ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-515X
    Keywords: carbon ; landscape geochemical flows ; model ; nitrogen ; phosphorus ; wetland
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract The importance of landscape geochemical flows wasinvestigated using a dynamic model simulating carbon,nitrogen and phosphorus cycling in riverine wetlands,which has been described in a previous paper. Thehydro-geomorphic unit (HGMU) concept was incorporatedin the model by defining a separate, completeunit-model for each unit (HGMU) within the wetland.These unit-models were connected by defining the flowsof nitrogen and phosphorus between them. These flows,also called landscape geochemical flows, usuallyconsist of flows of water containing N and P. The model was applied to a site at Kismeldon Meadows,in south-western England. This site consists of twounits, a slope and a floodplain, separated by a ditch,which catches most of the run off and shallowgroundwater flows from the slope. Only an estimated1% of the N and P that leaves the slope unit in thewater outflow reaches the floodplain unit; the rest iscaught in the system of ditches, which prevent thegeochemical flows taking their natural course. Toexamine the influence of this system of ditches, themodel was run for the same site, but without theditches. This is comparable to a situation of arestored site, where run off and shallow groundwaterflows containing nutrients, can freely get from theslope to the floodplain. The computer simulation experiment reconnecting theslope and floodplain showed that this (1) increasedthe nutrient input into the floodplain, causing ahigher biomass production, and (2) increased thewetness of the floodplain, causing slowerdecomposition, which together (3) led to a faster soilorganic matter accumulation in the floodplain.Nutrient inflows became relatively more importantcompared to atmospheric deposition, especially forphosphorus. By connecting the slope and the floodplainmore nitrogen and less phosphorus flowed into theriver.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...