a combination of root depth, persistency, plant nitrate accumulation, and depletion of the soil mineral nitrogen pool in spring.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 39 (1994), S. 223-228 
    ISSN: 1573-0867
    Keywords: drip-fertigation ; efficiency ; nitrogen ; sugar cane ; uptake ; yield
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Nitrogen (N) fertilizer use efficiency by sugar cane in Mauritius rarely exceeds 40%. Since drip-irrigation delivers water uniformly and directly to the root zone with little run-off, application of N via the drip-irrigation system could therefore provide a means of enhancing fertilizer N use by sugar cane. A study was initiated in Mauritius to determine what benefits would accrue from applying urea (120 kg N per ha) to sugar cane through the drip-irrigation network. The data obtained showed that the efficiency of fertilizer N when measured at harvest was nearly doubled by supplying the N daily over 10 to 20 weeks by fertigation. Increased yields of sugar or cane did not, however, accompany the improved N use efficiency. Furthermore, when N was applied through the drip-irrigation network, recovery of N at harvest did not accurately reflect N use efficiency.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 39 (1994), S. 199-203 
    ISSN: 1573-0867
    Keywords: farmyard manure ; floodwater ; nitrogen ; Oryza sativa L. ; partial pressure of ammonia ; urea ; Vietnam
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Farmyard manure (FYM) applied to rice-growing soils can substitute for industrial fertilizers, but little is known about the influence of FYM on the effectiveness and optimal management for industrial N fertilizers. A field experiment was conducted in northern Vietnam on a degraded soil in the spring season (February to June) and summer season (July to November) to determine the effect of FYM on optimal timing for the first application of urea. The experimental design was a randomized complete block with two rates of basal incorporated FYM (0 or 6 Mg ha−1) in factorial combination with two timings of the first application of 30 kg urea-N ha−1 (basal incorporated before transplanting or delayed until 14 to 16 d after transplanting). The FYM was formed by composting pig manure with rice straw for 3 months. Basal incorporation of FYM, containing 23 kg N ha−1, increased rice grain yield in both seasons. The yield increase cannot be attributed to reduced ammonia loss of applied urea-N, because FYM did not reduce partial pressure of ammonia (pNH3) following urea application in either season. Basal and delayed applications of urea were equally effective in the absence of FYM, but when FYM was applied rice yields in both seasons were higher for delayed (mean = 3.2 Mg ha−1) than basal (mean = 2.9 Mg ha−1) application of urea. Results suggest that recommendations for urea timing in irrigated lowland rice should consider whether farmers apply FYM.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Electronic Resource
    Electronic Resource
    Springer
    Aquatic sciences 56 (1994), S. 16-28 
    ISSN: 1420-9055
    Keywords: Chlorophyll-a ; phosphorus ; nitrogen ; lake ecosystem ; nutrient limitation ; regression analysis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Regression results based on data from 46 northern temperate lakes show that total phosphorus (TP) is the best predictor for phytoplankton (as chl-a) at lower trophic levels, TP 〈 200 mg · m−3. A regression including both TP and TN as regressors is the best predictor for lakes with TP 〉 200 mg · m−3. However, the good correlation is probably due to a high correlation between lake average chl-a (all years observed) and lake average TP and TN. Within single hypereutrophic lakes, TN alone is the best predictor. It was not possible to identify a medium trophic domain where TN and TP in combination was the best predictor for chl-a. The ratio TN:TP in the water decreases from about 40 to about 5 with increasing trophic level. Optimum TN:TP ratio for algal species with high abundance during late summer and autumn reflects this decreasing ratio, but within a lesser range, i.e., 20 to 5. In contrast, TN:TP ratios for species abundant during the early vernal period showed no, or an inverse, relation to the TN:TP ratio of the water.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Electronic Resource
    Electronic Resource
    Springer
    Plasma chemistry and plasma processing 14 (1994), S. 451-490 
    ISSN: 1572-8986
    Keywords: Transport coefficients ; transport properties ; viscosity ; thermal conductivity ; electrical conductivity ; diffusion coefficient ; Chapman Enskog method ; argon ; nitrogen ; oxygen ; plasma
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Technology
    Notes: Abstract Calculated values of the viscosity, thermal conductivity, and electrical conductivity of argon, nitrogen, and oxygen plasmas, and mixtures of argon anti nitrogen and of argon anti oxygen, are presented. In addition, combined ordinary, pressure, and thermal diffusion coefficients are given for the gas mixtures. These three combined diffusion coefficients fully describe di fusion of the two gases, irrespective of their degree of dissociation or ionizati on. The calculations, which assume local thermodynamic equilibrium, are performed! for atmospheric-pressure plasmas in the temperature range /torn 300 to 30,000 K. A number of the collision integrals used in calculating the transport coefficients are significantly more accurate than values used in previous theoretical studies, resulting in more reliable values of the transport coefficients. The results are compared with those of published theoretical and experimental studies.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Electronic Resource
    Electronic Resource
    Springer
    Aquatic ecology 28 (1994), S. 117-133 
    ISSN: 1573-5125
    Keywords: checklist ; diatoms ; The Netherlands ; pH ; salinity ; nitrogen ; oxygen ; saprobity ; trophic state ; moisture
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract This first comprehensive checklist of the diatoms from fresh and weakly brackish water in The Netherlands comprises 948 taxa, belonging to 776 species in 56 genera. The generaNavicula, which has a very wide ecological amplitude, andNitzschia, which has many pollution tolerant species, are most numerous. Each taxon is identified with a unique eight-letter code, to facilitate computer processing of data. Ecological indicator values for pH, salinity, nitrogen uptake metabolism, oxygen, saprobity, trophic state and moisture are presented.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    ISSN: 1573-5036
    Keywords: nitrogen ; phosphorus ; revegetation ; silica ; succession ; shrubland
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Fire is the principal means of stand renewal in big sagebrush-steppe communities of western North America. Plant growth following fire may be influenced by heat-induced changes in the nutrient status of the soil. Moreover, post-wildfire pioneer plant species may alter soil properties, and thereby, impact subsequent plant recruitment. Our study compared the growth and elemental content of big sagebrush (Artemisia tridentata), squirreltail (Elymus elymoides), cheatgrass (Bromus tectorum), and Indian ricegrass (Achnatherum hymenoides), grown under greenhouse conditions in post-wildfire and similar unburned soil. We also examined soil attributes following plant growth. Cheatgrass and squirreltail, grown in post-wildfire soil, had significantly (p≤0.05) greater aboveground mass than plants grown in unburned soil. As compared with unburned soil, post-wildfire soil engendered the following significant (p≤0.05) differences in leaf elemental content: 1) big sagebrush had higher levels of P and lower levels of Mn; 2) squirreltail accumulated more P and N; and 3) all grass species had higher SiO2 content. Following harvest of plants, post-wildfire soil generally contained significantly (p≤0.05) more KCl-extractable ortho-P, NH inf4 + , and SO 4 − , than unburned soil. Plant growth in both burned and unburned soils fostered a significant (p≤0.05) increase in the bicarbonate-extractable pool of P as compared with unplanted controls. Soil Kjeldahl-N was significantly (p≤0.05) greater after plant growth in burned treatments as compared with the control. This study demonstrates that post-wildfire soil can have a stimulatory effect on plant growth for some species. Squirreltail deserves consideration as a post-wildfire revegetation species. Furthermore, pioneer plant growth following wildfires can attenuate soil properties and therefore influence plant succession.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    ISSN: 1573-5036
    Keywords: biological method ; chemical method ; mineralization potential ; nitrogen ; soil incubation ; temperate humid-zone
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The potentially mineralizable organic N of 33 different soils was estimated by a chemical test (hot extraction with 2N KCl) and the values compared with those previously obtained by a biological method (aerobic incubation in the laboratory). On average, the organic N solubilized by the chemical procedure was significantly lower than that mineralized by a two weeks aerobic incubation for all the soils as a whole. The same was true for soils developed over acid rocks and over sediments. However, the values obtained for the soils developed over limestone and basic rocks were similar by both methods. The values obtained by both methods were not significantly correlated neither when considering all soils together nor when considering different groups according to soil management or parent material. Significant correlations between both methods were only found when the soils were separated into two groups according to their organic N content: soils with less than 400 mg N 100 g−1 soil and soils with more than 400 mg N 100 g−1 soil. The organic N solubilized by the chemical procedure was significantly correlated with the hexosamine-N content; however, it was not correlated with the factors that control the biological mineralization of the organic N, except with the soluble Al content. Therefore, the chemical extraction did not seem to address the biologically active N pool in a selective way.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    ISSN: 1573-5036
    Keywords: mineralization rate ; nitrogen ; stabilized organic matter ; crop rotation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract A simple model was developed to estimate the contribution of nitrogen (N) mineralization to the N supply of crops. In this model the soil organic matter is divided into active and passive pools. Annual soil mineralization of N is derived from the active pool. The active pool comprises stabilized and labile soil organic N. The stabilized N is built up from accumulated inputs of fresh organic N during a crop rotation but the labile N is a fraction of total N added, which mineralizes faster than the stabilized N. The passive pool is considered to have no participation in the mineralization process. Mineralization rates of labile and stabilized soil organic N from different crop residues decomposing in soil were derived from the literature and were described by the first-order rate equation dN/dt =-K*N, where N is the mineralizable organic N from crop residues andK is a constant. The data were groupedK 1 by short-term (0–1 year) andK 2 by long-term (0–10 years) incubation. Because the range of variation inK 2 was smaller than inK 1 we felt justified in using an average value to derive N mineralization from the stabilized pool. The use of a constant rate ofK 1 was avoided so net N mineralization during the first year after addition is derived directly from the labile N in the crop residues. The model was applied to four Chilean agro-ecosystems, using daily averages of soil temperature and moisture. The N losses by leaching were also calculated. The N mineralization varied between 30 and 130 kg N ha−1 yr−1 depending on organic N inputs. Nitrogen losses by leaching in a poorly structured soil were estimated to be about 10% of total N mineralized. The model could explain the large differences in N- mineralization as measured by the potential N mineralization at the four sites studied. However, when grassland was present in the crop rotation, the model underestimated the results obtained from potential mineralization.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 158 (1994), S. 129-134 
    ISSN: 1573-5036
    Keywords: Betula lenta L. ; black birch ; nitrogen ; root architecture ; soil heterogeneity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Inorganic soil nitrogen is often heterogeneously distributed, both spatially and in form (ammonium versus nitrate). Here we present information on the architecture of black birch (Betula lenta L.) root systems exposed to homogeneous and heterogeneous nitrogen environments. The major effects on root architecture were at the whole root system level in response to heterogeneity of nitrogen form rather than the effect of local of local nitrate or ammonium supply on local root growth. In the heterogeneous treatment, plant root systems had greater link lengths and more simple branching patterns. Root architectural responses to heterogeneous nitrogen, independent of localized responses to patches, suggest that in a seedling of B. lenta whole plant integration of its environment may override local control of root growth.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 165 (1994), S. 21-32 
    ISSN: 1573-5036
    Keywords: allocation ; CO2 ; image analysis ; loblolly pine ; nitrogen ; root morphology
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract This paper examines how elevated CO2 and nitrogen (N) supply affect plant characteristics of loblolly pine (Pinus taeda L.) with an emphasis on root morphology. Seedlings were grown in greenhouses from seeds during one growing season at two atmospheric CO2 concentrations (375 and 710 μL L-1) and two N levels (High and Low). Root morphological characteristics were determined using a scanner and an image analysis program on a Macintosh computer. In the high N treatment, elevated CO2 increased total plant dry weight by 80% and did not modify root to shoot (R/S) dry weight ratio, and leaf and plant N concentration at the end of the growing season. In the low N treatment, elevated CO2 increased total dry weight by 60%. Plant and leaf N concentration declined and R/S ratio tended to increase. Nitrogen uptake rate on both a root length and a root dry weight basis was greater at elevated CO2 in the high N treatment and lower in the low N treatment. We argue that N stress resulting from short exposures to nutrients might help explain the lower N concentrations observed at high CO2 in other experiments; Nitrogen and CO2 levels modified root morphology. High N increased the number of secondary lateral roots per length of first order lateral root and high CO2 increased the length of secondary lateral roots per length of first order lateral root. Number and length of first order lateral roots were not modified by either treatment. Specific root length of main axis, and to a lower degree, of first order laterals, declined at high CO2, especially at high N. Basal stem diameter and first order root diameters increased at high CO2, especially at high N. Elevated CO2 increased the proportion of upper lateral roots within the root system.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    ISSN: 1573-5036
    Keywords: blue grama ; Bouteloua gracilis ; C4 grass ; CO2 enrichment ; mycorrhizae ; nitrogen ; phosphorus ; VAM ; water relations
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract In order to better elucidate fixed-C partitioning, nutrient acquisition and water relations of prairie grasses under elevated [CO2], we grew the C4 grass Bouteloua gracilis (H.B.K.) lag ex Steud. from seed in soil-packed, column-lysimeters in two growth chambers maintained at current ambient [CO2] (350 μL L−1) and twice enriched [CO2] (700 μL L−1). Once established, plants were deficit irrigated; growth chamber conditions were maintained at day/night temperatures of 25/16°C, relative humidities of 35%/90% and a 14-hour photoperiod to simulate summer conditions on the shortgrass steppe in eastern Colorado. After 11 weeks of growth, plants grown under CO2 enrichment had produced 35% and 65% greater total and root biomass, respectively, and had twice the level of vesicular-arbuscular mycorrhizal (VAM) infection (19.8% versus 10.8%) as plants grown under current ambient [CO2]. The CO2-enriched plants also exhibited greater leaf water potentials and higher plant water use efficiencies. Plant N uptake was reduced by CO2 enrichment, while P uptake appeared little influenced by CO2 regime. Under the conditions of the experiment, CO2 enrichment increased root biomass and VAM infection via stimulated growth and adjustments in C partitioning below-ground.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    ISSN: 1573-5044
    Keywords: carbon ; elevated CO2 ; nitrogen ; suspension culture
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A photoautotrophic soybean suspension culture (SB-P) was used to study CO2 assimilation while exposed to elevated or ambient CO2 levels. These studies showed that under elevated CO2 (5% v/v) malate is the dominant fixation product, strongly suggesting that phosphoenolpyruvate carboxylase (PEPCase) is the primary enzyme involved in carbon fixation in these cells under their normal growth conditions. Citrate and [aspartate + glutamate] were also significant fixation products during fifteen minutes of exposure to 14CO2. During the ten minute unlabeled CO2 chase however, 14C-malate continued to increase while citrate and [aspartate + glutamate] declined. Fixation of 14CO2 under ambient CO2 levels (0.037%) showed a very different product pattern as 3-phosphoglycerate was very high in the first one to two minutes followed by increases in [serine + glycine] and [aspartate + glutamate]. Hexose phosphates were also quite high initially but then declined relatively rapidly. Thus, the carbon fixation pattern at ambient CO2 levels resembles somewhat that seen in C3 leaf cells while that seen at elevated CO2 levels more closely resembles that of a C4 plant. The initial fixation product of C3 plants, 3-PGA, was never detectable under high CO2 conditions. These data suggest that an in vitro photoautotrophic system would be suitable for studying carbon fixation physiology during photosynthetic and non-photosynthetic growth.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 164 (1994), S. 187-193 
    ISSN: 1573-5036
    Keywords: apatite ; biotite ; forest soil ; mineralization ; nitrogen ; nutrient additions
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The effects of slow (apatite, biotite) and fast-release nutrients (P, K, Mg) on C and N mineralization in acid forest soil were studied. These nutrients were applied alone or together with urea or urea and limestone. The production of CO2 in the soil samples taken one and three growing seasons after the application was lower in the soils treated with the fast-release nutrients than in the untreated soils. Similar reduction of microbial activity was not seen after the apatite and apatite+biotite treatments. In the first growing season, urea and urea+limestone enhanced CO2 production, but after three growing seasons, the opposite was true. Apatite and apatite+biotite added together with urea did not compensate for the decreasing effect of urea on the CO2 production. The addition of fast-release salts increased somewhat the concentration of NH inf4 sup+ in the soil and more NH4 + accumulated during laboratory incubation in the soil samples taken one growing season after the application. The urea addition immediately increased the concentrations of NH4 + and of NO3 − in the soil, but, three growing seasons after application, urea had only a slight increasing effect on mineral N content of the soil. Slow-release nutrients seem to have a more favourable effect than fast-release salts on nutrient turnover in acid forest soil.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 161 (1994), S. 241-250 
    ISSN: 1573-5036
    Keywords: carbon ; microorganisms ; nitrogen ; plant succession ; range grasses ; rhizosphere
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Nitrogen and rhizosphere microorganism effects on nitrogen and carbon dynamics of Sitanion hystrix (early successional species), Stipa comata and Poa secundu which are (mid-successional species), and Agropyron spicatum (late successional species) were evaluated in a growth chamber study. Rhizosphere inocula resulted in increased nitrogen in both root and shoot tissue, and also of water-extractable carbon in the rhizosphere. Plant species, rhizosphere inocula and nitrogen level showed a three-way significant interaction for total and plant-available nitrogen. Rhizosphere microbe presence resulted in higher plant-available nitrogen in the rhizosphere of S. hystrix and less with A. spicatum, suggesting nitrogen immobilization with the later successional grass. Higher nitrogen resulted in decreased active bacteria in the rhizosphere of all plants tested, and decreased fungal hyphal lengths in the rhizosphere of the later successional P. secunda and A. spicutum. Exudate carbon in the rhizosphere of the late successional species A. spicatum, was more recalcitrant, which also may contribute to nitrogen immobilization. These differential responses of early- and late-successional grasses may be important factors contributing to plant succession.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    ISSN: 1573-5036
    Keywords: ammonium sulphate ; fine roots ; needles ; nitrogen ; Norway spruce ; rhizosphere
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Rhizosphere, fine-root and needle chemistry were investigated in a 28 year old Norway spruce stand in SW Sweden. The uptake and allocation pattern of plant nutrients and aluminium in control plots (C) and plots repeatedly treated with ammonium sulphate (NS) were compared. Treatments started in 1988. Current year needles, one-year-old needles and cylindrical core samples of the LFH-layer and the mineral soil layers were sampled in 1988, 1989 and 1990. Compared to the control plots, pH decreased significantly in the rhizosphere soil in the NS plots in 1989 and 1990 while the SO4-S concentration increased significantly. Aluminium concentration in the rhizosphere soil was generally higher in the NS plots in all soil layers, except at 0–10 cm depths, both in 1989 and 1990. Calcium, Mg and K concentrations also increased after treatment with ammonium sulphate. Ammonium ions may have replaced these elements in the soil organic matter. The NS treatment significantly reduced Mg concentrations in fine roots in all layers in 1990. A similar trend was found in the needles. Ca concentrations in fine roots were significantly lower in the NS plots in the LFH layer in 1990 and the same pattern was found in the current needles. The N and S concentrations of both fine roots and needles were significantly higher in the NS plots. It was suggested that NS treatment resulted in displacement of Mg, Ca and K from exchange sites in the LFH layer leading to leaching of these cations to the mineral soil. Further application of ammonium sulphate may damage the fine roots and consequently adversely affect the water and nutrient uptake of root systems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 163 (1994), S. 121-130 
    ISSN: 1573-5036
    Keywords: decomposition rates ; enriched CO2 ; lignin ; litter respiration ; microcosms ; nitrogen
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Ash (Fraxinus excelsior L.), birch (Betula pubescens Ehrh.), sycamore (Acer pseudoplatanus L.) and Sitka spruce (Picea sitchensis (Bong.) Carr.) leaf litters were monitored for decomposition rates and nutrient release in a laboratory microcosm experiment. Litters were derived from solar domes where plants had been exposed to two different CO2 regimes: ambient (350 μL L-1 CO2) and enriched (600 μL L-1 CO2). Elevated CO2 significantly affected some of the major litter quality parameters, with lower N, higher lignin concentrations and higher ratios of C/N and lignin/N for litters derived from enriched CO2. Respiration rates of the deciduous species were significantly decreased for litters grown under elevated CO2, and reductions in mass loss at the end of the experiment were generally observed in litters derived from the 600 ppm CO2 treatment. Nutrient mineralization, dissolved organic carbon, and pH in microcosm leachates did not differ significantly between the two CO2 treatments for any of the species studied. Litter quality parameters were examined for correlations with cumulative respiration and decomposition rates: N concentration, C/N and lignin/N ratios showed the highest correlations, with differences between litter types. The results indicate that higher C storage will occur in soil as a consequence of litter quality changes resulting from higher atmospheric concentrations of CO2.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 160 (1994), S. 193-199 
    ISSN: 1573-5036
    Keywords: gaps ; ion uptake ; nitrogen ; nutrient acquisition ; phosphorus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Tree seedlings that colonize large treefall gaps are generally shade-intolerant species with high potential relative growth rates. Nutrient availability may be significantly elevated in disturbance-induced gaps, however, little is known about the role of differences in nutrient uptake capacities of different species in structuring the community response to gap openings in eastern North American deciduous forests. Seven tree species were grown from seed under both a high and a low nutrient regime, and uptake kinetics of phosphate, ammonium, and nitrate were studied. Yellow birch, a species with intermediate shade tolerance and relative growth rate, had the highest maximum rates of uptake of all ions, while tulip tree, a gap-colonizing species with high relative growth rate, had the lowest rate of phosphate uptake and intermediate rates of ammonium and nitrate uptake. Beech and hickory, which have low relative growth rates and are not gap-colonizing species, had intermediate levels of nutrient uptake. There was no evidence that species with the highest maximum uptake rates measured at high supply concentrations had relatively low uptake at low nutrient supply concentrations. Although birch increased phosphate absorption capacity when grown under a low nutrient regime, this pattern did not hold for nitrate or ammonium uptake, and other species showed no change in nutrient uptake capacity according to nutrient growth regime. Clearly, factors other than nutrient absorption capacity, such as nutrient use efficiency or allocation to root vs. shoot biomass, underlie differences in species' capacities to colonize and maintain a high relative growth rate in canopy gaps.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    ISSN: 1573-5036
    Keywords: CO2 ; gas exchange ; nitrogen ; Populus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Soil N availability may play an important role in regulating the long-term responses of plants to rising atmospheric CO2 partial pressure. To further examine the linkage between above- and belowground C and N cycles at elevated CO2, we grew clonally propagated cuttings of Populus grandidentata in the field at ambient and twice ambient CO2 in open bottom root boxes filled with organic matter poor native soil. Nitrogen was added to all root boxes at a rate equivalent to net N mineralization in local dry oak forests. Nitrogen added during August was enriched with 15N to trace the flux of N within the plant-soil system. Above-and belowground growth, CO2 assimilation, and leaf N content were measured non-destructively over 142 d. After final destructive harvest, roots, stems, and leaves were analyzed for total N and 15N. There was no CO2 treatment effect on leaf area, root length, or net assimilation prior to the completion of N addition. Following the N addition, leaf N content increased in both CO2 treatments, but net assimilation showed a sustained increase only in elevated CO2 grown plants. Root relative extension rate was greater at elevated CO2, both before and after the N addition. Although final root biomass was greater at elevated CO2, there was no CO2 effect on plant N uptake or allocation. While low soil N availability severely inhibited CO2 responses, high CO2 grown plants were more responsive to N. This differential behavior must be considered in light of the temporal and spatial heterogeneity of soil resources, particularly N which often limits plant growth in temperate forests.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    ISSN: 1573-5036
    Keywords: carbon dioxide ; nitrogen ; ponderosa pine ; soil respiration ; soil carbon
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The purpose of this paper is to describe the effects of CO2 and N treatments on soil pCO2, calculated CO2 efflux, root biomass and soil carbon in open-top chambers planted with Pinus ponderosa seedlings. Based upon the literature, it was hypothesized that both elevated CO2 and N would cause increased root biomass which would in turn cause increases in both total soil CO2 efflux and microbial respiration. This hypothesis was only supported in part: both CO2 and N treatments caused significant increases in root biomass, soil pCO2, and calculated CO2 efflux, but there were no differences in soil microbial respiration measured in the laboratory. Both correlative and quantitative comparisons of CO2 efflux rates indicated that microbial respiration contributes little to total soil CO2 efflux in the field. Measurements of soil pCO2 and calculated CO2 efflux provided inexpensive, non-invasive, and relatively sensitive indices of belowground response to CO2 and N treatments.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    ISSN: 1573-5036
    Keywords: nitrogen ; precoditioning ; roots ; sycamore
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Acer pseudoplatanus L. trees were grown in sand culture for 2 years and, in 1988, supplied with either 1.0 mol N m-3 (low N) or 6.0 mol N m-3 (high N) to precondition their growth. In 1989, the same trees received either high or low nitrogen, producing four treatments; High N in 1988/High N in 1989; High N in 1988/Low N in 1989; Low N in 1988/Low N in 1989; and Low N in 1988/High N in 1989. Plant growth was affected by N supply in both years. In 1989 the Low N/High N treated trees had the same overall mass, leaf mass and stem girth as the High N/High N treatment. Early spring growth of foliage and roots was conditional on nitrogen supplied in the previous season. Later, the rapid increases in leaf, stem and root growth under high N was through root uptake. Internal partitioning of growth was affected, with the Low N/High N treatment producing more new leaves on axillary shoots, and more new white roots on existing structures, than the Low N/Low N treatment. Despite effects of the N preconditioning on the structure of both canopy and root system, nitrogen uptake was solely dependent on the current nitrogen supply.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    ISSN: 1573-5036
    Keywords: enzymes ; fine root vitality ; nitrogen ; Picea abies ; Pinus sylvestris ; triphenyltetrazolium chloride
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The present study is an attempt to investigate whether triphenyltetrazolium chloride (TTC), a chemical compound which measures dehydrogenase activity, could be used to study fine-root vitality from two different points of view: (i) in relation to ageing; (ii) as an indicator of environmental stress, in this case of excess nitrogen. The study was performed with excavated fine-roots from middle-aged Norway spruce and Scots pine stands. The ageing aspect was investigated by applying TTC to fine roots separated into different vitality classes, based on certain morphological characteristics. A significant difference in activity was demonstrated only in the case of roots that could be referred to as living and dead, respectively. The use of TTC on fine roots grown at different nitrogen supply levels indicates a possible increase in dehydrogenase activity with increasing nitrogen supply.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    ISSN: 1573-5044
    Keywords: Fatty acids ; hyoscyamine ; Hyoscyamus muticus ; nitrogen ; sucrose ; transformed root cultures
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abatract The effect of carbon and nitrogen sources on two well-established hairy root clones, LBA1S and C58A, of Hyoscyamus muticus strain Cairo, were investigated. Both clones exhibited completely different patterns with regards to their growth rate, hyoscyamine accumulation, and fatty acid contents. Clone C58A grew faster and yielded more biomass (17.4 g l-1, in 21 days), but produced less hyoscyamine. The maximum hyoscyamine content (120 mg l-1) in clone LBA1S was reached in 28 days. Neither of the clones could use lactose or fructose as the sole carbon source, nor ammonium as the sole nitrogen source. The growth in the medium containing glucose was significantly reduced compared to that containing sucrose. Clone LBA1S was sensitive to the changes in sucrose concentration and an increase in ammonium in the culture medium, whereas C58A tolerated these changes better but was more sensitive to the increase in total nitrogen. Lipid synthesis was active in the exponential growth phase, and the total fatty acid content varied from 5 to 34 mg g-1 of dry root material. The major fatty acids were linoleic, palmitic and linolenic. There were considerable differences in the total amount of lipids and in their relative ratios when different nutrients were applied.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 275-276 (1994), S. 359-369 
    ISSN: 1573-5117
    Keywords: agriculture ; blue-green algae ; eutrophication ; internal loading ; nitrogen ; phosphorus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The impact of agriculture was estimated on two shallow, eutrophic lakes, Lake Kotojärvi and Lake Villikkalanjärvi in southern Finland. The main emphasis was on phosphorus and nitrogen budgets and on the phytoplankton dynamics. Special attention was paid to internal P loading and blue-green algal blooms. The mean Tot-P load from agricultural land was 1.2 kg ha-1 a-1 in both basins and Tot-N loads were 19 kg ha-1 a-1 in L. Villikkalanjärvi and 12 kg ha-1 a-1 in L. Kotojärvi. The Tot-P input to L. Kotojärvi was on an average 0.62 g m-2 a-1 (per lake surface area), and the Tot-N input 9.1 g m-2 a-1. The corresponding inputs to L. Villikkalanjärvi were 3.1 and 57 g m-2 a-1, respectively. The annual variation followed the runoff volumes. About half of the Tot-P and one third of the Tot-N load was retained in L. Kotojärvi. In L. Villikkalanjärvi the retention was only 24% for Tot-P and 19% for Tot-N. The difference was very probably due to a longer theoretical retention time in L. Kotojärvi. In L. Villikkalanjärvi the mean concentration of Tot-P was 120 µg 1-1 and that of Tot-N 1700 µg 1-1 and the corresponding figures in L. Kotojärvi 67 and 990 µg 1-1, respectively. The mean chlorophyll a concentration was, however, higher in L. Kotojärvi (26 µg 1-1) than in L. Villikkalanjärvi (20 µg 1-1). This was probably due to an internal P load in L. Kotojärvi: in 1988 the internal load of dissolved P was estimated to be as much as twofold the external load. In L. Villikkalanjärvi the internal dissolved P load was only up to 50% of the external input. In L. Kotojärvi the high internal P load coupled with a low DIN:DIP ratio resulted in a strong blue-green algal bloom in the summer of 1988. In L. Villikkalanjärvi blue-green algae were observed only in small amounts. Even in August 1990, when the DIN:DIP ratio was low enough to favor the occurrence of blue-green algae, they contributed only up to 10–15% of the total phytoplankton biomass.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 277 (1994), S. 17-39 
    ISSN: 1573-5117
    Keywords: carbon ; phosphorus ; nitrogen ; silica ; sedimentation ; mineralization ; meromixis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The dynamics of seston and dissolved elements in a meromictic lake with high concentrations of manganese and iron in the monimolimnion were studied through an annual cycle. This publication presents results for assimilation, sedimentation and recovery of nutrients (C, N, P, and Si) in the trophogenic zone. Phosphorus deficiency kept the productivity of the diatom dominated phytoplankton at an oligotrophic level. High concentrations of iron in influent streams and redistribution followed by precipitation of iron during periods of partial turnover removed phosphorus from the water. High concentrations of manganese and sulfate did not have the anticipated fertilizing effect, and recovery of nutrients from the depth of the lake was negligible. Mass balance calculations indicate that liberation of phosphorus from the sediments in the trophogenic zone was most important for the maintenance of primary production. 75% of carbon, 80% of nitrogen and 25% of phosphorus assimilated by the phytoplankton was mineralized in the trophogenic zone. Silica was effectively regenerated from the littoral zone during the decline of diatom blooms. Nitrogen and silica retention was 45% of the external load compared to 66% for phosphorus.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    ISSN: 1573-5117
    Keywords: eutrophication ; birds ; lake ; nitrogen ; phosphorus ; eutrophisation ; oiseaux ; lac ; azote ; phosphore
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Description / Table of Contents: Résumé Le plus grand lac de plaine français, Grand-Lieu, est actuellement largement eutrophisé. Le but de cette étude est d'estimer l'importation annuelle de N et P par les fientes des oiseaux qui s'alimentent à l'extérieur du lac, et de la comparer avec les apports des rivières alimentant le lac. Deux années sont comparées: 1981–82 et 1990–91. Les populations nicheuses (jusqu'à 956 couples de hérons cendrés et 136 couples de grands cormorans et 30 000 canards) et hivernantes (jusqu'à 17 000 canards, 1100 grands cormorans, 15 000 goélands et 2,4 millions d'étourneaux) ont respectivement importé 5800 kg de N total en 1981–82 et 7640 en 1990–91, soit 0,7% et 0,4% des entrées totales du système, et 2000 à 2530 kg de P total soit 2,4 et 6,6% des entrées. Les étourneaux sont responsables des trois quarts des apports d'azote par les oiseaux, et les canards de l'essentiel du reste, tandis que la part des étourneaux baisse pour le phosphore (36% en 1981–82 et 41% en 1990–91), au profit des Canards et des Hérons (respectivement 35% et 27% en 1981–82, 22% et 24% en 1990–91). Mais pendant la phase de croissance végétale (avril–septembre), la part des oiseaux monte jusqu'à 37% des entrées totales de phosphore. L'action localisée des colonies d'oiseaux piscivores est significative, avec une teneur de phosphore 42 fois plus grande dans l'eau sous la colonie qu'à l'extérieur des colonies. A l'échelle du l'ac, l'action actuelle globalement mineure des oiseaux sur les apports totaux d'azote et de phosphore est largement due à l'augmentation catastrophique des apports d'origine humaine (agriculture intensive et stations d'épuration). La teneur moyenne des rivières atteint désormais 10 mg l−1 de N (jusqu'à 23 mg en crue) et 394 mg m−3 de P (jusqu'à 468 mg en crue). Avant cette pollution généralisée, l'eau des rivières bretonnes ne contenait dans les années 1960 que 0,1 à 1,1 mg l−1 de N et 1 à 5 mg m−3 de P lors des périodes de débits maximum. A cette époque, les oiseaux représentaient probablement jusqu'à 36% des apports de N et 95% des apports de P dans les entrées du système lacustre.
    Notes: Abstract The largest natural lake in France, Grand-Lieu, has suffered eutrophication. The objective of the study was to estimate the annual input of nutrients (N, P) resulting from avian excrement, deposited by birds feeding out of the lake and returning to its waters for breeding or roosting, as compared to the input by the rivers that enter in the lake. Two years are compared: 1981–82 and 1990–91. About 1600–2000 breeding herons and cormorants, 20 000–33 000 wintering ducks, gulls and cormorants and 1–2.4 million starlings deposited about 5800 kg total N in 1981–82 and 7640 kg in 1990–91. Respectively, 2000 and 2530 kg total P were deposited over the same time periods. These represent 0.7% and 0.4% of the total N input of the lake and 2.4 and 6.6% of the total P input in 1981–82 and 1990–91. Starlings account for 74% of the N and mallards most of the rest. P input by starlings (36% in 1981–82, 41% in 1990–91), and by mallards and herons (35% and 27% in 1981–82 and 22% and 24% in 1990–91 respectively) plays an appreciable role among birds. During the plant growing period (April–September), the contribution by birds can increase to 37% of total P input of the lake. Piscivorous bird colonies concentrate Phosphorus 42 times more within the colony than outside the colony. Overall, the role birds play in total N and P input is relatively small due to very high inputs from human sewage and agriculture run off. The monthly mean concentration of the water of the two rivers reaches currently 10 mg l−1 of N (to 23 mg during peak floods) and 394 mg m−3 of P (to 468 mg during peak floods). Earlier, for example in the 1960's, water in Brittany only contained 0.1 to 1.1 mg 1−1 of N and 1 to 5 mg m−3 of P during the maximum flow period. At this time, birds could probably have represented annually up to 37% of the N input and up to 95% of the P input to the lake.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 286 (1994), S. 155-165 
    ISSN: 1573-5117
    Keywords: decomposition ; marsh ; litter ; nitrogen ; Scolochloa festucacea
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The effect of seasonal inundation on the decomposition of emergent macrophyte litter (Scolochloa festucacea) was examined under experimental flooding regimes in a northern prairie marsh. Stem and leaf litter was subjected to six aboveground inundation treatments (ranging from never flooded to flooded April through October) and two belowground treatments (nonflooded and flooded April to August). Flooding increased the rate of mass loss from litter aboveground but retarded decay belowground. Aboveground, N concentration decreased and subsequently increased earlier in the longer flooded treatments, indicating that flooding decreased the time that litter remained in the leaching and immobilization phases of decay. Belowground, both flooded and nonflooded litter showed an initial rapid loss of N, but concentration and percent of original N remaining were greater in the nonflooded marsh throughout the first year. This suggested that more N was immobilized on litter under the nonflooded, more oxidizing soil conditions. Both N concentration and percent N remaining of belowground litter were greater in the flooded than the nonflooded marsh the second year, suggesting that N immobilization was enhanced after water-level drawdown. These results suggest different mechanisms by which flooding affects decomposition in different wetland environments. On the soil surface where oxygen is readily available, flooding accelerates decomposition by increasing moisture. Belowground, flooding creates anoxic conditions that slow decay. The typical hydrologic pattern in seasonally flooded prairie marshes of spring flooding followed by water-level drawdown in summer may maximize system decomposition rates by allowing rapid decomposition aboveground in standing water and by annually alleviating soil anoxia.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    ISSN: 1573-5095
    Keywords: foliage ; grafting ; nitrogen ; phosphorus ; Pinus caribaea ; rootstock ; scion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Both scion and rootstock clones significantly influenced scion elongation and concentrations of nitrogen and phosphorus in the scion foliage. Scion clone was the more important determinant. Scion clone × rootstock clone interactions were not significant. The ability of a clone to elongate as a scion was not correlated with its capacity to promote or retard scion elongation when used as a rootstock. Genetic differences in foliar nutrient concentrations appeared to reflect levels of nutrient demand, rather than the ability of roots to absorb nutrients. Nutrient demand of the rootstock can also explain negative correlations between nitrogen levels in rootstock clones and levels of both nitrogen and phosphorus in the scions. There was no significant relationship between scion elongation and foliar nitrogen concentrations of either rootstock or scion. The weak relationship between scion elongation and concentration of phosphorus in the rootstock apparently resulted from tissue dilution.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Electronic Resource
    Electronic Resource
    Springer
    Biogeochemistry 25 (1994), S. 19-39 
    ISSN: 1573-515X
    Keywords: denitrification ; mineralization ; nitrification ; nitrogen ; riparian ; stream ; wetland ; New Jersey ; Pennsylvania ; Pinelands
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Denitrification (N2 production) and oxygen consumption rates were measured at ambient field nitrate concentrations during summer in sediments from eight wetlands (mixed hardwood swamps, cedar swamps, heath dominated shrub wetland, herbaceous peatland, and a wetland lacking live vegetation) and two streams. The study sites included wetlands in undisturbed watersheds and in watersheds with considerable agricultural and/or sewage treatment effluent input. Denitrification rates measured in intact cores of water-saturated sediment ranged from ≤ 20 to 260 μmol N m-2 h-1 among the three undisturbed wetlands and were less variable (180 to 260 μmol N M-2 h-1) among the four disturbed wetlands. Denitrification rates increased when nitrate concentrations in the overlying water were increased experimentally (1 up to 770 μM), indicating that nitrate was an important factor controlling denitrification rates. However, rates of nitrate uptake from the overlying water were not a good predictor of denitrification rates because nitrification in the sediments also supplied nitrate for denitrification. Regardless of the dominant vegetation, pH, or degree of disturbance, denitrification rates were best correlated with sediment oxygen consumption rates (r 2 = 0.912) indicating a relationship between denitrification and organic matter mineralization and/or sediment nitrification rates. Rates of denitrification in the wetland sediments were similar to those in adjacent stream sediments. Rates of denitrification in these wetlands were within the range of rates previously reported for water-saturated wetland sediments and flooded soils using whole core15N techniques that quantify coupled nitrification/denitrification, and were higher than rates reported from aerobic (non-saturated) wetland sediments using acetylene block methods.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Electronic Resource
    Electronic Resource
    Springer
    Journal of aquatic ecosystem stress and recovery 3 (1994), S. 27-34 
    ISSN: 1573-5141
    Keywords: nutrient limitation ; critical tissue concentrations ; nitrogen ; phosphorus ; macroalgae ; biomonitoring
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Discs of the macroalga,Ulva lactuca L., were transplanted around an ocean outfall and at a reference site in Køge Bay, Denmark, to assess the influence of the outfall on the nutrient availability. At 2-wk intervals, samples were collected and analyzed for growth, nitrogen, and phosphorus content. The tissue concentrations of nitrogen and phosphorus decreased with distance to the outfall, showing that the tissue concentrations are suitable for monitoring nutrient availability in coastal areas and provide a time-integrated measure of the nutrient availability. The lowest tissue concentrations of nitrogen were recorded at the reference station, where the internal concentrations generally were below the critical concentration level, showing that nitrogen limited the growth. At the station located close to the outfall, the flux of nitrogen was sufficient to maintain the maximum growth rate. The tissue concentrations of phosphorus were only below the critical concentration level on one occasion, and the result showed a net uptake throughout the study period. It was concluded that in the Køge Bay, nitrogen was the main limiting factor for macroalgae growth during the summer. The applicability of tissue concentrations for assessment of nutrient availability is discussed and it is considered that the method, when evaluated against established critical concentrations, provides a valuable tool for assessing ecosystem health with regard to eutrophication.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Electronic Resource
    Electronic Resource
    Springer
    World journal of microbiology and biotechnology 10 (1994), S. 477-478 
    ISSN: 1573-0972
    Keywords: Ethylenediamine ; glutamine synthetase ; nitrogen ; Nostoc ANTH
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Nostoc ANTH metabolizes ethylenediamine (EDA) as sole nitrogen source but not as a carbon source. EDA is assimilated by the glutamine synthetase-glutamate synthase pathway. EDA represses heterocyst formation and nitrogenase activity but this is reversed by l-methionine-dl-sulphoximine.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 37 (1994), S. 93-105 
    ISSN: 1573-0867
    Keywords: Erosion/Productivity Impact Calculator (EPIC) model ; leaching ; lettuce ; net N mineralization ; nitrate ; nitrogen
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Low N use efficiency and high nitrate (NO 3 - ) pollution potentials are problems in intensive vegetable production systems. The purpose of this study was to quantify N utilization by lettuce (Lactuca sativa L. cv Salinas), and identify periods of NO 3 - loss in an on-farm study in the Salinas Valley in coastal California. During autumn and winter, surface moisture remained low, and NO 3 - concentrations increased, reflecting high net mineralizable N, as determined by anaerobic incubation, and nitrification potential, as determined by the chlorate inhibition method. At the onset of a large winter storm, tracer levels of15NO 3 - were injected in the top 5 mm of soil in 30 cm-deep cylinders. After two weeks, most of the15N was present as15NO 3 - at 10–30 cm depth. By difference, losses to denitrification accounted for ~ 25% of the surface-applied15N. Leaching below 30 cm did not occur, since no15N enrichment of NO 3 - -N was measured in anion-exchange resin membranes placed at the base of each cylinder. During the crop period, NO 3 - losses were most pronounced after irrigation events. Uptake of N by two crops of lettuce (above- and belowground material) was approximately equal to fertilizer inputs, yet simulation of N fates by the Erosion/Productivity Impact Calculator (EPIC) model indicated losses of 14.6 g-N m−2 by leaching and 2.5 g-N m−2 by denitrification during the 6-month crop period. The large NO 3 - losses can be attributed to accumulation of soil NO 3 - during winter that was leached or denitrified during the irrigated crop period.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 40 (1994), S. 105-108 
    ISSN: 1573-0867
    Keywords: annual ryegrass ; dry matter ; logistic ; model ; nitrogen
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The logistic model has proven very useful in relating dry matter production of warm season perennial forage grasses to applied nitrogen. A recent extension of the model coupled dry matter and plant N accumulation through a common response coefficient c. The objective of this analysis was to apply the extended logistic model to cool season Gulf annual ryegrass (Lolium multiflorum Lam.) and to establish a common response coefficient c between accumulation of dry matter and plant N. Analysis of variance established the validity of this hypothesis. The model accurately described response of dry matter, plant N removal, and plant N concentration to applied N, with an overall correlation coefficient of 0.9954. Furthermore, the model closely described the relationship between yield and plant N removal, as well as between plant N concentration and plant N removal. The logistic equation is well-behaved and simple to use on a pocket calculator. It can be used to estimate yields and plant N removal in evaluation of agricultural production and environmental quality.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    ISSN: 1572-9680
    Keywords: Argania spinosa ; micro-elements ; nitrogen ; phosphorus ; V.A. mycorrhization
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Description / Table of Contents: Résumé L'influence de la mycorhization V.A. sur la nutrition minérale de 2 clones d'Arganier (Argania spinosa) a été étudiée sur des plantules micropropagées in vitro poussant en conditions contrôlées. L'inoculation (qui augmentait la production de matière sèche d'un facteur 4,5) accroit également la teneur des plantes en phosphore, notamment dans les feuilles, et les plantes mycorhizées mobilisent 15 fois plus de phosphore que les plantes non inoculées. La teneur en azote est légèrement plus faible chez les plantes mycorhizées mais au total ces dernières exportent 3 fois plus d'azote. L'absorption des micro-éléments est aussi affectée par l'inoculation, qui accroit les teneurs des plantes en Fe, Zn et Cu. La nutrition minérale des deux clones étudiés semble affectée par le rapport racines/parties aériennes et d'autres caractéristiques génétiques, comme l'efficacité de translocation du fer. Ces résultats nous permettent de comprendre en quoi son système racinaire profond et mycorhizé permet à l'Arganier non seulement de pousser dans des zones arides aux sols pauvres, mais aussi d'améliorer la fertilité des couches supérieures du sol par l'effet litière.
    Notes: Abstract The influence of V.A. mycorrhization on mineral nutrition of 2 clones ofArgania spinosa was studied with in-vitro micropropagated plantlets grown in confined medium under controlled conditions. Inoculation, which increased dry matter production by a factor of 4.5, also increased P concentration in the plant, especially in the leaves, and the mycorrhizal plants mobilized 15 times more P than control plants. N concentration was slightly lower in mycorrhizal plants, but total N content was 3 times higher. Uptake of micro elements was also affected, inoculation increasing plant Fe, Zn and Cu content. Mineral nutrition in the test clones seemed affected by root/shoot ratio and other genetically-related characteristics, such as Fe translocation efficiency. These results help us to understand how its deep mycorrhizal root system might allowArgania spinosa not only to grow in infertile arid areas but also to improve top-soil fertility by a litter effect.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Electronic Resource
    Electronic Resource
    Springer
    International journal of thermophysics 15 (1994), S. 1211-1219 
    ISSN: 1572-9567
    Keywords: binary system ; butane ; carbon dioxide ; nitrogen ; ternary system ; vapor-liquid equilibria
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The system studied was nitrogen + carbon dioxide +n-butane at 250 and 270 K and at pressures from 1.5 to 14 MPa. The Peng-Robinson equation was used to model the results, since it is the most widely accepted equation of state in the gas processing industry. In general, the predictions are most accurate at low and moderate pressures and poorest at high pressures, especially near the critical region.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Electronic Resource
    Electronic Resource
    Springer
    Antonie van Leeuwenhoek 65 (1994), S. 179-182 
    ISSN: 1572-9699
    Keywords: Aspergillus ; fungus ; catabolism ; activation ; repression ; nitrogen ; carbon ; zinc fingers
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract TheamdS gene codes for an acetamidase enzyme that hydrolyses acetamide to acetate and ammonium thus providingA. nidulans with a source of carbon and nitrogen. The exceptionally favourable genetics of this system combined with molecular analysis have enabled many regulatory circuits affectingamdS to be identified genetically. Characterization of the regulatory genes and the definition of the cis-acting sites involved have been done using bothin vivo andin vitro mutagenesis. Recent results on the analysis of the system are presented.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...