Skip to main content
Log in

Effect of continuous nutrient enrichment on microalgae colonizing hard substrates

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

In order to understand the effect of changing nutrient conditions on benthic microalgae on hard substrates, in-situ experiments with artificial substrates were conducted in Kiel Fjord, Western Baltic Sea. As an extension of previous investigations, we used artificial substrates without silicate and thus were able to supply nutrient media with different Si:N ratios to porous substrates, from where they trickled out continuously. The biofilm developing on these substrates showed a significant increase in biovolume due to N + P enrichment, while Si alone had only minor effects. The stoichiometric composition of the biomass indicated nitrogen limitation during most of the year. The C:N ratios were lowered by the N + P addition. The algae were dominated by diatoms in most cases, but rhodophytes and chlorophytes also became important. The nutrient treatment affected the taxonomic composition mostly at the species level. The significance of the results with regard to coastal eutrophication is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Admiraal, W., 1984. The ecology of estuarine sediment-inhabiting diatoms. Progr. Phycol. Res. 3: 269–322.

    Google Scholar 

  • Bidle, K. D. & F. Azam, 1999. Accelerated dissolution of diatom silica by marine bacterial assemblages. Nature 397: 508–512.

    Google Scholar 

  • Bodeanu, N., 1993. Microalgal blooms in the Romanian area of the Black Sea and contemporary eutrophication conditions. In Smayda, T. J. & Y. Shimizu (eds), Toxic Phytoplankton Blooms in the Sea. Elsevier Science Publ., Amsterdam: 203–209.

    Google Scholar 

  • Borchardt, M. A., 1996. Nutrients. In Stevenson, R. J., M. L. Bothwell & R. L. Lowe (eds), Algal Ecology-Freshwater Benthic Ecosystems. Academic Press, London: 183–227.

    Google Scholar 

  • Bothwell, M. L., 1985. Phosphorus limitation of lotic periphyton groth rates: an intersite comparison using continuous flow throughs (Thompson River, British Columbia). Limnol. Oceanogr. 30: 527–542.

    Google Scholar 

  • Bothwell, M. L., 1989. Phosphorus-limited growth dynamics of lotic periphyton diatom communities: Areal biomass and cellular growth rate response. Can. J. Fish. Aquat. Sci. 46: 1293–1301.

    Google Scholar 

  • Carrick, H. J., R. L. Lowe & J. T. Rotenberry, 1988. Guilds of benthic algae along nutrient gradients: relationships to algal community diversity. J. n. am. Benthol. Soc. 7: 117–128.

    Google Scholar 

  • Carrick, H. J. & R. L. Lowe, 1988. Response of Lake Michigan benthic algae to in situ enrichment with Si, N and P. Can. J. Fish. aquat. Sci. 45: 271–279.

    Google Scholar 

  • Conley, D. J., C. L. Schelske & E. F. Stoermer, 1993. Modification of the biogeochemical cycle of silica with eutrophication. Mar. Ecol. Prog. Ser. 101: 179–192.

    Google Scholar 

  • D'Elia, C. F., J. G. Sanders & W. R. Boynton, 1986. Nutrient enrichment studies in a coastal plain estuary: phytoplankton growth in large scale, continuous cultures. Can. J. Fish. aquat. Sci. 43: 397–406.

    Google Scholar 

  • Daniel, G. F., A. H. L. Chamberlain & E. B. G. Jones, 1987. Cytochemical and electron microscopical observations on the adhesive materials of marine fouling diatoms. Br. Phycol. J. 22: 101–118.

    Google Scholar 

  • Deegen, P., 1997. Nährstoffansprüche von Aufwuchsalgen der Kieler Förde. Msc thesis. Christian-Albrechts-Universität zu Kiel: 90 pp.

  • Flothmann, S. & I. Werner, 1992. Experimental eutrophication on an intertidal sandflat: effects on microphytobenthos, meio-and macrofauna. In Colombo, G., I. Ferrari, V. U. Ceccherelli & R. Rossi (eds), Marine Eutrophication and Population dynamics. Proceed. 25th Europ. Mar. Biol. Symp. Olsen & Olsen, Fredenborg: 93–100.

    Google Scholar 

  • Hepinstall, J. A. & R. L. Fuller, 1994. Periphyton reactions to different light and nutrient levels and the response of bacteria to these manipulations. Arch. Hydrobiol. 131: 161–173.

    Google Scholar 

  • Hecky, R. E., P. Campbell & L. L. Hendzel, 1993. The stoichiometry of carbon, nitrogen and phosphorus in particulate matter of lakes and oceans. Limnol. Oceanogr. 38: 709–724.

    Google Scholar 

  • Hillebrand, H. & U. Sommer, 1997. Response of epilithic microphytobenthos of the western Baltic Sea to in situ experiments with nutrient enrichment. Mar. Ecol. Prog. Ser. 160: 35–46.

    Google Scholar 

  • Hillebrand, H. & U. Sommer, 1999. The nutrient stoichiometry of benthic microagal growth: redfield proportions are optimal. Limnol. Oceanogr. 44: 440–446.

    Google Scholar 

  • Hillebrand, H., C. D. Dürselen, D. Kirschtel, U. Pollingher & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. J. Phycol. 35: 403–424.

    Google Scholar 

  • Hoagland, K. D., S. C. Roemer & J. R. Rosowski, 1982. Colonization and community structure of twoperiphyton assemblages, with emphasis on the diatoms (Bacillariophyceae). Am. J. Bot. 69: 188–213.

    Google Scholar 

  • Hudon, C. & E. Bourget, 1981. Initial colonization of artificial substrate: community development and structure studied by Scanning Electron Microscopy. Can. J. Fish. aquat. Sci. 38: 1371–1384.

    Google Scholar 

  • Kahlert, M., 1998. C:N:P ratios of freshwater benthic algae. Arch. Hydrobiol. Spec. Issue. Adv. Limnol. 51: 105–118.

    Google Scholar 

  • Lotze, H. K., 1998. Population dynamics and species interactions in macroalgal blooms: abiotic versus biotic control at different lifecycle stages. Ph. D. thesis Christian-Albrechts-Universität Kiel: 134 pp.

  • Malone, T. C., D. J. Conley, T. R. Fisher, P. M. Glibert, L. W. Harding & K. G. Sellner, 1996. Scales of nutrient-limited phytoplankton productivity in Chesapeake Bay. Estuaries 19: 371–385.

    Google Scholar 

  • McCormick, P. V., 1996. Resource competition and species coexistence in freshwater algal assemblages. In Stevenson, R. J., M. L. Bothwell & R. L. Lowe (eds), Algal Ecology-Freshwater Benthic Ecosystems. Academic Press, London: 229–252.

    Google Scholar 

  • Nilsson, C., 1995. Microbenthic communities with emphasis on algal-nutrient relations. Ph. D. thesis, Göteborg University: 109 pp.

  • Nilsson, P., B. Jönsson, I. Lindström Swanberg & K. Sundbäck, 1991. Response of a marine shallow-water sediment system to an increased load of inorganic nutrients. Mar. Ecol. Prog. Ser. 71: 275–290.

    Google Scholar 

  • Parker, B. C., 1969. Occurrence of silica in brown and green algae. Can. J. Bot. 47: 537–540.

    Google Scholar 

  • Pedersen, M. F. & J. Borum, 1997. Nutrient control of estuarine macroalgae: growth strategy and the balance between nitrogen requirements and uptake. Mar. Ecol. Prog. Ser. 161: 155–163.

    Google Scholar 

  • Rahm, L., D. J. Conley, P. Sanden, F. Wulff & P. Stålnacke, 1996. Time series analysis of nutrient inputs to the Baltic Sea and changing Dsi: DIN ratios. Mar. Ecol. Prog. Ser. 130: 221–228.

    Google Scholar 

  • Riber, H. H. & R. G. Wetzel, 1987. Boundary-layer and internal diffusion effects on phosphorus fluxes in lake periphyton. Limnol. Oceanogr. 32: 1181–1194.

    Google Scholar 

  • Riegman, R., A. A. M. Noordeloos & Cadée, G. C., 1992. Phaeocystis blooms and eutrophication of the continental coastal zones of the North Sea. Mar. Biol. 112: 479–484.

    Google Scholar 

  • Sabater, S., S. V. Gregory & J. R. Sedell, 1998. Community dynamics and metabolism of benthic algae colonizing wood and rock substrata in a forest stream. J. Phycol. 34: 561–567.

    Google Scholar 

  • Sigmon, D. E. & L. B. Cahoon, 1997. Comparative effects of benthic microalgae and phytoplankton on dissolved silica fluxes. Aquat. Microb. Ecol. 13: 275–284.

    Google Scholar 

  • Snoeijs, P., 1991. Monitoring pollution effects by diatom community composition. A comparison of sampling methods. Arch. Hydrobiol. 121: 497–510.

    Google Scholar 

  • Sommer, U., 1994. Are marine diatoms favoured by high Si:N ratios? Mar. Ecol. Prog. Ser. 115: 309–315.

    Google Scholar 

  • Sommer, U., 1996. Nutrient competition experiments with periphyton from the Baltic Sea. Mar. Ecol. Prog. Ser. 140: 161–167.

    Google Scholar 

  • Sundbäck, K. & P. Snoeijs, 1991. Effects of nutrient enrichment on microalgal community composition in a coastal shallow-water sediment system: an experimental study. Bot. Mar. 34: 341–358.

    Google Scholar 

  • Wetzel, R. G., 1996. Benthic algae and nutrient cycling in lentic freshwater ecosystems. In Stevenson, R. J., M. L. Bothwell & R. L. Lowe (eds), Algal Ecology-Freshwater Benthic Ecosystems. Academic Press, London: 641–667.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut Hillebrand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hillebrand, H., Sommer, U. Effect of continuous nutrient enrichment on microalgae colonizing hard substrates. Hydrobiologia 426, 185–192 (2000). https://doi.org/10.1023/A:1003943201178

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003943201178

Navigation