ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Binding Sites  (465)
  • 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems
  • 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport
  • 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy
  • 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
  • Acoustics
  • Applied geophysics
  • Data analysis / ~ processing
  • Fluids
  • Schussler
  • Textbook of geophysics
  • American Association for the Advancement of Science (AAAS)  (470)
  • Elsevier  (64)
  • Springer  (25)
  • Cambridge Univ. Press  (11)
  • Cambridge U. Press  (6)
  • Soc. of Exploration Geophys.
  • W.H. Freeman
  • 2010-2014  (172)
  • 2000-2004  (355)
  • 1980-1984  (53)
Collection
Keywords
Publisher
Years
Year
  • 101
    Publication Date: 2001-03-03
    Description: Initiation of translation at the correct position on messenger RNA is essential for accurate protein synthesis. In prokaryotes, this process requires three initiation factors: IF1, IF2, and IF3. Here we report the crystal structure of a complex of IF1 and the 30S ribosomal subunit. Binding of IF1 occludes the ribosomal A site and flips out the functionally important bases A1492 and A1493 from helix 44 of 16S RNA, burying them in pockets in IF1. The binding of IF1 causes long-range changes in the conformation of H44 and leads to movement of the domains of 30S with respect to each other. The structure explains how localized changes at the ribosomal A site lead to global alterations in the conformation of the 30S subunit.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carter, A P -- Clemons, W M Jr -- Brodersen, D E -- Morgan-Warren, R J -- Hartsch, T -- Wimberly, B T -- Ramakrishnan, V -- GM 44973/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2001 Jan 19;291(5503):498-501.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11228145" target="_blank"〉PubMed〈/a〉
    Keywords: Base Pairing ; Binding Sites ; Crystallography, X-Ray ; Eukaryotic Initiation Factor-1/*chemistry/metabolism ; Hydrogen Bonding ; Models, Molecular ; Nucleic Acid Conformation ; Protein Conformation ; Protein Structure, Secondary ; RNA, Ribosomal, 16S/*chemistry/metabolism ; RNA, Transfer/metabolism ; Ribosomal Proteins/*chemistry/metabolism ; Ribosomes/*chemistry/metabolism ; Thermus thermophilus/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 102
    Publication Date: 2001-03-27
    Description: Length determination in biology generally uses molecular rulers. The hook, a part of the flagellum of motile bacteria, has an invariant length. Here, we examined hook length and found that it was determined not by molecular rulers but probably by the amount of subunit protein secreted by the flagellar export apparatus. The export apparatus shares common features with the type III virulence-factor secretion machinery and thus may be used more widely in length determination of structures other than flagella.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Makishima, S -- Komoriya, K -- Yamaguchi, S -- Aizawa, S I -- New York, N.Y. -- Science. 2001 Mar 23;291(5512):2411-3. Epub 2001 Feb 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya 320-8551, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11264537" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*metabolism ; Binding Sites ; Flagella/metabolism/physiology/*ultrastructure ; Flagellin/*metabolism ; Genes, Bacterial ; Microscopy, Electron ; Movement ; Mutation ; Protein Transport ; Salmonella typhimurium/genetics/metabolism/physiology/*ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 103
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-06-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Klug, A -- New York, N.Y. -- Science. 2001 Jun 8;292(5523):1844-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Laboratory of Molecular Biology, Cambridge CB2 2QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11397933" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Crystallization ; Crystallography, X-Ray ; DNA, Fungal/chemistry/metabolism ; Gene Expression Regulation, Fungal ; Promoter Regions, Genetic ; Protein Conformation ; Protein Folding ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits ; RNA Polymerase II/*chemistry/*metabolism ; RNA, Fungal/biosynthesis/chemistry/metabolism ; RNA, Messenger/biosynthesis/chemistry/metabolism ; Saccharomyces cerevisiae/*enzymology/genetics ; Transcription Factors/isolation & purification/metabolism ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 104
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-11-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fesik, S W -- Shi, Y -- New York, N.Y. -- Science. 2001 Nov 16;294(5546):1477-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Research, Global Pharmaceutical Research & Development, Abbott Laboratories, Abbott Park, IL 60064, USA. stephen.fesik@abbott.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11711663" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Animals ; *Apoptosis ; Binding Sites ; Carrier Proteins/*chemistry/*metabolism ; *Caspase Inhibitors ; Caspases/chemistry/*metabolism ; Crystallography, X-Ray ; Cysteine Proteinase Inhibitors/chemistry/metabolism ; Dimerization ; Humans ; Hydrogen Bonding ; Intracellular Signaling Peptides and Proteins ; Mitochondria/metabolism ; Mitochondrial Proteins/*chemistry/*metabolism ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Proteins/*chemistry/*metabolism ; X-Linked Inhibitor of Apoptosis Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 105
    Publication Date: 2001-12-26
    Description: In anaerobic organisms, the decarboxylation of pyruvate, a crucial component of intermediary metabolism, is catalyzed by the metalloenzyme pyruvate: ferredoxin oxidoreductase (PFOR) resulting in the generation of low potential electrons and the subsequent acetylation of coenzyme A (CoA). PFOR is the only enzyme for which a stable acetyl thiamine diphosphate (ThDP)-based free radical reaction intermediate has been identified. The 1.87 A-resolution structure of the radical form of PFOR from Desulfovibrio africanus shows that, despite currently accepted ideas, the thiazole ring of the ThDP cofactor is markedly bent, indicating a drastic reduction of its aromaticity. In addition, the bond connecting the acetyl group to ThDP is unusually long, probably of the one-electron type already described for several cation radicals but not yet found in a biological system. Taken together, our data, along with evidence from the literature, suggest that acetyl-CoA synthesis by PFOR proceeds via a condensation mechanism involving acetyl (PFOR-based) and thiyl (CoA-based) radicals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chabriere, E -- Vernede, X -- Guigliarelli, B -- Charon, M H -- Hatchikian, E C -- Fontecilla-Camps, J C -- New York, N.Y. -- Science. 2001 Dec 21;294(5551):2559-63.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratoire de Cristallographie et Cristallogenese des Proteines, Institut de Biologie Structurale Jean-Pierre Ebel, Commissariat a l'Energie Atomique, Universite Joseph Fourier, CNRS, 41, rue Jules Horowitz, 38027 Grenoble Cedex 1, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11752578" target="_blank"〉PubMed〈/a〉
    Keywords: Acetyl Coenzyme A/metabolism ; Anaerobiosis ; Binding Sites ; Carbon Dioxide/metabolism ; Catalysis ; Chemistry, Physical ; Coenzymes/*chemistry/metabolism ; Crystallization ; Crystallography, X-Ray ; Desulfovibrio/*enzymology ; Dimerization ; Electron Spin Resonance Spectroscopy ; *Free Radicals/chemistry/metabolism ; Ketone Oxidoreductases/*chemistry/metabolism ; Molecular Conformation ; Molecular Structure ; Oxidation-Reduction ; Physicochemical Phenomena ; Protein Conformation ; Pyruvate Synthase ; Pyruvic Acid/metabolism ; Thiamine Pyrophosphate/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 106
    Publication Date: 2001-06-02
    Description: Acetylation of core histone tails plays a fundamental role in transcription regulation. In addition to acetylation, other posttranslational modifications, such as phosphorylation and methylation, occur in core histone tails. Here, we report the purification, molecular identification, and functional characterization of a histone H4-specific methyltransferase PRMT1, a protein arginine methyltransferase. PRMT1 specifically methylates arginine 3 (Arg 3) of H4 in vitro and in vivo. Methylation of Arg 3 by PRMT1 facilitates subsequent acetylation of H4 tails by p300. However, acetylation of H4 inhibits its methylation by PRMT1. Most important, a mutation in the S-adenosyl-l-methionine-binding site of PRMT1 substantially crippled its nuclear receptor coactivator activity. Our finding reveals Arg 3 of H4 as a novel methylation site by PRMT1 and indicates that Arg 3 methylation plays an important role in transcriptional regulation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, H -- Huang, Z Q -- Xia, L -- Feng, Q -- Erdjument-Bromage, H -- Strahl, B D -- Briggs, S D -- Allis, C D -- Wong, J -- Tempst, P -- Zhang, Y -- GM63067-01/GM/NIGMS NIH HHS/ -- P30 CA08748/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2001 Aug 3;293(5531):853-7. Epub 2001 May 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11387442" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Amino Acid Sequence ; Animals ; Arginine/*metabolism ; Binding Sites ; Cell Nucleus/metabolism ; HeLa Cells ; Histones/chemistry/*metabolism ; Humans ; Hydroxamic Acids/pharmacology ; Intracellular Signaling Peptides and Proteins ; Lysine/metabolism ; Methylation ; Methyltransferases/chemistry/genetics/isolation & purification/*metabolism ; Molecular Sequence Data ; Mutation ; Oocytes ; Protein-Arginine N-Methyltransferases ; Receptors, Androgen/*metabolism ; Recombinant Proteins/metabolism ; S-Adenosylmethionine/metabolism ; *Transcriptional Activation ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 107
    Publication Date: 2001-09-08
    Description: Multidrug resistance (MDR) is a serious medical problem and presents a major challenge to the treatment of disease and the development of novel therapeutics. ABC transporters that are associated with multidrug resistance (MDR-ABC transporters) translocate hydrophobic drugs and lipids from the inner to the outer leaflet of the cell membrane. To better elucidate the structural basis for the "flip-flop" mechanism of substrate movement across the lipid bilayer, we have determined the structure of the lipid flippase MsbA from Escherichia coli by x-ray crystallography to a resolution of 4.5 angstroms. MsbA is organized as a homodimer with each subunit containing six transmembrane alpha-helices and a nucleotide-binding domain. The asymmetric distribution of charged residues lining a central chamber suggests a general mechanism for the translocation of substrate by MsbA and other MDR-ABC transporters. The structure of MsbA can serve as a model for the MDR-ABC transporters that confer multidrug resistance to cancer cells and infectious microorganisms.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chang, G -- Roth, C B -- GM61905-01/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2001 Sep 7;293(5536):1793-800.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, MB-9, The Scripps Research Institute, La Jolla, CA 92037, USA. gchang@scripps.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11546864" target="_blank"〉PubMed〈/a〉
    Keywords: *ATP-Binding Cassette Transporters ; Adenosine Triphosphate/metabolism ; Amino Acid Sequence ; Bacterial Proteins/*chemistry/genetics/metabolism ; Binding Sites ; Biological Transport ; Crystallography, X-Ray ; Dimerization ; *Drug Resistance, Microbial ; *Drug Resistance, Multiple ; Escherichia coli/*enzymology ; Lipid A/metabolism ; Membrane Proteins/*chemistry/genetics/metabolism ; Models, Molecular ; Molecular Sequence Data ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Sequence Alignment ; Static Electricity ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 108
    Publication Date: 2001-05-08
    Description: Crystal structures of the 30S ribosomal subunit in complex with messenger RNA and cognate transfer RNA in the A site, both in the presence and absence of the antibiotic paromomycin, have been solved at between 3.1 and 3.3 angstroms resolution. Cognate transfer RNA (tRNA) binding induces global domain movements of the 30S subunit and changes in the conformation of the universally conserved and essential bases A1492, A1493, and G530 of 16S RNA. These bases interact intimately with the minor groove of the first two base pairs between the codon and anticodon, thus sensing Watson-Crick base-pairing geometry and discriminating against near-cognate tRNA. The third, or "wobble," position of the codon is free to accommodate certain noncanonical base pairs. By partially inducing these structural changes, paromomycin facilitates binding of near-cognate tRNAs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ogle, J M -- Brodersen, D E -- Clemons , W M Jr -- Tarry, M J -- Carter, A P -- Ramakrishnan, V -- F31 GM019384/GM/NIGMS NIH HHS/ -- GM 44973/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2001 May 4;292(5518):897-902.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11340196" target="_blank"〉PubMed〈/a〉
    Keywords: Anti-Bacterial Agents/metabolism/pharmacology ; Anticodon/chemistry/metabolism ; Base Pairing ; Binding Sites ; Codon/chemistry/metabolism ; Crystallography, X-Ray ; Guanosine Triphosphate/metabolism ; Hydrogen Bonding ; Models, Molecular ; Nucleic Acid Conformation ; Paromomycin/metabolism/pharmacology ; Peptide Chain Elongation, Translational ; Peptide Elongation Factor Tu/metabolism ; Protein Biosynthesis ; RNA, Bacterial/chemistry/metabolism ; RNA, Messenger/chemistry/*metabolism ; RNA, Ribosomal, 16S/chemistry/*metabolism ; RNA, Transfer/chemistry/*metabolism ; RNA, Transfer, Amino Acid-Specific/chemistry/*metabolism ; RNA, Transfer, Phe/chemistry/metabolism ; Ribosomes/chemistry/*metabolism/ultrastructure ; Thermodynamics ; Thermus thermophilus/chemistry/metabolism/*ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 109
    Publication Date: 2001-09-08
    Description: Recently we reported that antibodies can generate hydrogen peroxide (H2O2) from singlet molecular oxygen (1O2*). We now show that this process is catalytic, and we identify the electron source for a quasi-unlimited generation of H2O2. Antibodies produce up to 500 mole equivalents of H2O2 from 1O2*, without a reduction in rate, and we have excluded metals or Cl- as the electron source. On the basis of isotope incorporation experiments and kinetic data, we propose that antibodies use H2O as an electron source, facilitating its addition to 1O2* to form H2O3 as the first intermediate in a reaction cascade that eventually leads to H2O2. X-ray crystallographic studies with xenon point to putative conserved oxygen binding sites within the antibody fold where this chemistry could be initiated. Our findings suggest a protective function of immunoglobulins against 1O2* and raise the question of whether the need to detoxify 1O2* has played a decisive role in the evolution of the immunoglobulin fold.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wentworth , P Jr -- Jones, L H -- Wentworth, A D -- Zhu, X -- Larsen, N A -- Wilson, I A -- Xu, X -- Goddard , W A 3rd -- Janda, K D -- Eschenmoser, A -- Lerner, R A -- CA27489/CA/NCI NIH HHS/ -- GM43858/GM/NIGMS NIH HHS/ -- HD 36385/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2001 Sep 7;293(5536):1806-11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11546867" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Catalytic/chemistry/*metabolism ; Binding Sites ; Catalysis ; Conserved Sequence ; Crystallography, X-Ray ; Humans ; Hydrogen Peroxide/*metabolism ; Kinetics ; Models, Molecular ; Oxidants/chemistry/*metabolism ; Oxidation-Reduction ; Oxygen/*metabolism ; Protein Conformation ; Singlet Oxygen ; Spectrometry, Mass, Electrospray Ionization ; Thermodynamics ; Tryptophan/metabolism ; Ultraviolet Rays ; Water/*chemistry/*metabolism ; Xenon/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 110
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-12-18
    Description: DNA replication is initiated at numerous origins of replication (oris) within the chromosomes. In a pair of ambitious studies, two groups have used different techniques to pinpoint the locations of all of the oris throughout the yeast genome at different times during S phase (Raghuraman et al., Wyrick et al.). Stillman, in his Perspective, compares and contrasts the different methods and their findings, and speculates on the value of combining these techniques to look at oris in the human genome.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stillman, B -- New York, N.Y. -- Science. 2001 Dec 14;294(5550):2301-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA. stillman@cshl.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11743187" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Cell Cycle Proteins/metabolism ; Chromosomes, Fungal ; *DNA Replication ; DNA, Fungal/biosynthesis ; DNA-Binding Proteins/metabolism ; *Genome, Fungal ; Genome, Human ; Humans ; Oligonucleotide Array Sequence Analysis ; Origin Recognition Complex ; *Replication Origin ; S Phase ; Saccharomyces cerevisiae/*genetics/metabolism ; Saccharomyces cerevisiae Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 111
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-10-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Humphries, M J -- Mould, A P -- New York, N.Y. -- Science. 2001 Oct 12;294(5541):316-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, University of Manchester, M13 9PT, UK. martin.humphries@man.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11598288" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Calcium/metabolism ; Crystallization ; Crystallography, X-Ray ; Dimerization ; Drug Design ; Humans ; Ligands ; Metals/metabolism ; Models, Molecular ; Protein Binding ; Protein Conformation ; Protein Folding ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits ; Receptors, Vitronectin/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 112
    Publication Date: 2001-03-17
    Description: The activation of gp130, a shared signal-transducing receptor for a family of cytokines, is initiated by recognition of ligand followed by oligomerization into a higher order signaling complex. Kaposi's sarcoma-associated herpesvirus encodes a functional homolog of human interleukin-6 (IL-6) that activates human gp130. In the 2.4 angstrom crystal structure of the extracellular signaling assembly between viral IL-6 and human gp130, two complexes are cross-linked into a tetramer through direct interactions between the immunoglobulin domain of gp130 and site III of viral IL-6, which is necessary for receptor activation. Unlike human IL-6 (which uses many hydrophilic residues), the viral cytokine largely uses hydrophobic amino acids to contact gp130, which enhances the complementarity of the viral IL-6-gp130 binding interfaces. The cross-reactivity of gp130 is apparently due to a chemical plasticity evident in the amphipathic gp130 cytokine-binding sites.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chow , D -- He , X -- Snow, A L -- Rose-John, S -- Garcia, K C -- R01-AI-48540-01/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2001 Mar 16;291(5511):2150-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, Stanford University School of Medicine, Fairchild D319, 299 Campus Drive, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11251120" target="_blank"〉PubMed〈/a〉
    Keywords: Antigens, CD/*chemistry/*metabolism ; Binding Sites ; Crystallization ; Crystallography, X-Ray ; Cytokine Receptor gp130 ; Epitopes ; Humans ; Hydrogen Bonding ; Interleukin-6/*chemistry/immunology/*metabolism ; Membrane Glycoproteins/*chemistry/*metabolism ; Models, Molecular ; Molecular Mimicry ; Protein Conformation ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Signal Transduction ; Viral Proteins/*chemistry/immunology/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 113
    Publication Date: 2002-09-14
    Description: Mutations in the BRCA2 (breast cancer susceptibility gene 2) tumor suppressor lead to chromosomal instability due to defects in the repair of double-strand DNA breaks (DSBs) by homologous recombination, but BRCA2's role in this process has been unclear. Here, we present the 3.1 angstrom crystal structure of a approximately 90-kilodalton BRCA2 domain bound to DSS1, which reveals three oligonucleotide-binding (OB) folds and a helix-turn-helix (HTH) motif. We also (i) demonstrate that this BRCA2 domain binds single-stranded DNA, (ii) present its 3.5 angstrom structure bound to oligo(dT)9, (iii) provide data that implicate the HTH motif in dsDNA binding, and (iv) show that BRCA2 stimulates RAD51-mediated recombination in vitro. These findings establish that BRCA2 functions directly in homologous recombination and provide a structural and biochemical basis for understanding the loss of recombination-mediated DSB repair in BRCA2-associated cancers.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yang, Haijuan -- Jeffrey, Philip D -- Miller, Julie -- Kinnucan, Elspeth -- Sun, Yutong -- Thoma, Nicolas H -- Zheng, Ning -- Chen, Phang-Lang -- Lee, Wen-Hwa -- Pavletich, Nikola P -- New York, N.Y. -- Science. 2002 Sep 13;297(5588):1837-48.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, Sloan-Kettering Division, Joan and Sanford I. Weill Graduate School of Medical Sciences, Cornell University, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12228710" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; BRCA2 Protein/*chemistry/genetics/*metabolism ; Binding Sites ; Crystallography, X-Ray ; DNA/metabolism ; *DNA Repair ; DNA, Single-Stranded/*metabolism ; DNA-Binding Proteins/metabolism ; Genes, BRCA2 ; Helix-Turn-Helix Motifs ; Humans ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Mice ; Molecular Sequence Data ; Mutation ; Proteasome Endopeptidase Complex ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Proteins/chemistry/*metabolism ; Rad51 Recombinase ; Rats ; *Recombination, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 114
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-03-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marx, Jean -- New York, N.Y. -- Science. 2002 Mar 29;295(5564):2350.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11923505" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Caspases/genetics ; Dendritic Cells/immunology ; Enzyme Inhibitors/*pharmacology/therapeutic use ; Genetic Therapy ; Humans ; Immunotherapy ; Neoplasms/drug therapy/*therapy ; RNA/metabolism ; RNA, Antisense/metabolism/pharmacology/therapeutic use ; Telomerase/antagonists & inhibitors/genetics/immunology/*metabolism ; Telomere/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 115
    Publication Date: 2002-02-23
    Description: Group II self-splicing introns catalyze autoexcision from precursor RNA transcripts by a mechanism strikingly similar to that of the spliceosome, an RNA-protein assembly responsible for splicing together the protein-coding parts of most eukaryotic pre-mRNAs. Splicing in both cases initiates via nucleophilic attack at the 5' splice site by the 2' OH of a conserved intron adenosine residue, creating a branched (lariat) intermediate. Here, we describe the crystal structure at 3.0 A resolution of a 70-nucleotide RNA containing the catalytically essential domains 5 and 6 of the yeast ai5gamma group II self-splicing intron, revealing an unexpected two-nucleotide bulged structure around the branch-point adenosine in domain 6.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Lan -- Doudna, Jennifer A -- New York, N.Y. -- Science. 2002 Mar 15;295(5562):2084-8. Epub 2002 Feb 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biophysics and Biochemistry and, Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11859154" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine/chemistry/metabolism ; Base Pairing ; Binding Sites ; CME-Carbodiimide/*analogs & derivatives ; Catalysis ; Cobalt/metabolism ; Crystallization ; Crystallography, X-Ray ; *Introns ; Magnesium/metabolism ; Manganese/metabolism ; *Nucleic Acid Conformation ; Point Mutation ; RNA Precursors/chemistry/metabolism ; *RNA Splicing ; RNA, Fungal/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 116
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-02-16
    Description: The corepressor CtBP (carboxyl-terminal binding protein) is involved in transcriptional pathways important for development, cell cycle regulation, and transformation. We demonstrate that CtBP binding to cellular and viral transcriptional repressors is regulated by the nicotinamide adenine dinucleotides NAD+ and NADH, with NADH being two to three orders of magnitude more effective. Levels of free nuclear nicotinamide adenine dinucleotides, determined using two-photon microscopy, correspond to the levels required for half-maximal CtBP binding and are considerably lower than those previously reported. Agents capable of increasing NADH levels stimulate CtBP binding to its partners in vivo and potentiate CtBP-mediated repression. We propose that this ability to detect changes in nuclear NAD+/NADH ratio allows CtBP to serve as a redox sensor for transcription.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Qinghong -- Piston, David W -- Goodman, Richard H -- K01 CA096561/CA/NCI NIH HHS/ -- R01 CA115468/CA/NCI NIH HHS/ -- R01 CA115468-05/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2002 Mar 8;295(5561):1895-7. Epub 2002 Feb 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vollum Institute, Oregon Health Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97201, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11847309" target="_blank"〉PubMed〈/a〉
    Keywords: Adenovirus E1A Proteins/metabolism ; Alcohol Oxidoreductases ; Amino Acid Sequence ; Animals ; Binding Sites ; Cadherins/genetics ; Cell Nucleus/*metabolism ; Cytoplasm/metabolism ; DNA-Binding Proteins/chemistry/genetics/*metabolism ; *Gene Expression Regulation ; HeLa Cells ; Homeodomain Proteins/metabolism ; Humans ; Microscopy, Fluorescence ; Molecular Sequence Data ; Mutation ; NAD/*metabolism ; Oxidation-Reduction ; Phosphoproteins/chemistry/genetics/*metabolism ; Promoter Regions, Genetic ; Protein Binding ; Recombinant Fusion Proteins/metabolism ; Repressor Proteins/*metabolism ; *Transcription Factors ; Transcription, Genetic ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 117
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-05-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Davidson, Amy L -- New York, N.Y. -- Science. 2002 May 10;296(5570):1038-40.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA. davidson@bcm.tmc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12004108" target="_blank"〉PubMed〈/a〉
    Keywords: ATP-Binding Cassette Transporters/*chemistry/metabolism ; Adenosine Triphosphate/metabolism ; Amino Acid Motifs ; Amino Acid Transport Systems, Basic/chemistry/metabolism ; Bacterial Proteins/chemistry/metabolism ; Binding Sites ; Carrier Proteins/chemistry/metabolism ; *DNA-Binding Proteins ; Dimerization ; Escherichia coli/*chemistry/metabolism ; Escherichia coli Proteins/*chemistry/metabolism ; Fungal Proteins/chemistry/metabolism ; Hydrolysis ; Models, Molecular ; *Periplasmic Binding Proteins ; Protein Conformation ; Protein Folding ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits ; *Saccharomyces cerevisiae Proteins ; Vitamin B 12/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 118
    Publication Date: 2002-11-09
    Description: Electron tomography of vitrified cells is a noninvasive three-dimensional imaging technique that opens up new vistas for exploring the supramolecular organization of the cytoplasm. We applied this technique to Dictyostelium cells, focusing on the actin cytoskeleton. In actin networks reconstructed without prior removal of membranes or extraction of soluble proteins, the cross-linking of individual microfilaments, their branching angles, and membrane attachment sites can be analyzed. At a resolution of 5 to 6 nanometers, single macromolecules with distinct shapes, such as the 26S proteasome, can be identified in an unperturbed cellular environment.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Medalia, Ohad -- Weber, Igor -- Frangakis, Achilleas S -- Nicastro, Daniela -- Gerisch, Gunther -- Baumeister, Wolfgang -- New York, N.Y. -- Science. 2002 Nov 8;298(5596):1209-13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute for Biochemistry, D-82152 Martinsried, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12424373" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Cytoskeleton/chemistry/metabolism/*ultrastructure ; Actins/ultrastructure ; Animals ; Binding Sites ; Cell Membrane/metabolism/ultrastructure ; Cell Movement ; Dictyostelium/chemistry/physiology/*ultrastructure ; Endoplasmic Reticulum, Rough/ultrastructure ; Freezing ; *Image Processing, Computer-Assisted ; Macromolecular Substances ; Microfilament Proteins/*ultrastructure ; Organelles/*ultrastructure ; Peptide Hydrolases/ultrastructure ; *Proteasome Endopeptidase Complex ; Proteome ; Protozoan Proteins/ultrastructure ; Ribosomes/ultrastructure ; Tomography/*methods
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 119
    Publication Date: 2002-03-09
    Description: The structure of the membrane protein formate dehydrogenase-N (Fdn-N), a major component of Escherichia coli nitrate respiration, has been determined at 1.6 angstroms. The structure demonstrates 11 redox centers, including molybdopterin-guanine dinucleotides, five [4Fe-4S] clusters, two heme b groups, and a menaquinone analog. These redox centers are aligned in a single chain, which extends almost 90 angstroms through the enzyme. The menaquinone reduction site associated with a possible proton pathway was also characterized. This structure provides critical insights into the proton motive force generation by redox loop, a common mechanism among a wide range of respiratory enzymes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jormakka, Mika -- Tornroth, Susanna -- Byrne, Bernadette -- Iwata, So -- New York, N.Y. -- Science. 2002 Mar 8;295(5561):1863-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biomedical Sciences, Imperial College, London SW7 2AZ, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11884747" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Catalysis ; Catalytic Domain ; Cell Membrane/enzymology ; Crystallography, X-Ray ; Electron Transport ; Escherichia coli/*enzymology ; Formate Dehydrogenases/*chemistry/metabolism ; Formates/metabolism ; Guanine Nucleotides/chemistry/metabolism ; Hydrogen Bonding ; Iron-Sulfur Proteins/chemistry/metabolism ; Membrane Potentials ; Models, Molecular ; Nitrate Reductases/chemistry/metabolism ; Oxidation-Reduction ; Protein Conformation ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits ; *Proton-Motive Force ; Protons ; Pterins/chemistry/metabolism ; Vitamin K 2/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 120
    Publication Date: 2001-12-18
    Description: Peptide recognition modules mediate many protein-protein interactions critical for the assembly of macromolecular complexes. Complete genome sequences have revealed thousands of these domains, requiring improved methods for identifying their physiologically relevant binding partners. We have developed a strategy combining computational prediction of interactions from phage-display ligand consensus sequences with large-scale two-hybrid physical interaction tests. Application to yeast SH3 domains generated a phage-display network containing 394 interactions among 206 proteins and a two-hybrid network containing 233 interactions among 145 proteins. Graph theoretic analysis identified 59 highly likely interactions common to both networks. Las17 (Bee1), a member of the Wiskott-Aldrich Syndrome protein (WASP) family of actin-assembly proteins, showed multiple SH3 interactions, many of which were confirmed in vivo by coimmunoprecipitation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tong, Amy Hin Yan -- Drees, Becky -- Nardelli, Giuliano -- Bader, Gary D -- Brannetti, Barbara -- Castagnoli, Luisa -- Evangelista, Marie -- Ferracuti, Silvia -- Nelson, Bryce -- Paoluzi, Serena -- Quondam, Michele -- Zucconi, Adriana -- Hogue, Christopher W V -- Fields, Stanley -- Boone, Charles -- Cesareni, Gianni -- P41 RR11823/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2002 Jan 11;295(5553):321-4. Epub 2001 Dec 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Banting and Best Department of Medical Research and Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario, Canada M5G 1L6.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11743162" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Amino Acid Motifs ; Amino Acid Sequence ; Binding Sites ; *Computational Biology ; Consensus Sequence ; *Cytoskeletal Proteins ; Databases, Genetic ; Databases, Protein ; Fungal Proteins/chemistry/metabolism ; Ligands ; Molecular Sequence Data ; Peptide Library ; Peptides/chemistry/metabolism ; Protein Binding ; Protein Structure, Tertiary ; Proteins/*chemistry/*metabolism ; *Proteome ; Saccharomyces cerevisiae/chemistry/genetics ; Saccharomyces cerevisiae Proteins/*chemistry/genetics/*metabolism ; Software ; Two-Hybrid System Techniques ; Wiskott-Aldrich Syndrome Protein ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 121
    Publication Date: 2002-01-19
    Description: Mycobacterium tuberculosis (Mtb) mounts a stubborn defense against oxidative and nitrosative components of the immune response. Dihydrolipoamide dehydrogenase (Lpd) and dihydrolipoamide succinyltransferase (SucB) are components of alpha-ketoacid dehydrogenase complexes that are central to intermediary metabolism. We find that Lpd and SucB support Mtb's antioxidant defense. The peroxiredoxin alkyl hydroperoxide reductase (AhpC) is linked to Lpd and SucB by an adaptor protein, AhpD. The 2.0 angstrom AhpD crystal structure reveals a thioredoxin-like active site that is responsive to lipoamide. We propose that Lpd, SucB (the only lipoyl protein detected in Mtb), AhpD, and AhpC together constitute a nicotinamide adenine dinucleotide (reduced)-dependent peroxidase and peroxynitrite reductase. AhpD thus represents a class of thioredoxin-like molecules that enables an antioxidant defense.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bryk, R -- Lima, C D -- Erdjument-Bromage, H -- Tempst, P -- Nathan, C -- HL61241/HL/NHLBI NIH HHS/ -- P30 CA08748/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2002 Feb 8;295(5557):1073-7. Epub 2002 Jan 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11799204" target="_blank"〉PubMed〈/a〉
    Keywords: Acyltransferases/*metabolism ; Amino Acid Sequence ; Antioxidants ; Binding Sites ; Catalysis ; Cloning, Molecular ; Crystallization ; Crystallography, X-Ray ; Dihydrolipoamide Dehydrogenase/*metabolism ; Hydrogen Bonding ; Hydrogen Peroxide/metabolism ; Models, Molecular ; Molecular Sequence Data ; Mycobacterium tuberculosis/*enzymology/genetics/metabolism ; NAD/metabolism ; Oxidation-Reduction ; Oxidoreductases/*metabolism ; Peroxidases/*chemistry/*metabolism ; Peroxiredoxins ; Peroxynitrous Acid/metabolism ; Protein Conformation ; Protein Folding ; Protein Structure, Quaternary ; Thioctic Acid/*analogs & derivatives/metabolism ; Thioredoxins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 122
    Publication Date: 2001-12-18
    Description: In mammals, X-inactivation silences one of two female X chromosomes. Silencing depends on the noncoding gene, Xist (inactive X-specific transcript), and is blocked by the antisense gene, Tsix. Deleting the choice/imprinting center in Tsix affects X-chromosome selection. Here, we identify the insulator and transcription factor, CTCF, as a candidate trans-acting factor for X-chromosome selection. The choice/imprinting center contains tandem CTCF binding sites that function in an enhancer-blocking assay. In vitro binding is reduced by CpG methylation and abolished by including non-CpG methylation. We postulate that Tsix and CTCF together establish a regulatable epigenetic switch for X-inactivation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chao, Wendy -- Huynh, Khanh D -- Spencer, Rebecca J -- Davidow, Lance S -- Lee, Jeannie T -- New York, N.Y. -- Science. 2002 Jan 11;295(5553):345-7. Epub 2001 Dec 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, Department of Genetics, Harvard Medical School, Boston, MA 02114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11743158" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Antisense Elements (Genetics) ; Binding Sites ; CpG Islands ; DNA Methylation ; DNA-Binding Proteins/genetics/*metabolism ; *Dosage Compensation, Genetic ; Enhancer Elements, Genetic ; *Gene Silencing ; Genomic Imprinting ; HeLa Cells ; Humans ; Mice ; Models, Genetic ; RNA, Long Noncoding ; RNA, Untranslated/genetics ; *Repressor Proteins ; Transcription Factors/genetics/*metabolism ; X Chromosome/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 123
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-02-23
    Description: Internal protein dynamics are intimately connected to enzymatic catalysis. However, enzyme motions linked to substrate turnover remain largely unknown. We have studied dynamics of an enzyme during catalysis at atomic resolution using nuclear magnetic resonance relaxation methods. During catalytic action of the enzyme cyclophilin A, we detect conformational fluctuations of the active site that occur on a time scale of hundreds of microseconds. The rates of conformational dynamics of the enzyme strongly correlate with the microscopic rates of substrate turnover. The present results, together with available structural data, allow a prediction of the reaction trajectory.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Eisenmesser, Elan Zohar -- Bosco, Daryl A -- Akke, Mikael -- Kern, Dorothee -- GM62117/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2002 Feb 22;295(5559):1520-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11859194" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Catalysis ; Cyclophilin A/*chemistry/*metabolism ; Hydrogen Bonding ; Isomerism ; Kinetics ; Mathematics ; Models, Molecular ; Nuclear Magnetic Resonance, Biomolecular ; Protein Binding ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 124
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-03-30
    Description: Weak, noncovalent interactions between molecules control many biological functions. In chemistry, noncovalent interactions are now exploited for the synthesis in solution of large supramolecular aggregates. The aim of these syntheses is not only the creation of a particular structure, but also the introduction of specific chemical functions in these supramolecules.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reinhoudt, D N -- Crego-Calama, M -- New York, N.Y. -- Science. 2002 Mar 29;295(5564):2403-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Supramolecular Chemistry and Technology, University of Twente, Post Office Box 217, 7500 AE Enschede, Netherlands. d.n.reinhoudt@ct.utwente.nl〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11923525" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Catalysis ; *Chemistry/methods ; Chemistry, Physical ; Evolution, Chemical ; Molecular Conformation ; Molecular Structure ; Nanotechnology ; Oligonucleotides/chemistry ; Origin of Life ; Peptides/chemistry ; Physicochemical Phenomena ; Polymers/*chemical synthesis/*chemistry ; Stereoisomerism ; Templates, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 125
    Publication Date: 2002-12-21
    Description: Acetyl-coenzyme A (CoA) synthetase (Acs) is an enzyme central to metabolism in prokaryotes and eukaryotes. Acs synthesizes acetyl CoA from acetate, adenosine triphosphate, and CoA through an acetyl-adenosine monophosphate (AMP) intermediate. Immunoblotting and mass spectrometry analysis showed that Salmonella enterica Acs enzyme activity is posttranslationally regulated by acetylation of lysine-609. Acetylation blocks synthesis of the adenylate intermediate but does not affect the thioester-forming activity of the enzyme. Activation of the acetylated enzyme requires the nicotinamide adenine dinucleotide-dependent protein deacetylase activity of the CobB Sir2 protein from S. enterica. We propose that acetylation modulates the activity of all the AMP-forming family of enzymes, including nonribosomal peptide synthetases, luciferase, and aryl- and acyl-CoA synthetases. These findings extend our knowledge of the roles of Sir2 proteins in gene silencing, chromosome stability, and cell aging and imply that lysine acetylation is a common regulatory mechanism in eukaryotes and prokaryotes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Starai, V J -- Celic, I -- Cole, R N -- Boeke, J D -- Escalante-Semerena, J C -- 1S10-RR14702/RR/NCRR NIH HHS/ -- GM62203/GM/NIGMS NIH HHS/ -- GM62385/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2002 Dec 20;298(5602):2390-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Bacteriology, University of Wisconsin, Madison, WI 53706-1567, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12493915" target="_blank"〉PubMed〈/a〉
    Keywords: Acetate-CoA Ligase/chemistry/genetics/*metabolism ; Acetylation ; Acyl Coenzyme A/metabolism ; Adenosine Monophosphate/metabolism ; Amino Acid Motifs ; Amino Acid Sequence ; Bacterial Proteins/*metabolism ; Binding Sites ; Coenzyme A/metabolism ; Conserved Sequence ; Enzyme Activation ; Gene Expression Regulation, Bacterial ; Immunoblotting ; Lysine/*metabolism ; Mass Spectrometry ; NAD/metabolism ; Peptide Mapping ; Salmonella enterica/*enzymology/genetics ; Sirtuins/*metabolism ; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 126
    Publication Date: 2000-01-05
    Description: The ability of morphine to alleviate pain is mediated through a heterotrimeric guanine nucleotide binding protein (G protein)-coupled heptahelical receptor (GPCR), the mu opioid receptor (muOR). The efficiency of GPCR signaling is tightly regulated and ultimately limited by the coordinated phosphorylation of the receptors by specific GPCR kinases and the subsequent interaction of the phosphorylated receptors with beta-arrestin 1 and beta-arrestin 2. Functional deletion of the beta-arrestin 2 gene in mice resulted in remarkable potentiation and prolongation of the analgesic effect of morphine, suggesting that muOR desensitization was impaired. These results provide evidence in vivo for the physiological importance of beta-arrestin 2 in regulating the function of a specific GPCR, the muOR. Moreover, they suggest that inhibition of beta-arrestin 2 function might lead to enhanced analgesic effectiveness of morphine and provide potential new avenues for the study and treatment of pain, narcotic tolerance, and dependence.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bohn, L M -- Lefkowitz, R J -- Gainetdinov, R R -- Peppel, K -- Caron, M G -- Lin, F T -- F32 DA006023/DA/NIDA NIH HHS/ -- HL16037/HL/NHLBI NIH HHS/ -- NS 19576/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1999 Dec 24;286(5449):2495-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute Laboratories, Departments of Cell Biology and Medicine, Duke University Medical Center, Durham, NC 27710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10617462" target="_blank"〉PubMed〈/a〉
    Keywords: Analgesia ; Analgesics, Opioid/administration & dosage/metabolism/*pharmacology ; Animals ; Arrestins/genetics/*physiology ; Binding Sites ; Body Temperature/drug effects ; Brain/metabolism ; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology ; GTP-Binding Proteins/metabolism ; Guanosine 5'-O-(3-Thiotriphosphate)/metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Morphine/administration & dosage/metabolism/*pharmacology ; Naloxone/metabolism/pharmacology ; Narcotic Antagonists/metabolism/pharmacology ; Pain Measurement ; Pain Threshold ; Phosphorylation ; Receptors, Opioid, mu/*metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 127
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-01-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tonks, N K -- Myers, M P -- New York, N.Y. -- Science. 1999 Dec 10;286(5447):2096-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA. tonks@cshl.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10617421" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Cell Membrane/metabolism ; Crystallography, X-Ray ; *Genes, Tumor Suppressor ; Humans ; Hydrogen Bonding ; Membrane Lipids/metabolism ; Models, Biological ; Mutation ; Neoplasms/*etiology/genetics ; PTEN Phosphohydrolase ; Phosphatidylinositol 3-Kinases/chemistry/metabolism ; Phosphatidylinositol Phosphates/metabolism ; Phosphoric Monoester Hydrolases/*chemistry/genetics/*metabolism ; Phosphorylation ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Signal Transduction ; *Tumor Suppressor Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 128
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-04-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉von Hippel, P H -- Jing, D H -- New York, N.Y. -- Science. 2000 Mar 31;287(5462):2435-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Biology Institute, University of Oregon, Eugene, OR 97403, USA. petevh@molbio.uoregon.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10766621" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; DNA/*biosynthesis ; DNA Helicases/metabolism ; DNA Primase/*chemistry/*metabolism ; *DNA Replication ; DNA, Bacterial/biosynthesis ; DNA, Single-Stranded/metabolism ; DNA-Binding Proteins/metabolism ; DNA-Directed DNA Polymerase/metabolism ; Escherichia coli/enzymology/*metabolism ; Models, Biological ; Protein Structure, Tertiary ; RNA/*biosynthesis ; RNA, Bacterial/biosynthesis ; Templates, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 129
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-08-06
    Description: Transposable DNA elements jump from one location in the genome to another. But, the cut-and-paste molecular machinations that support this nomadic lifestyle are still being unraveled. In their Perspective, Williams and Baker at the Massachusetts Institute of Technology discuss new details of transposon relocation revealed through resolution of the structure of a transposase enzyme bound to DNA (Davies et al.).〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Williams, T L -- Baker, T A -- New York, N.Y. -- Science. 2000 Jul 7;289(5476):73-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Office 68-517, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. tlwillia@mit.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10928934" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Binding Sites ; Catalysis ; Crystallography, X-Ray ; DNA/*chemistry/*metabolism ; *DNA Transposable Elements ; Ligands ; Manganese/metabolism ; Nucleic Acid Conformation ; Protein Conformation ; Transposases/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 130
    Publication Date: 2000-02-26
    Description: Steroid receptors bind to site-specific response elements in chromatin and modulate gene expression in a hormone-dependent fashion. With the use of a tandem array of mouse mammary tumor virus reporter elements and a form of glucocorticoid receptor labeled with green fluorescent protein, targeting of the receptor to response elements in live mouse cells was observed. Photobleaching experiments provide direct evidence that the hormone-occupied receptor undergoes rapid exchange between chromatin and the nucleoplasmic compartment. Thus, the interaction of regulatory proteins with target sites in chromatin is a more dynamic process than previously believed.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McNally, J G -- Muller, W G -- Walker, D -- Wolford, R -- Hager, G L -- New York, N.Y. -- Science. 2000 Feb 18;287(5456):1262-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Receptor Biology and Gene Expression, Building 41, Room B602, National Cancer Institute, Bethesda, MD 20892-5055, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10678832" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Cell Line, Transformed ; Cell Nucleus/metabolism ; Chromatin/*metabolism ; Dexamethasone/metabolism/*pharmacology ; Green Fluorescent Proteins ; In Situ Hybridization, Fluorescence ; Ligands ; Luminescent Proteins ; Mammary Tumor Virus, Mouse/genetics ; Mice ; Microscopy, Confocal ; Microscopy, Fluorescence ; Nucleosomes/metabolism ; Receptors, Glucocorticoid/*metabolism ; *Response Elements ; *Terminal Repeat Sequences
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 131
    Publication Date: 2000-12-16
    Description: This report presents full-genome evidence that bacterial cells use discrete transcription patterns to control cell cycle progression. Global transcription analysis of synchronized Caulobacter crescentus cells was used to identify 553 genes (19% of the genome) whose messenger RNA levels varied as a function of the cell cycle. We conclude that in bacteria, as in yeast, (i) genes involved in a given cell function are activated at the time of execution of that function, (ii) genes encoding proteins that function in complexes are coexpressed, and (iii) temporal cascades of gene expression control multiprotein structure biogenesis. A single regulatory factor, the CtrA member of the two-component signal transduction family, is directly or indirectly involved in the control of 26% of the cell cycle-regulated genes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Laub, M T -- McAdams, H H -- Feldblyum, T -- Fraser, C M -- Shapiro, L -- GM32506/GM/NIGMS NIH HHS/ -- GM51426/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2000 Dec 15;290(5499):2144-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Developmental Biology, Beckman Center, Stanford University School of Medicine, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11118148" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/genetics/metabolism ; Binding Sites ; Caulobacter crescentus/*cytology/*genetics/growth & development/physiology ; Cell Cycle/*genetics ; Chemotaxis/genetics ; *DNA-Binding Proteins ; DNA-Directed RNA Polymerases/genetics ; Fimbriae Proteins ; Flagella/metabolism ; Gene Expression Profiling ; *Gene Expression Regulation, Bacterial ; Interphase ; Membrane Proteins/genetics ; Oligonucleotide Array Sequence Analysis ; RNA, Bacterial/genetics/metabolism ; RNA, Messenger/genetics/metabolism ; S Phase ; Signal Transduction ; *Transcription Factors ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 132
    Publication Date: 2000-05-29
    Description: TFIID is a large multiprotein complex that initiates assembly of the transcription machinery. It is unclear how TFIID recognizes promoters in vivo when templates are nucleosome-bound. Here, it is shown that TAFII250, the largest subunit of TFIID, contains two tandem bromodomain modules that bind selectively to multiply acetylated histone H4 peptides. The 2.1 angstrom crystal structure of the double bromodomain reveals two side-by-side, four-helix bundles with a highly polarized surface charge distribution. Each bundle contains an Nepsilon-acetyllysine binding pocket at its center, which results in a structure ideally suited for recognition of diacetylated histone H4 tails. Thus, TFIID may be targeted to specific chromatin-bound promoters and may play a role in chromatin recognition.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jacobson, R H -- Ladurner, A G -- King, D S -- Tjian, R -- New York, N.Y. -- Science. 2000 May 26;288(5470):1422-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Molecular and Cell Biology, 401 Barker Hall, University of California, Berkeley, CA 94720-3204, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10827952" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Amino Acid Motifs ; Amino Acid Sequence ; Binding Sites ; Cloning, Molecular ; Crystallography, X-Ray ; DNA-Binding Proteins/*chemistry/genetics/*metabolism ; Histone Acetyltransferases ; Histones/metabolism ; Humans ; Lysine/analogs & derivatives/chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Nuclear Proteins/*chemistry/genetics/*metabolism ; Nucleosomes/metabolism ; Promoter Regions, Genetic ; Protein Binding ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Recombinant Proteins/chemistry/metabolism ; *TATA-Binding Protein Associated Factors ; *Transcription Factor TFIID ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 133
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-03-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Walter, P -- Keenan, R -- Schmitz, U -- New York, N.Y. -- Science. 2000 Feb 18;287(5456):1212-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, University of California, San Francisco, 94143, USA. walter@cgl.ucsf.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10712156" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Bacterial Proteins/*chemistry/metabolism ; Binding Sites ; Cell Membrane/chemistry/*metabolism ; Crystallography, X-Ray ; Endoplasmic Reticulum/chemistry/metabolism ; *Escherichia coli Proteins ; Evolution, Molecular ; Methionine/chemistry ; Models, Molecular ; Nucleic Acid Conformation ; Peptides/metabolism ; Protein Conformation ; Protein Folding ; Protein Sorting Signals ; Protein Structure, Secondary ; Protein Structure, Tertiary ; RNA/*chemistry/metabolism ; RNA, Bacterial/chemistry/metabolism ; Signal Recognition Particle/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 134
    Publication Date: 2000-02-26
    Description: Many protein enzymes use general acid-base catalysis as a way to increase reaction rates. The amino acid histidine is optimized for this function because it has a pK(a) (where K(a) is the acid dissociation constant) near physiological pH. The RNA enzyme (ribozyme) from hepatitis delta virus catalyzes self-cleavage of a phosphodiester bond. Reactivity-pH profiles in monovalent or divalent cations, as well as distance to the leaving-group oxygen, implicate cytosine 75 (C75) of the ribozyme as the general acid and ribozyme-bound hydrated metal hydroxide as the general base in the self-cleavage reaction. Moreover, C75 has a pK(a) perturbed to neutrality, making it "histidine-like." Anticooperative interaction is observed between protonated C75 and a metal ion, which serves to modulate the pK(a) of C75. General acid-base catalysis expands the catalytic repertoire of RNA and may provide improved rate acceleration.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nakano, S -- Chadalavada, D M -- Bevilacqua, P C -- GM58709/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2000 Feb 25;287(5457):1493-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10688799" target="_blank"〉PubMed〈/a〉
    Keywords: Base Pairing ; Binding Sites ; Calcium/metabolism ; Catalysis ; Cobalt/metabolism ; Crystallography, X-Ray ; Hepatitis Delta Virus/*chemistry/enzymology ; Hydrogen Bonding ; Hydrogen-Ion Concentration ; Kinetics ; Magnesium/metabolism ; Metals/metabolism ; Models, Chemical ; Models, Molecular ; Nucleic Acid Conformation ; Protons ; RNA, Catalytic/chemistry/*metabolism ; RNA, Viral/chemistry/metabolism ; Static Electricity ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 135
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-10-14
    Description: The ubiquitin pathway in the cell is an elegant system for targeting unwanted proteins for degradation. Three enzymes, E1, E2, and E3, are responsible for attaching the ubiquitin tag to proteins destined to be chopped up. In their Perspective, Joazeiro and Hunter discuss new structural findings that reveal the part played by an E3 called c-Cbl in this ubiquitinating process.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Joazeiro, C A -- Hunter, T -- New York, N.Y. -- Science. 2000 Sep 22;289(5487):2061-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Biology and Virology Laboratory, Salk Institute, La Jolla, CA 92037, USA. cjoazeiro@aim.salk.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11032556" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Binding Sites ; Ligases/chemistry/*metabolism ; Models, Molecular ; Phosphorylation ; Phosphotyrosine/metabolism ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Proteins/*metabolism ; Proto-Oncogene Proteins/*chemistry/*metabolism ; Proto-Oncogene Proteins c-cbl ; Receptor Protein-Tyrosine Kinases/metabolism ; Substrate Specificity ; *Ubiquitin-Conjugating Enzymes ; Ubiquitin-Protein Ligases ; Ubiquitins/*metabolism ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 136
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-08-19
    Description: Members of the seven transmembrane receptor superfamily bind a remarkable variety of ligands, from neurotransmitters to odorants, and activate a spectacular array of G protein signaling molecules. These G-protein coupled receptors (GPCRs) are important in many cellular functions and so there has been great interest in elucidating how they transmit their signals to the interior of the cell after activation by ligand. As Bourne and Meng explain in their Perspective, the molecular movements of activated GPCRs are becoming clear now that the first crystal structure of a GPCR (rhodopsin, the light-trapping receptor found in the retina of the eye) has been reported (Palczweski et al.).〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bourne, H R -- Meng, E C -- New York, N.Y. -- Science. 2000 Aug 4;289(5480):733-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular and Molecular Pharmacology, University of California, San Francisco, 94143, USA. bourne@cmp.ucsf.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10950717" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Crystallography, X-Ray ; Evolution, Molecular ; Heterotrimeric GTP-Binding Proteins/metabolism ; Ligands ; Lipid Bilayers ; Models, Molecular ; Protein Structure, Secondary ; Receptors, Cell Surface/chemistry/metabolism ; Retinaldehyde/metabolism ; Rhodopsin/*chemistry/metabolism ; Stereoisomerism ; Vision, Ocular
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 137
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-02-24
    Description: Work presented last week at the annual meeting of the American Society for Cell Biology in San Francisco suggests that applying a harmless bacterium or its products to surgical wounds may thwart infections by the dangerous pathogen Staphylococcus aureus, a major cause of hospital-acquired infections. Although physicians have previously pitted one bacterium against another to prevent infections of the intestinal and genitourinary tracts, this is the first attempt to use a friendly microbe to prevent infection of surgical wounds, say experts. The findings also point to a possible mechanism for this "bacterial interference." They suggest that a protein secreted by the harmless bacterium prevents the pathogen from getting a foothold in injured tissue.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Strauss, E -- New York, N.Y. -- Science. 2000 Dec 22;290(5500):2231-3.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11188710" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Antibiosis ; Bacterial Adhesion ; Binding Sites ; Lactobacillus/*physiology ; Rats ; Staphylococcal Infections/*prevention & control ; Staphylococcus aureus/*physiology ; Surgical Wound Infection/*prevention & control
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 138
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-04-15
    Description: A variety of molecular chaperones and folding enzymes assist the folding of newly synthesized proteins in the endoplasmic reticulum. Here we investigated why some glycoproteins interact with the molecular chaperone BiP, and others with the calnexin/calreticulin pathway. The folding of Semliki forest virus glycoproteins and influenza hemagglutinin was studied in living cells. The initial choice of chaperone depended on the location of N-linked glycans in the growing nascent chain. Direct interaction with calnexin and calreticulin without prior interaction with BiP occurred if glycans were present within about 50 residues of the protein's NH2-terminus.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Molinari, M -- Helenius, A -- New York, N.Y. -- Science. 2000 Apr 14;288(5464):331-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Swiss Federal Institute of Technology Zurich (ETHZ), Universitatstrasse 16, CH-8092 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10764645" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; CHO Cells ; Calcium-Binding Proteins/metabolism ; Calnexin ; Calreticulin ; Carrier Proteins/metabolism ; Chemical Precipitation ; Cricetinae ; Dithiothreitol/pharmacology ; Endoplasmic Reticulum/*metabolism ; Glycoproteins/chemistry/*metabolism ; Glycosylation ; *Heat-Shock Proteins ; Hemagglutinin Glycoproteins, Influenza Virus/chemistry/genetics/*metabolism ; Molecular Chaperones/*metabolism ; Molecular Weight ; Mutation ; Oxidation-Reduction ; Polysaccharides/chemistry ; Protein Conformation ; *Protein Folding ; Ribonucleoproteins/metabolism ; Semliki forest virus ; Viral Proteins/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 139
    Publication Date: 2000-08-11
    Description: Iron species with terminal oxo ligands are implicated as key intermediates in several synthetic and biochemical catalytic cycles. However, there is a dearth of structural information regarding these types of complexes because their instability has precluded isolation under ambient conditions. The isolation and structural characterization of an iron(III) complex with a terminal oxo ligand, derived directly from dioxygen (O2), is reported. A stable structure resulted from placing the oxoiron unit within a synthetic cavity lined with hydrogen-bonding groups. The cavity creates a microenvironment around the iron center that aids in regulating O2 activation and stabilizing the oxoiron unit. These cavities share properties with the active sites of metalloproteins, where function is correlated strongly with site structure.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉MacBeth, C E -- Golombek, A P -- Young, V G Jr -- Yang, C -- Kuczera, K -- Hendrich, M P -- Borovik, A S -- GM49970/GM/NIGMS NIH HHS/ -- GM50781/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2000 Aug 11;289(5481):938-41.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10937994" target="_blank"〉PubMed〈/a〉
    Keywords: Anthracenes ; Binding Sites ; Chemistry, Physical ; Electron Spin Resonance Spectroscopy ; Ferric Compounds/*chemistry ; Ferrous Compounds/chemistry ; Hydrogen Bonding ; Ligands ; Nitrogen/chemistry ; Oxygen/*chemistry ; Physicochemical Phenomena ; Protons ; Spectroscopy, Fourier Transform Infrared ; Spectroscopy, Mossbauer ; Urea/analogs & derivatives/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 140
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-05-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Conaway, J W -- Conaway, R C -- New York, N.Y. -- Science. 2000 Apr 28;288(5466):632-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Program in Molecular and Cell Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA. conawayj@omrf.ouhsc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10799002" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Catalytic Domain ; Crystallization ; Crystallography, X-Ray ; DNA, Fungal/chemistry/metabolism ; Models, Molecular ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; RNA Polymerase II/*chemistry/metabolism ; RNA, Fungal/chemistry/metabolism ; RNA, Messenger/chemistry/metabolism ; Saccharomyces cerevisiae/*enzymology ; Templates, Genetic ; Transcription Factors/metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 141
    Publication Date: 2000-08-11
    Description: The large ribosomal subunit catalyzes peptide bond formation and binds initiation, termination, and elongation factors. We have determined the crystal structure of the large ribosomal subunit from Haloarcula marismortui at 2.4 angstrom resolution, and it includes 2833 of the subunit's 3045 nucleotides and 27 of its 31 proteins. The domains of its RNAs all have irregular shapes and fit together in the ribosome like the pieces of a three-dimensional jigsaw puzzle to form a large, monolithic structure. Proteins are abundant everywhere on its surface except in the active site where peptide bond formation occurs and where it contacts the small subunit. Most of the proteins stabilize the structure by interacting with several RNA domains, often using idiosyncratically folded extensions that reach into the subunit's interior.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ban, N -- Nissen, P -- Hansen, J -- Moore, P B -- Steitz, T A -- GM22778/GM/NIGMS NIH HHS/ -- GM54216/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2000 Aug 11;289(5481):905-20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biophysics & Biochemistry and Howard Hughes Medical Institute, New Haven, CT 06520-8114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10937989" target="_blank"〉PubMed〈/a〉
    Keywords: Archaeal Proteins/chemistry/metabolism ; Base Sequence ; Binding Sites ; Conserved Sequence ; Crystallography, X-Ray ; Haloarcula marismortui/*chemistry/ultrastructure ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Protein Conformation ; Protein Folding ; RNA, Archaeal/chemistry/metabolism ; RNA, Ribosomal, 23S/*chemistry/metabolism ; RNA, Ribosomal, 5S/*chemistry/metabolism ; Ribosomal Proteins/*chemistry/metabolism ; Ribosomes/*chemistry/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 142
    Publication Date: 2000-04-28
    Description: A backbone model of a 10-subunit yeast RNA polymerase II has been derived from x-ray diffraction data extending to 3 angstroms resolution. All 10 subunits exhibit a high degree of identity with the corresponding human proteins, and 9 of the 10 subunits are conserved among the three eukaryotic RNA polymerases I, II, and III. Notable features of the model include a pair of jaws, formed by subunits Rpb1, Rpb5, and Rpb9, that appear to grip DNA downstream of the active center. A clamp on the DNA nearer the active center, formed by Rpb1, Rpb2, and Rpb6, may be locked in the closed position by RNA, accounting for the great stability of transcribing complexes. A pore in the protein complex beneath the active center may allow entry of substrates for polymerization and exit of the transcript during proofreading and passage through pause sites in the DNA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cramer, P -- Bushnell, D A -- Fu, J -- Gnatt, A L -- Maier-Davis, B -- Thompson, N E -- Burgess, R R -- Edwards, A M -- David, P R -- Kornberg, R D -- GM49985/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2000 Apr 28;288(5466):640-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10784442" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Binding Sites ; Catalytic Domain ; Crystallization ; Crystallography, X-Ray ; DNA, Fungal/chemistry/metabolism ; Enzyme Stability ; Escherichia coli/enzymology ; Humans ; *Models, Molecular ; Protein Binding ; Protein Structure, Quaternary ; Protein Structure, Secondary ; RNA Polymerase II/*chemistry/genetics/metabolism ; RNA, Fungal/chemistry/metabolism ; RNA, Messenger/chemistry/metabolism ; Thermus/enzymology ; Transcription Factors/chemistry/metabolism ; *Transcription Factors, General ; *Transcription, Genetic ; *Transcriptional Elongation Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 143
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-06-17
    Description: Mutations introduced into human growth hormone (hGH) (Thr175 --〉 Gly-hGH) and the extracellular domain of the hGH receptor (Trp104 --〉 Gly-hGHbp) created a cavity at the protein-protein interface that resulted in binding affinity being reduced by a factor of 10(6). A small library of indole analogs was screened for small molecules that bind the cavity created by the mutations and restore binding affinity. The ligand 5-chloro-2-trichloromethylimidazole was found to increase the affinity of the mutant hormone for its receptor more than 1000-fold. Cell proliferation and JAK2 phosphorylation assays showed that the mutant hGH activates growth hormone signaling in the presence of added ligand. This approach may allow other protein-protein and protein-nucleic acid interactions to be switched on or off by the addition or depletion of exogenous small molecules.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guo, Z -- Zhou, D -- Schultz, P G -- New York, N.Y. -- Science. 2000 Jun 16;288(5473):2042-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10856217" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Cell Division ; Cell Line ; Human Growth Hormone/chemistry/genetics/*metabolism ; Imidazoles/*chemistry/metabolism ; Janus Kinase 2 ; Ligands ; Mice ; Molecular Sequence Data ; Peptide Library ; Phosphorylation ; Protein Binding ; Protein-Tyrosine Kinases/metabolism ; *Proto-Oncogene Proteins ; Receptors, Somatotropin/chemistry/genetics/*metabolism ; Signal Transduction ; Structure-Activity Relationship ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 144
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-02-07
    Description: The microtubule-based kinesin motors and actin-based myosin motors generate motions associated with intracellular trafficking, cell division, and muscle contraction. Early studies suggested that these molecular motors work by very different mechanisms. Recently, however, it has become clear that kinesin and myosin share a common core structure and convert energy from adenosine triphosphate into protein motion using a similar conformational change strategy. Many different types of mechanical amplifiers have evolved that operate in conjunction with the conserved core. This modular design has given rise to a remarkable diversity of kinesin and myosin motors whose motile properties are optimized for performing distinct biological functions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vale, R D -- Milligan, R A -- New York, N.Y. -- Science. 2000 Apr 7;288(5463):88-95.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA. vale@phy.ucsf.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10753125" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/metabolism ; Adenosine Triphosphate/metabolism ; Animals ; Binding Sites ; Cytoskeleton/metabolism ; Evolution, Molecular ; Kinesin/chemistry/*physiology ; Microtubules/metabolism ; Models, Biological ; Models, Molecular ; Molecular Motor Proteins/chemistry/*physiology ; Myosins/chemistry/*physiology ; Protein Conformation ; Protein Structure, Secondary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 145
    Publication Date: 2001-10-20
    Description: The signal recognition particle (SRP) is a universally conserved ribonucleoprotein complex that mediates the cotranslational targeting of secretory and membrane proteins to cellular membranes. A crucial early step in SRP assembly in archaea and eukarya is the binding of protein SRP19 to specific sites on SRP RNA. Here we report the 1.8 angstrom resolution crystal structure of human SRP19 in complex with its primary binding site on helix 6 of SRP RNA, which consists of a stem-loop structure closed by an unusual GGAG tetraloop. Protein-RNA interactions are mediated by the specific recognition of a widened major groove and the tetraloop without any direct protein-base contacts and include a complex network of highly ordered water molecules. A model of the assembly of the SRP core comprising SRP19, SRP54, and SRP RNA based on crystallographic and biochemical data is proposed.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wild, K -- Sinning, I -- Cusack, S -- New York, N.Y. -- Science. 2001 Oct 19;294(5542):598-601.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biochemie-Zentrum (BZH), University of Heidelberg, Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany. klemens.wild@bzh.uni-heidelberg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11641499" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Pairing ; Base Sequence ; Binding Sites ; Crystallography, X-Ray ; Humans ; Hydrogen Bonding ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Protein Binding ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; RNA/*chemistry/metabolism ; Signal Recognition Particle/*chemistry/metabolism ; Water/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 146
    Publication Date: 2001-05-12
    Description: HMG-CoA (3-hydroxy-3-methylglutaryl-coenzyme A) reductase (HMGR) catalyzes the committed step in cholesterol biosynthesis. Statins are HMGR inhibitors with inhibition constant values in the nanomolar range that effectively lower serum cholesterol levels and are widely prescribed in the treatment of hypercholesterolemia. We have determined structures of the catalytic portion of human HMGR complexed with six different statins. The statins occupy a portion of the binding site of HMG-CoA, thus blocking access of this substrate to the active site. Near the carboxyl terminus of HMGR, several catalytically relevant residues are disordered in the enzyme-statin complexes. If these residues were not flexible, they would sterically hinder statin binding.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Istvan, E S -- Deisenhofer, J -- New York, N.Y. -- Science. 2001 May 11;292(5519):1160-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, TX 75390-9050, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11349148" target="_blank"〉PubMed〈/a〉
    Keywords: Acyl Coenzyme A/antagonists & inhibitors/metabolism ; Anticholesteremic Agents/*chemistry/metabolism/*pharmacology ; Binding Sites ; Catalytic Domain ; Crystallography, X-Ray ; Humans ; Hydrogen Bonding ; Hydroxymethylglutaryl CoA Reductases/*chemistry/*metabolism ; Hydroxymethylglutaryl-CoA Reductase ; Inhibitors/*chemistry/metabolism/*pharmacology ; Models, Molecular ; Pliability ; Protein Binding ; Protein Structure, Secondary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 147
    Publication Date: 2001-07-28
    Description: The dynamics and polarity of actin filaments are controlled by a conformational change coupled to the hydrolysis of adenosine 5'-triphosphate (ATP) by a mechanism that remains to be elucidated. Actin modified to block polymerization was crystallized in the adenosine 5'-diphosphate (ADP) state, and the structure was solved to 1.54 angstrom resolution. Compared with previous ATP-actin structures from complexes with deoxyribonuclease I, profilin, and gelsolin, monomeric ADP-actin is characterized by a marked conformational change in subdomain 2. The successful crystallization of monomeric actin opens the way to future structure determinations of actin complexes with actin-binding proteins such as myosin.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Otterbein, L R -- Graceffa, P -- Dominguez, R -- P01 AR41637/AR/NIAMS NIH HHS/ -- R01 AR046524/AR/NIAMS NIH HHS/ -- R01 AR46524/AR/NIAMS NIH HHS/ -- RR07707/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2001 Jul 27;293(5530):708-11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Boston Biomedical Research Institute, 64 Grove Street, Watertown, MA 02472, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11474115" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/*chemistry/*metabolism ; Adenosine Diphosphate/chemistry/*metabolism ; Adenosine Triphosphate/chemistry/metabolism ; Binding Sites ; Biopolymers/chemistry/metabolism ; Calcium/metabolism ; Crystallization ; Crystallography, X-Ray ; Deoxyribonuclease I/metabolism ; Hydrogen Bonding ; Models, Molecular ; Phosphates/metabolism ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Rhodamines/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 148
    Publication Date: 2001-03-07
    Description: The recruitment of trafficking and signaling proteins to membranes containing phosphatidylinositol 3-phosphate [PtdIns(3)P] is mediated by FYVE domains. Here, the solution structure of the FYVE domain of the early endosome antigen 1 protein (EEA1) in the free state was compared with the structures of the domain complexed with PtdIns(3)P and mixed micelles. The multistep binding mechanism involved nonspecific insertion of a hydrophobic loop into the lipid bilayer, positioning and activating the binding pocket. Ligation of PtdIns(3)P then induced a global structural change, drawing the protein termini over the bound phosphoinositide by extension of a hinge. Specific recognition of the 3-phosphate was determined indirectly and directly by two clusters of conserved arginines.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kutateladze, T -- Overduin, M -- CA85716/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2001 Mar 2;291(5509):1793-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of Colorado Health Sciences Center, Denver, CO 80262, USA. tatiana.kutateladze@uchsc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11230696" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Crystallography, X-Ray ; Endosomes/*metabolism ; Humans ; Hydrogen Bonding ; Lipid Bilayers ; Membrane Proteins/*chemistry/*metabolism ; Micelles ; Models, Molecular ; Phosphatidylinositol Phosphates/*metabolism ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Transport ; Vesicular Transport Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 149
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-08-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Struhl, K -- New York, N.Y. -- Science. 2001 Aug 10;293(5532):1054-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA. kevin@hms.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11498564" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Acetyltransferases/metabolism ; Binding Sites ; CREB-Binding Protein ; Cell Cycle Proteins ; DNA-Binding Proteins/metabolism ; *Enhancer Elements, Genetic ; *Gene Expression Regulation ; HMGA1a Protein ; High Mobility Group Proteins/*metabolism ; Histone Acetyltransferases ; Histones/metabolism ; Humans ; Interferon-beta/*genetics ; Nuclear Proteins/metabolism ; Nucleoproteins/*metabolism ; Nucleosomes/metabolism ; Trans-Activators/metabolism ; Transcription Factors/*metabolism ; *Transcriptional Activation ; Virus Diseases/genetics/immunology ; p300-CBP Transcription Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 150
    Publication Date: 2001-12-18
    Description: DNA replication origins are fundamental to chromosome organization and duplication, but understanding of these elements is limited because only a small fraction of these sites have been identified in eukaryotic genomes. Origin Recognition Complex (ORC) and minichromosome maintenance (MCM) proteins form prereplicative complexes at origins of replication. Using these proteins as molecular landmarks for origins, we identified ORC- and MCM-bound sites throughout the yeast genome. Four hundred twenty-nine sites in the yeast genome were predicted to contain replication origins, and approximately 80% of the loci identified on chromosome X demonstrated origin function. A substantial fraction of the predicted origins are associated with repetitive DNA sequences, including subtelomeric elements (X and Y') and transposable element-associated sequences (long terminal repeats). These findings identify the global set of yeast replication origins and open avenues of investigation into the role(s) ORC and MCM proteins play in chromosomal architecture and dynamics.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wyrick, J J -- Aparicio, J G -- Chen, T -- Barnett, J D -- Jennings, E G -- Young, R A -- Bell, S P -- Aparicio, O M -- GM34365/GM/NIGMS NIH HHS/ -- GM52339/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2001 Dec 14;294(5550):2357-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11743203" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Cell Cycle Proteins/*metabolism ; Chromosomes, Fungal/metabolism ; *DNA Replication ; DNA Transposable Elements ; DNA, Fungal/biosynthesis/genetics/metabolism ; DNA, Intergenic ; DNA-Binding Proteins/*metabolism ; *Genome, Fungal ; Minichromosome Maintenance Complex Component 4 ; Minichromosome Maintenance Complex Component 7 ; Nuclear Proteins/metabolism ; Oligonucleotide Array Sequence Analysis ; Origin Recognition Complex ; RNA, Fungal/genetics/metabolism ; RNA, Transfer/genetics/metabolism ; Repetitive Sequences, Nucleic Acid ; *Replication Origin ; Saccharomyces cerevisiae/*genetics/metabolism ; Saccharomyces cerevisiae Proteins/*metabolism ; Telomere/metabolism ; Terminal Repeat Sequences
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 151
    Publication Date: 2001-11-10
    Description: Trithorax (Trx) is a member of the trithorax group (trxG) of epigenetic regulators, which is required to maintain active states of Hox gene expression during development. We have purified from Drosophila embryos a trithorax acetylation complex (TAC1) that contains Trx, dCBP, and Sbf1. Like CBP, TAC1 acetylates core histones in nucleosomes, suggesting that this activity may be important for epigenetic maintenance of gene activity. dCBP and Sbf1 associate with specific sites on salivary gland polytene chromosomes, colocalizing with many Trx binding sites. One of these is the site of the Hox gene Ultrabithorax (Ubx). Mutations in either trx or the gene encoding dCBP reduce expression of the endogenous Ubx gene as well as of transgenes driven by the bxd regulatory region of Ubx. Thus Trx, dCBP, and Sbf1 are closely linked, physically and functionally, in the maintenance of Hox gene expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Petruk, S -- Sedkov, Y -- Smith, S -- Tillib, S -- Kraevski, V -- Nakamura, T -- Canaani, E -- Croce, C M -- Mazo, A -- 5PO1 CA50507/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2001 Nov 9;294(5545):1331-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11701926" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Acetyltransferases/genetics/*metabolism ; Animals ; Animals, Genetically Modified ; Binding Sites ; CREB-Binding Protein ; Carrier Proteins/metabolism ; Chromatography, Affinity ; Chromosomes/metabolism ; DNA-Binding Proteins/*genetics/isolation & purification/*metabolism ; Drosophila/embryology/*genetics ; *Drosophila Proteins ; Embryo, Nonmammalian/metabolism ; Gene Expression Regulation, Developmental ; *Genes, Homeobox ; Genes, Insect ; Histone Acetyltransferases ; Histones/metabolism ; Homeodomain Proteins/*genetics ; *Intracellular Signaling Peptides and Proteins ; Mutation ; Nuclear Proteins/genetics/*metabolism ; Nucleosomes/metabolism ; Response Elements ; *Saccharomyces cerevisiae Proteins ; Trans-Activators/genetics/*metabolism ; *Transcription Factors ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 152
    Publication Date: 2001-04-28
    Description: DNA, RNA, and regulatory molecules control gene expression through interactions with RNA polymerase (RNAP). We show that a short alpha helix at the tip of the flaplike domain that covers the RNA exit channel of RNAP contacts a nascent RNA stem-loop structure (hairpin) that inhibits transcription, and that this flap-tip helix is required for activity of the regulatory protein NusA. Protein-RNA cross-linking, molecular modeling, and effects of alterations in RNAP and RNA all suggest that a tripartite interaction of RNAP, NusA, and the hairpin inhibits nucleotide addition in the active site, which is located 65 angstroms away. These findings favor an allosteric model for regulation of transcript elongation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Toulokhonov, I -- Artsimovitch, I -- Landick, R -- GM38660/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2001 Apr 27;292(5517):730-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11326100" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Amino Acid Sequence ; Bacterial Proteins/metabolism ; Base Sequence ; Binding Sites ; Catalysis ; DNA-Directed RNA Polymerases/*chemistry/genetics/*metabolism ; Escherichia coli/genetics ; Escherichia coli Proteins ; Models, Molecular ; Molecular Sequence Data ; Mutation ; *Nucleic Acid Conformation ; Oligonucleotides, Antisense ; *Peptide Elongation Factors ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; RNA/*chemistry/metabolism ; Transcription Factors/metabolism ; Transcription, Genetic ; Transcriptional Elongation Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 153
    Publication Date: 2001-07-14
    Description: We report an atomic-resolution structure for a sensory member of the microbial rhodopsin family, the phototaxis receptor sensory rhodopsin II (NpSRII), which mediates blue-light avoidance by the haloarchaeon Natronobacterium pharaonis. The 2.4 angstrom structure reveals features responsible for the 70- to 80-nanometer blue shift of its absorption maximum relative to those of haloarchaeal transport rhodopsins, as well as structural differences due to its sensory, as opposed to transport, function. Multiple factors appear to account for the spectral tuning difference with respect to bacteriorhodopsin: (i) repositioning of the guanidinium group of arginine 72, a residue that interacts with the counterion to the retinylidene protonated Schiff base; (ii) rearrangement of the protein near the retinal ring; and (iii) changes in tilt and slant of the retinal polyene chain. Inspection of the surface topography reveals an exposed polar residue, tyrosine 199, not present in bacteriorhodopsin, in the middle of the membrane bilayer. We propose that this residue interacts with the adjacent helices of the cognate NpSRII transducer NpHtrII.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Luecke, H -- Schobert, B -- Lanyi, J K -- Spudich, E N -- Spudich, J L -- R01-GM27750/GM/NIGMS NIH HHS/ -- R01-GM29498/GM/NIGMS NIH HHS/ -- R01-GM59970/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2001 Aug 24;293(5534):1499-503. Epub 2001 Jul 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA. hudel@uci.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11452084" target="_blank"〉PubMed〈/a〉
    Keywords: Archaeal Proteins/chemistry/metabolism ; Arginine/chemistry ; Bacteriorhodopsins/*chemistry/metabolism ; Binding Sites ; *Carotenoids ; Color ; Crystallography, X-Ray ; Electron Spin Resonance Spectroscopy ; Hydrogen Bonding ; Ion Transport ; Light ; Models, Molecular ; Natronobacterium/*chemistry/metabolism ; Protein Conformation ; Protein Structure, Secondary ; Protons ; Retinaldehyde/chemistry/metabolism ; Schiff Bases ; Signal Transduction ; Tyrosine/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 154
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-02-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Misteli, T -- New York, N.Y. -- Science. 2001 Feb 2;291(5505):843-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Cancer Institute, Bethesda, MD 20892-5002, USA. mistelit@mail.nih.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11225636" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Cell Nucleus/*metabolism/*ultrastructure ; Cell Nucleus Structures/physiology/ultrastructure ; Chromatin/chemistry/metabolism ; Diffusion ; *Gene Expression ; Nuclear Proteins/chemistry/*metabolism ; Protein Transport ; Receptors, Steroid/metabolism ; Stochastic Processes ; Trans-Activators/metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 155
    Publication Date: 2002-08-24
    Description: Polyketide synthases (PKSs) assemble the polyketide carbon backbone by sequential decarboxylative condensation of acyl coenzyme A (CoA) precursors, and the C-C bond-forming step in this process is catalyzed by the beta-ketoacyl synthase (KS) domain or subunit. Genetic and biochemical characterization of the nonactin biosynthesis gene cluster from Streptomyces griseus revealed two KSs, NonJ and NonK, that are highly homologous to known KSs but catalyze sequential condensation of the acyl CoA substrates by forming C-O rather than C-C bonds. This chemistry can be used in PKS engineering to increase the scope and diversity of polyketide biosynthesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kwon, Hyung-Jin -- Smith, Wyatt C -- Scharon, A Janelle -- Hwang, Sung Hee -- Kurth, Mark J -- Shen, Ben -- AI51689/AI/NIAID NIH HHS/ -- T32 GM08505/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2002 Aug 23;297(5585):1327-30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Pharmaceutical Sciences and, Department of Chemistry, University of Wisconsin, Madison, WI 53705, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12193782" target="_blank"〉PubMed〈/a〉
    Keywords: 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/*chemistry/*metabolism ; Acyl Coenzyme A/metabolism ; Amino Acid Sequence ; Binding Sites ; Catalysis ; Chromatography, High Pressure Liquid ; Genes, Bacterial ; Macrolides/chemistry/*metabolism ; Molecular Sequence Data ; Multienzyme Complexes/*chemistry/*metabolism ; Multigene Family ; Mutation ; Protein Engineering ; Protein Subunits ; Sequence Alignment ; Spectrometry, Mass, Electrospray Ionization ; Streptomyces/genetics ; Streptomyces griseus/*enzymology/genetics ; Transformation, Bacterial
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 156
    Publication Date: 2002-02-16
    Description: Phosphorylation of mitogen-activated protein kinases (MAPKs) on specific tyrosine and threonine sites by MAP kinase kinases (MAPKKs) is thought to be the sole activation mechanism. Here, we report an unexpected activation mechanism for p38alpha MAPK that does not involve the prototypic kinase cascade. Rather it depends on interaction of p38alpha with TAB1 [transforming growth factor-beta-activated protein kinase 1 (TAK1)-binding protein 1] leading to autophosphorylation and activation of p38alpha. We detected formation of a TRAF6-TAB1-p38alpha complex and showed stimulus-specific TAB1-dependent and TAB1-independent p38alpha activation. These findings suggest that alternative activation pathways contribute to the biological responses of p38alpha to various stimuli.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ge, Baoxue -- Gram, Hermann -- Di Padova, Franco -- Huang, Betty -- New, Liguo -- Ulevitch, Richard J -- Luo, Ying -- Han, Jiahuai -- AI41637/AI/NIAID NIH HHS/ -- HL07195/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2002 Feb 15;295(5558):1291-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11847341" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptor Proteins, Signal Transducing ; Binding Sites ; Calcium-Calmodulin-Dependent Protein Kinases/metabolism ; Carrier Proteins/chemistry/genetics/*metabolism ; Cell Line ; *Drosophila Proteins ; Enzyme Activation ; Enzyme Inhibitors/pharmacology ; Humans ; Imidazoles/pharmacology ; *Intracellular Signaling Peptides and Proteins ; MAP Kinase Kinase 6 ; *MAP Kinase Signaling System ; Membrane Glycoproteins/metabolism ; Mitogen-Activated Protein Kinase 14 ; Mitogen-Activated Protein Kinase Kinases/metabolism ; Mitogen-Activated Protein Kinases/antagonists & ; inhibitors/chemistry/genetics/*metabolism ; Mutation ; Peptide Mapping ; Peroxynitrous Acid/pharmacology ; Phosphorylation ; Proteins/metabolism ; Pyridines/pharmacology ; Receptors, Cell Surface/metabolism ; Recombinant Fusion Proteins/metabolism ; TNF Receptor-Associated Factor 6 ; Toll-Like Receptors ; Tumor Necrosis Factor-alpha/pharmacology ; Two-Hybrid System Techniques ; p38 Mitogen-Activated Protein Kinases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 157
    Publication Date: 2002-04-16
    Description: One of the most complex biosynthetic processes in metallobiochemistry is the assembly of nitrogenase, the key enzyme in biological nitrogen fixation. We describe here the crystal structure of an iron-molybdenum cofactor-deficient form of the nitrogenase MoFe protein, into which the cofactor is inserted in the final step of MoFe protein assembly. The MoFe protein folds as a heterotetramer containing two copies each of the homologous alpha and beta subunits. In this structure, one of the three alpha subunit domains exhibits a substantially changed conformation, whereas the rest of the protein remains essentially unchanged. A predominantly positively charged funnel is revealed; this funnel is of sufficient size to accommodate insertion of the negatively charged cofactor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schmid, Benedikt -- Ribbe, Markus W -- Einsle, Oliver -- Yoshida, Mika -- Thomas, Leonard M -- Dean, Dennis R -- Rees, Douglas C -- Burgess, Barbara K -- New York, N.Y. -- Science. 2002 Apr 12;296(5566):352-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Chemistry and Chemical Engineering, Mail Code 147-75CH, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11951047" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Azotobacter vinelandii/*enzymology ; Binding Sites ; Crystallization ; Crystallography, X-Ray ; Dimerization ; Hydrogen Bonding ; Models, Molecular ; Molecular Sequence Data ; Molybdoferredoxin/*chemistry/genetics/*metabolism ; Protein Conformation ; Protein Folding ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Static Electricity ; Surface Properties
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 158
    Publication Date: 2002-09-21
    Description: To make messenger RNA transcripts, bacteriophage T7 RNA polymerase (T7 RNAP) undergoes a transition from an initiation phase, which only makes short RNA fragments, to a stable elongation phase. We have determined at 2.1 angstrom resolution the crystal structure of a T7 RNAP elongation complex with 30 base pairs of duplex DNA containing a "transcription bubble" interacting with a 17-nucleotide RNA transcript. The transition from an initiation to an elongation complex is accompanied by a major refolding of the amino-terminal 300 residues. This results in loss of the promoter binding site, facilitating promoter clearance, and creates a tunnel that surrounds the RNA transcript after it peels off a seven-base pair heteroduplex. Formation of the exit tunnel explains the enhanced processivity of the elongation complex. Downstream duplex DNA binds to the fingers domain, and its orientation relative to upstream DNA in the initiation complex implies an unwinding that could facilitate formation of the open promoter complex.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yin, Y Whitney -- Steitz, Thomas A -- GM57510/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2002 Nov 15;298(5597):1387-95. Epub 2002 Sep 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520-8114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12242451" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteriophage T7/enzymology ; Binding Sites ; Crystallization ; Crystallography, X-Ray ; DNA/*chemistry/metabolism ; DNA-Directed RNA Polymerases/*chemistry/genetics/*metabolism ; Models, Molecular ; Mutation ; N-Acetylmuramoyl-L-alanine Amidase/metabolism ; Nucleic Acid Heteroduplexes ; Promoter Regions, Genetic ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits ; RNA Polymerase II/chemistry ; RNA, Messenger/*chemistry/metabolism ; Taq Polymerase/chemistry ; Templates, Genetic ; Transcription Initiation Site ; *Transcription, Genetic ; Viral Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 159
    Publication Date: 2002-04-20
    Description: Cadherins are transmembrane proteins that mediate adhesion between cells in the solid tissues of animals. Here we present the 3.1 angstrom resolution crystal structure of the whole, functional extracellular domain from C-cadherin, a representative "classical" cadherin. The structure suggests a molecular mechanism for adhesion between cells by classical cadherins, and it provides a new framework for understanding both cis (same cell) and trans (juxtaposed cell) cadherin interactions. The trans adhesive interface is a twofold symmetric interaction defined by a conserved tryptophan side chain at the membrane-distal end of a cadherin molecule from one cell, which inserts into a hydrophobic pocket at the membrane-distal end of a cadherin molecule from the opposing cell.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Boggon, Titus J -- Murray, John -- Chappuis-Flament, Sophie -- Wong, Ellen -- Gumbiner, Barry M -- Shapiro, Lawrence -- NCI-P30-CA-08784/CI/NCPDCID CDC HHS/ -- R01 GM062270/GM/NIGMS NIH HHS/ -- R01 GM52717/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2002 May 17;296(5571):1308-13. Epub 2002 Apr 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Columbia University College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11964443" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; CHO Cells ; Cadherins/*chemistry/genetics/metabolism ; *Cell Adhesion ; Cricetinae ; Crystallography, X-Ray ; Dimerization ; Glycosylation ; Hydrogen Bonding ; Models, Molecular ; Molecular Sequence Data ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/chemistry ; Tryptophan/chemistry ; Xenopus Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 160
    Publication Date: 2002-03-23
    Description: One role of messenger RNA (mRNA) degradation is to maintain the fidelity of gene expression by degrading aberrant transcripts. Recent results show that mRNAs without translation termination codons are unstable in eukaryotic cells. We used yeast mutants to demonstrate that these "nonstop" mRNAs are degraded by the exosome in a 3'-to-5' direction. The degradation of nonstop transcripts requires the exosome-associated protein Ski7p. Ski7p is closely related to the translation elongation factor EF1A and the translation termination factor eRF3. This suggests that the recognition of nonstop mRNAs involves the binding of Ski7p to an empty aminoacyl-(RNA-binding) site (A site) on the ribosome, thereby bringing the exosome to a mRNA with a ribosome stalled near the 3' end. This system efficiently degrades mRNAs that are prematurely polyadenylated within the coding region and prevents their expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉van Hoof, Ambro -- Frischmeyer, Pamela A -- Dietz, Harry C -- Parker, Roy -- New York, N.Y. -- Science. 2002 Mar 22;295(5563):2262-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815, USA. : ambro@u.arizona.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11910110" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing ; Alleles ; Amino Acid Sequence ; Base Sequence ; Binding Sites ; Codon, Terminator/*genetics ; Fungal Proteins/chemistry/genetics/*metabolism ; *GTP-Binding Proteins ; Gene Expression Regulation, Fungal ; Genes, Fungal/genetics ; Half-Life ; Molecular Sequence Data ; Polyadenylation ; Protein Binding ; Protein Biosynthesis ; RNA 3' End Processing ; *RNA Processing, Post-Transcriptional ; RNA Stability ; RNA, Fungal/genetics/metabolism ; RNA, Messenger/*genetics/*metabolism ; Ribosomes/metabolism ; Saccharomyces cerevisiae/*genetics ; Saccharomyces cerevisiae Proteins/genetics/metabolism ; Sequence Alignment ; Sequence Deletion/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 161
    Publication Date: 2002-05-11
    Description: The ABC transporters are ubiquitous membrane proteins that couple adenosine triphosphate (ATP) hydrolysis to the translocation of diverse substrates across cell membranes. Clinically relevant examples are associated with cystic fibrosis and with multidrug resistance of pathogenic bacteria and cancer cells. Here, we report the crystal structure at 3.2 angstrom resolution of the Escherichia coli BtuCD protein, an ABC transporter mediating vitamin B12 uptake. The two ATP-binding cassettes (BtuD) are in close contact with each other, as are the two membrane-spanning subunits (BtuC); this arrangement is distinct from that observed for the E. coli lipid flippase MsbA. The BtuC subunits provide 20 transmembrane helices grouped around a translocation pathway that is closed to the cytoplasm by a gate region whereas the dimer arrangement of the BtuD subunits resembles the ATP-bound form of the Rad50 DNA repair enzyme. A prominent cytoplasmic loop of BtuC forms the contact region with the ATP-binding cassette and appears to represent a conserved motif among the ABC transporters.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Locher, Kaspar P -- Lee, Allen T -- Rees, Douglas C -- New York, N.Y. -- Science. 2002 May 10;296(5570):1091-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Division of Chemistry and Chemical Engineering, Mail Code 147-75CH, California Institute of Technology, Pasadena, CA 91125, USA. locher@caltech.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12004122" target="_blank"〉PubMed〈/a〉
    Keywords: ATP-Binding Cassette Transporters/*chemistry/metabolism ; Adenosine Triphosphate/metabolism ; Amino Acid Motifs ; Amino Acid Sequence ; Binding Sites ; Biological Transport ; Cell Membrane/chemistry ; Crystallization ; Crystallography, X-Ray ; Dimerization ; Escherichia coli/*chemistry ; Escherichia coli Proteins/*chemistry/metabolism ; Hydrolysis ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Folding ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits ; Vitamin B 12/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 162
    Publication Date: 2002-05-23
    Description: The crystal structure of the initiating form of Thermus aquaticus RNA polymerase, containing core RNA polymerase (alpha2betabeta'omega) and the promoter specificity sigma subunit, has been determined at 4 angstrom resolution. Important structural features of the RNA polymerase and their roles in positioning sigma within the initiation complex are delineated, as well as the role played by sigma in modulating the opening of the RNA polymerase active-site channel. The two carboxyl-terminal domains of sigma are separated by 45 angstroms on the surface of the RNA polymerase, but are linked by an extended loop. The loop winds near the RNA polymerase active site, where it may play a role in initiating nucleotide substrate binding, and out through the RNA exit channel. The advancing RNA transcript must displace the loop, leading to abortive initiation and ultimately to sigma release.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Murakami, Katsuhiko S -- Masuda, Shoko -- Darst, Seth A -- GM53759/GM/NIGMS NIH HHS/ -- GM61898/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2002 May 17;296(5571):1280-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12016306" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Binding Sites ; Crystallization ; Crystallography, X-Ray ; DNA, Bacterial/metabolism ; DNA-Directed RNA Polymerases/*chemistry/*metabolism ; Eukaryotic Cells/metabolism ; Holoenzymes/chemistry/metabolism ; Models, Molecular ; Promoter Regions, Genetic ; Protein Conformation ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; RNA, Bacterial/metabolism ; RNA, Messenger/metabolism ; Sigma Factor/metabolism ; Thermus/*enzymology ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 163
    Publication Date: 2002-05-23
    Description: The crystal structure of Thermus aquaticus RNA polymerase holoenzyme (alpha2betabeta'omegasigmaA) complexed with a fork-junction promoter DNA fragment has been determined by fitting high-resolution x-ray structures of individual components into a 6.5-angstrom resolution map. The DNA lies across one face of the holoenzyme, completely outside the RNA polymerase active site channel. All sequence-specific contacts with core promoter elements are mediated by the sigma subunit. A universally conserved tryptophan is ideally positioned to stack on the exposed face of the base pair at the upstream edge of the transcription bubble. Universally conserved basic residues of the sigma subunit provide critical contacts with the DNA phosphate backbone and play a role in directing the melted DNA template strand into the RNA polymerase active site. The structure explains how holoenzyme recognizes promoters containing variably spaced -10 and -35 elements and provides the basis for models of the closed and open promoter complexes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Murakami, Katsuhiko S -- Masuda, Shoko -- Campbell, Elizabeth A -- Muzzin, Oriana -- Darst, Seth A -- GM20470/GM/NIGMS NIH HHS/ -- GM53759/GM/NIGMS NIH HHS/ -- GM61898/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2002 May 17;296(5571):1285-90.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12016307" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Binding Sites ; Crystallization ; Crystallography, X-Ray ; DNA, Bacterial/*chemistry/genetics/metabolism ; DNA-Directed RNA Polymerases/*chemistry/metabolism ; Holoenzymes/chemistry/metabolism ; Models, Molecular ; Nucleic Acid Conformation ; *Promoter Regions, Genetic ; Protein Conformation ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Subunits ; Sigma Factor/*chemistry/metabolism ; Templates, Genetic ; Thermus/*enzymology ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 164
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-10-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hochstrasser, Mark -- New York, N.Y. -- Science. 2002 Oct 18;298(5593):549-52.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA. mark.hochstrasser@yale.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12386321" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Amino Acid Motifs ; Binding Sites ; Cyclin-Dependent Kinase Inhibitor Proteins ; Cysteine Endopeptidases/*metabolism ; DNA-Binding Proteins/metabolism ; Endopeptidases/chemistry/*metabolism ; Fungal Proteins/metabolism ; Metalloendopeptidases/chemistry/*metabolism ; Models, Biological ; Multienzyme Complexes/*metabolism ; Mutation ; Peptide Hydrolases/*metabolism ; Proteasome Endopeptidase Complex ; Proteins/*metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Saccharomyces cerevisiae Proteins/chemistry/*metabolism ; Transcription Factors/metabolism ; Ubiquitins/*metabolism ; Yeasts/metabolism ; Zinc/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 165
    Publication Date: 2004-07-01
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bream, J H -- Young, H A -- Rice, N -- Martin, M P -- Smith, M W -- Carrington, M -- O'Brien, S J -- New York, N.Y. -- Science. 1999 Apr 9;284(5412):223.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Experimental Immunology, National Cancer Institute-Frederick Cancer, Research and Development Center (NCI-FCRDC), Frederick, MD 21702, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15224670" target="_blank"〉PubMed〈/a〉
    Keywords: Acquired Immunodeficiency Syndrome/genetics/immunology/mortality/*physiopathology ; *Alleles ; Binding Sites ; Cell Nucleus/metabolism ; DNA-Binding Proteins/*metabolism ; Disease Progression ; Electrophoretic Mobility Shift Assay ; Humans ; Nuclear Proteins/*metabolism ; Oligodeoxyribonucleotides/metabolism ; Polymorphism, Single Nucleotide ; *Promoter Regions, Genetic ; Receptors, CCR5/*genetics ; Survival Rate ; T-Lymphocytes ; Transcription Factors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 166
    Publication Date: 2000-06-10
    Description: Experiments with vesicles containing N-methyl-D-aspartate (NMDA) receptor 2B (NR2B subunit) show that they are transported along microtubules by KIF17, a neuron-specific molecular motor in neuronal dendrites. Selective transport is accomplished by direct interaction of the KIF17 tail with a PDZ domain of mLin-10 (Mint1/X11), which is a constituent of a large protein complex including mLin-2 (CASK), mLin-7 (MALS/Velis), and the NR2B subunit. This interaction, specific for a neurotransmitter receptor critically important for plasticity in the postsynaptic terminal, may be a regulatory point for synaptic plasticity and neuronal morphogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Setou, M -- Nakagawa, T -- Seog, D H -- Hirokawa, N -- New York, N.Y. -- Science. 2000 Jun 9;288(5472):1796-802.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology and Anatomy, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10846156" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Binding Sites ; Biological Transport ; *Caenorhabditis elegans Proteins ; Cloning, Molecular ; Dendrites/*metabolism ; Dimerization ; Kinesin/chemistry/genetics/*metabolism ; Male ; *Membrane Proteins ; Mice ; Microtubules/metabolism ; Models, Biological ; Molecular Motor Proteins/chemistry/genetics/*metabolism ; Molecular Sequence Data ; Molecular Weight ; Organelles/metabolism ; Precipitin Tests ; Protein Binding ; Proteins/chemistry/*metabolism ; Receptors, N-Methyl-D-Aspartate/*metabolism ; Recombinant Proteins/chemistry/metabolism ; Two-Hybrid System Techniques
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 167
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-02-24
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Breaker, R R -- New York, N.Y. -- Science. 2000 Dec 15;290(5499):2095-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA. ronald.breaker@yale.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11187837" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Catalysis ; Catalytic Domain ; DNA/*metabolism ; DNA, Catalytic/*chemistry/*metabolism ; Nucleic Acid Conformation ; Oxidation-Reduction ; Phosphorylation ; RNA/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 168
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-02-24
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Helmuth, L -- New York, N.Y. -- Science. 2000 Oct 6;290(5489):23-5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11183139" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anti-Anxiety Agents/adverse effects/metabolism/*pharmacology ; Binding Sites ; Diazepam/adverse effects/metabolism/*pharmacology ; Drug Design ; GABA Modulators/metabolism/pharmacology ; Humans ; Mice ; Mutation ; Receptors, GABA-A/chemistry/genetics/*metabolism ; gamma-Aminobutyric Acid/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 169
    Publication Date: 2000-10-29
    Description: The protein N-WASP [a homolog to the Wiskott-Aldrich syndrome protein (WASP)] regulates actin polymerization by stimulating the actin-nucleating activity of the actin-related protein 2/3 (Arp2/3) complex. N-WASP is tightly regulated by multiple signals: Only costimulation by Cdc42 and phosphatidylinositol (4,5)-bisphosphate (PIP2) yields potent polymerization. We found that regulation requires N-WASP's constitutively active output domain (VCA) and two regulatory domains: a Cdc42-binding domain and a previously undescribed PIP(2)-binding domain. In the absence of stimuli, the regulatory modules together hold the VCA-Arp2/3 complex in an inactive "closed" conformation. In this state, both the Cdc42- and PIP2-binding sites are masked. Binding of either input destabilizes the closed state and enhances binding of the other input. This cooperative activation mechanism shows how combinations of simple binding domains can be used to integrate and amplify coincident signals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Prehoda, K E -- Scott, J A -- Mullins, R D -- Lim, W A -- New York, N.Y. -- Science. 2000 Oct 27;290(5492):801-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94143-0450, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11052943" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Cytoskeleton/metabolism ; Actin-Related Protein 2 ; Actin-Related Protein 3 ; Actins/*metabolism ; Amino Acid Motifs ; Binding Sites ; Biopolymers ; *Cytoskeletal Proteins ; GTP Phosphohydrolases/metabolism ; Humans ; Models, Biological ; Nerve Tissue Proteins/*chemistry/genetics/*metabolism ; Phosphatidylinositol 4,5-Diphosphate/metabolism ; Protein Binding ; Protein Conformation ; Protein Folding ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/metabolism ; *Signal Transduction ; Thermodynamics ; Wiskott-Aldrich Syndrome Protein, Neuronal ; cdc42 GTP-Binding Protein/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 170
    Publication Date: 2000-09-01
    Description: The atomic structures of two proteins in the histidine biosynthesis pathway consist of beta/alpha barrels with a twofold repeat pattern. It is likely that these proteins evolved by twofold gene duplication and gene fusion from a common half-barrel ancestor. These ancestral domains are not visible as independent domains in the extant proteins but can be inferred from a combination of sequence and structural analysis. The detection of subdomain structures may be useful in efforts to search genome sequences for functionally and structurally related proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lang, D -- Thoma, R -- Henn-Sax, M -- Sterner, R -- Wilmanns, M -- New York, N.Y. -- Science. 2000 Sep 1;289(5484):1546-50.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉European Molecular Biology Laboratory (EMBL) Hamburg Outstation, EMBL c/o Deutsches Elektronen- Synchrotron (DESY), Notkestrasse 85, D-22603 Hamburg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10968789" target="_blank"〉PubMed〈/a〉
    Keywords: Aldose-Ketose Isomerases/*chemistry/genetics/metabolism ; Amino Acid Motifs ; Amino Acid Sequence ; Aminohydrolases/*chemistry/genetics/metabolism ; Binding Sites ; Catalysis ; Crystallography, X-Ray ; *Evolution, Molecular ; *Gene Duplication ; Histidine/biosynthesis ; Models, Molecular ; Molecular Sequence Data ; Protein Folding ; *Protein Structure, Tertiary ; *Recombination, Genetic ; Sequence Alignment ; Thermotoga maritima/enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 171
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-02-24
    Description: Signaling proteins can be regulated by their interactions with other proteins and phospholipids. As Fawcett and Pawson discuss in their Perspective, activation of the N-WASP protein (which coordinates formation of actin filaments) is far more complex, depending on the interaction of N-WASP with both a protein and a phospholipid. The authors explain new results (Prehoda et al.) demonstrating that cooperative binding of the phospholipid PIP2 and the small GTPase Cdc42 to N-WASP results in its activation. The Arp2/3 complex is then able to bind to N-WASP and to proceed with its job of initiating the assembly of actin monomers into actin filaments.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fawcett, J -- Pawson, T -- New York, N.Y. -- Science. 2000 Oct 27;290(5492):725-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Samuel Lunenfeld Research Institute, Mt. Sinai Hospital, Toronto, Ontario M5G 1X5, Canada. fawcett@mshri.on.ca〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11184204" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Cytoskeleton/*metabolism ; Actin-Related Protein 2 ; Actin-Related Protein 3 ; Actins/*metabolism ; Amino Acid Motifs ; Animals ; Binding Sites ; Biopolymers ; *Cytoskeletal Proteins ; GTP Phosphohydrolases/metabolism ; Ligands ; Models, Biological ; Nerve Tissue Proteins/*chemistry/genetics/*metabolism ; Phosphatidylinositol 4,5-Diphosphate/metabolism ; Protein Binding ; Protein Folding ; Protein Structure, Tertiary ; *Signal Transduction ; Wiskott-Aldrich Syndrome Protein, Neuronal ; Xenopus ; cdc42 GTP-Binding Protein/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 172
    Publication Date: 2000-10-13
    Description: The forte of catalytic antibodies has resided in the control of the ground-state reaction coordinate. A principle and method are now described in which antibodies can direct the outcome of photophysical and photochemical events that take place on excited-state potential energy surfaces. The key component is a chemically reactive optical sensor that provides a direct report of the dynamic interplay between protein and ligand at the active site. To illustrate the concept, we used a trans-stilbene hapten to elicit a panel of monoclonal antibodies that displayed a range of fluorescent spectral behavior when bound to a trans-stilbene substrate. Several antibodies yielded a blue fluorescence indicative of an excited-state complex or "exciplex" between trans-stilbene and the antibody. The antibodies controlled the isomerization coordinate of trans-stilbene and dynamically coupled this manifold with an active-site residue. A step was taken toward the use of antibody-based photochemical sensors for diagnostic and clinical applications.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Simeonov, A -- Matsushita, M -- Juban, E A -- Thompson, E H -- Hoffman, T Z -- Beuscher, A E 4th -- Taylor, M J -- Wirsching, P -- Rettig, W -- McCusker, J K -- Stevens, R C -- Millar, D P -- Schultz, P G -- Lerner, R A -- Janda, K D -- AI39089/AI/NIAID NIH HHS/ -- GM43858/GM/NIGMS NIH HHS/ -- P01CA27489/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2000 Oct 13;290(5490):307-13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, The Scripps Research Institute and the Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11030644" target="_blank"〉PubMed〈/a〉
    Keywords: Antibodies, Catalytic/*chemistry ; Antibodies, Monoclonal/*chemistry ; Binding Sites ; Binding Sites, Antibody ; Chemistry, Physical ; Crystallography, X-Ray ; *Fluorescence ; Haptens ; Ligands ; Microscopy, Fluorescence ; Models, Chemical ; Models, Molecular ; Photochemistry ; Physicochemical Phenomena ; Spectrometry, Fluorescence ; Stereoisomerism ; Stilbenes/*chemistry/*immunology ; Temperature ; Ultraviolet Rays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 173
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-08-29
    Description: Ribosomes, the cellular factories that manufacture proteins, contain both RNA and protein, but exactly how all of the different ribosomal components contribute to protein synthesis is still not clear. Now, as Thomas Cech explains in his Perspective, atomic resolution of the structure of the large ribosomal subunit reveals that, as predicted by those convinced of a prebiotic RNA world, RNA is the catalytic component with proteins being the structural units that support and stabilize it (Ban et al., Nissen et al., Muth et al.).〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cech, T R -- New York, N.Y. -- Science. 2000 Aug 11;289(5481):878-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815-6789, USA. thomas.cech@colorado.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10960319" target="_blank"〉PubMed〈/a〉
    Keywords: Adenine/chemistry/metabolism ; Archaeal Proteins/chemistry/metabolism ; Binding Sites ; Catalysis ; Crystallography, X-Ray ; Evolution, Molecular ; Haloarcula marismortui/chemistry/ultrastructure ; Hydrogen-Ion Concentration ; Models, Molecular ; Nucleic Acid Conformation ; *Peptide Biosynthesis ; RNA, Archaeal/chemistry/metabolism ; RNA, Catalytic/*chemistry/metabolism ; RNA, Messenger/chemistry/metabolism ; RNA, Ribosomal, 23S/*chemistry/metabolism ; RNA, Ribosomal, 5S/*chemistry/metabolism ; RNA, Transfer/chemistry/metabolism ; Ribosomal Proteins/chemistry/metabolism ; Ribosomes/*chemistry/metabolism/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 174
    Publication Date: 2000-03-24
    Description: Correct positioning of the mitotic spindle is critical for cell division and development. Spindle positioning involves a search-and-capture mechanism whereby dynamic microtubules find and then interact with specific sites on the submembrane cortex. Genetic, biochemical, and imaging experiments suggest a mechanism for cortical-microtubule capture. Bim1p, located at microtubule distal ends, bound Kar9p, a protein associated with the daughter cell cortex. Bim1p is the yeast ortholog of human EB1, a binding partner for the adenomatous polyposis coli tumor suppressor. EB1 family proteins may have a general role in linking the microtubule cytoskeleton to cortical polarity determinants.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, L -- Tirnauer, J S -- Li, J -- Schuyler, S C -- Liu, J Y -- Pellman, D -- GM55772/GM/NIGMS NIH HHS/ -- KO8 DK02578/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2000 Mar 24;287(5461):2260-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Pediatric Oncology, The Dana-Farber Cancer Institute, and Pediatric Hematology, The Children's Hospital, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10731147" target="_blank"〉PubMed〈/a〉
    Keywords: Adenomatous Polyposis Coli Protein ; Binding Sites ; Cell Cycle ; Cell Cycle Proteins/genetics/*metabolism ; Cytoskeletal Proteins/metabolism ; G1 Phase ; Microtubule Proteins/genetics/*metabolism ; Microtubule-Associated Proteins/metabolism ; Microtubules/*metabolism ; Nuclear Proteins/genetics/*metabolism ; Protein Binding ; Recombinant Fusion Proteins/metabolism ; Saccharomyces cerevisiae/cytology/genetics/*physiology ; *Saccharomyces cerevisiae Proteins ; Spindle Apparatus/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 175
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-02-24
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marx, J -- New York, N.Y. -- Science. 2000 Nov 10;290(5494):1066-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11184996" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Crystallography, X-Ray ; DNA-Binding Proteins/chemistry/*metabolism ; *Gene Expression Regulation ; Growth Hormone/*genetics ; Mice ; Mice, Transgenic ; Pituitary Gland/*metabolism ; Prolactin/*genetics ; Protein Conformation ; Protein Structure, Tertiary ; *Regulatory Sequences, Nucleic Acid ; Transcription Factor Pit-1 ; Transcription Factors/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 176
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-10-14
    Description: Rather than designing specific inhibitors for closely related proteins, researchers are remodeling the proteins to make them uniquely susceptible to inhibition. As described in the 21 September issue of Nature, the technique involves enlarging the active site of an enzyme so that it can bind an inhibitor that won't fit into the active sites of related--but unaltered--enzymes. Researchers can then insert the gene that encodes the modified enzyme into cells or living animals and turn off that enzyme by feeding them the inhibitor--without affecting other, very similar, enzymes. The technique may have some advantages over other approaches to studying the functions of individual proteins, such as mutating or knocking out the genes that encode them, which may disrupt embryonic development, producing abnormal animals or no animals at all.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Strauss, E -- New York, N.Y. -- Science. 2000 Sep 22;289(5487):2029-31.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11032551" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Animals ; Binding Sites ; Cell Cycle ; Cell Division ; Enzyme Inhibitors/metabolism ; Glycine ; Mutation ; *Protein Engineering ; Protein Kinase Inhibitors ; *Protein Kinases/chemistry/genetics/metabolism ; Temperature ; Yeasts/cytology/enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 177
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-08-05
    Description: The binding of a ligand to its receptor has always been viewed as the trigger for signal transduction to ensue. However, as Golstein explains in his Perspective, new findings (Chan et al. and Siegel et al.) suggest that the Fas receptor preassembles into trimers without the help of its ligand, and that this preassembly conditions ligand binding, and thus subsequent signal transduction of a death signal.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Golstein, P -- New York, N.Y. -- Science. 2000 Jun 30;288(5475):2328-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre d'Immunologie INSERM-CNRS de Marseille-Luminy, Case 906, 13288 Marseille Cedex 9, France. golstein@ciml.univ-mrs.fr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10917832" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD95/*chemistry/genetics/*metabolism ; *Apoptosis ; Binding Sites ; Cell Membrane/metabolism ; Dimerization ; Fas Ligand Protein ; Humans ; Ligands ; Macromolecular Substances ; Membrane Glycoproteins/chemistry/*metabolism ; Mutation ; Protein Conformation ; Protein Structure, Tertiary ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 178
    Publication Date: 2000-08-11
    Description: Biochemical and crystallographic evidence suggests that 23S ribosomal RNA (rRNA) is the catalyst of peptide bond formation. To explore the mechanism of this reaction, we screened for nucleotides in Escherichia coli 23S rRNA that may have a perturbed pKa (where Ka is the acid constant) based on the pH dependence of dimethylsulfate modification. A single universally conserved A (number 2451) within the central loop of domain V has a near neutral pKa of 7.6 +/- 0.2, which is about the same as that reported for the peptidyl transferase reaction. In vivo mutational analysis of this nucleotide indicates that it has an essential role in ribosomal function. These results are consistent with a mechanism wherein the nucleotide base of A2451 serves as a general acid base during peptide bond formation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Muth, G W -- Ortoleva-Donnelly, L -- Strobel, S A -- GM54839/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2000 Aug 11;289(5481):947-50.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biophysics and Biochemistry, Yale University, 260 Whitney Avenue, New Haven, CT 06520-8114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10937997" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine/chemistry/*metabolism ; Binding Sites ; Catalysis ; Dimethyl Sulfoxide ; Escherichia coli ; Hydrogen Bonding ; Methylation ; Mutation ; *Peptide Biosynthesis ; Peptidyl Transferases/*chemistry/*metabolism ; Protons ; RNA, Bacterial/chemistry/genetics/metabolism ; RNA, Ribosomal, 23S/*chemistry/genetics/*metabolism ; Ribosomes/chemistry/*metabolism ; Tubercidin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 179
    Publication Date: 2000-10-06
    Description: Benzodiazepine tranquilizers are used in the treatment of anxiety disorders. To identify the molecular and neuronal target mediating the anxiolytic action of benzodiazepines, we generated and analyzed two mouse lines in which the alpha2 or alpha3 GABAA (gamma-aminobutyric acid type A) receptors, respectively, were rendered insensitive to diazepam by a knock-in point mutation. The anxiolytic action of diazepam was absent in mice with the alpha2(H101R) point mutation but present in mice with the alpha3(H126R) point mutation. These findings indicate that the anxiolytic effect of benzodiazepine drugs is mediated by alpha2 GABAA receptors, which are largely expressed in the limbic system, but not by alpha3 GABAA receptors, which predominate in the reticular activating system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Low, K -- Crestani, F -- Keist, R -- Benke, D -- Brunig, I -- Benson, J A -- Fritschy, J M -- Rulicke, T -- Bluethmann, H -- Mohler, H -- Rudolph, U -- New York, N.Y. -- Science. 2000 Oct 6;290(5489):131-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Pharmacology and Toxicology, University of Zurich, and Swiss Federal Institute of Technology Zurich (ETH), Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11021797" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anti-Anxiety Agents/metabolism/*pharmacology ; Behavior, Animal/drug effects ; Binding Sites ; Brain/drug effects/metabolism ; Cells, Cultured ; Diazepam/metabolism/*pharmacology ; Dose-Response Relationship, Drug ; Female ; Gene Targeting ; Hippocampus/cytology ; Membrane Potentials/drug effects ; Mice ; Patch-Clamp Techniques ; Phenobarbital/pharmacology ; Point Mutation ; Pyramidal Cells/drug effects/physiology ; Receptors, GABA-A/chemistry/genetics/*metabolism ; Synaptic Transmission ; gamma-Aminobutyric Acid/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 180
    Publication Date: 2001-12-12
    Description: The Staphylococcus aureus multidrug binding protein QacR represses transcription of the qacA multidrug transporter gene and is induced by structurally diverse cationic lipophilic drugs. Here, we report the crystal structures of six QacR-drug complexes. Compared to the DNA bound structure, drug binding elicits a coil-to-helix transition that causes induction and creates an expansive multidrug-binding pocket, containing four glutamates and multiple aromatic and polar residues. These structures indicate the presence of separate but linked drug-binding sites within a single protein. This multisite drug-binding mechanism is consonant with studies on multidrug resistance transporters.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schumacher, M A -- Miller, M C -- Grkovic, S -- Brown, M H -- Skurray, R A -- Brennan, R G -- AI 48593/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2001 Dec 7;294(5549):2158-63.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97201, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11739955" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/chemistry/metabolism ; Berberine/chemistry/metabolism ; Binding Sites ; Crystallization ; Crystallography, X-Ray ; DNA/metabolism ; Dequalinium/chemistry/metabolism ; Dimerization ; Drug Resistance, Multiple, Bacterial ; Ethidium/chemistry/metabolism ; Gentian Violet/chemistry/*metabolism ; Glutamates/chemistry ; Heterocyclic Compounds/chemistry/*metabolism ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Molecular Structure ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Repressor Proteins/*chemistry/metabolism ; Rhodamines/chemistry/metabolism ; Rosaniline Dyes/chemistry/*metabolism ; Staphylococcus aureus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 181
    Publication Date: 2001-04-21
    Description: The crystal structure of RNA polymerase II in the act of transcription was determined at 3.3 A resolution. Duplex DNA is seen entering the main cleft of the enzyme and unwinding before the active site. Nine base pairs of DNA-RNA hybrid extend from the active center at nearly right angles to the entering DNA, with the 3' end of the RNA in the nucleotide addition site. The 3' end is positioned above a pore, through which nucleotides may enter and through which RNA may be extruded during back-tracking. The 5'-most residue of the RNA is close to the point of entry to an exit groove. Changes in protein structure between the transcribing complex and free enzyme include closure of a clamp over the DNA and RNA and ordering of a series of "switches" at the base of the clamp to create a binding site complementary to the DNA-RNA hybrid. Protein-nucleic acid contacts help explain DNA and RNA strand separation, the specificity of RNA synthesis, "abortive cycling" during transcription initiation, and RNA and DNA translocation during transcription elongation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gnatt, A L -- Cramer, P -- Fu, J -- Bushnell, D A -- Kornberg, R D -- GM49985/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2001 Jun 8;292(5523):1876-82. Epub 2001 Apr 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11313499" target="_blank"〉PubMed〈/a〉
    Keywords: Base Pairing ; Base Sequence ; Binding Sites ; Crystallography, X-Ray ; DNA, Fungal/*chemistry/metabolism ; Metals/metabolism ; Models, Genetic ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Protein Conformation ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; RNA Polymerase II/*chemistry/*metabolism ; RNA, Fungal/biosynthesis/*chemistry/metabolism ; RNA, Messenger/biosynthesis/*chemistry/metabolism ; Saccharomyces cerevisiae/*enzymology/genetics ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 182
    Publication Date: 2001-09-08
    Description: Integrins are alphabeta heterodimeric receptors that mediate divalent cation-dependent cell-cell and cell-matrix adhesion through tightly regulated interactions with ligands. We have solved the crystal structure of the extracellular portion of integrin alphaVbeta3 at 3.1 A resolution. Its 12 domains assemble into an ovoid "head" and two "tails." In the crystal, alphaVbeta3 is severely bent at a defined region in its tails, reflecting an unusual flexibility that may be linked to integrin regulation. The main inter-subunit interface lies within the head, between a seven-bladed beta-propeller from alphaV and an A domain from beta3, and bears a striking resemblance to the Galpha/Gbeta interface in G proteins. A metal ion-dependent adhesion site (MIDAS) in the betaA domain is positioned to participate in a ligand-binding interface formed of loops from the propeller and betaA domains. MIDAS lies adjacent to a calcium-binding site with a potential regulatory function.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2885948/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2885948/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xiong, J P -- Stehle, T -- Diefenbach, B -- Zhang, R -- Dunker, R -- Scott, D L -- Joachimiak, A -- Goodman, S L -- Arnaout, M A -- AI45716/AI/NIAID NIH HHS/ -- DK48549/DK/NIDDK NIH HHS/ -- DK50305/DK/NIDDK NIH HHS/ -- HL54227/HL/NHLBI NIH HHS/ -- P50 GM062414/GM/NIGMS NIH HHS/ -- P50 GM062414-02/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2001 Oct 12;294(5541):339-45. Epub 2001 Sep 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Renal Unit, Leukocyte Biology & Inflammation Program, Structural Biology Program, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Charlestown, MA 02129, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11546839" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Binding Sites ; Calcium/metabolism ; Crystallization ; Crystallography, X-Ray ; Dimerization ; Humans ; Ligands ; Metals/metabolism ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Protein Conformation ; Protein Folding ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits ; Receptors, Vitronectin/*chemistry/genetics/metabolism ; Sequence Alignment
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 183
    Publication Date: 2001-09-08
    Description: Genetic self-incompatibility in Brassica is determined by alleles of the transmembrane serine-threonine kinase SRK, which functions in the stigma epidermis, and of the cysteine-rich peptide SCR, which functions in pollen. Using tagged versions of SRK and SCR as well as endogenous stigma and pollen proteins, we show that SCR binds the SRK ectodomain and that this binding is allele specific. Thus, SRK and SCR function as a receptor-ligand pair in the recognition of self pollen. Specificity in the self-incompatibility response derives from allele-specific formation of SRK-SCR complexes at the pollen-stigma interface.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kachroo, A -- Schopfer, C R -- Nasrallah, M E -- Nasrallah, J B -- GM57527/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2001 Sep 7;293(5536):1824-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Biology, Cornell University, Ithaca, NY 14853, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11546871" target="_blank"〉PubMed〈/a〉
    Keywords: *Alleles ; Binding Sites ; Brassica/*genetics/*metabolism ; Fertilization/physiology ; Ligands ; Plant Proteins/genetics/*metabolism ; Plant Structures/*metabolism ; Plants, Genetically Modified ; Plants, Toxic ; Pollen/*metabolism ; Protein Binding ; Protein Kinases/chemistry/genetics/*metabolism ; Recombinant Fusion Proteins/genetics/metabolism ; Species Specificity ; Substrate Specificity ; Tobacco
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 184
    Publication Date: 2001-04-03
    Description: We describe the crystal structure of the complete Thermus thermophilus 70S ribosome containing bound messenger RNA and transfer RNAs (tRNAs) at 5.5 angstrom resolution. All of the 16S, 23S, and 5S ribosomal RNA (rRNA) chains, the A-, P-, and E-site tRNAs, and most of the ribosomal proteins can be fitted to the electron density map. The core of the interface between the 30S small subunit and the 50S large subunit, where the tRNA substrates are bound, is dominated by RNA, with proteins located mainly at the periphery, consistent with ribosomal function being based on rRNA. In each of the three tRNA binding sites, the ribosome contacts all of the major elements of tRNA, providing an explanation for the conservation of tRNA structure. The tRNAs are closely juxtaposed with the intersubunit bridges, in a way that suggests coupling of the 20 to 50 angstrom movements associated with tRNA translocation with intersubunit movement.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yusupov, M M -- Yusupova, G Z -- Baucom, A -- Lieberman, K -- Earnest, T N -- Cate, J H -- Noller, H F -- New York, N.Y. -- Science. 2001 May 4;292(5518):883-96. Epub 2001 Mar 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Molecular Biology of RNA, Sinsheimer Laboratories, University of California at Santa Cruz, Santa Cruz, CA 95064, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11283358" target="_blank"〉PubMed〈/a〉
    Keywords: Anticodon ; Bacterial Proteins/chemistry/metabolism ; Base Sequence ; Binding Sites ; Crystallography, X-Ray ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Protein Biosynthesis ; Protein Conformation ; RNA, Bacterial/chemistry/metabolism ; RNA, Messenger/*chemistry/metabolism ; RNA, Ribosomal/*chemistry/metabolism ; RNA, Transfer/*chemistry/metabolism ; RNA, Transfer, Amino Acid-Specific/*chemistry/metabolism ; Ribosomal Proteins/*chemistry/metabolism ; Ribosomes/*chemistry/metabolism/*ultrastructure ; Thermus thermophilus/chemistry/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 185
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-12-01
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marx, J -- New York, N.Y. -- Science. 2001 Nov 30;294(5548):1862-5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11729300" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Biological Transport ; Breast Neoplasms/genetics ; Caveolae/*chemistry/*metabolism/ultrastructure ; Caveolin 1 ; Caveolin 2 ; Caveolins/deficiency/genetics/metabolism ; Endocytosis ; Humans ; Membrane Microdomains/chemistry/metabolism ; Mice ; Mice, Knockout ; Mutation/genetics ; Neoplasms/genetics/metabolism/pathology ; Nitric Oxide Synthase/metabolism ; Nitric Oxide Synthase Type II ; Nitric Oxide Synthase Type III ; Phenotype ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 186
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-06-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marx, J -- New York, N.Y. -- Science. 2001 Jun 22;292(5525):2231-3.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11423629" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Antineoplastic Agents/metabolism/pharmacology/*therapeutic use ; Benzamides ; Binding Sites ; Drug Resistance, Neoplasm ; Enzyme Inhibitors/metabolism/pharmacology/therapeutic use ; Gene Amplification ; *Genes, abl ; Humans ; Imatinib Mesylate ; Leukemia, Myelogenous, Chronic, BCR-ABL Positive/*drug ; therapy/enzymology/genetics/pathology ; Models, Molecular ; Piperazines/chemistry/metabolism/pharmacology/*therapeutic use ; Point Mutation ; Proto-Oncogene Proteins c-abl/*antagonists & ; inhibitors/chemistry/genetics/metabolism ; Pyrimidines/chemistry/metabolism/pharmacology/*therapeutic use
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 187
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-02-07
    Description: We describe a heptameric protein pore that has been engineered to accommodate two different cyclodextrin adapters simultaneously within the lumen of a transmembrane beta barrel. The volume between the adapters is a cavity of approximately 4400 cubic angstroms. Analysis of single-channel recordings reveals that individual charged organic molecules can be pulled into the cavity by an electrical potential. Once trapped, an organic molecule shuttles back and forth between the adapters for hundreds of milliseconds. Such self-assembling nanostructures are of interest for the fabrication of multianalyte sensors and could provide a means to control chemical reactions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gu, L Q -- Cheley, S -- Bayley, H -- New York, N.Y. -- Science. 2001 Jan 26;291(5504):636-40.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Biochemistry and Genetics, Texas A&M University System Health Science Center, College Station, TX 77843, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11158673" target="_blank"〉PubMed〈/a〉
    Keywords: Adamantane/*analogs & derivatives/*chemistry/metabolism ; Bacterial Toxins/*chemistry/metabolism ; Binding Sites ; Cyclodextrins/*chemistry/metabolism ; Dicarboxylic Acids/*chemistry/metabolism ; Electric Conductivity ; Hemolysin Proteins/*chemistry/metabolism ; Kinetics ; Membrane Potentials ; Models, Molecular ; Mutagenesis, Site-Directed ; Protein Conformation ; *Protein Engineering ; Thermodynamics ; *beta-Cyclodextrins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 188
    Publication Date: 2001-07-07
    Description: Marine mammals often forage in dark or turbid waters. Whereas dolphins use echolocation under such conditions, pinnipeds apparently lack this sensory ability. For seals hunting in the dark, one source of sensory information may consist of fish-generated water movements, which seals can detect with their highly sensitive whiskers. Water movements in the wake of fishes persist for several minutes. Here we show that blindfolded seals can use their whiskers to detect and accurately follow hydrodynamic trails generated by a miniature submarine. This shows that hydrodynamic information can be used for long-distance prey location.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dehnhardt, G -- Mauck, B -- Hanke, W -- Bleckmann, H -- New York, N.Y. -- Science. 2001 Jul 6;293(5527):102-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut fur Zoologie, Universitat Bonn, Poppelsdorfer Schloss, D-53115 Bonn, Germany. dehnhardt@neurobiologie.ruhr-uni-bochum.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11441183" target="_blank"〉PubMed〈/a〉
    Keywords: Acoustics ; Animals ; Cues ; Fishes/physiology ; Probability ; Seals, Earless/*physiology ; Swimming ; Time Factors ; Vibrissae/*physiology ; Video Recording ; *Water Movements
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 189
    Publication Date: 2001-09-05
    Description: Natriuretic peptides (NPs) are vasoactive cyclic-peptide hormones important in blood pressure regulation through interaction with natriuretic cell-surface receptors. We report the hormone-binding thermodynamics and crystal structures at 2.9 and 2.0 angstroms, respectively, of the extracellular domain of the unliganded human NP receptor (NPR-C) and its complex with CNP, a 22-amino acid NP. A single CNP molecule is bound in the interface of an NPR-C dimer, resulting in asymmetric interactions between the hormone and the symmetrically related receptors. Hormone binding induces a 20 angstrom closure between the membrane-proximal domains of the dimer. In each monomer, the opening of an interdomain cleft, which is tethered together by a linker peptide acting as a molecular spring, is likely a conserved allosteric trigger for intracellular signaling by the natriuretic receptor family.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉He Xl -- Chow Dc -- Martick, M M -- Garcia, K C -- New York, N.Y. -- Science. 2001 Aug 31;293(5535):1657-62.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Microbiology and Immunology and Structural Biology, Stanford University School of Medicine, Fairchild D319, 299 Campus Drive, Stanford, CA 93405-5124, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11533490" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Amino Acid Sequence ; Animals ; Atrial Natriuretic Factor/metabolism ; Binding Sites ; Calorimetry ; Cell Line ; Chlorides/metabolism ; Crystallization ; Crystallography, X-Ray ; Dimerization ; Drosophila ; Glycosylation ; Guanylate Cyclase/*chemistry/*metabolism ; Humans ; Hydrogen Bonding ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Natriuretic Peptide, Brain/metabolism ; Natriuretic Peptide, C-Type/chemistry/*metabolism ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Receptors, Atrial Natriuretic Factor/*chemistry/*metabolism ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 190
    Publication Date: 2001-10-13
    Description: In classical enzymology, intermediates and transition states in a catalytic mechanism are usually inferred from a series of biochemical experiments. Here, we derive an enzyme mechanism from true atomic-resolution x-ray structures of reaction intermediates. Two ultra-high resolution structures of wild-type and mutant d-2-deoxyribose-5-phosphate (DRP) aldolase complexes with DRP at 1.05 and 1.10 angstroms unambiguously identify the postulated covalent carbinolamine and Schiff base intermediates in the aldolase mechanism. In combination with site-directed mutagenesis and (1)H nuclear magnetic resonance, we can now propose how the heretofore elusive C-2 proton abstraction step and the overall stereochemical course are accomplished. A proton relay system appears to activate a conserved active-site water that functions as the critical mediator for proton transfer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Heine, A -- DeSantis, G -- Luz, J G -- Mitchell, M -- Wong, C H -- Wilson, I A -- GM44154/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2001 Oct 12;294(5541):369-74.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11598300" target="_blank"〉PubMed〈/a〉
    Keywords: Aldehyde-Lyases/*chemistry/genetics/*metabolism ; Amino Acid Substitution ; Binding Sites ; Catalysis ; Chemistry, Physical ; Crystallization ; Crystallography, X-Ray ; Escherichia coli/enzymology ; Hydrogen Bonding ; Hydrogen-Ion Concentration ; Ligands ; Lysine/chemistry ; Models, Chemical ; Mutagenesis, Site-Directed ; Mutation ; Nuclear Magnetic Resonance, Biomolecular ; Physicochemical Phenomena ; Protein Conformation ; Protein Folding ; Protein Structure, Tertiary ; Protons ; Ribosemonophosphates/*chemistry/*metabolism ; Schiff Bases ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 191
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-12-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Moine, H -- Mandel, J L -- New York, N.Y. -- Science. 2001 Dec 21;294(5551):2487-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉UPR9002 CNRS, 67084 Strasbourg Cedex, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11752559" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Brain/metabolism ; Crystallography, X-Ray ; Fragile X Mental Retardation Protein ; Fragile X Syndrome/genetics/*metabolism ; Gene Expression Regulation ; Humans ; Mice ; Nerve Tissue Proteins/chemistry/genetics/*metabolism ; Nucleic Acid Conformation ; Oligonucleotide Array Sequence Analysis ; Protein Biosynthesis ; Protein Structure, Tertiary ; RNA, Messenger/*chemistry/genetics/*metabolism ; *RNA-Binding Proteins ; Synapses/physiology ; Untranslated Regions
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 192
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-05-02
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Que, L Jr -- Watanabe, Y -- New York, N.Y. -- Science. 2001 Apr 27;292(5517):651-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA. que@chem.umn.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11330325" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Catalysis ; Cytochrome P-450 Enzyme System/chemistry/genetics/metabolism ; Electron Transport Complex IV/chemistry/metabolism ; Enzyme Activation ; Ligands ; Metals/chemistry/*metabolism ; Oxidation-Reduction ; Oxidoreductases/chemistry/*metabolism ; Oxygen/*metabolism ; Oxygenases/chemistry/*metabolism ; Protein Processing, Post-Translational ; Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 193
    Publication Date: 2001-11-03
    Description: During spliceosome assembly, splicing factor 1 (SF1) specifically recognizes the intron branch point sequence (BPS) UACUAAC in the pre-mRNA transcripts. We show that the KH-QUA2 region of SF1 defines an enlarged KH (hn RNP K) fold which is necessary and sufficient for BPS binding. The 3' part of the BPS (UAAC), including the conserved branch point adenosine (underlined), is specifically recognized in a hydrophobic cleft formed by the Gly-Pro-Arg-Gly motif and the variable loop of the KH domain. The QUA2 region recognizes the 5' nucleotides of the BPS (ACU). The branch point adenosine acting as the nucleophile in the first biochemical step of splicing is deeply buried. BPS RNA recognition suggests how SF1 may facilitate subsequent formation of the prespliceosomal complex A.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Z -- Luyten, I -- Bottomley, M J -- Messias, A C -- Houngninou-Molango, S -- Sprangers, R -- Zanier, K -- Kramer, A -- Sattler, M -- New York, N.Y. -- Science. 2001 Nov 2;294(5544):1098-102.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, D-69117 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11691992" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine/chemistry/metabolism ; Amino Acid Motifs ; Amino Acid Sequence ; Binding Sites ; *DNA-Binding Proteins ; Humans ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; *Introns ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Nuclear Magnetic Resonance, Biomolecular ; Nucleic Acid Conformation ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; RNA Precursors/chemistry/*metabolism ; RNA, Messenger/chemistry/*metabolism ; RNA-Binding Proteins/*chemistry/genetics/*metabolism ; Recombinant Proteins/chemistry/metabolism ; Spliceosomes/metabolism ; *Transcription Factors ; Uracil/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 194
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-10-06
    Description: Genome sequencing projects are producing linear amino acid sequences, but full understanding of the biological role of these proteins will require knowledge of their structure and function. Although experimental structure determination methods are providing high-resolution structure information about a subset of the proteins, computational structure prediction methods will provide valuable information for the large fraction of sequences whose structures will not be determined experimentally. The first class of protein structure prediction methods, including threading and comparative modeling, rely on detectable similarity spanning most of the modeled sequence and at least one known structure. The second class of methods, de novo or ab initio methods, predict the structure from sequence alone, without relying on similarity at the fold level between the modeled sequence and any of the known structures. In this Viewpoint, we begin by describing the essential features of the methods, the accuracy of the models, and their application to the prediction and understanding of protein function, both for single proteins and on the scale of whole genomes. We then discuss the important role that protein structure prediction methods play in the growing worldwide effort in structural genomics.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baker, D -- Sali, A -- GM 54762/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2001 Oct 5;294(5540):93-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA. dabaker@u.washington.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11588250" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; *Computational Biology ; Computer Simulation ; Databases, Factual ; *Genomics ; Humans ; Internet ; *Models, Molecular ; *Protein Conformation ; Protein Folding ; Protein Structure, Tertiary ; Proteins/*chemistry/genetics/physiology ; Sequence Alignment ; Software ; Templates, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 195
    Publication Date: 2001-04-28
    Description: Atherogenic low density lipoproteins are cleared from the circulation by hepatic low density lipoprotein receptors (LDLR). Two inherited forms of hypercholesterolemia result from loss of LDLR activity: autosomal dominant familial hypercholesterolemia (FH), caused by mutations in the LDLR gene, and autosomal recessive hypercholesterolemia (ARH), of unknown etiology. Here we map the ARH locus to an approximately 1-centimorgan interval on chromosome 1p35 and identify six mutations in a gene encoding a putative adaptor protein (ARH). ARH contains a phosphotyrosine binding (PTB) domain, which in other proteins binds NPXY motifs in the cytoplasmic tails of cell-surface receptors, including the LDLR. ARH appears to have a tissue-specific role in LDLR function, as it is required in liver but not in fibroblasts.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Garcia, C K -- Wilund, K -- Arca, M -- Zuliani, G -- Fellin, R -- Maioli, M -- Calandra, S -- Bertolini, S -- Cossu, F -- Grishin, N -- Barnes, R -- Cohen, J C -- Hobbs, H H -- E.0565/Telethon/Italy -- HL07360/HL/NHLBI NIH HHS/ -- P0I-HL2048/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2001 May 18;292(5520):1394-8. Epub 2001 Apr 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉McDermott Center for Human Growth and Development and Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11326085" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Adult ; Amino Acid Sequence ; Binding Sites ; Carrier Proteins/chemistry/*genetics/*metabolism ; Child ; Child, Preschool ; Chromosome Mapping ; Chromosomes, Human, Pair 1/*genetics ; Cloning, Molecular ; Exons/genetics ; Female ; Fibroblasts ; Genes, Recessive/*genetics ; Homozygote ; Humans ; Hypercholesterolemia/*genetics/metabolism/physiopathology ; Introns/genetics ; Italy ; Lebanon ; Liver/metabolism ; Male ; Middle Aged ; Molecular Sequence Data ; Mutation/*genetics ; Organ Specificity ; Pedigree ; Phosphotyrosine/metabolism ; Protein Binding ; RNA, Messenger/analysis/genetics ; Receptors, LDL/*metabolism ; Sequence Alignment ; Two-Hybrid System Techniques
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 196
    Publication Date: 2002-03-09
    Description: The structural basis for the divalent cation-dependent binding of heterodimeric alphabeta integrins to their ligands, which contain the prototypical Arg-Gly-Asp sequence, is unknown. Interaction with ligands triggers tertiary and quaternary structural rearrangements in integrins that are needed for cell signaling. Here we report the crystal structure of the extracellular segment of integrin alphaVbeta3 in complex with a cyclic peptide presenting the Arg-Gly-Asp sequence. The ligand binds at the major interface between the alphaV and beta3 subunits and makes extensive contacts with both. Both tertiary and quaternary changes are observed in the presence of ligand. The tertiary rearrangements take place in betaA, the ligand-binding domain of beta3; in the complex, betaA acquires two cations, one of which contacts the ligand Asp directly and the other stabilizes the ligand-binding surface. Ligand binding induces small changes in the orientation of alphaV relative to beta3.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xiong, Jian-Ping -- Stehle, Thilo -- Zhang, Rongguang -- Joachimiak, Andrzej -- Frech, Matthias -- Goodman, Simon L -- Arnaout, M Amin -- New York, N.Y. -- Science. 2002 Apr 5;296(5565):151-5. Epub 2002 Mar 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Renal Unit, Leukocyte Biology and Inflammation Program, Structural Biology Program, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11884718" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Crystallography, X-Ray ; Ligands ; Manganese/chemistry ; Models, Molecular ; Oligopeptides/chemistry/*metabolism ; Peptides, Cyclic/chemistry/*metabolism ; *Protein Structure, Quaternary ; Protein Structure, Secondary ; *Protein Structure, Tertiary ; Receptors, Vitronectin/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 197
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-05-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉La Thangue, Nicholas B -- 13058/Cancer Research UK/United Kingdom -- G9400953/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2002 May 10;296(5570):1034-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, Davidson Building, University of Glasgow, Glasgow G12 8QQ, UK. n.lathangue@bio.gla.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12004105" target="_blank"〉PubMed〈/a〉
    Keywords: Basic Helix-Loop-Helix Leucine Zipper Transcription Factors ; Basic-Leucine Zipper Transcription Factors ; Binding Sites ; *Cell Cycle Proteins ; Chromatin/*metabolism ; DNA-Binding Proteins/metabolism ; Dimerization ; E2F Transcription Factors ; E2F6 Transcription Factor ; *G0 Phase ; G1 Phase ; *Gene Silencing ; Hepatocyte Nuclear Factor 1 ; Hepatocyte Nuclear Factor 1-alpha ; Hepatocyte Nuclear Factor 1-beta ; Histone Deacetylases/metabolism ; *Histone-Lysine N-Methyltransferase ; Histones/metabolism ; Humans ; Methyltransferases/metabolism ; *Nuclear Proteins ; Promoter Regions, Genetic ; Protein Methyltransferases ; Proto-Oncogene Proteins c-myc/*metabolism ; Retinoblastoma Protein/metabolism ; Transcription Factors/*metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 198
    Publication Date: 2002-02-02
    Description: The pha-4 locus encodes a forkhead box A (FoxA/HNF3) transcription factor homolog that specifies organ identity for Caenorhabditis elegans pharyngeal cells. We used microarrays to identify pharyngeal genes and analyzed those genes to determine which were direct PHA-4 targets. Our data suggest that PHA-4 directly activates most or all pharyngeal genes. Furthermore, the relative affinity of PHA-4 for different TRTTKRY (R = A/G, K = T/G, Y = T/C) elements modulates the onset of gene expression, providing a mechanism to activate pharyngeal genes at different developmental stages. We suggest that direct transcriptional regulation of entire gene networks may be a common feature of organ identity genes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gaudet, J -- Mango, S E -- CCSG 2P30CA42014/CC/ODCDC CDC HHS/ -- R01 GM056264/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2002 Feb 1;295(5556):821-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, UT 84112, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11823633" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Biological Evolution ; Caenorhabditis elegans/*embryology/genetics/metabolism ; Caenorhabditis elegans Proteins/genetics/*metabolism ; Consensus Sequence ; Embryo, Nonmammalian/metabolism ; Embryonic Development ; *Gene Expression Regulation, Developmental ; *Genes, Helminth ; Genes, Reporter ; Introns ; Models, Genetic ; Mutation ; Myosins/genetics ; Oligonucleotide Array Sequence Analysis ; Pharynx/cytology/embryology/metabolism ; Promoter Regions, Genetic ; Recombinant Fusion Proteins/metabolism ; Trans-Activators/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 199
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-01-12
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gerstein, Mark -- Lan, Ning -- Jansen, Ronald -- New York, N.Y. -- Science. 2002 Jan 11;295(5553):284-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA. mark.gerstein@yale.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11786630" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; *Computational Biology ; Databases, Genetic ; Databases, Protein ; Gene Expression Profiling ; Genome ; Genome, Fungal ; *Genomics ; Humans ; Peptide Library ; Protein Structure, Tertiary ; Proteins/*chemistry/*metabolism ; *Proteome ; Saccharomyces cerevisiae/genetics/metabolism ; Saccharomyces cerevisiae Proteins/chemistry/metabolism ; Two-Hybrid System Techniques
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 200
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-10-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Peters, John W -- New York, N.Y. -- Science. 2002 Oct 18;298(5593):552-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA. john.peters@chemistry.montana.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12386322" target="_blank"〉PubMed〈/a〉
    Keywords: Acetates/metabolism ; Acetyl Coenzyme A/metabolism ; Aldehyde Oxidoreductases/*chemistry/*metabolism ; Anaerobiosis ; Binding Sites ; Biomass ; Carbon Dioxide/*metabolism ; Carbon Monoxide/metabolism ; Clostridium/enzymology ; Copper/*chemistry ; Crystallography, X-Ray ; Hydrophobic and Hydrophilic Interactions ; Iron/*chemistry ; Models, Molecular ; Multienzyme Complexes/*chemistry/*metabolism ; Nickel/*chemistry ; Oxidation-Reduction ; Protein Conformation ; Protein Structure, Quaternary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...