ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Geophysical Union  (10,999)
  • 2010-2014  (6,541)
  • 1995-1999  (4,458)
  • 1985-1989
  • 2010  (6,541)
  • 1999  (4,458)
Collection
Years
  • 2010-2014  (6,541)
  • 1995-1999  (4,458)
  • 1985-1989
Year
  • 101
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 109 (2004): C04008, doi:10.1029/2001JC001248.
    Description: Observations of the ocean, atmosphere, and ice made by Ice-Ocean Environmental Buoys indicate that mixing events reaching the depth of the halocline have occurred in various regions in the Arctic Ocean. Our analysis suggests that these mixing events were mechanically forced by intense storms moving across the buoy sites. In this study, we analyzed these mixing events in the context of storm developments that occurred in the Beaufort Sea and in the general area just north of Fram Strait, two areas with quite different hydrographic structures. The Beaufort Sea is strongly influenced by inflow of Pacific water through Bering Strait, while the area north of Fram Strait is directly affected by the inflow of warm and salty North Atlantic water. Our analyses of the basin-wide evolution of the surface pressure and geostrophic wind fields indicate that the characteristics of the storms could be very different. The buoy-observed mixing occurred only in the spring and winter seasons when the stratification was relatively weak. This indicates the importance of stratification, although the mixing itself was mechanically driven. We also analyze the distribution of storms, both the long-term climatology and the patterns for each year in the past 2 decades. The frequency of storms is also shown to be correlated (but not strongly) to Arctic Oscillation indices. This study indicates that the formation of new ice that leads to brine rejection is unlikely the mechanism that results in the type of mixing that could overturn the halocline. On the other hand, synoptic-scale storms can force mixing deep enough to the halocline and thermocline layer. Despite a very stable stratification associated with the Arctic halocline, the warm subsurface thermocline water is not always insulated from the mixed layer.
    Description: This study has been supported by the NASA Cryospheric Science Program and the International Arctic Reseach Center. We benefited from discussion with Dr. A. Proshutinsky. D. Walsh wishes to thank the Frontier Research System for Global Change for their support. The IOEB program was supported by ONR High-Latitude Dynamics Program and Japan Marine Science and Technology Center (JAMSTEC).
    Keywords: Arctic Ocean ; Mixing ; Storm ; Upper ocean
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 102
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 109 (2004): C08S10, doi:10.1029/2003JC001795.
    Description: Gas transfer rates were determined from vertical profile measurements of atmospheric dimethylsulfide (DMS) gradients over the equatorial Pacific Ocean obtained during the GasEx-2001 cruise. A quadratic relationship between gas transfer velocity and wind speed was derived from the DMS flux measurements; this relationship was in close agreement with a parameterization derived from relaxed eddy accumulation measurements of DMS over the northeastern Pacific Ocean. However, the GasEx-2001 relationship results in gas transfer rates that are a factor 2 higher than gas transfer rates calculated from a parameterization that is based on coincident eddy correlation measurements of CO2 flux. The measurement precision of both the profiling and eddy correlation techniques applied during GasEx-2001 is comparable; the two gas transfer data sets are in agreement within their uncertainty. Differences in the number of samples and the wind speed range over which CO2 and DMS fluxes were measured are likely causes for the observed discrepancy.
    Description: Funding for this work came from the Netherlands Organization for Scientific Research (NWO) and from the NOP project 951203: ‘‘Micrometeorology of air/sea fluxes of carbon dioxide. This work was supported by the Global Carbon Cycle project of the NOAA Office of Global Programs grant NA17RJ1223, National Science Foundation grant OCE-9986724, and NSF grant ATM-0120569.
    Keywords: Dimethylsulfide (DMS) ; Atmospheric gradients ; Micrometeorology ; GasEx-2001
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 103
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2010. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 25 (2010): PA1205, doi:10.1029/2009PA001735.
    Description: Sediments deposited under lacustrine and marine conditions in the Sea of Marmara hold a Late Quaternary record for water exchange between the Black Sea and the Mediterranean Sea. Here we report a multiproxy data set based on oxygen and strontium isotope results obtained from carbonate shells, major and trace elements, and specific organic biomarker measurements, as well as a micropaleontological study from a 14C-dated sediment core retrieved from the Sea of Marmara. Pronounced changes occurred in δ18O and 87Sr/86Sr values at the fresh and marine water transition, providing additional information in relation to micropaleontological data. Organic biomarker concentrations documented the marine origin of the sapropelic layer while changes in n-alkane concentrations clearly indicated an enhanced contribution for organic matter of terrestrial origin before and after the event. When compared with the Black Sea record, the results suggest that the Black Sea was outflowing to the Sea of Marmara from the Last Glacial Maximum until the warmer Bølling-Allerød. The first marine incursion in the Sea of Marmara occurred at 14.7 cal ka B.P. However, salinification of the basin was gradual, indicating that Black Sea freshwaters were still contributing to the Marmara seawater budget. After the Younger Dryas (which is associated with a high input of organic matter of terrestrial origin) both basins were disconnected, resulting in a salinity increase in the Sea of Marmara. The deposition of organic-rich sapropel that followed was mainly related to enhanced primary productivity characterized by a reorganization of the phytoplankton population.
    Description: We acknowledge support from INSU and the French Polar Institute IPEV.
    Keywords: Marmara Sea ; Lacustrine to marine transition
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 104
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2010. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 11 (2010): Q03007, doi:10.1029/2009GC002667.
    Description: Gas hydrate formation and dissociation in sediments are accompanied by changes in the bulk volume of the sediment and can lead to changes in sediment properties, loss of integrity for boreholes, and possibly regional subsidence of the ground surface over areas where methane might be produced from gas hydrate in the future. Experiments on sand, silts, and clay subject to different effective stress and containing different saturations of hydrate formed from dissolved phase tetrahydrofuran are used to systematically investigate the impact of gas hydrate formation and dissociation on bulk sediment volume. Volume changes in low specific surface sediments (i.e., having a rigid sediment skeleton like sand) are much lower than those measured in high specific surface sediments (e.g., clay). Early hydrate formation is accompanied by contraction for all soils and most stress states in part because growing gas hydrate crystals buckle skeletal force chains. Dilation can occur at high hydrate saturations. Hydrate dissociation under drained, zero lateral strain conditions is always associated with some contraction, regardless of soil type, effective stress level, or hydrate saturation. Changes in void ratio during formation-dissociation decrease at high effective stress levels. The volumetric strain during dissociation under zero lateral strain scales with hydrate saturation and sediment compressibility. The volumetric strain during dissociation under high shear is a function of the initial volume average void ratio and the stress-dependent critical state void ratio of the sediment. Other contributions to volume reduction upon hydrate dissociation are related to segregated hydrate in lenses and nodules. For natural gas hydrates, some conditions (e.g., gas production driven by depressurization) might contribute to additional volume reduction by increasing the effective stress.
    Description: This research was initially supported by the Chevron Joint Industry Project on Methane Hydrates under contract DE‐FC26‐01NT41330 from the U.S. Department of Energy to Georgia Tech. Additional support was provided to J. Y. Lee by KIGAM, GHDO, and MKE and J. C. Santamarina by the Goizueta Foundation.
    Keywords: Gas hydrate ; Hydrate-bearing sediment ; Phase transformation ; Strain
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 105
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2010. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 25 (2010): PA2211, doi:10.1029/2009PA001846.
    Description: Carbon isotopes of foraminiferal tests provide a widely used proxy for past oceanographic environmental conditions. This proxy can be calibrated using live specimens, which are reliably identified with observations of cell ultrastructure. Observations of ultrastructures can also be used for studies of biological characteristics such as diet and presence of symbionts. Combining biological and isotopic studies on individual foraminifera could provide novel information, but standard isotopic methods destroy ultrastructures by desiccating specimens and observations of ultrastructure require removal of carbonate tests, preventing isotope measurements. The approach described here preserves cellular ultrastructure during isotopic analyses by keeping the foraminifera in an aqueous buffer (Phosphate Buffered Saline (PBS)). The technique was developed and standardized with 36 aliquots of NBS-19 standard of similar weight to foraminiferal tests (5 to 123 μg). Standard errors ranged from ± 0.06 to ± 0.85‰ and were caused by CO2 contaminants dissolved in the PBS. The technique was used to measure δ13C values of 96 foraminifera, 10 of which do not precipitate carbonate tests. Calcareous foraminiferal tests had corrected carbon isotope ratios of −8.5 to +3.2‰. This new technique allows comparisons of isotopic compositions of tests made by foraminifera known to be alive at the time of collection with their biological characteristics such as prey composition and presence or absence of putative symbionts. The approach may be applied to additional biomineralizing organisms such as planktonic foraminifera, pteropods, corals, and coccolithophores to elucidate certain biological controls on their paleoceanographic proxy signatures.
    Description: Support was provided by NSF grants OCE‐0550396 (to J.B.M.), OCE‐0551001 (to J.M.B.), and OCE‐ 0550401 (to A.E.R.).
    Keywords: Foraminifera ; Ultrastructure ; Carbon isotopes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 106
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2010. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 115 (2010): F03004, doi:10.1029/2009JF001299.
    Description: Using a morphological-behavior model to conduct sensitivity experiments, we investigate the sea level rise response of a complex coastal environment to changes in a variety of factors. Experiments reveal that substrate composition, followed in rank order by substrate slope, sea level rise rate, and sediment supply rate, are the most important factors in determining barrier island response to sea level rise. We find that geomorphic threshold crossing, defined as a change in state (e.g., from landward migrating to drowning) that is irreversible over decadal to millennial time scales, is most likely to occur in muddy coastal systems where the combination of substrate composition, depth-dependent limitations on shoreface response rates, and substrate erodibility may prevent sand from being liberated rapidly enough, or in sufficient quantity, to maintain a subaerial barrier. Analyses indicate that factors affecting sediment availability such as low substrate sand proportions and high sediment loss rates cause a barrier to migrate landward along a trajectory having a lower slope than average barrier island slope, thereby defining an “effective” barrier island slope. Other factors being equal, such barriers will tend to be smaller and associated with a more deeply incised shoreface, thereby requiring less migration per sea level rise increment to liberate sufficient sand to maintain subaerial exposure than larger, less incised barriers. As a result, the evolution of larger/less incised barriers is more likely to be limited by shoreface erosion rates or substrate erodibility making them more prone to disintegration related to increasing sea level rise rates than smaller/more incised barriers. Thus, the small/deeply incised North Carolina barriers are likely to persist in the near term (although their long-term fate is less certain because of the low substrate slopes that will soon be encountered). In aggregate, results point to the importance of system history (e.g., previous slopes, sediment budgets, etc.) in determining migration trajectories and therefore how a barrier island will respond to sea level rise. Although simple analytical calculations may predict barrier response in simplified coastal environments (e.g., constant slope, constant sea level rise rate, etc.), our model experiments demonstrate that morphological-behavior modeling is necessary to provide critical insights regarding changes that may occur in environments having complex geometries, especially when multiple parameters change simultaneously.
    Description: This work was partially supported by the U.S. Geological Survey, Woods Hole Science Center and a sabbatical leave fellowship from Oberlin College to Laura Moore from the Mellon‐8 Consortium.
    Keywords: Coastal processes ; Landform evolution ; Sea level change
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 107
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 113 (2008): G02021, doi:10.1029/2007JG000482.
    Description: Microbial activity in saturated, subsurface sediments in riparian forests may be supported by recent photosynthate or ancient (〉500 ybp) soil organic carbon (SOC) in buried horizons. Metabolism of ancient SOC may be particularly important in riparian zones, considered denitrification hot spots, because denitrification in the riparian subsurface is often C-limited, because buried horizons intersect deep flow paths, and because low C mineralization rates can support ecosystem-relevant rates of denitrification. Buried horizons are common where alluvial processes (stream migration, overbank flow) have dominated riparian evolution. Our objectives were to determine: (1) the extent to which ancient SOC directly supports subsurface microbial activity; (2) whether different C sources support microbial activity in alluvial versus glaciofluvial riparian zones; and (3) how microbial use of ancient SOC varies with depth. In situ groundwater incubations and 14C dating of dissolved inorganic carbon revealed that ancient SOC mineralization was common, and that it constituted 31–100% of C mineralization 2.6 m deep at one site, at rates sufficient to influence landscape N budgets. Our data failed to reveal consistent spatial patterns of microbially available ancient C. Although mineralized C age increased with depth at one alluvial site, we observed ancient C metabolism 150 cm deep at a glaciofluvial site, suggesting that subsurface microbial activity in riparian zones does not vary systematically between alluvial and glaciofluvial hydrogeologic settings. These findings underscore the relevance of ancient C to contemporary ecosystem processes and the challenge of using mappable surface features to identify subsurface ecosystem characteristics or riparian zone N-sink strength.
    Description: We are grateful to the Cornell Program in Biogeochemistry for graduate research grants and to the U.S. EPA for a STAR Graduate Fellowship to Noel Gurwick. Support for radiocarbon analyses also came from USDANRICGP grant 99–35102– 8266, NSF cooperative agreement OCE-9807266, and an Andrew W. Mellon Foundation grant to the Institute of Ecosystem Studies. A graduate research grant to N. Gurwick from the Theresa Heinz Scholars for Environmental Research provided salary for Pete Seitz-Rundlett.
    Keywords: Riparian zone ; Alluvium ; Groundwater ; Denitrification ; Radiocarbon
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: text/plain
    Format: application/postscript
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 108
    facet.materialart.
    Unknown
    American Geophysical Union
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 112 (2007): C04S06, doi:10.1029/2006JC003643.
    Description: A three-dimensional coupled ocean/ice model, intended for long-term Arctic climate studies, is extended to include tidal effects. From saved output of an Arctic tides model, we introduce parameterizations for (1) enhanced ocean mixing associated with tides and (2) the role of tides fracturing and mobilizing sea ice. Results show tides enhancing loss of heat from Atlantic waters. The impact of tides on sea ice is more subtle as thinning due to enhanced ocean heat flux competes with net ice growth during rapid openings and closings of tidal leads. Present model results are compared with an ensemble of nine models under the Arctic Ocean Model Intercomparison Project (AOMIP). Among results from AOMIP is a tendency for models to accumulate excessive Arctic Ocean heat throughout the intercomparison period 1950 to 2000 which is contrary to observations. Tidally induced ventilation of ocean heat reduces this discrepancy.
    Description: This research is supported by the National Science Foundation Office of Polar Programs under cooperative agreements OPP-0002239 and OPP-0327664 with the International Arctic Research Center, University of Alaska Fairbanks.
    Keywords: Tide ; Arctic ; Climate
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 109
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2005. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 110 (2005): C09025, doi:10.1029/2004JC002727.
    Description: A large flood of the Eel River, northern California, created a thick sediment deposit between water depths of 50 and 70 m in January 1997. The freshwater plume, however, confined sediment delivery to water depths shallower than 30 m. Mechanisms proposed to explain the apparent cross-shelf transport include dispersal by oceanographic currents, resuspension by energetic waves, and gravitationally forced transport of a thin layer of fluidized mud. Field observations indicate that these processes were all active but cannot determine their relative significance or whether these mechanisms alone explain the location, size, and timing of deposition. Approximately 30% of the sediment delivered by the Eel River is accounted for in the midshelf mud bed and inner shelf, but the fate of the remaining 70% is uncertain. A three-dimensional, hydrodynamic model was used to examine potential mechanisms of sediment transport on the Eel River shelf. The model includes suspended sediment transport and was modified to account for a thin, near-bed layer of fluidized mud. It was used to simulate flood dispersal on the Eel River shelf, to compare the relative importance of transport within the near-bed fluid mud layer to suspended sediment transport, and to evaluate sediment budgets for floods. Settling properties of fine-grained sediment, both within the flood plume and the fluid mud layer, critically impact depositional patterns. To a lesser degree, wind-driven ocean currents influence the volume of sediment that escapes the shelf, and wave magnitude affects the cross-shelf location of flood deposits. Though dilute suspension accounts for a large fraction of total flux, cross-shelf transport by gravitational forcing appears necessary to produce a midshelf mud deposit similar in volume, location, and timing to those seen offshore of the Eel River.
    Description: The Office of Naval Research’s Coastal Geoscience Program supported this through program N0014-01-1-008.
    Keywords: Flood sediment dispersal ; Northern California shelf ; Sediment transport
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 110
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 111 (2006): C12007, doi:10.1029/2006JC003539.
    Description: Nonlinear energy transfers with sea and swell (frequencies 0.05–0.40 Hz) were responsible for much of the generation and loss of infragravity wave energy (frequencies 0.005–0.050 Hz) observed under moderate- and low-energy conditions on a natural beach. Cases with energetic shear waves were excluded, and mean currents, a likely shear wave energy source, were neglected. Within 150 m of the shore, estimated nonlinear energy transfers to (or from) the infragravity band roughly balanced the divergence (or convergence) of the infragravity energy flux, consistent with a conservative energy equation. Addition of significant dissipation (requiring a bottom drag coefficient exceeding about 10−2) degraded the energy balance.
    Description: Funding was provided by the Office of Naval Research, the National Science Foundation, the Izaak Walton Killam Foundation, and the Natural Sciences and Engineering Research Council of Canada.
    Keywords: Infragravity waves ; Nearshore ; Nonlinear waves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 111
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 113 (2008): C11S03, doi:10.1029/2006JC003868.
    Description: Sediment dispersal in the Adriatic Sea was evaluated using coupled three-dimensional circulation and sediment transport models, representing conditions from autumn 2002 through spring 2003. The calculations accounted for fluvial sources, resuspension by waves and currents, and suspended transport. Sediment fluxes peaked during southwestward Bora wind conditions that produced energetic waves and strengthened the Western Adriatic Coastal Current. Transport along the western Adriatic continental shelf was nearly always to the south, except during brief periods when northward Sirocco winds reduced the coastal current. Much of the modeled fluvial sediment deposition was near river mouths, such as the Po subaqueous delta. Nearly all Po sediment remained in the northern Adriatic. Material from rivers that drain the Apennine Mountains traveled farther before deposition than Po sediment, because it was modeled with a lower settling velocity. Fluvial sediment delivered to areas with high average bed shear stress was more highly dispersed than material delivered to more quiescent areas. Modeled depositional patterns were similar to observed patterns that have developed over longer timescales. Specifically, modeled Po sediment accumulation was thickest near the river mouth with a very thin deposit extending to the northeast, consistent with patterns of modern sediment texture in the northern Adriatic. Sediment resuspended from the bed and delivered by Apennine Rivers was preferentially deposited on the northern side of the Gargano Peninsula, in the location of thick Holocene accumulation. Deposition here was highest during Bora winds when convergences in current velocities and off-shelf flux enhanced delivery of material to the midshelf.
    Description: The authors are grateful for funding and support from the Office of Naval Research’s Coastal Geosciences and Marine Modeling programs, the U.S. Geological Survey, and NATO’s SACLANT-CEN.
    Keywords: Sediment ; Numerical model ; Adriatic Sea
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 112
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 112 (2007): C05036, doi:10.1029/2006JC004046.
    Description: The mixed layer is an important component of the oceanic circulation system. Recent progress in energetics of the oceanic circulation suggests that the amount of external mechanical energy available for mixing is directly linked to the strength of the meridional overturning circulation. Using an analytical two-dimensional model and a three-dimensional numerical model, it is shown that the meridional distribution of mixed layer depth plays an important role in regulating the meridional overturning circulation and poleward heat flux. In fact, if the mixed layer at low and middle latitudes is deeper because of increase in mechanical energy input to the turbulence in the upper ocean, the meridional overturning circulation and poleward heat flux are enhanced in a steady circulation system, and at the same time, it may take less mechanical energy to support the subsurface diapycnal mixing.
    Description: RXH was supported by the National Oceanic and Atmospheric Administration through CICOR Cooperative Agreement NA17RJ1223, CJH was supported by the National Key Basic Research Program of China through grant 2006CB403605, andWWwas supported by the National Natural Science Foundation of China through grant 40476010. This study is also supported through the Chinese 111 Project under Contract B07036.
    Keywords: Mixed layer ; Meridional overturning circulation ; Poleward heat flux ; Mechanical energy
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 113
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2005. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 110 (2005): C10011, doi:10.1029/2004JC002807.
    Description: A data assimilative model hindcast of the Gulf of Maine (GOM) coastal circulation during an 11 day field survey in early summer 2003 is presented. In situ observations include surface winds, coastal sea levels, and shelf hydrography as well as moored and shipboard acoustic Doppler D current profiler (ADCP) currents. The hindcast system consists of both forward and inverse models. The forward model is a three-dimensional, nonlinear finite element ocean circulation model, and the inverse models are its linearized frequency domain and time domain counterparts. The model hindcast assimilates both coastal sea levels and ADCP current measurements via the inversion for the unknown sea level open boundary conditions. Model skill is evaluated by the divergence of the observed and modeled drifter trajectories. A mean drifter divergence rate (1.78 km d−1) is found, demonstrating the utility of the inverse data assimilation modeling system in the coastal ocean setting. Model hindcast also reveals complicated hydrodynamic structures and synoptic variability in the GOM coastal circulation and their influences on coastal water material property transport. The complex bottom bathymetric setting offshore of Penobscot and Casco bays is shown to be able to generate local upwelling and downwelling that may be important in local plankton dynamics.
    Description: This work was supported by CSCOR/COP/ NOAA as part of NOAA MERHAB program. DJM gratefully acknowledges support from JPL through the ocean vector wind science team. DRL and KWS acknowledge support of NOAA/COP ECOHAB program.
    Keywords: Data assimilation ; Coastal ocean modeling ; Gulf of Maine circulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 114
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 112 (2007): C04S12, doi:10.1029/2006JC003735.
    Description: The formulation of suitable boundary conditions at the water-ice interface during ice formation (melting) is an important aspect of the sea-ice coupled model. The transfer of water and salt through the water-ice can be posed as different boundary conditions. Behavior of the model under these boundary conditions is illustrated through simple analytical models and a numerical model based on pressure-η coordinate. It is emphasized that the correct handling of the boundary conditions associated with sea ice formation requires an accurate treatment of the equivalent pressure on the top of water column and the total volume (mass) of the water column in the ice formation regime. Improper treatment of these boundary conditions may lead to an artificial loop current near the edge of ice in numerical simulations of oceanic circulation in the Arctic Ocean or near the Antarctica.
    Description: This study was supported by the Institute of Ocean and Climate Change Institute of Woods Hole Oceanographic Institution.
    Keywords: Sea ice ; Natural boundary condition ; Freshwater flux
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 115
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 114 (2009): C05017, doi:10.1029/2008JC004955.
    Description: Hydrographic and current velocity observations collected from March 2001 to February 2003 on the west Antarctic Peninsula shelf as part of the Southern Ocean Global Ecosystems Dynamics program are used to characterize intrusions of Upper Circumpolar Deep Water (UCDW) and Lower Circumpolar Deep Water (LCDW) onto the shelf and Marguerite Bay. UCDW is found on the middle and outer shelf along Marguerite Trough, which connects the shelf break to Marguerite Bay, and at another location farther south. UCDW intrudes in the form of frequent (four per month) and small horizontal scales (≈4 km) warm eddy-like structures with maximum vertical scales of a few hundred meters. However, no evidence of UCDW intrusions was found in Marguerite Bay. LCDW was found in several deep depressions connected to the shelf break, including Marguerite Trough, forming a tongue of relatively dense water 95 m thick (on average) that reaches into Marguerite Bay through Marguerite Trough. A steady advective-diffusive balance for the LCDW intrusion is used to make an estimation of the average upwelling rate and diffusivity in the deep layer within Marguerite Trough, which suggest the LCDW layer is renewed approximately every six weeks.
    Description: This work was supported by the National Science Foundation Office of Polar programs through U.S. Southern Ocean GLOBEC grants OPP 99- 10092 and 06-23223. C. Moffat also received support from the Chilean government through its Presidential Fellowship program and the Coastal Ocean Institute at WHOI and the Cooperative Institute for Climate and Ocean Research at WHOI.
    Keywords: Coastal oceanography ; Polar ocean
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 116
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 109 (2004): C08S02, doi:10.1029/2003JC002256.
    Description: GasEx-2001, a 15-day air-sea carbon dioxide (CO2) exchange study conducted in the equatorial Pacific, used a combination of ships, buoys, and drifters equipped with ocean and atmospheric sensors to assess variability and surface mechanisms controlling air-sea CO2 fluxes. Direct covariance and profile method air-sea CO2 fluxes were measured together with the surface ocean and marine boundary layer processes. The study took place in February 2001 near 125°W, 3°S in a region of high CO2. The diurnal variation in the air-sea CO2 difference was 2.5%, driven predominantly by temperature effects on surface solubility. The wind speed was 6.0 ± 1.3 m s−1, and the atmospheric boundary layer was unstable with conditions over the range −1 〈 z/L 〈 0. Diurnal heat fluxes generated daytime surface ocean stratification and subsequent large nighttime buoyancy fluxes. The average CO2 flux from the ocean to the atmosphere was determined to be 3.9 mol m−2 yr−1, with nighttime CO2 fluxes increasing by 40% over daytime values because of a strong nighttime increase in (vertical) convective velocities. The 15 days of air-sea flux measurements taken during GasEx-2001 demonstrate some of the systematic environmental trends of the eastern equatorial Pacific Ocean. The fact that other physical processes, in addition to wind, were observed to control the rate of CO2 transfer from the ocean to the atmosphere indicates that these processes need to be taken into account in local and global biogeochemical models. These local processes can vary on regional and global scales. The GasEx-2001 results show a weak wind dependence but a strong variability in processes governed by the diurnal heating cycle. This implies that any changes in the incident radiation, including atmospheric cloud dynamics, phytoplankton biomass, and surface ocean stratification may have significant feedbacks on the amount and variability of air-sea gas exchange. This is in sharp contrast with previous field studies of air-sea gas exchange, which showed that wind was the dominating forcing function. The results suggest that gas transfer parameterizations that rely solely on wind will be insufficient for regions with low to intermediate winds and strong insolation.
    Description: This work was performed with the support of the National Science Foundation Grant OCE-9986724 and the NOAA Global Carbon Cycle Program Grants NA06GP048, NA17RJ1223, and NA87RJ0445 in the Office of Global Programs.
    Keywords: Air-sea carbon dioxide fluxes ; Equatorial Pacific ; Direct covariance technique ; Profile flux technique ; Diurnal surface layer
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 117
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 109 (2004): D18102, doi:10.1029/2004JD004583.
    Description: Discharge from Eurasian rivers to the Arctic Ocean has increased significantly in recent decades, but the reason for this trend remains unclear. Increased net atmospheric moisture transport from lower to higher latitudes in a warming climate has been identified as one potential mechanism. However, uncertainty associated with estimates of precipitation in the Arctic makes it difficult to confirm whether or not this mechanism is responsible for the change in discharge. Three alternative mechanisms are dam construction and operation, permafrost thaw, and increasing forest fires. Here we evaluate the potential influence of these three mechanisms on changes in discharge from the six largest Eurasian Arctic rivers (Yenisey, Ob', Lena, Kolyma, Pechora, and Severnaya Dvina) between 1936 and 1999. Comprehensive discharge records made it possible to evaluate the influence of dams directly. Data on permafrost thaw and fires in the watersheds of the Eurasian Arctic rivers are more limited. We therefore use a combination of data and modeling scenarios to explore the potential of these two mechanisms as drivers of increasing discharge. Dams have dramatically altered the seasonality of discharge but are not responsible for increases in annual values. Both thawing of permafrost and increased fires may have contributed to changes in discharge, but neither can be considered a major driver. Cumulative thaw depths required to produce the observed increases in discharge are unreasonable: Even if all of the water from thawing permafrost were converted to discharge, a minimum of 4 m thawed evenly across the combined permafrost area of the six major Eurasian Arctic watersheds would have been required. Similarly, sensitivity analysis shows that the increases in fires that would have been necessary to drive the changes in discharge are unrealistic. Of the potential drivers considered here, increasing northward transport of moisture as a result of global warming remains the most viable explanation for the observed increases in Eurasian Arctic river discharge.
    Description: This research was funded by the Arctic System Science Program of the National Science Foundation (NSF-OPP- 0229302).
    Keywords: Arctic river discharge ; Global change
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 118
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 23 (2009): GB4028, doi:10.1029/2009GB003519.
    Description: Nitrogen cycle dynamics have the capacity to attenuate the magnitude of global terrestrial carbon sinks and sources driven by CO2 fertilization and changes in climate. In this study, two versions of the terrestrial carbon and nitrogen cycle components of the Integrated Science Assessment Model (ISAM) are used to evaluate how variation in nitrogen availability influences terrestrial carbon sinks and sources in response to changes over the 20th century in global environmental factors including atmospheric CO2 concentration, nitrogen inputs, temperature, precipitation and land use. The two versions of ISAM vary in their treatment of nitrogen availability: ISAM-NC has a terrestrial carbon cycle model coupled to a fully dynamic nitrogen cycle while ISAM-C has an identical carbon cycle model but nitrogen availability is always in sufficient supply. Overall, the two versions of the model estimate approximately the same amount of global mean carbon uptake over the 20th century. However, comparisons of results of ISAM-NC relative to ISAM-C reveal that nitrogen dynamics: (1) reduced the 1990s carbon sink associated with increasing atmospheric CO2 by 0.53 PgC yr−1 (1 Pg = 1015g), (2) reduced the 1990s carbon source associated with changes in temperature and precipitation of 0.34 PgC yr−1 in the 1990s, (3) an enhanced sink associated with nitrogen inputs by 0.26 PgC yr−1, and (4) enhanced the 1990s carbon source associated with changes in land use by 0.08 PgC yr−1 in the 1990s. These effects of nitrogen limitation influenced the spatial distribution of the estimated exchange of CO2 with greater sink activity in high latitudes associated with climate effects and a smaller sink of CO2 in the southeastern United States caused by N limitation associated with both CO2 fertilization and forest regrowth. These results indicate that the dynamics of nitrogen availability are important to consider in assessing the spatial distribution and temporal dynamics of terrestrial carbon sources and sinks.
    Description: We also acknowledge the financial support of the National Aeronautics and Space Administration Land Cover and Land Use Change Program (NNX08AK75G).
    Keywords: Nitrogen cycle ; Carbon cycle ; ISAM
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 119
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 109 (2004): C06012, doi:10.1029/2003JC002028.
    Description: The World Ocean Circulation Experiment Indian Ocean helium isotope data are mapped and features of intermediate and deep circulation are inferred and discussed. The 3He added to the deep Indian Ocean originates from (1) a strong source on the mid-ocean ridge at about 19°S/65°E, (2) a source located in the Gulf of Aden in the northwestern Indian Ocean, (3) sources located in the convergent margins in the northeastern Indian Ocean, and (4) water imported from the Indonesian Seas. The main circulation features inferred from the 3He distribution include (1) deep (2000–3000 m) eastward flow in the central Indian Ocean, which overflows into the West Australian Basin through saddles in the Ninetyeast Ridge, (2) a deep (2000–3000 m) southwestward flow in the western Indian Ocean, and (3) influx of Banda Sea Intermediate Waters associated with the deep core (1000–1500 m) of the through flow from the Pacific Ocean. The large-scale 3He distribution is consonant with the known pathways of deep and bottom water circulation in the Indian Ocean.
    Description: National Science Foundation support is acknowledged for the UM part of the work through grants OCE-9820131 and OCE-998150. Support for the LDEO portion of the work was obtained from the National Science Foundation through awards OCE 94-13162 and OCE 98-20130.
    Keywords: Indian Ocean ; Tracers ; Deep circulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 120
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 113 (2008): C07030, doi:10.1029/2007JC004306.
    Description: Evolution of the coastal current structure on the shallow continental shelf east of Cape Cod was studied using autonomous underwater vehicle (AUV) surveys and moored observations during the winters of 2005 and 2006. A coastally bounded plume of relatively fresh water, characteristic of a coastal current, persisted throughout both winters despite strong mixing. Nondimensional parameter analysis classified the plume as a bottom-trapped gravity current over a moderately steep slope, placing it in the context of other buoyant coastal currents. The range of water properties within the coastal current, its spatial extent and temporal variability were characterized on the basis of the data from repeat hydrographic sections. Along-shore freshwater transport was dominated by highly variable barotropic flow driven by local wind and basin-wide pressure gradients. It eventually contributed substantially to the average southward along-shore freshwater transport, estimated at 1.1 ± 0.3 × 103 m3 s−1 in February and 1.8 ± 0.4 × 103 m3 s−1 in the first half of March 2006. The contribution of baroclinic buoyancy-driven freshwater transport was typically an order of magnitude lower during both winters. Despite the relative weakness of the baroclinic freshwater transport, the coastal current potentially had a major impact on water mass modification during the winter. Continual presence of the low-salinity plume prevented the formation of cold dense water near the coast and its export offshore. The coastal current effectively isolated the inner-shelf zone, reducing its potential role in ventilation of the intermediate layers of the Wilkinson Basin of the Gulf of Maine.
    Description: This work was supported by the Coastal Ocean Institute of the Woods Hole Oceanographic Institution and the WHOI SeaGrant Office under grant NA06OAR4170021. G.G. was supported by the Office of Naval Research as part of the AWACS program under grant N00014-05-1-0410. A.S. was supported, in part, by WHOI Post-Doctoral Scholarship.
    Keywords: Coastal current ; Cooling ; Autonomous underwater vehicle
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 121
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 109 (2004): B01101, doi:10.1029/2003JB002499.
    Description: Ocean bottom seismic networks deployed following the 1998 eruption of Axial seamount reveal an evolving pattern of microearthquake activity associated with subsurface magmatism and thermal strain. Seismicity rates decay steadily over 15 months of observation (February 8, 1998, to April 30, 1999), consistent with a trend toward thermal and mechanical equilibrium in the shallow crust after the magmatic event. Immediately after the eruption, seismicity rates were high for about 60 days in the southeast corner of the caldera where lava flows from the 1998 eruption were mapped. A small burst of seismic activity was observed on the southeast shoulder of the volcano from 100 to 150 days after the eruption. These events, which are characterized by slip on nearly vertical faults in the shallow crust, extend about 6 km from the southeast corner of the caldera and overlie a mid-crustal low-velocity zone. After this episode, seismicity rates remain low until the end of the observation period, 455 days after the eruption. Shallow (~0.7 km depth) events, consistent with thermal contraction and volume changes of ~2 × 10−3 m3 in ~5 m3 sources, are observed in individual clusters beneath hydrothermal vents within the 1998 lava flow at the southeast edge of the caldera. Microearthquakes observed during the last 70 days of observation are distributed around the central caldera, most likely representing small amounts of subsidence on caldera faults during the final stages of equilibration following melt withdrawal associated with the 1998 eruption.
    Description: Sohn, Webb, and the field program were supported by NSF grant OCE 97- 11700. Barclay was supported in part by the Woods Hole Oceanographic Institution.
    Keywords: Microearthquakes ; Hydrothermal ; Magmatism
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 122
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 113 (2008): C08031, doi:10.1029/2008JC004726.
    Description: The shoaling of the nonlinear internal tide in Massachusetts Bay is studied with a fully nonlinear and nonhydrostatic model. The results are compared with current and temperature observations obtained during the August 1998 Massachusetts Bay Internal Wave Experiment and observations from a shorter experiment which took place in September 2001. The model shows how the approaching nonlinear undular bore interacts strongly with a shoaling bottom, offshore of where KdV theory predicts polarity switching should occur. It is shown that the shoaling process is dominated by nonlinearity, and the model results are interpreted with the aid of a two-layer nonlinear but hydrostatic model. After interacting with the shoaling bottom, the undular bore emerges on the shallow shelf inshore of the 30-m isobath as a nonlinear internal tide with a range of possible shapes, all of which are found in the available observational record.
    Description: A. Scotti began this project as a Postdoctoral Scholar at the Woods Hole Oceanographic Institution, with support from the Johnson Foundation and the USGS. Further support was provided to Scotti by the Office of Naval Research under grants N00014-01-1-0172, N00014-03-1-0553, and N00014-05-1-0361, and by NSF under grant OCE 07-29636. R. Beardsley was supported by ONR under grants N00014-98-1- 0059, N00014-00-1-0210, and the Smith Chair in Coastal Physical Oceanography. J. Pineda was supported by ONR under grants N00014-01-1-0172, and by a WHOIOcean Life Institute Fellowship.
    Keywords: Nonlinear internal waves ; Internal tide ; Shoaling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 123
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 114 (2009): C05020, doi:10.1029/2008JC004808.
    Description: The freshwater composition of waters on the southeast Greenland shelf and slope are described using a set of high-resolution transects occupied in summer 2004, which included hydrographic, velocity, nutrient, and chemical tracer measurements. The nutrient and tracer data are used to quantify the fractions of Pacific Water, sea ice melt, and meteoric water present in the upper layers of the East Greenland Current (EGC) and East Greenland Coastal Current (EGCC). The EGC/EGCC system dominates the circulation of this region and strongly influences the observed distribution of the three freshwater types. Sea ice melt and meteoric water fractions are surface intensified, reflecting their sources, and generally increase southward from Denmark Strait to Cape Farewell, as well as shoreward. Significant fractions of Pacific Water are found in the subsurface layers of the EGCC, supporting the idea that this inner shelf branch is directly linked to the EGC and thus to the Arctic Ocean. A set of historical sections is examined to investigate the variability of Pacific Water content in the EGC and EGCC from 1984 to 2004 in the vicinity of Denmark Strait. The fraction of Pacific Water increased substantially in the late 1990s and subsequently declined to low levels in 2002 and 2004, mirroring the reduction in Pacific Water content reported previously at Fram Strait. This variability is found to correlate significantly with the Arctic Oscillation index, lagged by 9 years, suggesting that the Arctic Ocean circulation patterns bring varying amounts of Pacific Water to the North Atlantic via the EGC/EGCC.
    Description: This work was funded by National Science Foundation grant OCE- 0450658. D. Sutherland also received support from the Woods Hole Oceanographic Institution Academic Programs Office.
    Keywords: Pacific Water ; East Greenland current ; Arctic Oscillation ; Freshwater composition ; Cape Farewell ; Denmark Strait
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 124
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2010. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 37 (2010): L01606, doi:10.1029/2009GL041601.
    Description: Moored current observations in the southwestern East/Japan Sea of 16.5 months duration clearly captured two episodes of downward phase propagation (upward energy propagation) of near-inertial waves (NIWs). Time series of temperature and velocity from the mooring and ancillary information indicate that the mooring was located near the center of an anticyclonic eddy during these events. Considering the typical vertical structure of quasi-permanent eddy features in the region, the observed downward phase propagation appeared to occur within the seasonal thermocline and upper thermostad of the anticyclonic mesoscale eddy. Ray tracing simulation of NIW using the observed subinertial currents suggests that the upward energy propagation is caused by the reflection of the NIWs within the thermostad of the anticyclonic eddy, where the effect of the vertical shear of subinertial horizontal currents is larger than the buoyancy effect in controlling the propagation of NIWs.
    Description: This work was supported by grants from the Ministry of Land, Transport, and Maritime Affairs (Ocean Climate Variability Program), and the US NSF, grant OCE-0647949 to RWS.
    Keywords: Near-inertial waves ; Mesoscale eddy ; Wave reflection
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 125
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 111 (2006): C12004, doi:10.1029/2006JC003667.
    Description: Observations indicate that oceanic mixing is intensified near the head of submarine canyons. How the presence of canyon walls affects the local production and distribution of mixed fluid is an open question. These dynamics are addressed through rotating tank experiments which impose mixing at middepth at the closed end of a channel open to a larger body of water. Turbulence is generated in a linearly stratified fluid with initial buoyancy frequency N by means of a single bar oscillated with frequency ω. The mixed fluid quickly reaches a steady state height h ∼ (ω/N)1/2 independent of the Coriolis frequency f and collapses into the channel interior. A small percentage of the fluid exported from the turbulent zone enters a boundary current. The bulk forms a cyclonic circulation in front of the bar. As the recirculation cell expands to fill the channel, it restricts horizontal entrainment into the turbulent zone. Mixed fluid flux decays with time as t inline equation and is dependent on the size of the mixing zone and the balance between turbulence, rotation, and stratification. The recirculation cell is confined within the channel, and export of mixed fluid into the basin is restricted to the weak boundary current. As horizontal entrainment is shut down, long-term production of mixed fluid relies more on vertical entrainment. However, the scalings indicate that short-term dynamics are the most applicable to oceanic conditions.
    Description: This work was supported by the Ocean Ventures Fund, the Westcott Fund, and the WHOI Academic Programs Office. Financial support was also provided by the National Science Foundation through grant OCE-9616949.
    Keywords: Mixing ; Canyon ; Laboratory
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 126
    facet.materialart.
    Unknown
    American Geophysical Union
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2005. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 110 (2005): C07007, doi:10.1029/2004JC002720.
    Description: Mathematical solutions for constant potential vorticity critically controlled flow through ocean passages are complicated and not available in simple form. Therefore, to provide formulas for numerical circulation and ocean climate models, two simple formulas for volume flux are developed here. They are fitted to numerical values of the critical flux for constant potential vorticity flow over a flat bottom through a constriction. The two formulas of increasing complexity agree with the numerical values to better than 6% and 1.4%. These flux values are up to 24% less than the values of flux from zero potential vorticity formulas presently applied to ocean passages. The most precise new formula is used to predict flux magnitude through nine ocean passages that have current meter measurements. The size of the revisions compared to zero potential vorticity predictions is a few percent in the direction of better agreement. For further improvement between prediction and observation, other factors such as realistic bottom topography, friction, mixing, waves, and eddies must be included.
    Description: Support is provided by the Ocean Sciences Section of the National Science Foundation under grant OCE-0325102.
    Keywords: Rotating hydraulics ; Flow rate
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 127
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 35 (2008): L14310, doi:10.1029/2008GL033986.
    Description: Earthquake Early Warning (EEW) algorithms estimate the magnitude of an underway rupture from the first few seconds of the P-wave to allow hazard assessment and mitigation before the S-wave arrival. Many large subduction-zone earthquakes initiate 50–150 km offshore, potentially allowing seafloor instruments sufficient time to identify large ruptures before the S-waves reach land. We tested an EEW algorithm using accelerograms recorded offshore Hokkaido in the region of the 2003 Mw 8.1 Tokachi-Oki earthquake and its aftershocks. A wavelet transform of the first ∼4 s of the P-wave concentrates information about earthquake magnitude from both waveform amplitude and frequency content. We find that wavelets with support of a few seconds provide discriminants for EEW that are both accurate enough to be useful and superior to peak acceleration or peak velocity. Additionally, we observe a scaling of wavelet coefficient magnitude above Mw 6.0 indicating that, at least for the mainshock (Mw 8.1) and largest aftershock (Mw 7.1), the final size of a rupture could have been estimated from the initial portion of the seismogram.
    Description: This work was supported by the Deep Ocean Exploration Institute at WHOI.
    Keywords: Tokachi-Oki ; Earthquake ; Warning
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 128
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 35 (2008): L11607, doi:10.1029/2008GL034271.
    Description: Understanding the processes driving the carbon cycle in the Arctic Ocean is important for assessing the impacts of the predicted rapid and amplified climate change in this region. We analyzed settling particle samples intercepted by a time-series sediment trap deployed in the abyssal Canada Basin (at 3067 m) in order to examine carbon export to the deep Arctic Ocean. Strikingly old radiocarbon ages (apparent mean 14C age = ∼1900 years) of the organic carbon, abundant lithogenic material (∼80%), and mass flux variations temporally decoupled from the cycle of primary productivity in overlying surface waters together suggest that, unlike other ocean basins, the majority of the particulate organic carbon entering the deep Canada Basin is supplied from the surrounding margins.
    Description: This research was funded by the NSF Ocean Sciences Division (Chemical Oceanography program) and NSF Office of Polar Programs, Office of Naval Research, as well as the Ocean and Climate Change Institute and Arctic Research Initiative at the Woods Hole Oceanographic Institution.
    Keywords: POC ; Lateral transport ; Canada Basin
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 129
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 35 (2008): L07608, doi:10.1029/2008GL033294.
    Description: Here we show that labile particulate iron and manganese concentrations in the upper 500 m of the Western Subarctic Pacific, an iron-limited High Nutrient Low Chlorophyll (HNLC) region, have prominent subsurface maxima between 100–200 m, reaching 3 nM and 600 pM, respectively. The subsurface concentration maxima in particulate Fe are characterized by a more reduced oxidation state, suggesting a source from primary volcagenic minerals such as from the Kuril/Kamchatka margin. The systematics of these profiles suggest a consistently strong lateral advection of labile Mn and Fe from redox-mobilized labile sources at the continental shelf supplemented by a more variable source of Fe from the upper continental slope. This subsurface supply of iron from the continental margin is shallow enough to be accessible to the surface through winter upwelling and vertical mixing, and is likely a key source of bioavailable Fe to the HNLC North Pacific.
    Description: Funding from the US Department of Energy, Office of Science, Biological and Environmental Research Program (JB) and WHOI Postdoctoral Scholars program, the Richard B. Sellars Endowed Research Fund, and the Andrew W. Mellon Foundation Endowed Fund for Innovative Research (PL).
    Keywords: Iron ; Continental margin ; HNLC
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: image/tiff
    Format: text/plain
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 130
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 35 (2008): L14602, doi:10.1029/2008GL034312.
    Description: A 14-year satellite observation of sea surface height (SSH) reveals an interesting pattern. Along any latitude, there is a frequency at which the SSH power spectrum peaks, regardless of which hemisphere or oceanic basin. This peak-spectrum frequency is nearly identical to the critical frequency at which the zonal energy propagation of Rossby waves becomes stagnant. The interior ocean adjusts to atmospheric forcing by radiating energy away through Rossby waves. There are two distinct groups of Rossby waves, long ones carry the energy to the west while short ones send the energy to the east. At the critical frequency, these two waves merge and their zonal energy propagation becomes stagnant. Consequently, the energy from atmospheric forcing may accumulate in the ocean interior, and thus result in a spectrum peak.
    Description: This study is supported by China’s National Basic Research Priorities Programmer (2005CB422303 and 2007CB411804), the key project of the International Science and Technology Cooperation program of China (2006DFB21250), the Ministry of Education’s 111 Project (B07036), the Program for New Century Excellent Talents in University (NECT-07-0781), and the US National Science Foundation (OCE-0351055).
    Keywords: Sea surface height ; Peak spectrum ; Stagnant Rossby wave
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 131
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 35 (2008): L18802, doi:10.1029/2008GL034845.
    Description: Cape Farewell, Greenland's southernmost point, is a region of significant interest in the meteorological and oceanographic communities in that atmospheric flow distortion associated with the high topography of the region leads to a number of high wind speed jets. The resulting large air-sea fluxes of momentum and buoyancy have a dramatic impact on the region's weather and ocean circulation. Here the first in-situ observations of the surface meteorology in the region, collected from an instrumented buoy, are presented. The buoy wind speeds are compared to 10 m wind speeds from the QuikSCAT satellite and the North American Regional Reanalysis (NARR). We show that the QuikSCAT retrievals have a high wind speed bias that is absent from the NARR winds. The spatial characteristics of the high wind speed events are also presented.
    Description: The support of the Canadian Foundation for Climate and Atmospheric Science, the support of the National Science Foundation grant OCE-0450658as well as the Natural Environmental Research Council grant NE/C003365/1.
    Keywords: Buoy observations ; Tip jets ; Cape Farewell
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 132
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union 2003. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 4 (2003): 1041, doi:10.1029/2002GC000393.
    Description: This study presents a new approach to quantitatively assess the relationship between the composition and seismic P-wave velocity of anhydrous igneous and meta-igneous rocks. We perform thermodynamic calculations of the equilibrating phase assemblages predicted for all igneous composition space at various pressure and temperature conditions. Seismic velocities for each assemblage are then estimated from mixing theory using laboratory measurements of the elastic parameters for pure mineral phases. The resultant velocities are used to derive a direct relationship between Vp and major element composition valid to ±0.13 km/s for pressure and temperature conditions along a normal crustal geotherm in the depth range of 5–50 km and equilibration pressures ≤12 kbar. Finally, we use the calculated velocities to invert for major element chemistry as a function of P-wave velocity assuming only the in situ temperature and pressure conditions are known. Compiling typical velocity-depth profiles for the middle and lower continental and oceanic crust, we calculate compositional bounds for each of these geologic environments. We find that the acceptable compositional range for the middle (15–30 km) and lower continental (≥35 km) crust is broad, ranging from basaltic to dacitic compositions, and conclude that P-wave velocity measurements alone are insufficient to provide fundamental constraints on the composition of the middle and lower continental crust. However, because major oxides are correlated in igneous rocks, joint constraints on Vp and individual oxides can narrow the range of acceptable crustal compositions. In the case of the lower oceanic crust (≥2 km), observed velocities are 0.2–0.3 km/s lower than velocities calculated based on the average bulk composition of gabbros in drill cores and exposed ophiolite sequences. We attribute this discrepancy to a combination of residual porosity at crustal depths less than ∼10 km and hydrous alteration phases in the lower crust, and suggest caution when inferring mantle melting parameters from observed velocities in the lower oceanic crust.
    Description: This research was supported by National Science Foundation Grants OCE- 9819666, EAR-9910899, and EAR-0087706 (P.B. Kelemen).
    Keywords: Continental crust ; Oceanic crust ; Seismic P-wave velocity ; Igneous rocks ; Composition
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 133
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union 2003. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 4 (2003): 8515, doi:10.1029/2003GC000609.
    Description: Complete multibeam bathymetric coverage of the western Galápagos Spreading Center (GSC) between 90.5°W and 98°W reveals the fine-scale morphology, segmentation and influence of the Galápagos hot spot on this intermediate spreading ridge. The western GSC comprises three morphologically defined provinces: A Western Province, located farthest from the Galápagos hot spot west of 95°30′W, is characterized by an axial deep, rift valley morphology with individual, overlapping, E-W striking segments separated by non-transform offsets; A Middle Province, between the propagating rift tips at 93°15′W and 95°30′W, with transitional axial morphology strikes ∼276°; An Eastern Province, closest to the Galápagos hot spot between the ∼90°50′W Galápagos Transform and 93°15′W, with an axial high morphology generally less than 1800 m deep, strikes ∼280°. At a finer scale, the axial region consists of 32 individual segments defined on the basis of smaller, mainly 〈2 km, offsets. These offsets mainly step left in the Western and Middle Provinces, and right in the Eastern Province. Glass compositions indicate that the GSC is segmented magmatically into 8 broad regions, with Mg # generally decreasing to the west within each region. Striking differences in bathymetric and lava fractionation patterns between the propagating rifts with tips at 93°15′W and 95°30′W reflect lower overall magma supply and larger offset distance at the latter. The structure of the Eastern Province is complicated by the intersection of a series of volcanic lineaments that appear to radiate away from a point located on the northern edge of the Galápagos platform, close to the southern limit of the Galápagos Fracture Zone. Where these lineaments intersect the GSC, the ridge axis is displaced to the south through a series of overlapping spreading centers (OSCs); abandoned OSC limbs lie even farther south. We propose that southward displacement of the axis is promoted during intermittent times of increased plume activity, when lithospheric zones of weakness become volcanically active. Following cessation of the increased plume activity, the axis straightens by decapitating southernmost OSC limbs during short-lived propagation events. This process contributes to the number of right stepping offsets in the Eastern Province.
    Description: This work was supported by NSF grants OCE98- 18632 to the University of Hawai’i and OCE98-19117 to the Woods Hole Oceanographic Institution; support was provided to M. B. by a CIW/DTM Postdoctoral Fellowship
    Keywords: Mid-ocean ridges ; Mantle plumes ; Segmentation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 134
    facet.materialart.
    Unknown
    American Geophysical Union
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 8 (2007): Q08012, doi:10.1029/2007GC001597.
    Description: Several models have been proposed to relate slab geometry to parameters such as plate velocity or plate age. However, studies on the observed relationships between slab geometry and a wide range of subduction parameters show that there is not a simple global relationship between slab geometry and any one of these other subduction parameters for all subduction zones. Numerical and laboratory models of subduction provide a method to explore the relative importance of different physical processes in determining subduction dynamics. Employing 2-D numerical models with a viscosity structure constrained by laboratory experiments for the deformation of olivine, we show that the observed range in slab dip and the observed trends between slab dip and convergence velocity, subducting plate age, and subduction duration can be reproduced without trench motion (i.e., slab roll-back) for locations away from slab edges. Successful models include a stiff slab that is 100–1000 times more viscous than previous estimates from models of plate bending, the geoid, and global plate motions. We find that slab dip in the upper mantle depends primarily on slab strength and plate boundary coupling, with a small dependence on subducting plate age. Once the slab sinks into the lower mantle the primary processes controlling slab evolution are (1) the ability of the stiff slab to transmit stresses up dip, (2) resistance to slab descent into the higher-viscosity lower mantle, and (3) subduction-induced flow in the mantle-wedge corner.
    Description: This research was partially supported by NSF award EAR0125919.
    Keywords: Subduction ; Rheology ; Mantle dynamics ; Plate tectonics ; Slab morphology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 135
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 9 (2008): Q04015, doi:10.1029/2007GC001611.
    Description: Near-bottom magnetic data collected along the crest of the East Pacific Rise between 9°55′ and 9°25′N identify the Central Anomaly Magnetization High (CAMH), a geomagnetic anomaly modulated by crustal accretionary processes over timescales of ∼104 years. A significant decrease in CAMH amplitude is observed along-axis from north to south, with the steepest gradient between 9°42′ and 9°36′N. The source of this variation is neither a systematic change in geochemistry nor varying paleointensity at the time of lava eruption. Instead, magnetic moment models show that it can be accounted for by an observed ∼50% decrease in seismic Layer 2A thickness along-axis. Layer 2A is assumed to be the extrusive volcanic layer, and we propose that this composes most of the magnetic source layer along the ridge axis. The 9°37′N overlapping spreading center (OSC) is located at the southern end of the steep CAMH gradient, and the 9°42′–9°36′N ridge segment is interpreted to be a transition zone in crustal accretion processes, with robust magmatism north of 9°42′N and relatively low magmatism at present south of 9°36′N. The 9°37′N OSC is also the only bathymetric discontinuity associated with a shift in the CAMH peak, which deviates ∼0.7 km to the west of the axial summit trough, indicating southward migration of the OSC. CAMH boundaries (defined from the maximum gradients) lie within or overlie the neovolcanic zone (NVZ) boundaries throughout our survey area, implying a systematic relationship between recent volcanic activity and CAMH source. Maximum flow distances and minimum lava dip angles are inferred on the basis of the lateral distance between the NVZ and CAMH boundaries. Lava dip angles average ∼14° toward the ridge axis, which agrees well with previous observations and offers a new method for estimating lava dip angles along fast spreading ridges where volcanic sequences are not exposed.
    Description: The research project was funded by National Science Foundation under grants OCE-9819261 and OCE- 0096468.
    Keywords: East Pacific Rise ; Magnetic anomalies ; Mid-ocean ridges ; Volcanic processes ; Magnetic source layer
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 136
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 9 (2008): Q03015, doi:10.1029/2007GC001795.
    Description: New multibeam bathymetric and side-scan sonar data from the southwestern edge of the Galápagos platform reveal the presence of ∼60 large, stepped submarine terraces between depths of 800 m and 3500 m. These terraces are unique features, as none are known from any other archipelago that share this geomorphic form or size. The terraces slope seaward at 〈2° and are surrounded by escarpments that average ∼300 m in height with average slopes of 24°. The stepped morphology, fine-scale features, and sinuous planform continuity of terrace edges indicate that each terrace results from a sequence of major submarine volcanic eruptions, similar in extent to young deep-water (〉3000 m) lava flow fields west of Fernandina and Isabela Islands. The terraces are formed of thick sequences of lava flows that coalesce to form the foundation of the Galápagos platform, on which the subaerial central volcanoes are built. The compositions of basalts dredged from the submarine terraces indicate that most lavas are chemically similar to subaerial lavas erupted from Sierra Negra volcano on southern Isabela Island. There are no regular major element, trace element, or isotopic variations in the submarine lavas as a function of depth, relative stratigraphic position, or geographic location along the southwest margin of the platform. We hypothesize that magma supply at the western edge of the Galápagos hot spot, which is influenced by both plume and mid-ocean ridge magmatic processes, leads to episodic eruption of large lava flows. These large lava flows coalesce to form the archipelagic apron upon which the island volcanoes are built.
    Description: This work was supported by the National Science Foundation grants OCE0002818 and EAR0207605 (D.G.), OCE0002461 (D.J.F. and M.K.), OCE05-25864 (M.K.), and EAR0207425 (K.H.).
    Keywords: Submarine volcanism
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 137
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 8 (2007): Q08013, doi:10.1029/2007GC001652.
    Description: We report first evidence for hydrothermal activity from the southern Knipovich Ridge, an ultra-slow spreading ridge segment in the Norwegian-Greenland Sea. Evidence comes from optical backscatter anomalies collected during a systematic side-scan sonar survey of the ridge axis, augmented by the identification of biogeochemical tracers in the overlying water column that are diagnostic of hydrothermal plume discharge (Mn, CH4, ATP). Analysis of coregistered geologic and oceanographic data reveals that the signals we have identified are consistent with a single high-temperature hydrothermal source, located distant from any of the axial volcanic centers that define second-order segmentation along this oblique ridge system. Rather, our data indicate a hydrothermal source associated with highly tectonized seafloor that may be indicative of serpentinizing ultramafic outcrops. Consistent with this hypothesis, the hydrothermal plume signals we have detected exhibit a high methane to manganese ratio of 2–3:1. This is higher than that typical of volcanically hosted vent sites and provides further evidence that the source of the plume signals reported here is most probably a high-temperature hydrothermal field that experiences some ultramafic influence (compare to Rainbow and Logachev sites, Mid-Atlantic Ridge). While such sites have previously been invoked to be common on the SW Indian Ridge, this may be the first such site to be located along the Arctic ultra-slow spreading ridge system.
    Description: Connelly and German were funded by NERC grant NER/B/S/ 2000/00755, NERC Core Strategic Funding at NOC, and the ChEss project of the Census of Marine Life.
    Keywords: Hydrothermal ; Arctic ; Serpentinization ; Knipovich Ridge
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 138
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 9 (2008): Q03003, doi:10.1029/2007GC001699.
    Description: The region of the Mid-Atlantic Ridge (MAR) between the Fifteen-Twenty and Marathon fracture zones displays the topographic characteristics of prevalent and vigorous tectonic extension. Normal faults show large amounts of rotation, dome-shaped corrugated detachment surfaces (core complexes) intersect the seafloor at the edge of the inner valley floor, and extinct core complexes cover the seafloor off-axis. We have identified 45 potential core complexes in this region whose locations are scattered everywhere along two segments (13° and 15°N segments). Steep outward-facing slopes suggest that the footwalls of many of the normal faults in these two segments have rotated by more than 30°. The rotation occurs very close to the ridge axis (as much as 20° within 5 km of the volcanic axis) and is complete by ∼1 My, producing distinctive linear ridges with roughly symmetrical slopes. This morphology is very different from linear abyssal hill faults formed at the 14°N magmatic segment, which display a smaller amount of rotation (typically 〈15°). We suggest that the severe rotation of faults is diagnostic of a region undergoing large amounts of tectonic extension on single faults. If faults are long-lived, a dome-shaped corrugated surface develops in front of the ridges and lower crustal and upper mantle rocks are exposed to form a core complex. A single ridge segment can have several active core complexes, some less than 25 km apart that are separated by swales. We present two models for multiple core complex formation: a continuous model in which a single detachment surface extends along axis to include all of the core complexes and swales, and a discontinuous model in which local detachment faults form the core complexes and magmatic spreading forms the intervening swales. Either model can explain the observed morphology.
    Description: D. Smith and H. Schouten were supported in this work by NSF grant OCE-0649566. J. Escartın was supported by CNRS.
    Keywords: Slow spreading ridges ; Detachment faulting ; Ocean core complex ; Fault rotation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 139
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 9 (2008): Q04005, doi:10.1029/2007GC001816.
    Description: We report a detailed programmed-temperature pyrolysis/combustion methodology for radiocarbon (14C) dating of Antarctic sub-ice shelf sediments. The method targets the autochthonous organic component in sediments that contain a distribution of acid-insoluble organic components from several sources of different ages. The approach has improved sediment chronology in organic-rich sediments proximal to Antarctic ice shelves by yielding maximum age constraints significantly younger than bulk radiocarbon dates from the same sediment horizons. The method proves adequate in determining isotope ratios of the pre-aged carbon end-member; however, the isotopic compositions of the low-temperature measurements indicate that no samples completely avoided mixing with some proportion of pre-aged organic material. Dating the unresolved but desired young end-member must rely on indirect methods, but a simple mixing model cannot be developed without knowledge of the sedimentation rate or comparable constraints. A mathematical approach allowing for multiple mixing components yields a maximum likelihood age, a first-order approximation of the relative proportion of the autochthonous component, and the temperature at which allochthonous carbon begins to volatilize and mix with the autochthonous component. It is likely that our estimation of the cutoff temperature will be improved with knowledge of the pyrolysis kinetics of the major components. Chronology is improved relative to bulk acid-insoluble organic material ages from nine temperature interval dates down to two, but incorporation of inherently more pre-aged carbon in the first division becomes more apparent with fewer and larger temperature intervals.
    Description: The project was paid for in part by NSF research grants OPP 02-30089 and OPP 03-38142 to Hamilton College (E. Domack) and NSF Cooperative Agreement OCE- 0228996 to Woods Hole Oceanographic Institution.
    Keywords: Antarctica ; Sediment chronology ; Radiocarbon ; Pyrolysis ; Sedimentary organic material ; Carbon isotopes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 140
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 9 (2008): Q09V10, doi:10.1029/2008GC002043.
    Description: Patterns of overwash deposition observed within back-barrier sediment archives can indicate past changes in tropical cyclone activity; however, it is necessary to evaluate the significance of observed trends in the context of the full range of variability under modern climate conditions. Here we present a method for assessing the statistical significance of patterns observed within a sedimentary hurricane-overwash reconstruction. To alleviate restrictions associated with the limited number of historical hurricanes affecting a specific site, we apply a recently published technique for generating a large number of synthetic storms using a coupled ocean-atmosphere hurricane model set to simulate modern climatology. Thousands of overwash records are generated for a site using a random draw of these synthetic hurricanes, a prescribed threshold for overwash, and a specified temporal resolution based on sedimentation rates observed at a particular site. As a test case we apply this Monte Carlo technique to a hurricane-induced overwash reconstruction developed from Laguna Playa Grande (LPG), a coastal lagoon located on the island of Vieques, Puerto Rico in the northeastern Caribbean. Apparent overwash rates in the LPG overwash record are observed to be four times lower between 2500 and 1000 years B.P. when compared to apparent overwash rates during the last 300 years. However, probability distributions based on Monte Carlo simulations indicate that as much as 65% of this drop can be explained by a reduction in the temporal resolution for older sediments due to a decrease in sedimentation rates. Periods of no apparent overwash activity at LPG between 2500 and 3600 years B.P. and 500–1000 years B.P. are exceptionally long and are unlikely to occur (above 99% confidence) under the current climate conditions. In addition, breaks in activity are difficult to produce even when the hurricane model is forced to a constant El Niño state. Results from this study continue to support the interpretation that the western North Atlantic has exhibited significant changes in hurricane climatology over the last 5500 years.
    Description: Funding for this research was provided by the Earth Systems History Program of the National Science Foundation, Risk Prediction Initiative, National Geographic Society, Coastal Ocean Institute at WHOI, and the Andrew W. Mellon Foundation Endowed Fund for Innovative Research.
    Keywords: Tropical cyclones ; Paleotempestology ; Paleoclimate ; Holocene ; Climate change ; Sedimentology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 141
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 9 (2008): Q08002, doi:10.1029/2008GC002009.
    Description: Long-lived detachment faults at mid-ocean ridges exhume deep-seated rocks to form oceanic core complexes (OCCs). Using large-offset (6 km) multichannel seismic data, we have derived two-dimensional seismic tomography models for three of the best developed OCCs on the Mid-Atlantic Ridge. Our results show that large lateral variations in P wave velocity occur within the upper ~0.5–1.7 km of the lithosphere. We observe good correlations between velocity structure and lithology as documented by in situ geological samples and seafloor morphology, and we use these correlations to show that gabbros are heterogeneously distributed as large (tens to 〉100 km2) bodies within serpentinized peridotites. Neither the gabbros nor the serpentinites show any systematic distribution with respect to along-isochron position within the enclosing spreading segment, indicating that melt extraction from the mantle is not necessarily focused at segment centers, as has been commonly inferred. In the spreading direction, gabbros are consistently present toward the terminations of the detachment faults. This suggests enhanced magmatism during the late stage of OCC formation due either to natural variability in the magmatic cycle or to decompression melting during footwall exhumation. Heat introduced into the rift valley by flow and crystallization of this melt could weaken the axial lithosphere and result in formation of new faults, and it therefore may explain eventual abandonment of detachments that form OCCs. Detailed seismic studies of the kind described here, when constrained by seafloor morphology and geological samples, can distinguish between major lithological units such as volcanics, gabbros, and serpentinized peridotites at lateral scales of a few kilometers. Thus such studies have tremendous potential to elucidate the internal structure of the shallow lithosphere and to help us understand the tectonic and magmatic processes by which they were emplaced.
    Description: This research was supported by grants from the U.S. NSF-IODP Program.
    Keywords: Oceanic core complex ; Detachment fault ; Mid-Atlantic Ridge ; Seismic structure ; Gabbro ; Serpentinized peridotite
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: video/mpeg
    Format: application/pdf
    Format: text/plain
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 142
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 9 (2008): Q07022, doi:10.1029/2008GC002047.
    Description: Ultrahigh-resolution bathymetric maps (25 cm grid) are used to quantify the physical dimensions of and spatial relationships between tectonic, volcanic, and hydrothermal features at six hydrothermal vent fields in the Lau back-arc basin. Supplemented with near-bottom photos, and nested within regional DSL-120A side-scan sonar data, these maps provide insight into the nature of hydrothermal systems along the Eastern Lau Spreading Center (ELSC) and Valu Fa Ridge (VFR). Along-axis transitions evident in localized volcanic morphology and tectonic characteristics include a change from broad low-relief volcanic domes (hundreds of meters wide, 〈10 m tall) that are dominated by pillow and lobate lava morphologies and are cut by faults and fissures to higher aspect ratio volcanic domes (tens of meters wide, tens of meters tall) dominated by aa-type lava morphologies, with finger-like flows, and few tectonic structures. These along-axis differences in localized seafloor morphology suggest differences in hydrothermal circulation pathways within the shallow crust and correlate with regional transitions in a variety of ridge properties, including the large-scale morphology of the ridge axis (shallow axial valley to axial high), seafloor lava compositions, and seismic properties of the upper crust. Differences in morphologic characteristics of individual flows and lava types were also quantified, providing an important first step toward the remote characterization of complex terrains associated with hydrothermal vent fields.
    Description: Support for field and laboratory studies was provided by the National Science Foundation under grant OCE02-41796 (M.K.T.). Additional support for data analysis and integration was provided by the National Science Foundation under grant OCE03-28117 (S.M.C.).
    Keywords: Bathymetry ; Submarine lava morphology ; Back-arc ridges ; Lau Basin
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 143
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 9 (2008): Q04039, doi:10.1029/2007GC001867.
    Description: Rivers in east Asia have been recognized as having unusual geometries, suggestive of drainage reorganization linked to Tibetan Plateau surface uplift. In this study we applied a series of major and trace element proxies, together with bulk Nd and single K-feldspar grain Pb isotope ion probe isotope analyses, to understand the sediment budget of the modern Red River. We also investigate how this may have evolved during the Cenozoic. We show that while most of the modern sediment is generated by physical erosion in the upper reaches in Yunnan there is significant additional flux from the Song Lo, draining Cathaysia and the SW Yangtze Block. Nd isotope data suggest that 40% of the modern delta sediment comes from the Song Lo. Carbonates in the Song Lo basin make this a major control on the Red River Sr budget. Erosion is not a simple function of monsoon precipitation. Active rock uplift is also required to drive strong erosion. Single grain Pb data show a connection in the Eocene between the middle Yangtze and the Red River, and probably with rivers draining the Songpan Garze terrane. However, the isotope data do not support a former connection with the upper Yangtze, Mekong, or Salween rivers. Drainage capture appears to have occurred throughout the Cenozoic, consistent with surface uplift propagating gradually to the southeast. The middle Yangtze was lost from the Red River prior to 24 Ma, while the connection to the Songpan Garze was cut prior to 12 Ma. The Song Lo joined the Red River after 9 Ma. Bulk sample Pb analyses have limited provenance use compared to single grain data, and detailed provenance is only possible with a matrix of different proxies.
    Keywords: Erosion ; Isotopes ; Provenance ; Rivers
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 144
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 9 (2008): Q08O10, doi:10.1029/2008GC001965.
    Description: We use 2-D numerical models to explore the thermal and mechanical effects of magma intrusion on fault initiation and growth at slow and intermediate spreading ridges. Magma intrusion is simulated by widening a vertical column of model elements located within the lithosphere at a rate equal to a fraction, M, of the total spreading rate (i.e., M = 1 for fully magmatic spreading). Heat is added in proportion to the rate of intrusion to simulate the thermal effects of magma crystallization and the injection of hot magma into the crust. We examine a range of intrusion rates and axial thermal structures by varying M, spreading rate, and the efficiency of crustal cooling by conduction and hydrothermal circulation. Fault development proceeds in a sequential manner, with deformation focused on a single active normal fault whose location alternates between the two sides of the ridge axis. Fault spacing and heave are primarily sensitive to M and secondarily sensitive to axial lithosphere thickness and the rate that the lithosphere thickens with distance from the axis. Contrary to what is often cited in the literature, but consistent with prior results of mechanical modeling, we find that thicker axial lithosphere tends to reduce fault spacing and heave. In addition, fault spacing and heave are predicted to increase with decreasing rates of off-axis lithospheric thickening. The combination of low M, particularly when M approaches 0.5, as well as a reduced rate of off-axis lithospheric thickening produces long-lived, large-offset faults, similar to oceanic core complexes. Such long-lived faults produce a highly asymmetric axial thermal structure, with thinner lithosphere on the side with the active fault. This across-axis variation in thermal structure may tend to stabilize the active fault for longer periods of time and could concentrate hydrothermal circulation in the footwall of oceanic core complexes.
    Description: Funding for this research was provided by NSF grants OCE-0327018 (M.D.B.), OCE-0548672 (M.D.B.), OCE- 0327051 (G.I.), and OCE-03-51234 (G.I.).
    Keywords: Mid-ocean ridges ; Faulting ; Magmatism ; Numerical modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 145
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 9 (2008): Q09006, doi:10.1029/2008GC002085.
    Description: Recent P wave velocity compilations of the oceanic crust indicate that the velocity of the uppermost layer 2A doubles or reaches ∼4.3 km/s found in mature crust in 〈10 Ma after crustal formation. This velocity change is commonly attributed to precipitation of low-temperature alteration minerals within the extrusive rocks associated with ridge-flank hydrothermal circulation. Sediment blanketing, acting as a thermal insulator, has been proposed to further accelerate layer 2A evolution by enhancing mineral precipitation. We carried out 1-D traveltime modeling on common midpoint supergathers from our 2002 Juan de Fuca ridge multichannel seismic data to determine upper crustal structure at ∼3 km intervals along 300 km long transects crossing the Endeavor, Northern Symmetric, and Cleft ridge segments. Our results show a regional correlation between upper crustal velocity and crustal age. The measured velocity increase with crustal age is not uniform across the investigated ridge flanks. For the ridge flanks blanketed with a sealing sedimentary cover, the velocity increase is double that observed on the sparsely and discontinuously sedimented flanks (∼60% increase versus ∼28%) over the same crustal age range of 5–9 Ma. Extrapolation of velocity-age gradients indicates that layer 2A velocity reaches 4.3 km/s by ∼8 Ma on the sediment blanketed flanks compared to ∼16 Ma on the flanks with thin and discontinuous sediment cover. The computed thickness gradients show that layer 2A does not thin and disappear in the Juan de Fuca region with increasing crustal age or sediment blanketing but persists as a relatively low seismic velocity layer capping the deeper oceanic crust. However, layer 2A on the fully sedimented ridge-flank sections is on average thinner than on the sparsely and discontinuously sedimented flanks (330 ± 80 versus 430 ± 80 m). The change in thickness occurs over a 10–20 km distance coincident with the onset of sediment burial. Our results also suggest that propagator wakes can have atypical layer 2A thickness and velocity. Impact of propagator wakes is evident in the chemical signature of the fluids sampled by ODP drill holes along the east Endeavor transect, providing further indication that these crustal discontinuities may be sites of localized fluid flow and alteration.
    Description: This research was supported by National Science Foundation grants OCE-00-02488, OCE-00-02551, and OCE-00- 02600.
    Keywords: Upper crustal evolution ; Multichannel seismics ; Traveltime modeling ; Reflection imaging ; Juan de Fuca ridge flanks
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 146
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 10 (2009): Q01010, doi:10.1029/2008GC002121.
    Description: The seismic structure of the upper ∼1 km of the central dome of Atlantis Massif is investigated in the context of lithologies known from seafloor drilling and physical property measurements obtained within the borehole and on core samples. A new analysis of seafloor refraction data and multichannel reflection data acquired in the immediate vicinity of Integrated Ocean Drilling Program (IODP) Site U1309 was motivated by a discrepancy between initial seismic interpretations, which indicated mantle velocities at shallow depth, and the gabbroic sequence recovered by drilling. A new seismic velocity model is derived that is consistent with the full suite of geological and geophysical data in the central dome area; all of these data show that mafic intrusive rocks dominate the upper portion of the footwall of this oceanic core complex and that laterally extensive zones of ultramafic rocks are not required by the data. The origin of subseafloor reflectivity beneath the central dome was also considered. We find that seafloor scattering complicates the interpretation of multichannel seismic data acquired near Site U1309 but that detectable subsurface impedance contrasts do occur. Downhole variations in alteration may generate reflections observed from the upper kilometer of the central dome.
    Description: Support for this study was provided by JOI to JAC, DKB, and AH (grants T304B22, T305A22, and T305A1 respectively).
    Keywords: IODP ; Oceanic core complex ; Marine seismics ; Atlantis Massif
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 147
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 10 (2009): Q05T05, doi:10.1029/2008GC002314.
    Description: This paper demonstrates that a Raman spectroscopy, point-counting technique can be used for phase analysis of minerals commonly found in deep-sea hydrothermal plumes, even for minerals with similar chemical compositions. It also presents our robust autonomous identification algorithm and spectral database, both of which were developed specifically for deep-sea hydrothermal studies. The Raman spectroscopy expert algorithm was developed and tested against multicomponent mixtures of minerals relevant to the deep-sea hydrothermal environment. It is intended for autonomous classification where many spectra must be examined with little or no human involvement to increase analytic precision, accuracy, and data volume or to enable in situ measurements and experimentation.
    Description: Support for J.A.B. was provided through a RIDGE 2000 Postdoctoral Fellowship (NSF OCE-0550331).
    Keywords: Hydrothermal ; Mineralogy ; Optical instruments ; Raman spectroscopy ; Analytic techniques ; Chemical sensor
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: text/plain
    Format: application/zip
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 148
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 10 (2009): Q03006, doi:10.1029/2008GC002324.
    Description: We report 87Sr/86Sr and 143Nd/144Nd data on clinopyroxenes recovered from 10 ocean island lavas from three different hot spots (Samoa, Society, and Cook-Austral island chains). The clinopyroxenes recovered from eight of the 10 lavas analyzed in this study exhibit 87Sr/86Sr disequilibrium with respect to the host lava. The 87Sr/86Sr ratios in clinopyroxene separates are 95–3146 ppm (0.0095–0.31%) different from their respective host whole rocks. Clinopyroxenes in three lavas have 143Nd/144Nd ratios that are 70–160 ppm (0.007–0.016%) different from the host lavas. The 87Sr/86Sr and 143Nd/144Nd disequilibrium in one lava (the oldest lava considered in this study, Mangaia sample MGA-B-47) can be attributed to posteruptive radiogenic ingrowth, but the isotope disequilibrium in the other, younger lavas cannot be explained by this mechanism. In five of the lava samples, two populations of clinopyroxene were isolated (black and green, separated by color). In four out of five of these samples, the 87Sr/86Sr ratios of the two clinopyroxene populations are isotopically different from each other. In addition to 87Sr/86Sr disequilibrium, the two clinopyroxene populations in one of the lavas (Tahaa sample TAA-B-26) have 143Nd/144Nd ratios that are ∼100 ppm different from each other. Given the resilience of clinopyroxene to seawater alteration and the likelihood that the Sr and Nd isotope composition of fresh clinopyroxene separates provides a faithful record of primary magmatic compositions, the clinopyroxene-clinopyroxene isotope disequilibrium in these four lavas provides strong evidence that a mechanism other than seawater alteration has generated the observed isotopic disequilibrium. This study confirms the isotopic diversity in ocean island lavas previously observed in olivine-hosted melt inclusions. For example, the Sr isotopic variability previously observed in olivine-hosted melt inclusions is mirrored by the isotopic diversity in clinopyroxenes isolated from many of the same Samoan lavas. The isotopic data from melt inclusions and clinopyroxenes are not consistent with shallow assimilation of sediment or with entrainment of xenocrystic clinopyroxene from the oceanic crust or upper mantle. Instead, the data are interpreted as reflecting isotopic heterogeneity in the mantle sources of the lavas. The isotopic diversity in clinopyroxenes and melt inclusions suggests that a single lava can host components derived from isotopically diverse source regions.
    Description: NSF grant EAR-0509891 to SRH is gratefully acknowledged.
    Keywords: Clinopyroxene ; Melt inclusion ; Mantle geochemistry ; Sr-87/Sr-86 ; Nd-143/Nd-144 ; Trace elements
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 149
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 10 (2009): Q06014, doi:10.1029/2008GC002356.
    Description: The Land2Sea database contains data on the sizes of 1519 exorheic river drainage basins (79% of the exorheic land area), annual suspended sediment fluxes (593 rivers, 63% of the exorheic land area), and water discharges (1272 rivers, 76% of the exorheic land area) that have been compiled from a variety of sources. The database extends earlier compilations, such as GEMS/GLORI. The river basins are grouped into 19 large-scale drainage regions to investigate the regional variability in freshwater and sediment fluxes to various ocean basins. The annual suspended sediment flux to the coastal ocean (~18.5 × 109 tons) is dominated by east Asia (6.1 × 109 tons); Arabia, India, and southeast Asia (4.3 × 109 tons); and eastern South America (2.4 × 109 tons). Small topical islands of Oceania support the highest annual sediment fluxes per drainage area (~9650 t km−2 a−1). Annual freshwater discharge to the coastal ocean (~38,857 km3) is dominated by runoff from eastern South America (11,199 km3); east Asia (7114 km3); and Arabia, India, and southeast Asia (4384 km3). The empirical data agree well with results from global models (ART and BQART) that have been trained on a subset of the data compiled here.
    Description: The Woods Hole Oceanographic Institution, the U.S. National Science Foundation (grants EAR-0519387 and OCE-0851015), and the French CNRS (Observatoire Midi- Pyre´ne´es in Toulouse, France) funded this work.
    Keywords: River ; Database ; Water discharge ; Runoff ; Suspended sediment ; Drainage basin area
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: text/plain
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 150
    facet.materialart.
    Unknown
    American Geophysical Union
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2003. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 30 (2003): 1910, doi:10.1029/2003GL018225.
    Description: Evolutionary spectral analysis has been used to study changes through time in the variability of ENSO-related time series. However, the significance of estimated evolutionary spectra has not been formally assessed. This paper describes a test for non-stationarity based on an estimate of the evolutionary spectrum and a time series bootstrap procedure. The test is applied to the seasonal time series of sea level pressure at Darwin. No significant non-stationarity is found.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 151
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 10 (2009): Q10001, doi:10.1029/2009GC002586.
    Description: The Kane oceanic core complex (OCC) is a large, corrugated megamullion that was formed by a long-lived detachment fault at the axis of the Mid-Atlantic Ridge adjacent to Kane Fracture Zone between 2.1 and 3.3 Ma. We use refracted arrivals recorded along a 6-km-long hydrophone streamer during a multichannel seismic survey to constrain the shallow seismic velocity structure of the OCC. Results are presented in high-resolution traveltime seismic tomographic models along six lines that cover all of the main morphological features of the megamullion. The models show large lateral variability in P wave velocity within the upper ∼0.5–2.0 km of the lithosphere, and these variations correlate to first order with observed variations in lithology, documented by in situ basement samples and seafloor morphology. Lithological interpretation of the velocity models indicates that there is marked lateral variability in distribution of gabbroic intrusions, serpentinized peridotites, and basalts at scales of a few kilometers to ∼10 km. Serpentinized peridotites appear to dominate the central and older parts of the OCC. High-velocity gabbros are consistently (but not exclusively) present closer to the termination of the Kane detachment fault and toward the ends of the OCC. The structure of the lithosphere exhumed by the Kane detachment fault is far from the standard ophiolite-based Penrose model, and it does not show segment-centered magmatism that is commonly interpreted at slow spreading ridges. If the gabbros exhumed toward the termination of the OCC were emplaced deep (∼10 km) beneath the spreading axis, they may have constituted a weak zone that focused initiation of the Kane detachment fault. Alternately, as the OCC footwall was being exhumed the gabbros may have been emplaced because of dynamic changes in melt supply, changes in mantle fertility, or decompression melting. Late stage volcanism is clearly associated with a major high-angle normal fault that cuts the detachment surface; this volcanism may have been stimulated or enhanced by bending stresses in the bending footwall. The shape of the large-scale corrugated morphology of the OCC is nearly invariant in the dip direction across major changes in basement lithology, indicating that once established, the form of the Kane detachment fault was highly resistant to modification.
    Description: This research was supported by NSF grants OCE-9987004 and OCE-0621660.
    Keywords: Kane oceanic core complex ; Ocean crustal structure ; Detachment faulting ; Mid-Atlantic Ridge ; Seismic tomography ; Lithology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 152
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 19 (2009): Q07005, doi:10.1029/2009GC002411.
    Description: We reared primary polyps (new recruits) of the common Atlantic golf ball coral Favia fragum for 8 days at 25°C in seawater with aragonite saturation states ranging from ambient (Ω = 3.71) to strongly undersaturated (Ω = 0.22). Aragonite was accreted by all corals, even those reared in strongly undersaturated seawater. However, significant delays, in both the initiation of calcification and subsequent growth of the primary corallite, occurred in corals reared in treatment tanks relative to those grown at ambient conditions. In addition, we observed progressive changes in the size, shape, orientation, and composition of the aragonite crystals used to build the skeleton. With increasing acidification, densely packed bundles of fine aragonite needles gave way to a disordered aggregate of highly faceted rhombs. The Sr/Ca ratios of the crystals, measured by SIMS ion microprobe, increased by 13%, and Mg/Ca ratios decreased by 45%. By comparing these variations in elemental ratios with results from Rayleigh fractionation calculations, we show that the observed changes in crystal morphology and composition are consistent with a 〉80% decrease in the amount of aragonite precipitated by the corals from each “batch” of calcifying fluid. This suggests that the saturation state of fluid within the isolated calcifying compartment, while maintained by the coral at levels well above that of the external seawater, decreased systematically and significantly as the saturation state of the external seawater decreased. The inability of the corals in acidified treatments to achieve the levels of calcifying fluid supersaturation that drive rapid crystal growth could reflect a limit in the amount of energy available for the proton pumping required for calcification. If so, then the future impact of ocean acidification on tropical coral ecosystems may depend on the ability of individuals or species to overcome this limitation and achieve the levels of calcifying fluid supersaturation required to ensure rapid growth.
    Description: This study was supported by NSF OCE-0648157 and NSF OCE-0823527 and the Bermuda Institute for Ocean Sciences.
    Keywords: Ocean acidification ; Coral ; Sr/Ca ; Calcification ; Mg/Ca ; Biomineralization
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 153
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 19 (2009): Q02001, doi:10.1029/2008GC002236.
    Description: Ocean intraplate volcanoes (OIVs) are formed in a sequence of stages, from large to small, that involve a systematic progression in mantle melting in terms of volumes and melt fractions with concomitant distinct mantle source signatures. The Hawaiian volcanoes are the best-known example of this type of evolution, even though they are extraordinarily large. We explore the Pb-Sr-Nd-Hf isotopic evolution of much smaller OIVs in the Fieberling-Guadalupe Seamount Trail (FGST) and small, near-ridge generated seamounts in the same region. In particular, we investigate whether we can extend the Hawaiian models to Jasper Seamount in the FGST, which displays three distinct volcanic stages. Each stage has characteristic variations in Pb-Sr-Nd-Hf isotopic composition and trace element enrichment that are remarkably similar to the systematics observed in Hawaii: (1) The most voluminous, basal “shield building” stage, the Flank Transitional Series (FTS), displays slightly isotopically enriched compositions compared to the common component C and the least enriched trace elements (143Nd/144Nd: 0.512866–0.512909, 206Pb/204Pb: 18.904–19.054; La/Sm: 3.71–4.82). (2) The younger and substantially less voluminous Flank Alkalic Series (FAS) is comparatively depleted in Sr, Nd, and Hf isotope compositions plotting on the side of C, near the least extreme values for the Austral Islands and St. Helena. Trace elements are highly enriched (143Nd/144Nd: 0.512912–0.512948, 206Pb/204Pb: 19.959–20.185; La/Sm: 9.24). (3) The Summit Alkalic Series (SAS) displays the most depleted Sr, Nd, and Hf isotope ratios and is very close in isotopic composition to the nearby near-ridge seamounts but with highly enriched trace elements (143Nd/144Nd: 0.512999–0.513050, 206Pb/204Pb: 19.080–19.237; La/Sm: 5.73–8.61). These data fit well with proposed multicomponent melting models for Hawaii, where source lithology controls melt productivity. We examine the effect of melting a source with dry peridotite, wet peridotite, and pyroxenite, calculating melt productivity functions with depth to evaluate the effect of potential temperature and lithospheric thickness. This type of melting model appears to explain the isotopic variation in a range of small to large OIVs, in particular for OIVs occurring far from the complicating effects of plate boundaries and continental crust, constraining their geodynamic origin.
    Description: JBT acknowledges financial support from the French Institut National des Sciences de l’Univers. The isotope work at SDSU was made possible by NSF and Keck grants to BBH.
    Keywords: Jasper Seamount ; Geochemistry ; Isotope ; Melting model
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: text/plain
    Format: application/postscript
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 154
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 36 (2009): L02607, doi:10.1029/2008GL035918.
    Description: We study the structure of Subtropical Mode Water (STMW) within the eastward-flowing Gulf Stream as it forms during strong winter cooling. Shipboard observations using SeaSoar and ADCP reveal that while active mixing by gravitational instabilities is common, large vertical and lateral shears of the Gulf Stream play a central role in determination of the modes of active mixing. Evidence is presented that low static stability and large vertical shear can combine to cause slantwise convection/symmetric instabilities, while the large anticyclonic shears to the south of the Gulf Stream core can cause low absolute vorticity and precondition the Ertel potential vorticity to be small and more susceptible to instabilities. The area of active mixing driven by surface forcing in the presences of shear occupies a swath 50–90 km wide immediately south of the Gulf Stream core at the northern edge of the Sargasso Sea.
    Description: Support came from the National Science Foundation grants OCE-0424865 (TJ and FB) and OCE-0549699 (LT).
    Keywords: Mode water formation ; Convection in ocean fronts
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: text/plain
    Format: image/tiff
    Format: application/postscript
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 155
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 36 (2009): L16602, doi:10.1029/2009GL039216.
    Description: Pacific Decadal Oscillation (PDO) index is strongly correlated with vertically integrated transport carried by the Kuroshio through the East China Sea (ECS). Transport was determined from satellite altimetry calibrated with in situ data and its correlation with PDO index (0.76) is highest at zero lag. Total PDO-correlated transport variation carried by the ECS-Kuroshio and Ryukyu Current is about 4 Sv. In addition, PDO index is strongly negatively correlated, at zero lag, with NCEP wind-stress-curl over the central North Pacific at ECS latitudes. Sverdrup transport, calculated from wind-stress-curl anomalies, is consistent with the observed transport variations. Finally, PDO index and ECS-Kuroshio transport are each negatively correlated with Kuroshio Position Index in the Tokara Strait; this can be explained by a model in which Kuroshio path is steered by topography when transport is low and is inertially controlled when transport is high.
    Description: MA, MW and JP were supported by ONR grant N000140210271. XZ was supported by the National Natural Science Foundation of China under grant 40776021 and the National Basic Research Programs of China under grant 2006CB400603. KK and KC were supported by the Korea EAST-I Program.
    Keywords: Kuroshio ; PDO ; Transport
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 156
    facet.materialart.
    Unknown
    American Geophysical Union
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 18 (2004): GB1002, doi:10.1029/2003GB002061.
    Description: We describe a model of the ocean transport and biogeochemical cycling of iron and the subsequent control on export production and macronutrient distributions. Ocean transport of phosphorus and iron are represented by a highly idealized six-box ocean model. Export production is parameterized simply; it is limited by light, phosphate, and iron availability in the surface ocean. We prescribe the regional variations in aeolian deposition of iron and examine three parameterizations of iron cycling in the deep ocean: (1) net scavenging onto particles, the simplest model; (2) scavenging and desorption of iron to and from particles, analogous to thorium; and (3) complexation. Provided that some unknown parameter values can be set appropriately, all three biogeochemical models are capable of reproducing the broad features of the iron distribution observed in the modern ocean and explicitly lead to regions of elevated surface phosphate, particularly in the Southern Ocean. We compare the sensitivity of Southern Ocean surface macronutrient concentration to increased aeolian dust supply for each parameterization. Both scavenging-based representations respond to increasing dust supply with a drawdown of surface phosphate in an almost linear relationship. The complexation parameterization, however, asymptotes toward a limited drawdown of phosphate under the assumption that ligand production does not respond to increased dust flux. In the scavenging based models, deep water iron concentrations and, therefore, upwelled iron continually increase with greater dust supply. In contrast, the availability of complexing ligand provides an upper limit for the deep water iron concentration in the latter model.
    Description: M. J. F. is grateful for funding from NOAA (NA16GP2988) and NSSF (OCE-336839). P. P. is grateful to the MIT Martin Fellowship and NASA Earth System Science Fellowship (NGT5- 30362) for funding.
    Keywords: Modeling ; Ocean iron cycle
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 157
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 18 (2004): GB4028, doi:10.1029/2004GB002220.
    Description: A global three-dimensional marine ecosystem model with several key phytoplankton functional groups, multiple limiting nutrients, explicit iron cycling, and a mineral ballast/organic matter parameterization is run within a global ocean circulation model. The coupled biogeochemistry/ecosystem/circulation (BEC) model reproduces known basin-scale patterns of primary and export production, biogenic silica production, calcification, chlorophyll, macronutrient and dissolved iron concentrations. The model captures observed high nitrate, low chlorophyll (HNLC) conditions in the Southern Ocean, subarctic and equatorial Pacific. Spatial distributions of nitrogen fixation are in general agreement with field data, with total N-fixation of 55 Tg N. Diazotrophs directly account for a small fraction of primary production (0.5%) but indirectly support 10% of primary production and 8% of sinking particulate organic carbon (POC) export. Diatoms disproportionately contribute to export of POC out of surface waters, but CaCO3 from the coccolithophores is the key driver of POC flux to the deep ocean in the model. An iron source from shallow ocean sediments is found critical in preventing iron limitation in shelf regions, most notably in the Arctic Ocean, but has a relatively localized impact. In contrast, global-scale primary production, export production, and nitrogen fixation are all sensitive to variations in atmospheric mineral dust inputs. The residence time for dissolved iron in the upper ocean is estimated to be a few years to a decade. Most of the iron utilized by phytoplankton is from subsurface sources supplied by mixing, entrainment, and ocean circulation. However, owing to the short residence time of iron in the upper ocean, this subsurface iron pool is critically dependent on continual replenishment from atmospheric dust deposition and, to a lesser extent, lateral transport from shelf regions.
    Description: This work was funded by NSF grant OCE-0222033 and the National Center for Atmospheric Research.
    Keywords: Ecosystem model ; Nutrient limitation ; Iron cycle ; Phytoplankton community
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 158
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 36 (2009): L11703, doi:10.1029/2009GL038677.
    Description: Proxy reconstructions and model simulations suggest that steeper interhemispheric sea surface temperature (SST) gradients lead to southerly Intertropical Convergence Zone (ITCZ) migrations during periods of North Atlantic cooling, the most recent of which was the Little Ice Age (LIA; ∼100–450 yBP). Evidence suggesting low-latitude Atlantic cooling during the LIA was relatively small (〈1°C) raises the possibility that the ITCZ may have responded to a hemispheric SST gradient originating in the extratropics. We use an atmospheric general circulation model (AGCM) to investigate the relative influence of low-latitude and extratropical SSTs on the meridional position of the ITCZ. Our results suggest that the ITCZ responds primarily to local, low-latitude SST anomalies and that small cool anomalies (〈0.5°C) can reproduce the LIA precipitation pattern suggested by paleoclimate proxies. Conversely, even large extratropical cooling does not significantly impact low-latitude hydrology in the absence of ocean-atmosphere interaction.
    Description: This work was supported by NSF grants OCE 0623364 and ATM 033746 as well as the student research fund of MIT’s Department of Earth, Atmospheric and Planetary Science.
    Keywords: Climate ; ITCZ ; Little Ice Age
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 159
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 18 (2004): GB3010, doi:10.1029/2004GB002239.
    Description: We develop and use a new version of the Terrestrial Ecosystem Model (TEM) to study how rates of methane (CH4) emissions and consumption in high-latitude soils of the Northern Hemisphere have changed over the past century in response to observed changes in the region's climate. We estimate that the net emissions of CH4 (emissions minus consumption) from these soils have increased by an average 0.08 Tg CH4 yr−1 during the twentieth century. Our estimate of the annual net emission rate at the end of the century for the region is 51 Tg CH4 yr−1. Russia, Canada, and Alaska are the major CH4 regional sources to the atmosphere, responsible for 64%, 11%, and 7% of these net emissions, respectively. Our simulations indicate that large interannual variability in net CH4 emissions occurred over the last century. Our analyses of the responses of net CH4 emissions to the past climate change suggest that future global warming will increase net CH4 emissions from the Pan-Arctic region. The higher net CH4 emissions may increase atmospheric CH4 concentrations to provide a major positive feedback to the climate system.
    Description: This study was supported by a NSF biocomplexity grant (ATM-0120468), the NASA Land Cover and Land Use Change Program (NAG5-6257), and by funding from MIT Joint Program on the Science and Policy of Global Change, which is supported by a consortium of government, industry, and foundation sponsors.
    Keywords: Methane emissions ; Methane oxidation ; Permafrost
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 160
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2005. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 19 (2005): GB2018, doi:10.1029/2004GB002422.
    Description: Surface sediments along a transect from an abyssal site in the northeastern Pacific (Station M, 34°50′N, 123°00′W) to a small mountainous river on the California coast (Santa Clara River) were studied to investigate the sources and cycling of organic matter on the continental margin. Sediment samples were separated into organic compound fractions (extractable lipids, amino acids (THAA), carbohydrates (TCHO), and the acid-insoluble fraction), and their carbon isotope ratios were measured. The Δ14C values of all the THAA and TCHO fractions were greater than −100‰, indicating relatively modern organic carbon (OC) source(s), and rapid cycling of these fractions. In contrast, the Δ14C values of extractable lipids and the acid-insoluble fraction were distinctly lower than those of the THAA and TCHO fractions. The Δ14C values of source OC to the sediments were estimated using a simple mixed layer model. These values were lower than the Δ14C signatures of pre-industrial plankton suggesting input of both old OC and contemporary plankton to the margin sediments. The source of old OC at the 2000-m site was likely from laterally transported coastal sediment. The estimated low Δ14C value of the transported OC suggests that old lipids and acid-insoluble material were selectively transported to the 2000-m site. The contribution of riverine POC to the margin sediments were estimated from Δ14C and δ13C values and indicate that relict OC exported by rivers was an important source of old lipids and acid-insoluble material to sedimentary OC on the shelf.
    Description: This research was supported by NSF OCE Chemical Oceanography Program and ACS Petroleum Research Fund (to E. R. M. D.), the UCOP Marine Science Fellowship Program (to J. H.), and the Dreyfus Foundation for an Environmental Science Postdoctoral Fellowship grant (to T. K.).
    Keywords: Lateral transport ; Organic matter ; Radiocarbon
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 161
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 21 (2007): GB3007, doi:10.1029/2006GB002857.
    Description: Results are presented of export production, dissolved organic matter (DOM) and dissolved oxygen simulated by 12 global ocean models participating in the second phase of the Ocean Carbon-cycle Model Intercomparison Project. A common, simple biogeochemical model is utilized in different coarse-resolution ocean circulation models. The model mean (±1σ) downward flux of organic matter across 75 m depth is 17 ± 6 Pg C yr−1. Model means of globally averaged particle export, the fraction of total export in dissolved form, surface semilabile dissolved organic carbon (DOC), and seasonal net outgassing (SNO) of oxygen are in good agreement with observation-based estimates, but particle export and surface DOC are too high in the tropics. There is a high sensitivity of the results to circulation, as evidenced by (1) the correlation of surface DOC and export with circulation metrics, including chlorofluorocarbon inventory and deep-ocean radiocarbon, (2) very large intermodel differences in Southern Ocean export, and (3) greater export production, fraction of export as DOM, and SNO in models with explicit mixed layer physics. However, deep-ocean oxygen, which varies widely among the models, is poorly correlated with other model indices. Cross-model means of several biogeochemical metrics show better agreement with observation-based estimates when restricted to those models that best simulate deep-ocean radiocarbon. Overall, the results emphasize the importance of physical processes in marine biogeochemical modeling and suggest that the development of circulation models can be accelerated by evaluating them with marine biogeochemical metrics.
    Description: R. G. N. and J. L. S. acknowledge the support of NASA grants NAG5-6451 and NAG5-6591, respectively, as part of the JGOFS Synthesis and Modeling Program. G. K. P. and F. J. acknowledge support by the Swiss National Science Foundation. European contributions were supported by the EU GOSAC Project (ENV4-CT97- 0495).
    Keywords: Export production ; Numerical modeling ; Ocean circulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 162
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2005. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 19 (2005): GB4005, doi:10.1029/2005GB002508.
    Description: On the basis of the normalization to phosphate, a significant amount of nitrate is missing from the deep Bering Sea (BS). Benthic denitrification has been suggested previously to be the dominant cause for the BS nitrate deficit. We measured water column nitrate 15N/14N and 18O/16O as integrative tracers of microbial denitrification, together with pore water-derived benthic nitrate fluxes in the deep BS basin, in order to gain new constraints on the mechanism of fixed nitrogen loss in the BS. The lack of any nitrate isotope enrichment into the deep part of the BS supports the benthic denitrification hypothesis. On the basis of the nitrate deficit in the water column with respect to the adjacent North Pacific and a radiocarbon-derived ventilation age of ∼50 years, we calculate an average deep BS (〉2000 m water depth) sedimentary denitrification rate of ∼230 μmol N m−2 d−1 (or 1.27 Tg N yr−1), more than 3 times higher than high-end estimates of the average global sedimentary denitrification rate for the same depth interval. Pore water-derived estimates of benthic denitrification were variable, and uncertainties in estimates were large. A very high denitrification rate measured from the base of the steep northern slope of the basin suggests that the elevated average sedimentary denitrification rate of the deep Bering calculated from the nitrate deficit is driven by organic matter supply to the base of the continental slope, owing to a combination of high primary productivity in the surface waters along the shelf break and efficient down-slope sediment focusing along the steep continental slopes that characterize the BS.
    Description: This study was supported by NSF grants OCE-0136449 and OCE-9981479 to D. M. S., OCE-0118126 and OCE-0324987 to D. C. M., and DFG grant LE 1326/1-1 to M. F. L. The BS cruise was funded by grant OPP-9912122.
    Keywords: Bering Sea ; Denitrification ; Nitrate isotopes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: text/plain
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 163
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 23 (2009): GB1006, doi:10.1029/2007GB003162.
    Description: The isotopic composition of dissolved oxygen in the mesopelagic ocean is a unique tracer of respiration and transport. New δ 18O of O2 data from the tropical South Atlantic oxygen minimum zone are presented and compared to global δ 18O data. The δ 18O variability in oxygen poor waters is attributed to differences in physical and biogeochemical processes. Simple respiration-transport models show that both isopycnal diffusion and advection must be properly considered when interpreting oxygen isotope signatures along an isopycnal surface. We estimate rates of respiration and oxygen isotope fractionation for the study region using a two-dimensional (2-D) isopycnal and 1-D diapycnal model. Estimated respiration rates are consistent with previous studies. However, to account for observed δ 18O values at low [O2], model solutions need to invoke either very low [O2] that have not been observed in the South Atlantic or an isotope effect that is lower than values measured in the laboratory or euphotic zone.
    Description: We gratefully acknowledge financial support from NSF and NASA.
    Keywords: Oxygen isotope ; Respiration ; Chemical tracer
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: text/plain
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 164
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 22 (2008): GB4012, doi:10.1029/2007GB003119.
    Description: Many trace metals such as iron, copper, and manganese have lower concentrations in the surface waters of the North Pacific Ocean than in North Atlantic surface waters. However, cobalt and zinc concentrations in North Atlantic surface waters are often as low as those reported in the North Pacific. We studied the relationship between the distribution of cobalt, zinc, and phosphorus in surface waters of the western North Atlantic Ocean. Both metals show strong depletion in the southern Sargasso Sea, a region characterized by exceedingly low dissolved inorganic phosphorus (generally 〈4 nmol L−1) and measurable alkaline phosphatase activity. Alkaline phosphatase is a metalloenzyme (typically containing zinc) that cleaves phosphate monoesters and is a diagnostic indicator of phosphorus stress in phytoplankton. In contrast to the North Pacific Ocean, cobalt and zinc appear to be drawn down to their lowest values only when inorganic phosphorus is below 10 nmol L−1 in the North Atlantic Ocean. Lower levels of phosphorus in the Atlantic may contribute to these differences, possibly through an increased biological demand for zinc and cobalt associated with dissolved organic phosphorus acquisition. This hypothesis is consistent with results of a culture study where alkaline phosphatase activity decreased in the model coccolithophore Emiliania huxleyi upon zinc and cobalt limitation.
    Description: This research was supported by NSF grant OCE- 0136835 to J.W.M. and S.D. R.W.J. was supported by an EPA STAR Fellowship.
    Keywords: Trace metals ; Phosphorus ; Sargasso Sea
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 165
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 23 (2009): GB4014, doi:10.1029/2008GB003406.
    Description: In the Southern Ocean near the Antarctic Peninsula, Antarctic Circumpolar Current (ACC) fronts interact with shelf waters facilitating lateral transport of shelf-derived components such as iron into high-nutrient offshore regions. To trace these shelf-derived components and estimate lateral mixing rates of shelf water, we used naturally occurring radium isotopes. Short-lived radium isotopes were used to quantify the rates of shelf water entrainment while Fe/228Ra ratios were used to calculate the Fe flux. In the summer of 2006 we found rapid mixing and significant lateral iron export, namely, a dissolved iron flux of 1.1 × 105 mol d−1 and total acid leachable iron flux of 1.1 × 106 mol d−1 all of which is transported in the mixed layer from the shelf region offshore. This dissolved iron flux is significant, especially considering that the bloom observed in the offshore region (0.5–2 mg chl a m−3) had an iron demand of 1.1 to 4 × 105 mol Fe. Net vertical export fluxes of particulate Fe derived from 234Th/238U disequilibrium and Fe/234Th ratios accounted for only about 25% of the dissolved iron flux. On the other hand, vertical upward mixing of iron rich deeper waters provided only 7% of the lateral dissolved iron flux. We found that similarly to other studies in iron-fertilized regions of the Southern Ocean, lateral fluxes overwhelm vertical inputs and vertical export from the water column and support significant phytoplankton blooms in the offshore regions of the Drake Passage.
    Description: This work was funded by the National Science Foundation (ANT-0443869 to M.A.C.).
    Keywords: Radium isotopes ; Iron ; Natural iron fertilization
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 166
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 21 (2007): GB2026, doi:10.1029/2006GB002900.
    Description: We investigate the interannual variability in the flux of CO2 between the atmosphere and the Southern Ocean on the basis of hindcast simulations with a coupled physical-biogeochemical-ecological model with particular emphasis on the role of the Southern Annular Mode (SAM). The simulations are run under either pre-industrial or historical CO2 concentrations, permitting us to separately investigate natural, anthropogenic, and contemporary CO2 flux variability. We find large interannual variability (±0.19 PgC yr−1) in the contemporary air-sea CO2 flux from the Southern Ocean (〈35°S). Forty-three percent of the contemporary air-sea CO2 flux variance is coherent with SAM, mostly driven by variations in the flux of natural CO2, for which SAM explains 48%. Positive phases of the SAM are associated with anomalous outgassing of natural CO2 at a rate of 0.1 PgC yr−1 per standard deviation of the SAM. In contrast, we find an anomalous uptake of anthropogenic CO2 at a rate of 0.01 PgC yr−1 during positive phases of the SAM. This uptake of anthropogenic CO2 only slightly mitigates the outgassing of natural CO2, so that a positive SAM is associated with anomalous outgassing in contemporaneous times. The primary cause of the natural CO2 outgassing is anomalously high oceanic partial pressures of CO2 caused by elevated dissolved inorganic carbon (DIC) concentrations. These anomalies in DIC are primarily a result of the circulation changes associated with the southward shift and strengthening of the zonal winds during positive phases of the SAM. The secular, positive trend in the SAM has led to a reduction in the rate of increase of the uptake of CO2 by the Southern Ocean over the past 50 years.
    Description: This work was supported by NASA headquarters under the Earth System Science Fellowship Grant NNG05GP78H to N. S. L. and grants NAG5-12528 and NNG04GH53G to N. G. Both S. C. D. and I. D. L. were supported by NSF/ONR NOPP (N000140210370) and NASA (NNG05GG30G).
    Keywords: Southern Ocean ; Carbon cycle ; Southern Annular Mode
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 167
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 22 (2008): GB4027, doi:10.1029/2007GB003167.
    Description: Observational studies report a rapid decline of ocean CO2 uptake in the temperate North Atlantic during the last decade. We analyze these findings using ocean physical-biological numerical simulations forced with interannually varying atmospheric conditions for the period 1979–2004. In the simulations, surface ocean water mass properties and CO2 system variables exhibit substantial multiannual variability on sub-basin scales in response to wind-driven reorganization in ocean circulation and surface warming/cooling. The simulated temporal evolution of the ocean CO2 system is broadly consistent with reported observational trends and is influenced substantially by the phase of the North Atlantic Oscillation (NAO). Many of the observational estimates cover a period after 1995 of mostly negative or weakly positive NAO conditions, which are characterized in the simulations by reduced North Atlantic Current transport of subtropical waters into the eastern basin and by a decline in CO2 uptake. We suggest therefore that air-sea CO2 uptake may rebound in the eastern temperate North Atlantic during future periods of more positive NAO, similar to the patterns found in our model for the sustained positive NAO period in the early 1990s. Thus, our analysis indicates that the recent rapid shifts in CO2 flux reflect decadal perturbations superimposed on more gradual secular trends. The simulations highlight the need for long-term ocean carbon observations and modeling to fully resolve multiannual variability, which can obscure detection of the long-term changes associated with anthropogenic CO2 uptake and climate change.
    Description: S. C. Doney and I. D. Lima were supported by NASA grant NNG05GG30G.
    Keywords: North Atlantic ; CO2 uptake ; NAO
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/postscript
    Format: application/pdf
    Format: text/plain
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 168
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 19 (2004): PA01006, doi:10.1029/2003PA000907.
    Description: A record of the downcore distribution of chlorin steryl esters (CSEs) through the Younger Dryas was produced from Cariaco Basin sediments in order to assess the potential use of CSEs as recorders of the structure of phytoplankton communities through time. Using an improved high-performance liquid chromatography method for the separation of CSEs, we find significant changes in the distribution of CSEs during the Younger Dryas in the Cariaco Basin. During the Younger Dryas, enhanced upwelling in the Cariaco Basin caused an increase in the diatom population and therefore an increase in the relative abundance of CSEs derived from diatoms. In contrast, the dinoflagellate population, and therefore CSEs derived from dinoflagellates, decreased in response to the climate change during the Younger Dryas. These community shifts agree well with the shifts observed in the present day on a seasonal basis that result from the north-south migration of the Intertropical Convergence Zone over the Cariaco Basin. We also identify changes in the abundance of several CSEs that seem to reflect rapid warming and cooling events. This study suggests that CSEs are useful proxies for reconstructing phytoplankton communities and paleoenvironments.
    Description: This work was supported by the Chemical Oceanography Division of the National Science Foundation and a WHOI Watson Fellowship (to KAD).
    Keywords: Younger Dryas ; Cariaco Basin ; Chlorin steryl esters
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 169
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 19 (2004): PA1018, doi:10.1029/2003PA000939.
    Description: There is increasing evidence indicating that syndepositional redistribution of sediment on the seafloor by bottom currents is common and can significantly affect sediment mass accumulation rates. Notwithstanding its common incidence, this process (generally referred to as sediment focusing) is often difficult to recognize. If redistribution is near synchronous to deposition, the stratigraphy of the sediment is not disturbed and sediment focusing can easily be overlooked. Ignoring it, however, can lead to serious misinterpretations of sedimentary fluxes, particularly when past changes in export flux from the overlying water are inferred. In many instances, this problem can be resolved, at least for sediments deposited during the late Quaternary, by normalizing to the flux of 230Th scavenged from seawater, which is nearly constant and equivalent to the known rate of production of 230Th from the decay of dissolved 234U. We review the principle, advantages and limitations of this method. Notwithstanding its limitations, it is clear that 230Th normalization does provide a means of achieving more accurate interpretations of sedimentary fluxes and eliminates the risk of serious misinterpretations of sediment mass accumulation rates.
    Description: R. Francois and M. P. Bacon acknowledge support from the National Science Foundation. M. Frank thanks the Swiss Science Foundation for support.
    Keywords: Paleoflux ; Sediment focusing ; Paleoproductivity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 170
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 19 (2004): PA2018, doi:10.1029/2003PA000986.
    Description: The eastern equatorial Pacific (EEP) is an important center of biological productivity, generating significant organic carbon and calcite fluxes to the deep ocean. We reconstructed paleocalcite flux for the past 30,000 years in four cores collected beneath the equatorial upwelling and the South Equatorial Current (SEC) by measuring ex230Th-normalized calcite accumulation rates corrected for dissolution with a newly developed proxy for “fraction of calcite preserved.” This method produced very similar results at the four sites and revealed that the export flux of calcite was 30–50% lower during the LGM compared to the Holocene. The internal consistency of these results supports our interpretation, which is also in agreement with emerging data indicating lower glacial productivity in the EEP, possibly as a result of lower nutrient supply from the southern ocean via the Equatorial Undercurrent. However, these findings contradict previous interpretations based on mass accumulation rates (MAR) of biogenic material in the sediment of the EEP, which have been taken as reflecting higher glacial productivity due to stronger wind-driven upwelling.
    Description: This research was partly supported by NSF grant OCE-0095617 and funds from the Northern Illinois University Graduate School (Loubere); the NASA Michigan Space Grant Consortium Seed Grant for summer, 2001 for 230Th analyses at WHOI (Mekik); the French Ministere de l’Education Nationale, de la Recherche et de la Technologie, and a EURODOC grant from the Region Rhone-Alpes (Pichat).
    Keywords: Calcite fluxes ; Eastern equatorial Pacific ; Glacial-interglacial
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 171
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 19 (2004): PA4001, doi:10.1029/2004PA001008.
    Description: Planktonic foraminiferal δ18O time series from three well-dated, high sedimentation rate cores near the Florida Keys (24.4°N, 83.3°W) exhibit repeated centennial to millennial-scale oscillations during the late Holocene. Isotopic shifts of 0.2–0.3‰ over the past 5200 years represent changes in sea-surface temperature (SST) of 1.0–1.5°C or salinity variability of 1–2 psu. The largest significant isotopic events are centered at approximately 200, 2000, 3200, and prior to 4000 calendar years BP. High Florida Current δ18O during the Little Ice Age (LIA) correlates with published records of high δ18O in the Sargasso Sea and low SST off the coast of west Africa. An interval of generally low δ18O in the Florida Straits from 1800 to 500 years BP is synchronous with the Medieval Warm Period off west Africa but leads low δ18O in the Sargasso Sea by several hundred years. Synchronous cooling across the subtropical gyre during the LIA is difficult to explain using interannual North Atlantic Oscillation patterns but may be consistent with the simulated effects of reduced solar irradiance. At frequencies between 1/1000 and 1/300 years during the Late Holocene, Florida Current δ18O is coherent with a published estimate of 14C production rate. Radiocarbon production seems to lead δ18O at these frequencies, but uncertainty in the phase calculation precludes a clear lead-lag relationship. At frequencies lower than 1/300 years, Florida Current δ18O is coherent and in phase with atmospheric Δ14C. The coherence of Δ14C and δ18O at periods 〉1000 years implies oceanic circulation may play a role in modulating atmospheric radiocarbon on millennial timescales.
    Description: This work was supported by NSF grants OCE-9905605 and OCE-0096469.
    Keywords: Holocene ; Florida current ; Density
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 172
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 23 (2009): GB3016, doi:10.1029/2008GB003440.
    Description: We present results from transient sensitivity studies with the Biogeochemical Elemental Cycling (BEC) ocean model to increasing anthropogenic atmospheric inorganic nitrogen (N) and soluble iron (Fe) deposition over the industrial era. Elevated N deposition results from fossil fuel combustion and agriculture, and elevated soluble Fe deposition results from increased atmospheric processing in the presence of anthropogenic pollutants and soluble Fe from combustion sources. Simulations with increasing Fe and increasing Fe and N inputs raised simulated marine nitrogen fixation, with the majority of the increase in the subtropical North and South Pacific, and raised primary production and export in the high-nutrient low-chlorophyll (HNLC) regions. Increasing N inputs alone elevated small phytoplankton and diatom production, resulting in increased phosphorus (P) and Fe limitation for diazotrophs, hence reducing nitrogen fixation (∼6%). Globally, the simulated primary production, sinking particulate organic carbon (POC) export. and atmospheric CO2 uptake were highest under combined increase in Fe and N inputs compared to preindustrial control. Our results suggest that increasing combustion iron sources and aerosol Fe solubility along with atmospheric anthropogenic nitrogen deposition are perturbing marine biogeochemical cycling and could partially explain the observed trend toward increased P limitation at station ALOHA in the subtropical North Pacific. Excess inorganic nitrogen ([NO3 −] + [NH4 +] − 16[PO4 3−]) distributions may offer useful insights for understanding changing ocean circulation and biogeochemistry.
    Description: This work was supported by funding from NSF grant OCE-0452972 to J. K. Moore and C. S. Zender. Computations were supported by the Earth System Modeling Facility at UCI (NSFATMO321380) and by the Climate Simulation Laboratory at National Center for Atmospheric Research. The National Center for Atmospheric Research is sponsored by the U.S. National Science Foundation. N.M. would like to acknowledge the assistance of NSF– Carbon and Water (ATM-0628472), and N.M., S.D., and C.L. would like to acknowledge the assistance of NASA-IDS (NNX07AL80G).
    Keywords: Soluble iron ; Atmospheric nutrient
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 173
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 19 (2004): PA4007, doi:10.1029/2003PA001000.
    Description: An analysis of sedimentary nitrogen isotope records compiled from widely distributed marine environments emphasizes the global synchrony of denitrification changes and provides evidence for a strong temporal coupling of these variations to changes in nitrogen fixation as previously inferred. We explain the global coherence of these records by a simple physical control on the flux of dissolved oxygen to suboxic zones and the coupling to fixation via the supply of phosphorus to diazotrophs in suitable environments. According to our hypothesis, lower glacial-stage sea surface temperature increased oxygen solubility, while stronger winds in high-latitude regions enhanced the rate of thermocline ventilation. The resultant colder, rapidly flushed thermocline lessened the spatial extent of denitrification and, consequently, N fixation. During warm periods, sluggish circulation of warmer, less oxygen rich thermocline waters caused expansion of denitrification zones and a concomitant increase in N fixation. Local fluctuations in export productivity would have modulated this global signal.
    Description: Financial support for this work was provided by the Natural Sciences and Engineering Research Council of Canada and by a WHOI postdoctoral fellowship to MK.
    Keywords: Isotopes ; Fixation ; Denitrification
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 174
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 19 (2004): PA4012, doi:10.1029/2004PA001029.
    Description: Foraminiferal abundance, 14C ventilation ages, and stable isotope ratios in cores from high deposition rate locations in the western subtropical North Atlantic are used to infer changes in ocean and climate during the Younger Dryas (YD) and Last Glacial Maximum (LGM). The δ18O of the surface dwelling planktonic foram Globigerinoides ruber records the present-day decrease in surface temperature (SST) of ∼4°C from Gulf Stream waters to the northeastern Bermuda Rise. If during the LGM the modern δ18O/salinity relationship was maintained, this SST contrast was reduced to 2°C. With LGM to interglacial δ18O changes of at least 2.2‰, SSTs in the western subtropical gyre may have been as much as 5°C colder. Above ∼2.3 km, glacial δ13C was higher than today, consistent with nutrient-depleted (younger) bottom waters, as identified previously. Below that, δ13C decreased continually to −0.5‰, about equal to the lowest LGM δ13C in the North Pacific Ocean. Seven pairs of benthic and planktonic foraminiferal 14C dates from cores 〉2.5 km deep differ by 1100 ± 340 years, with a maximum apparent ventilation age of ∼1500 years at 4250 m and at ∼4700 m. Apparent ventilation ages are presently unavailable for the LGM 〈 2.5 km because of problems with reworking on the continental slope when sea level was low. Because LGM δ13C is about the same in the deep North Atlantic and the deep North Pacific, and because the oldest apparent ventilation ages in the LGM North Atlantic are the same as the North Pacific today, it is possible that the same water mass, probably of southern origin, flowed deep within each basin during the LGM. Very early in the YD, dated here at 11.25 ± 0.25 (n = 10) conventional 14C kyr BP (equal to 12.9 calendar kyr BP), apparent ventilation ages 〈2.3 km water depth were about the same as North Atlantic Deep Water today. Below ∼2.3 km, four YD pairs average 1030 ± 400 years. The oldest apparent ventilation age for the YD is 1600 years at 4250 m. This strong contrast in ventilation, which indicates a front between water masses of very different origin, is similar to glacial profiles of nutrient-like proxies. This suggests that the LGM and YD modes of ocean circulation were the same.
    Description: NSF supported this project through several OCE grants over the course of ten years, and most recently by ATM-9905550.
    Keywords: Radiocarbon ; Ocean ventilation ; Western North Atlantic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 175
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2005. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 20 (2005): PA2003, doi:10.1029/2004PA001074.
    Description: Stable isotope, trace metal, alkenone paleothermometry, and radiocarbon methods have been applied to sediment cores in the western subpolar North Atlantic between Hudson Strait and Cape Hatteras to reveal the history of climate in that region over the past ∼11 kyr. We focus on cores from the Laurentian Fan, which is known to have rapid and continuous accumulation of hemipelagic sediment. Although results among our various proxy data are not always in agreement, the weight of the evidence (alkenone sea surface temperature (SST), δ18O and abundance of Globigerinoides ruber) indicates a continual cooling of surface waters over Laurentian Fan, from about 18°C in the early Holocene to about 8°C today. Alternatively, Mg/Ca data on planktonic foraminifera indicate no systematic change in Holocene SST. The inferred long-term decrease in SST was probably driven by decreasing seasonality of Northern Hemisphere insolation. Two series of proxy data show the gradual cooling was interrupted by a two-step cold pulse that began 8500 years ago, and lasted about 700 years. Although this event is associated with the final deglaciation of Hudson Bay, there is no δ18O minimum anywhere in the Labrador Sea, yet there is some evidence for it as far south as Cape Hatteras. Finally, although the 8200 year B.P. event has been implicated in decreasing North Atlantic ventilation, and hence widespread temperature depression on land and at sea, we find inconsistent evidence for a change at that time in deep ocean nutrient content at ∼4 km water depth.
    Description: Funding for JPS was from the NOAA Climate and Global Change Program (NA 16GP2679), NSF-Earth System History (0116940), the Jeptha H. and Emily V. Wade Award for Research, and a Henry L. and Grace Doherty Professorship. LDK and YR were funded by NSF grant OCE-0117149.
    Keywords: Lake Agassiz ; 8200 year event ; Meltwater pulse
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 176
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2005. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 20 (2005): PA4016, doi:10.1029/2005PA001140.
    Description: Strontium to calcium ratios (Sr/Ca) are reported for a massive brain coral Diploria labyrinthiformis collected from the south shore of Bermuda and are strongly correlated with both sea surface temperature (SST) and mean annual skeletal growth rate. High Sr/Ca ratios correspond with cold SSTs and slow skeletal growth rate and vice versa. We provide a quantitative calibration of Sr/Ca to extension rate and SST along the axis of maximum growth and derive a growth-dependent Sr/Ca–SST calibration equation to reconstruct western subtropical North Atlantic SSTs for the past 223 years. When the influence of growth rate is excluded from the calibration, Sr/Ca ratios yield SSTs that are too cold during cool anomalies and too warm during warm anomalies. Toward the end of the Little Ice Age (∼1850), SST changes derived using a calibration that is not growth-dependent are exaggerated by a factor of 2 relative to those from the growth-corrected model that yields SSTs ∼1.5°C cooler than today. Our results indicate that incorporation of growth rate effects into coral Sr/Ca calibrations may improve the accuracy of SSTs derived from living and fossil corals.
    Description: A Stanley Watson Foundation Fellowship (N.F.G.), and grants from NSF (OCE-0402728) and WHOI (K.A.H., A.L.C., and M.S.M.) supported this work.
    Keywords: SST ; Coral Sr/Ca ; Growth rate
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 177
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2005. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 20 (2005): PA3009, doi:10.1029/2004PA001091.
    Description: Similar orbital geometry and greenhouse gas concentrations during marine isotope stage 11 (MIS 11) and the Holocene make stage 11 perhaps the best geological analogue period for the natural development of the present interglacial climate. Results of a detailed study of core MD01-2443 from the Iberian margin suggest that sea surface conditions during stage 11 were not significantly different from those observed during the elapsed portion of the Holocene. Peak interglacial conditions during stage 11 lasted nearly 18 kyr, indicating a Holocene unperturbed by human activity might last an additional 6–7 kyr. A comparison of sea surface temperatures (SST) derived from planktonic foraminifera for all interglacial intervals of the last million years reveals that warm temperatures during peak interglacials MIS 1, 5e, and 11 were higher on the Iberian margin than during substage 7e and most of 9e. The SST results are supported by heavier δ18O values, particularly during 7e, indicating colder SSTs and a larger residual ice volume. Benthic δ13C results provide evidence of a strong influence of North Atlantic Deep Water at greater depths than present during MIS 11. The progressive ocean climate deterioration into the following glaciation is associated with an increase in local upwelling intensity, interspersed by periodic cold episodes due to ice-rafting events occurring in the North Atlantic.
    Description: This work was partially undertaken in association with the ‘‘POP Project,’’ EC grant EVK2-2000-00089. Funding for L.A. was provided by the Portuguese Foundation for Science and Technology under the fellowship contract SFRH/BPD/1588/2000 and by the Calouste Gulbenkian Foundation, through a visiting fellowship to Woods Hole Oceanographic Institution.
    Keywords: Stage 11 ; Interglacials ; Planktonic foraminifera ; Stable isotopes ; Western Iberian margin ; Eastern North Atlantic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 178
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2005. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 110 (2005): B12105, doi:10.1029/2004JB003463.
    Description: The large contrast in electrical conductivity between seawater and the underlying seafloor accumulates boundary electric charges which can severely distort observed electric and magnetic fields. For marine magnetotelluric (MT) studies, correcting this topographic effect is critical to obtaining accurate conductivity models for the mantle. Previously, correction for topography was based on the thin sheet approximation which breaks down at periods under ∼1000 s in the deep ocean. This paper introduces an analysis method for seafloor MT data which combines removal of three-dimensional (3-D) topographic effects with inversion of the data for 2-D structure. The observed MT impedance is first corrected to a flat-lying seafloor datum using the observed bathymetry without invoking the thin sheet approximation. The corrected MT response is then inverted in a flat seafloor model space. Because of coupling between topographic effects and deeper structure, the correction and inversion steps are iterated until changes in each become small. The procedure is verified using synthetic and real data. Tests for synthetic 3-D topography over a half-space show that the method closely recovers the true half-space model after a few iterations. The procedure is also applied to real data collected in the Mantle Electromagnetic and Tomography (MELT) experiment on the East Pacific Rise at 17°S.
    Description: This work was supported by NSF grants OCE9402324 and OCE0118254 and Research Program on Mantle Core Dynamics, Institute for Research on Earth Evolution (IFREE), Japan Agency for Marine-Earth Science and Technology (JAMSTEC).
    Keywords: Marine magnetotellurics ; Topographic correction ; Modeling and inversion
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 179
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 109 (2004): B12302, doi:10.1029/2004JB003110.
    Description: A mid-ocean ridge transform fault (RTF) of length L, slip rate V, and moment release rate dot above M can be characterized by a seismic coupling coefficient χ = A E/A T, where A E ∼ dot above M/V is an effective seismic area and A T ∝ L 3/2 V −1/2 is the area above an isotherm T ref. A global set of 65 RTFs with a combined length of 16,410 km is well described by a linear scaling relation (1) A E ∝ A T, which yields χ = 0.15 ± 0.05 for T ref = 600°C. Therefore about 85% of the slip above the 600°C isotherm must be accommodated by subseismic mechanisms, and this slip partitioning does not depend systematically on either V or L. RTF seismicity can be fit by a truncated Gutenberg-Richter distribution with a slope β = 2/3 in which the cumulative number of events N 0 and the upper cutoff moment M C = μD C A C depend on A T. Data for the largest events are consistent with a self-similar slip scaling, D C ∝ A C 1/2, and a square root areal scaling (2) A C ∝ A T 1/2. If relations 1 and 2 apply, then moment balance requires that the dimensionless seismic productivity, ν0 ∝ inline equation 0/A T V, should scale as ν0 ∝ A T −1/4, which we confirm using small events. Hence the frequencies of both small and large earthquakes adjust with A T to maintain constant coupling. RTF scaling relations appear to violate the single-mode hypothesis, which states that a fault patch is either fully seismic or fully aseismic and thus implies A C ≤ A E. The heterogeneities in the stress distribution and fault structure responsible for relation 2 may arise from a thermally regulated, dynamic balance between the growth and coalescence of fault segments within a rapidly evolving fault zone.
    Description: M.B. was supported by a NSF Graduate Research Fellowship, a MIT Presidential Fellowship, and the WHOI DOEI Fellowship. This research was supported by the Southern California Earthquake Center. SCEC is funded by NSF Cooperative Agreement EAR-0106924 and USGS Cooperative Agreement 02HQAG0008.
    Keywords: Earthquakes ; Scaling relations ; Fault mechanics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 180
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 111 (2006): B02101, doi:10.1029/2004JB003598.
    Description: The electromagnetic data from the Mantle Electromagnetic and Tomography (MELT) experiment are inverted for a two-dimensional transversely anisotropic conductivity structure that incorporates a correction for three-dimensional topographic effects on the magnetotelluric responses. The model space allows for different conductivity values in the along-strike, cross-strike, and vertical directions, along with imposed constraints of model smoothness and closeness among the three directions. Anisotropic models provide a slightly better fit to the data for a given level of model smoothness and are more consistent with other geophysical and laboratory data. The preferred anisotropic model displays a resistive uppermost 60-km-thick mantle independent of plate age, except in the vicinity of the ridge crest. In most inversions, a vertically aligned sheet-like conductor at the ridge crest is especially prominent in the vertical conductivity. Its presence suggests that the melt is more highly concentrated and connected in the vertical direction immediately beneath the rise axis. The melt zone is at least 100 km wide and is asymmetric, having a greater extent to the west. Off-axis, and to the east of the ridge, the mantle is more conductive in the direction of plate spreading at depths greater than 60 km. The flat resistive-conductive boundary at 60 km agrees well with the inferred depth of the dry solidus of peridotite, and the deeper conductive region is consistent with the preferred orientation of olivine inferred from seismic observations. This suggests that the uppermost 60 km represents the region of mantle that has undergone melting at the ridge and has been depleted of water (dissolved hydrogen). By contrast, the underlying mantle has retained a significant amount of water.
    Description: This work was supported by NSF grant OCE0118254 and the Research Program on Mantle Core Dynamics, Institute for Research on Earth Evolution (IFREE), Japan Agency for Marine-Earth Science and Technology (JAMSTEC).
    Keywords: Electrical conductivity ; Anisotropy ; Water
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 181
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 112 (2007): C04020, doi:10.1029/2006JC003807.
    Description: The occurrence of Greenland tip jet events has been reported as the dominant factor controlling the formation of intermediate water in the Irminger Sea. It has been suggested that the frequency of these events is correlated with the North Atlantic Oscillation. To examine this process in more detail, we separate the North Atlantic Oscillation into Icelandic Low and Azores High components and carry out a regression fit of the frequency of tip jet events between 1961 and 2005. Our findings suggest that the frequency of Greenland tip jet events is highly dependent on the latitude of the Icelandic Low and the 2-year time-lagged February Icelandic Low latitude, with R2 = 0.48. We find that the winds near the southern tip of Greenland are predominately westerly during years when the Iceland Low is located above 63°N latitude. These conditions also correspond to colder air temperatures in the Labrador and Irminger Seas, implying larger oceanic heat losses due to the Greenland tip jet events and hence stronger convective overturning in the Irminger Sea.
    Description: R. Pickart gratefully acknowledges support by National Science Foundation grant OCE-0450658 for this research.
    Keywords: Tip jet ; Icelandic Low ; Irminger Sea
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 182
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 114 (2009): C02001, doi:10.1029/2007JC004671.
    Description: Plankton patchiness is ubiquitous in the oceans, and various physical and biological processes have been proposed as its generating mechanisms. However, a coherent statement on the problem is missing, because of both a small number of suitable observations and an incomplete understanding of the properties of reactive tracers in turbulent media. It has been suggested that horizontal advection may be the dominant process behind the observed distributions of phytoplankton and zooplankton, acting to mix tracers with longer reaction times (Rt) down to smaller scales. Conversely, the relative distributions of sea surface temperature and phytoplankton has been attributed to small-scale upwelling, where tracers with longer Rt are able to homogenize more than those with shorter reaction times. Neither of the above mechanisms can explain simultaneously the (relative) spectral slopes of temperature, phytoplankton, and zooplankton. Here, with a simple advection model and a large suite of numerical experiments, we concentrate on some of the physical processes influencing the relative distributions of tracers at the ocean surface, and we investigate (1) the impact of the spatial scale of tracer supply, (2) the role played by coherent eddies on the distribution of tracers with different Rt, and (3) the role of diffusion (so far neglected). We show that diffusion determines the distribution of temperature, regardless of the nature of the forcing. We also find that coherent structures together with differential diffusion of tracers with different Rt impact the tracer distributions. This may help in understanding the highly variable nature of observed plankton spectra.
    Description: This work was initiated at WHOI during the summer of 2006, while S.C. was a summer student fellow, partially funded by the NSF. A.B. is funded by NSF–OCE 0751775 and NSF–OCE 0815280, and C.P. is funded by NSF–PHY 0551164.
    Keywords: Ocean turbulence ; Plankton
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 183
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 113 (2008): G02026, doi:10.1029/2007JG000470.
    Description: Permafrost is a defining characteristic of the Arctic environment. However, climate warming is thawing permafrost in many areas leading to failures in soil structure called thermokarst. An extensive survey of a 600 km2 area in and around the Toolik Lake Natural Research Area (TLNRA) revealed at least 34 thermokarst features, two thirds of which were new since ∼1980 when a high resolution aerial survey of the area was done. Most of these thermokarst features were associated with headwater streams or lakes. We have measured significantly increased sediment and nutrient loading from thermokarst features to streams in two well-studied locations near the TLNRA. One small thermokarst gully that formed in 2003 on the Toolik River in a 0.9 km2 subcatchment delivered more sediment to the river than is normally delivered in 18 years from 132 km2 in the adjacent upper Kuparuk River basin (a long-term monitoring reference site). Ammonium, nitrate, and phosphate concentrations downstream from a thermokarst feature on Imnavait Creek increased significantly compared to upstream reference concentrations and the increased concentrations persisted over the period of sampling (1999–2005). The downstream concentrations were similar to those we have used in a long-term experimental manipulation of the Kuparuk River and that have significantly altered the structure and function of that river. A subsampling of other thermokarst features from the extensive regional survey showed that concentrations of ammonium, nitrate, and phosphate were always higher downstream of the thermokarst features. Our previous research has shown that even minor increases in nutrient loading stimulate primary and secondary production. However, increased sediment loading could interfere with benthic communities and change the responses to increased nutrient delivery. Although the terrestrial area impacted by thermokarsts is limited, the aquatic habitat altered by these failures can be extensive. If warming in the Arctic foothills accelerates thermokarst formation, there may be substantial and wide-spread impacts on arctic stream ecosystems that are currently poorly understood.
    Description: The results presented in this report are based upon work supported by the U.S. National Science Foundation under grants to the Arctic Hyporheic project (OPP- 0327440) and the Arctic Long-Term Ecological Research Program (DEB- 9810222).
    Keywords: Arctic ; Climate change ; Streams ; Ecosystem dynamics ; Sediment ; Thermokarst ; Water quality
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 184
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 112 (2007): G02029, doi:10.1029/2006JG000380.
    Description: Wildfire is a common occurrence in ecosystems of northern high latitudes, and changes in the fire regime of this region have consequences for carbon feedbacks to the climate system. To improve our understanding of how wildfire influences carbon dynamics of this region, we used the process-based Terrestrial Ecosystem Model to simulate fire emissions and changes in carbon storage north of 45°N from the start of spatially explicit historically recorded fire records in the twentieth century through 2002, and evaluated the role of fire in the carbon dynamics of the region within the context of ecosystem responses to changes in atmospheric CO2 concentration and climate. Our analysis indicates that fire plays an important role in interannual and decadal scale variation of source/sink relationships of northern terrestrial ecosystems and also suggests that atmospheric CO2 may be important to consider in addition to changes in climate and fire disturbance. There are substantial uncertainties in the effects of fire on carbon storage in our simulations. These uncertainties are associated with sparse fire data for northern Eurasia, uncertainty in estimating carbon consumption, and difficulty in verifying assumptions about the representation of fires that occurred prior to the start of the historical fire record. To improve the ability to better predict how fire will influence carbon storage of this region in the future, new analyses of the retrospective role of fire in the carbon dynamics of northern high latitudes should address these uncertainties.
    Description: Funding for this study was provided by grants from the National Science Foundation Biocomplexity Program (ATM-0120468) and Office of Polar Programs (OPP-0531047 and OPP- 0327664); the National Aeronautics and Space Administration Land Cover Land Use Change Program (NAF-11142) and North America Carbon Program (NNG05GD25G); the Bonanza Creek LTER (Long-Term Ecological Research) Program (funded jointly by NSF grant DEB-0423442 and USDA Forest Service, Pacific Northwest Research Station grant PNW01- JV11261952-231); and the U.S. Geological Survey.
    Keywords: Fire emissions ; Ecosystem modeling ; Boreal carbon dynamics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 185
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2003. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 108, C12 (2003): 3384, doi:10.1029/2002JC001347.
    Description: The decade of the 1990s was the warmest decade of the last century, while the year 1998 was the warmest year ever observed by modern techniques, with 9 out of 12 months of the year being the warmest months. Satellite ice cover and surface temperature data, European Centre for Medium-Range Weather Forecasts (wind), and ocean hydrographic data are examined to gain insights into this warming phenomenon. Areas of ice-free water in both western and eastern regions of the Arctic are found to have followed a cyclical pattern with approximately decadal period but with a lag of about 3 years between the eastern and western regions. The pattern was interrupted by unusually large anomalies in 1993 and 1998 in the western region and in 1995 in the eastern region. The area of open water in 1998 was the largest ever observed in the western region and occurred concurrently with large surface temperature anomalies in the area and adjacent regions. This also occurred at a time when the atmospheric circulation changed from predominantly cyclonic in 1996 to anticyclonic in 1997 and 1998. Detailed hydrographic measurements over the same general area in April 1996 and April 1997 indicate a warming and significant freshening in the top layer of the ocean, suggesting increases in ice melt and/or river runoff. Continuous ocean temperature and salinity data from ocean buoys at depths of 8, 45, and 75 m confirm these results and show large interannual changes during the 1996–1998 period. Surface temperature data show a general warming in the region that is highly correlated with observed decline in summer sea ice, while hydrographic data suggest that in 1997 and 1998, the upper part of the ocean was unusually fresh and warm compared to available data between 1956 and 1996.
    Description: Deployments of the IOEB were supported by the Japanese Marine Science and Technology Center (JAMSTEC).
    Keywords: Arctic Sea ice ; Climate change ; Surface temperature ; Wind ; Buoy ; Hydrography
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 186
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 109 (2004): C04011, doi:10.1029/2003JC002154.
    Description: Field measurements of morphology and swash flow during three episodes of beach cusp development indicate that tides modulate the height and cross-shore position of beach cusps. During rising tide, beach cusp height decreases as embayments accrete more than horns and the cross-shore extent of beach cusps decreases. During falling tide, beach cusp height increases as embayments erode more than horns and cross-shore extent increases. A numerical model for beach cusp formation based on self-organization, extended to include the effects of morphological smoothing seaward of the swash front and infiltration into the beach, reproduces the observed spacing, position, and tidal modulation. During rising tide, water particles simulating swash infiltrate, preferentially in embayments, causing enhanced deposition. During falling tide, exfiltration of water particles combined with diversion of swash from horns causes enhanced erosion in embayments. Smoothing of beach morphology in the swash zone seaward of the swash front and in the shallow surf zone accounts for most of the observed tidal modulation, even in the absence of infiltration and exfiltration. Despite the qualitative, and in some cases quantitative, agreement of the model and measurements, the model fails to reproduce observed large deviations of horn orientation from shore normal, some aspects of beach cusp shape, and deviations from the basic tidal modulation, possibly because of the simplified parameterization of cross-shore sediment transport and the neglect of the effects of sea surface gradients on flow.
    Description: Field experiments supported by an Office of Naval Research (ONR) Young Investigator Award (N00014-92-J-1446) and ONR, Coastal Dynamics. Data analysis and numerical simulations supported by an ONR Young Investigator Award and a Navy/ONR Scholar Award (N00014-97-1-0154). Manuscript preparation supported by a Navy/ONR Scholar Award, ONR Coastal Geosciences, the Army Research Office, and the National Ocean Partnership Program. GC also supported by the (New Zealand) Foundation for Research, Science and Technology (contract CO1X0218).
    Keywords: Beach cusp ; Tides ; Infiltration ; Exfiltration ; Erosion
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 187
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2003. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 108, C11 (2003): 8011, doi:10.1029/2002JC001358.
    Description: Water exchange across the tidal-mixing front on the southern flank of Georges Bank (GB) is examined using a two-dimensional (2D) primitive equation ocean model. The model domain features a cross-frontal transect including a June 1999 hydrographic (CTD)/ADCP study made as part of the U.S. GLOBEC Northwest Atlantic/Georges Bank program. The model was initialized with temperature and salinity fields taken on the 15 June 1999 CTD section and run prognostically with tidal forcing, measured winds, and representative surface heat flux. The results show that fluctuations of wind plus tidal mixing can play the following essential role in the short-term transport of water and particles from the stratified region to the mixed region on GB in early summer, when stratification is just developing with a weak thermocline at a depth of about 10 m. First, a passing weather front drives a wind-induced on-bank Ekman transport of the upper part of the water column at the tidal-mixing front and associated particles in the surface mixed layer. Then, when the wind relaxes or changes direction, the water in the on-bank extension of the front (above the thermocline) mixes quickly through enhanced tidal motion in shallower depths of water. As a result, particles that are advected along the extended front stay in the previously well-mixed region of the bank. Surface heating tends to increase the strength of the thermocline and reduce the thickness of the surface mixed layer. This in turn accelerates the on-bank movement of the front under an easterly wind favorable for Ekman transport and thus enhances the on-bank, cross-frontal transport of particles. Since the wind-induced, cross-frontal on-bank transport of water can occur episodically during passages of meteorological fronts, these could produce a larger net cross-frontal flux than that produced by just tidal forcing on equivalent timescales. Therefore wind-induced processes can be important in the on-bank cross-frontal flux of copepods and other zooplankton species that exhibit shallow maxima in their vertical distributions over the southern flank of GB in early summer.
    Description: This research was supported by the U.S. GLOBEC Northwest Atlantic/Georges Bank program through NOAA grants NA56RG0487, NA960P003, and NA960P005 to C. Chen, NOAA support to R. Schlitz, G. R. Lough, K. Smith, and J. Manning, and NSF grants OCE 96-32357, OCE 98-06379, and OCE 02-27679 to R. Beardsley.
    Keywords: Cross-frontal exchange ; Tidal mixing front ; Wind-driven currents
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 188
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2003. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 108, C11 (2003): 8012, doi:10.1029/2002JC001400.
    Description: Data from moored instruments and hydrographic cruises of the U.S. GLOBEC NW Atlantic/Georges Bank program reveal a series of intrusions of high-salinity water extending onto the southern flank of Georges Bank during the spring and summer of 1995. On the basis of the layer of maximum salinity, these intrusions may be divided into three different types: near surface, near bottom, and pycnocline. The water mass and flow structure of all intrusions are highly variable, owing partly to wind-driven motions and partly to meanders and eddies formed along the front of the intruding water. The mooring data of May clearly show the passage of two cyclonic features, each with a core of intruding water. While the intrusions are shown to dominate the flux of high-salinity water onto the southern flank, the data examined offer no evidence that intrusions enhance nutrient concentrations over the southern flank.
    Description: The work carried out at WHOI was supported by the U.S. National Science Foundation under grants OCE-98-06498, OCE-96-32357, OCE98-06397, and OCE02-27679. The effort at the Woods Hole NMFS was funded through a grant from the NOAA Coastal Ocean Program.
    Keywords: Shelf-edge exchange ; Slope water intrusions ; Intrusions onto Georges Bank
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 189
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2003. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 108, C11 (2003): 8008, doi:10.1029/2001JC001245.
    Description: The influence of the diurnal heat flux on summer stratification and residual circulation over Georges Bank was examined using a three-dimensional primitive equation numerical circulation model. For a given spatially uniform and time-varying heat flux the model results show that the surface water is heated much faster on the southern flank than on the northern flank and much faster in the stratified region than in the mixed region. Heating significantly strengthens the tidal mixing front and intensifies the frontward convergence near the surface. As seasonal stratification develops, the location of the tidal mixing front gradually shifts on bank on the southern flank, while remaining almost unchanged on the northern flank. Response of the tidal currents to the diurnal variation in the heat flux varies across Georges Bank. It changes periodically with tidal cycles on the southern flank but is locked to the phase of the eastward tidal current on the northern flank. This phase-lock feature directly contributes to the intensification of the along-bank residual current jet on the northern flank. Diagnostic analysis suggests that this intensification is mainly caused by the heat-enhanced, cross-bank momentum flux. Model-computed variations of near-surface temperature and residual currents are in good agreement with satellite-derived sea surface temperature data and drifter measurements.
    Description: This research was supported by the U.S. GLOBEC Northwest Atlantic/Georges Bank program through NOAA grants NA56RG0487, NA960P003, and NA960P005 to C. Chen, NSF grants OCE 96-32357, OCE 98-06379, and OCE 02-27679 to R. Beardsley, and NOAA grant NA76GP0176 to Peter Franks.
    Keywords: Heat flux ; Tidal mixing front ; Residual current ; Stratification ; Frontward convergence
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 190
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 113 (2008): C07052, doi:10.1029/2007JC004328.
    Description: The tidal flooding/drying process in the Satilla River Estuary was examined using an unstructured-grid finite-volume coastal ocean model (FVCOM). Driven by tidal forcing at the open boundary and river discharge at the upstream end, FVCOM produced realistic tidal flushing in this estuarine tidal-creek intertidal salt-marsh complex, amplitudes and phases of the tidal wave, and salinity observed at mooring sites and along hydrographic transects. The model-predicted residual flow field is characterized by multiscale eddies in the main channel, which are verified by ship-towed ADCP measurements. To examine the impact of complex coastal geometry on water exchange in an estuarine tidal-creek salt-marsh system, FVCOM was compared with our previous structured-grid finite difference Satilla River Estuary model (ECOM-si). The results suggest that by failing to resolve the complex coastal geometry of tidal creeks, barriers and islands, a model can generate unrealistic flow and water exchange and thus predict the wrong dynamics for this estuary. A mass-conservative unstructured-grid model is required to accurately and efficiently simulate tidal flow and flushing in a complex geometrically controlled estuarine dynamical system.
    Description: This research was supported by the Georgia Sea grant (NA26RG0373 and NA66RG0282), the NOAA grant (NA16OP2323), and the NSF grants (OCE0234545, OCE0606928, OCE0712903, OCE0732084, and OCE0726851) for C. Chen, by the Georgia Sea grant (RR746-007/7512067, R/HAB-12-PD, R/HAB-18-PD, RR746-011/7876867), Georgia DNR (RR 100-279-9262764), and NSF grant (OCE-0554674) for C. Li.
    Keywords: Estuary ; Tidal creek ; Salt marsh
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 191
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 112 (2007): C03018, doi:10.1029/2006JC003485.
    Description: An unstructured grid, finite volume, three-dimensional (3-D) primitive equation coastal ocean model (FVCOM) has been developed for the study of coastal ocean and estuarine circulation by Chen et al. (2003a). The finite volume method used in this model combines the advantage of finite element methods for geometric flexibility and finite difference methods for simple discrete computation. Currents, temperature, and salinity are computed using an integral form of the equations, which provides a better representation of the conservative laws for mass, momentum, and heat. Detailed comparisons are presented here of FVCOM simulations with analytical solutions and numerical simulations made with two popular finite difference models (the Princeton Ocean Model and Estuarine and Coastal Ocean Model (ECOM-si)) for the following idealized cases: wind-induced long-surface gravity waves in a circular lake, tidal resonance in rectangular and sector channels, freshwater discharge onto the continental shelf with curved and straight coastlines, and the thermal bottom boundary layer over the slope with steep bottom topography. With a better fit to the curvature of the coastline using unstructured nonoverlapping triangle grid cells, FVCOM provides improved numerical accuracy and correctly captures the physics of tide-, wind-, and buoyancy-induced waves and flows in the coastal ocean. This model is suitable for applications to estuaries, continental shelves, and regional basins that feature complex coastlines and bathymetry.
    Description: This research was supported by the U.S. GLOBEC Northwest Atlantic/Georges Bank program through NSF grants OCE-0234545, OCE-0227679, NOAA grant NA 160P2323, and NSF CoOP grant OCE-0196543 to C. Chen and NSF OCE-0227679 and the WHOI Smith Chair to R. C. Beardsley. H. Huang and Q. Xu were supported by Chen’s Georgia and South Carolina Sea Grant awards NA06RG0029 and NA960P0113. G. Cowles was supported by the SMAST fishery program through NOAA grants DOC/NOAA/NA04NMF4720332 and DOC/NOAA/NA05NMF4721131.
    Keywords: Finite volume model ; Numerical methods ; Coastal ocean
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 192
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 112 (2007): B07317, doi:10.1029/2006JB004608.
    Description: Viscous shear in the asthenosphere accommodates relative motion between Earth's surface plates and underlying mantle, generating lattice-preferred orientation (LPO) in olivine aggregates and a seismically anisotropic fabric. Because this fabric develops with the evolving mantle flow field, observations of seismic anisotropy can constrain asthenospheric flow patterns if the contribution of fossil lithospheric anisotropy is small. We use global viscous mantle flow models to characterize the relationship between asthenospheric deformation and LPO and compare the predicted pattern of anisotropy to a global compilation of observed shear wave splitting measurements. For asthenosphere 〉500 km from plate boundaries, simple shear rotates the LPO toward the infinite strain axis (ISA, the LPO after infinite deformation) faster than the ISA changes along flow lines. Thus we expect the ISA to approximate LPO throughout most of the asthenosphere, greatly simplifying LPO predictions because strain integration along flow lines is unnecessary. Approximating LPO with the ISA and assuming A-type fabric (olivine a axis parallel to ISA), we find that mantle flow driven by both plate motions and mantle density heterogeneity successfully predicts oceanic anisotropy (average misfit 13°). Continental anisotropy is less well fit (average misfit 41°), but lateral variations in lithospheric thickness improve the fit in some continental areas. This suggests that asthenospheric anisotropy contributes to shear wave splitting for both continents and oceans but is overlain by a stronger layer of lithospheric anisotropy for continents. The contribution of the oceanic lithosphere is likely smaller because it is thinner, younger, and less deformed than its continental counterpart.
    Description: NSF grants EAR-0509882 (M.D.B. and C.P.C.), EAR-0609590 (C.P.C.), and EAR- 0215616 (P.G.S.)
    Keywords: Asthenospheric flow ; Lithospheric fabric ; Seismic anisotropy
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/postscript
    Format: application/pdf
    Format: text/plain
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 193
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 113 (2008): C02005, doi:10.1029/2007JC004106.
    Description: A process-oriented model-dye comparison experiment was conducted to examine the ability of a numerical ocean model to simulate the observed movement of dye across the tidal mixing front on the southern flank of Georges Bank during 22–26 May 1999. The experiment was made using the unstructured-grid Finite-Volume Coastal Ocean Model (FVCOM) with varying horizontal resolution. The results indicate that the observed cross-isobath movement of the dye patch was primarily controlled by meso-scale temporal and spatial variability of the water temperature and salinity fields. Onset of vertical stratification tended to slow down an upward stretching of the dye column and trapped the dye within the bottom mixed layer. To reach a convergent numerical solution that reproduced the observed lateral turbulent dispersion of dye, the FVCOM grid required a horizontal resolution of ∼500 m in the dye study region. Within the tidal mixing front of Georges Bank, the movement of the center of the dye patch was mainly driven by the ensemble velocity integrated over the dye volume, with a first-order contribution from vertical shear of the dye's horizontal velocity.
    Description: This research was supported by the U.S. GLOBEC Northwest Atlantic/Georges Bank Program NSF (OCE-0234545; OCE-0227679) and NOAA grants (NA-16OP2323) to Changsheng Chen and Qixchun Xu, NSF grant (OCE-0236270) to Robert Houghton, and the Smith Chair in Coastal Oceanography and NOAA grant (NA-17RJ1223) to R.C. Beardsley. The experiments were conducted using the Linux cluster computers of the Marine Ecosystem Dynamics Modeling Laboratory at the School of Marine Science and Technology, University of Massachusetts- Dartmouth, funded by the SMAST Fishery Program through NOAA grants DOC/NOAA/NA04NMF4720332 and DOC/NOAA/NA05NMF4721131.
    Keywords: Model-dye comparison ; Tidal mixing front ; Lateral diffusion
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 194
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 112 (2007): F03016, doi:10.1029/2006JF000666.
    Description: We employ a numerical model to study the development of sorted bed forms under a variety of hydrodynamic and sedimentary conditions. Results indicate that increased variability in wave height decreases the growth rate of the features and can potentially give rise to complicated, a priori unpredictable, behavior. This happens because the system responds to a change in wave characteristics by attempting to self-organize into a patterned seabed of different geometry and spacing. The new wavelength might not have enough time to emerge before a new change in wave characteristics occurs, leading to less regular seabed configurations. The new seabed configuration is also highly dependent on the preexisting morphology, which further limits the possibility of predicting future behavior. For the same reasons, variability in the mean current magnitude and direction slows down the growth of features and causes patterns to develop that differ from classical sorted bed forms. Spatial variability in grain size distribution and different types of net sediment aggradation/degradation can also result in the development of sorted bed forms characterized by a less regular shape. Numerical simulations qualitatively agree with observed geometry (spacing and height) of sorted bed forms. Also in agreement with observations is that at shallower depths, sorted bed forms are more likely to be affected by changes in the forcing conditions, which might also explain why, in shallow waters, sorted bed forms are described as ephemeral features. Finally, simulations indicate that the different sorted bed form shapes and patterns observed in the field might not necessarily be related to diverse physical mechanisms. Instead, variations in sorted bed form characteristics may result from variations in local hydrodynamic and/or sedimentary conditions.
    Description: G.C., M.O.G., and T.M.H. acknowledge funding from the (New Zealand) Foundation for Research, Science and Technology (contract C01X0401). The National Science Foundation (OCE0452178) supported A.B.M.
    Keywords: Self-organization ; Sorted bed forms ; Numerical modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 195
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2005. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 110 (2005): C02018, doi:10.1029/2004JC002485.
    Description: Fluid flows consistent with low-mode edge waves were evident in video observations of swash motions during a field experiment in which beach cusps developed on an initially smooth beach. As beach cusps grew, energy lying along low-mode dispersion curves increased. The most energetic edge-wave propagation direction changed from upcoast to downcoast as the orientation of the cusp horns rotated. These observations suggest a coupling between morphodynamics and hydrodynamics, and are evidence that beach cusp evolution might control low-mode edge wave dynamics.
    Description: This work was performed while Y. C. was a visiting scientist at NIWA funded by UPC. Y. C. thanks NIWA for its kind hospitality. G. C. is supported by the (New Zealand) Foundation for Research, Science and Technology (contract C01X0401). S. E. was supported by ONR, NSF, and ARO.
    Keywords: Beach ; Swash ; Wave
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 196
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2005. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 110 (2005): C09023, doi:10.1029/2004JC002734.
    Description: The present study investigates the interaction between a self-propagating cyclonic vortex with two right vertical cylinders and determines the conditions for a vortex to bifurcate into two or more vortices. As in previous studies, after the cyclonic vortex came in contact with a cylinder, fluid peeled off the outer edge of the vortex and a so-called “streamer” went around the cylinder in a counterclockwise direction. Under the right conditions, this fluid formed a new cyclonic vortex in the wake of the cylinder, causing bifurcation of the original vortex into two vortices. In some cases, two streamers formed and went around the two cylinders, each forming a new cyclonic vortex. During the experiments, three parameters were varied: G, the separation between the cylinders; d, the diameter of the incident vortex; and y, the distance of the center of the vortex from an axis passing through the center of the gap between the cylinders. The number of vortices generated by the interaction depends on the ratio G/d and on the geometry of the encounter, which is given by the ratio y/g, where g = G/2. An unexpected and revealing result was the formation of a dipole vortex downstream of the two islands for values of −2 〈 y/g 〈 0, 0.25 ≤ G/d ≤ 0.4, and Re G 〉 200, where Re G = U G G/ν is the Reynolds number and U G is the maximum velocity of the vortex fluid in the gap. A possible mechanism is that the flow within the vortex was funneled between the two islands, and provided it had a sufficiently high velocity, a dipole formed, much like water ejected from a circular nozzle generates a dipole ring. The formation of a vortex of opposite sign to the incident vortex (i.e., anticyclonic) is in agreement with recent observations of North Brazil Current (NBC) rings interacting with the islands of Saint Vincent and Barbados in the eastern Caribbean. The passage between the islands of Saint Vincent and Barbados has values of G/d of approximately 0.5; hence the laboratory result suggests that both cyclonic and anticyclonic vortices could form downstream of them.
    Description: Support was given by the National Science Foundation project OCE-0081756.
    Keywords: Mesoscale vortices ; Topography ; Laboratory experiments
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 197
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 109 (2004): C04020, doi:10.1029/2003JC001990.
    Description: Two oceanographic cruises were carried out in the Azores Current/Subtropical Front region in July 1997 and April 1999 to study the seasonal and mesoscale spatial variability in the relationship between the hydrodynamic characteristics of the water column and the distribution of nutrients, phytoplankton biomass, and production. Both the magnitude of chlorophyll-a values and primary production rates as well as their vertical distribution varied sharply associated with subtle changes in seasonal thermal stratification. Successive upwelling and downwelling regions were detected along the track of a cyclonic meander, with maximum ageostrophic vertical velocities of 3 m d−1 and −4 m d−1, respectively, at 375 dbar. Relatively high nitrate concentrations (〉3.5 μM) were found associated with denser waters at the center of the meander, where the deep chlorophyll maximum (DCM) uplifted ~20 dbar. Chlorophyll-a concentrations ranged from 0.1 to 0.4 mg m−3, with slightly higher values (〉0.35 mg m−3) at the northern side of the current. A significant relationship was not detected between the vertical ageostrophic velocity field and nitrate and chlorophyll-a distributions, which were significantly correlated with the depth of the 16°C isotherm. Vertical advective fluxes of nitrate across the base of the DCM were about 2 orders of magnitude higher than vertical diffusive nitrate transport (−6.6 to 3.7 mmol m−2 d−1 versus 0.01 to 0.07 mmol m−2 d−1). Diffusive nitrate fluxes only account for 〈10% of the total primary production rates measured in the region.
    Description: This study was funded by the European Commission under the CANIGO contract MAS3CT960060 and CICYT. B. Mourin˜o was supported by a FPU fellowship from the Ministerio de Educacio´n y Cultura (Spain).
    Keywords: Northeast Atlantic subtropical front ; Mesoscale variability ; Ageostrophic vertical circulation ; Vertical nutrients fluxes ; Phytoplankton biomass and production
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 198
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 109 (2004): C04024, doi:10.1029/2003JC001912.
    Description: Historical hydrographic and current meter data are used to investigate the properties and circulation at the shelf edge of the Alaskan Beaufort Sea. Thirty-three individual cross-sections, spanning the time period 1950 to 1987, are combined in a topographical framework to produce mean vertical hydrographic sections, as well as a section of mean absolute geostrophic velocity referenced using the current meter data. This reveals the presence of a narrow (order 20 km) eastward current, referred to as the Beaufort shelfbreak jet. The jet has three distinct seasonal configurations: In late-spring to late-summer, cold, winter-transformed Bering water is advected in a subsurface current; from mid-summer to early fall a surface intensified current advects predominantly Bering summer water; and from mid-fall to mid-spring, under easterly winds, the jet transports upwelled Atlantic water. The volume transport of the jet represents a significant fraction of the inflowing transport through Bering Strait. While the characteristics and flow of the winter-transformed Bering water vary interannually, this water mass ventilates predominantly the upper halocline.
    Description: This work was supported by the Office of Naval Research under contract N00014-98- 1-0046.
    Keywords: Boundary current ; Shelfbreak processes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 199
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2005. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 110 (2005): C05019, doi:10.1029/2004JC002541.
    Description: Observations of shear waves, alongshore propagating meanders of the mean alongshore current with periods of a few minutes and alongshore wavelengths of a few hundred meters, are compared with model predictions based on numerical solutions of the nonlinear shallow water equations. The model (after Özkan-Haller and Kirby (1999)) assumes alongshore homogeneity and temporally steady wave forcing and neglects wave-current interactions, eddy mixing, and spatial variation of the (nonlinear) bottom drag coefficient. Although the shapes of observed and modeled shear wave velocity spectra differ, and root-mean-square velocity fluctuations agree only to within a factor of about 3, aspects of the cross-shore structure of the observed (∼0.5–1.0 m above the seafloor) and modeled (vertically integrated) shear waves are qualitatively similar. Within the surf zone, where the mean alongshore current (V) is strong and shear waves are energetic, observed and modeled shear wave alongshore phase speeds agree and are close to both V and C lin (the phase speed of linearly unstable modes) consistent with previous results. Farther offshore, where V is weak and observed and modeled shear wave energy levels decay rapidly, modeled and observed C diverge from C lin and are close to the weak alongshore current V. The simulations suggest that the alongshore advection of eddies shed from the strong, sheared flow closer to shore may contribute to the offshore decrease in shear wave phase speeds. Similar to the observations, the modeled cross- and alongshore shear wave velocity fluctuations have approximately equal magnitude, and the modeled vorticity changes sign across the surf zone.
    Description: This research was supported by the Office of Naval Research, the National Oceanographic Partnership Program, and the National Science Foundation.
    Keywords: Shear waves ; Longshore currents ; Surf zone
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 200
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 112 (2007): C04S15, doi:10.1029/2006JC003728.
    Description: The summer circulations and hydrographic fields of the Kara Sea are reconstructed for mean, positive and negative Arctic Oscillation regimes employing a variational data assimilation technique which provides the best fit of reconstructed fields to climatological data and satisfies dynamical and kinematic constraints of a quasi-stationary primitive equation ocean circulation model. The reconstructed circulations agree well with the measurements and are characterized by inflow of 0.63, 0.8, 0.51 Sv through Kara Gate and 1.18, 1.1, 1.12 Sv between Novaya Zemlya and Franz Josef Land, for mean climatologic conditions, positive and negative AO indexes, respectively. The major regions of water outflow for these regimes are the St. Anna Trough (1.17, 1.21, 1.34 Sv) and Vilkitsky/Shokalsky Straits (0.52, 0.7, 0.51 Sv). The optimized velocity pattern for the mean climatological summer reveals a strong anticyclonic circulation in the central part of the Kara Sea (Region of Fresh Water Inflow, ROFI zone) and is confirmed by ADCP surveys and laboratory modeling. This circulation is well pronounced for both high and low AO phases, but in the positive AO phase it is shifted approximately 200 km west relatively to its climatological center. During the negative AO phase the ROFI locaion is close to its climatological position. The results of the variational data assimilation approach were compared with the simulated data from the Hamburg Shelf Ocean Model (HAMSOM) and Naval Postgraduate School 18 km resolution (NPS-18) model to validate these models.
    Description: This research is supported by the Frontier Research System for Global Change, through JAMSTEC, Japan, and by the National Science Foundation Office of Polar Programs (under cooperative agreements OPP-0002239 and OPP-0327664 with the International Arctic Research Center, University of Alaska Fairbanks). The development of the data assimilation system, utilized in this study, was also supported by NSF grant OCE-0118200.
    Keywords: Kara Sea ; Variational approach ; Numerical modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...