ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Analytical chemistry 56 (1984), S. 1432-1436 
    ISSN: 1520-6882
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: From spring 2000 through fall 2001, we measured nitric oxide (NO) and nitrous oxide (N2O) fluxes in two temperate forest sites in Massachusetts, USA that have been treated since 1988 with different levels of nitrogen (N) to simulate elevated rates of atmospheric N deposition. Plots within a pine stand that were treated with either 50 or 150 kg N ha−1 yr−1 above background displayed consistently elevated NO fluxes (100–200 µg N m−2 h−1) compared to control plots, while only the higher N treatment plot within a mixed hardwood stand displayed similarly elevated NO fluxes. Annual NO emissions estimated from monthly sampling accounted for 3.0–3.7% of N inputs to the high-N plots and 8.3% of inputs to the Pine low-N plot. Nitrous oxide fluxes in the N-treated plots were generally 〈 10% of NO fluxes. Net nitrification rates (NRs) and NO production rates measured in the laboratory displayed patterns that were consistent with field NO fluxes. Total N oxide gas flux was positively correlated with contemporaneous measurements of NR and 〈inlineGraphic alt="inline image" href="urn:x-wiley:13541013:GCB0591:GCB_0591_m101" location="equation/GCB_0591_m101.gif"/〉 concentration. Acetylene inhibited both nitrification and NO production, indicating that autotrophic nitrification was responsible for the elevated NO production. Soil pH was negatively correlated with N deposition rate. Low levels (3–11 µg N kg−1) of nitrite (〈inlineGraphic alt="inline image" href="urn:x-wiley:13541013:GCB0591:GCB_0591_m102" location="equation/GCB_0591_m102.gif"/〉) were detected in mineral soils from both sites. Kinetic models describing NO production as a function of the protonated form of 〈inlineGraphic alt="inline image" href="urn:x-wiley:13541013:GCB0591:GCB_0591_m103" location="equation/GCB_0591_m103.gif"/〉 (nitrous acid [HNO2]) adequately described the mineral soil data. The results indicate that atmospheric deposition may generate losses of gaseous NO from forest soils by promoting nitrification, and that the response may vary significantly between forest types under similar climatic regimes. The lowering of pH resulting from nitrification and/or directly from deposition may also play a role by promoting reactions involving HNO2.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology ecology 49 (2004), S. 0 
    ISSN: 1574-6941
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: To determine whether repeated, long-term NH4+ fertilization alters the enzymatic function of the atmospheric CH4 oxidizer community in soil, we examined CH4 uptake kinetics in temperate pine and hardwood forest soils amended with 150 kg N ha−1 y−1 as NH4NO3 for more than a decade. The highest rates of atmospheric CH4 consumption occurred in the upper 5 cm mineral soil of the control plots. In contrast to the results of several previous studies, surface organic soils in the control plots also exhibited high consumption rates. Fertilization decreased in situ CH4 consumption in the pine and hardwood sites relative to the control plots by 86% and 49%, respectively. Fertilization increased net N mineralization and relative nitrification rates and decreased CH4 uptake most dramatically in the organic horizon, which contributed substantially to the overall decrease in field flux rates. In all cases, CH4 oxidation followed Michaelis–Menten kinetics, with apparent Km (Km(app)) values typical of high-affinity soil CH4 oxidizers. Both Km(app) and Vmax(app) were significantly lower in fertilized soils than in unfertilized soils. The physiology of the methane consumer community in the fertilized soils was distinct from short-term responses to NH4+ addition. Whereas the immediate response to NH4+ was an increase in Km(app), resulting from apparent enzymatic substrate competition, the long-term response to fertilization was a community-level shift to a lower Km(app), a possible adaptation to diminish the competitiveness of NH4+ for enzyme active sites.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1939
    Keywords: Key words Brazilian Amazon  ;  Tropical forest  ; Tropical pasture  ;  Nitrification  ;  Nitrogen mineralization
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Previous studies of the effect of tropical forest conversion to cattle pasture on soil N dynamics showed that rates of net N mineralization and net nitrification were lower in pastures compared with the original forest. In this study, we sought to determine the generality of these patterns by examining soil inorganic N concentrations, net mineralization and nitrification rates in 6 forests and 11 pastures 3 years old or older on ultisols and oxisols that encompassed a wide variety of soil textures and spanned a 700-km geographical range in the southwestern Brazilian Amazon Basin state of Rondônia. We sampled each site during October-November and April-May. Forest soils had higher extractable NO3 −-N and total inorganic N concentrations than pasture soils, but substantial NO3 −-N occurred in both forest and pasture soils. Rates of net N mineralization and net nitrification were higher in forest soils. Greater concentrations of soil organic matter in finer textured soils were associated with greater rates of net N mineralization and net nitrification, but this relationship was true only under native forest vegetation; rates were uniformly low in pastures, regardless of soil type or texture. Net N mineralization and net nitrification rates per unit of total soil organic matter showed no pattern across the different forest sites, suggesting that controls of net N mineralization may be broadly similar across a wide range of soil types. Similar reductions in rates of net N transformations in pastures 3 years old or older across a range of textures on these soils suggest that changes to soil N cycling caused by deforestation for pasture may be Basin-wide in extent. Lower net N mineralization and net nitrification rates in established pastures suggest that annual N losses from largely deforested landscapes may be lower than losses from the original forest. Total ecosystem N losses since deforestation are likely to depend on the balance between lower N loss rates from established pastures and the magnitude and duration of N losses that occur in the years immediately following forest clearing.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-1939
    Keywords: Deforestation ; Amazon Basin ; Soil organic matter ; Carbon cycling ; Pastute management
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The clearing of tropical forest for pasture leads to important changes in soil organic carbon (C) stocks and cycling patterns. We used the naturally occurring distribution of13C in soil organic matter (SOM) to examine the roles of forest- and pasture-derived organic matter in the carbon balance in the soils of 3- to 81-year-old pastures created following deforestation in the western Brazilian Amazon Basin state of Rondônia. Different δ13C values of C3 forest-derived C (-28‰) and C4 pasture-derived C (-13‰) allowed determination of the origin of total soil C and soil respiration. The δ13C of total soil increased steadily across ecosystems from -27.8‰ in the forest to -15.8‰ in the 81-year-old pasture and indicated a replacement of forest-derived C with pasture-derived C. The δ13C of respired CO2 increased more rapidly from -26.5‰ in the forest to -17‰ in the 3- to 13-year-old pastures and indicated a faster shift in the origin of more labile SOM. In 3-year-old pasture, soil C derived from pasture grasses made up 69% of respired C but only 17% of total soil C in the top 10 cm. Soils of pastures 5 years old and older had higher total C stocks to 30 cm than the original forest. This occurred because pasture-derived C in soil organic matter increased more rapidly than forest-derived C was lost. The increase of pasture-derived C in soils of young pastures suggests that C inputs derived from pasture grasses play a critical role in development of soil C stocks in addition to fueling microbial respiration. Management practices that promote high grass production will likely result in greater inputs of grass-derived C to pasture soils and will be important for maintaining tropical pasture soil C stocks.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-1939
    Keywords: Global change ; Temperate forests ; Forest soils ; Biogeochemistry ; Global warming
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We conducted several experiments to determine a procedure for uniformly warming soil 5° C above ambient using a buried heating cable. These experiments produced a successful design that could: 1) maintain a temperature difference of 5° C over a wide range of environmental conditions; 2) reduce inter-cable temperture variability to ca. 1.5° C; 3) maintain a temperature difference of 5° C near the edges of the plot; and 4) respond rapidly to changes in the environment. In addition, this design required electrical power only 42% of the time. Preliminary measurements indicate that heating increased CO2 emission by a factor of ca. 1.6 and decreased the C concentration in the O soil horizon by as much as 36%. In addition, warming the soil accelerated the emergence and early growth of the wild lily of the valley (Maianthemum canadense Desf.). The relationship between CO2 flux and soil temperature derived from our soil warming experiment was consistent with data from other hardwood forests around the world. Since the other hardwood forests were warmed naturally, it appears that for soil respiration, warming the soil with buried heating cables differs little from natural, aboveground warming. By warming soil beyond the range of natural variability, a multi-site, long-term soil warming experiment may be valuable in helping us understand how ecosystems will respond to global warming.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Journal of atmospheric chemistry 9 (1989), S. 411-417 
    ISSN: 1573-0662
    Keywords: Trace gases ; carbonyl sulfide ; carbon disulfide ; acid rain ; nitrogen fertilization ; climate change
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract The net fluxes of carbonyl sulfide (COS) and carbon disulfide (CS2) to the atmosphere from nitrogen amended and unamended deciduous and coniferous forest soils were measured during the spring of 1986. We found that emissions of these gases from acidic forest soils were substantially increased after nitrogen fertilization. The total (COS+CS2) emissions were increased by nearly a factor of three in the hardwood stand and were more than doubled in the pine stand. Furthermore, vegetation type appeared to have an influence on which was the dominant sulfur gas released from the forest soils. The added nitrogen caused a dramatic increase in COS emissions from the hardwood stand (a factor of three increase), while CS2 emissions from this site were not affected. We observed the opposite response in the pine stand; that is, the nitrogen fertilization had no affect on COS emissions, but did stimulate CS2 emissions (a factor of more than nine increase).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1573-515X
    Keywords: N2O ; CH4 ; red spruce ; balsam fir ; spruce-fir ; forests ; nitrogen ; deposition ; nitrification ; mineralization ; denitrification
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract We measured the exchange of N2O and CH4 between the atmosphere and soils in 5 spruce-fir stands located along a transect from New York to Maine. Nitrous oxide emissions averaged over the 1990 growing season (May–September) ranged from 2.1 ug N2O-N/m2-hr in New York to 0.4 ug N2O-N/m2-hr in Maine. The westernmost sites, Whiteface Mtn., New York and Mt. Mansfield, Vermont, had the highest nitrogen-deposition, net nitrification and N2O emissions. Soils at all sites were net sinks for atmospheric CH4 Methane uptake averaged over the 1990 growing season ranged from 0.02 mg CH4-C/M2-hr in Maine to 0.05 mg CH4-C/m2-hr in Vermont. Regional differences in CH4 uptake could not be explained by differences in nitrogen-deposition, soil nitrogen dynamics, soil moisture or soil temperature. We estimate that soils in spruce-fir forests at our study sites released ca. 0.02 to 0.08 kg N2O-N/ha and consumed ca. 0.74 to 1.85 kg CH4 C/ha in the 1990 growing season.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1572-9729
    Keywords: Atmospheric chemistry ; carbon dioxide ; disturbance ; hurricane ; methane ; nitrification ; nitrous oxide ; soils ; temperate forest
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Fluxes of nitrous oxide (N2O), carbon dioxide (CO2), and methane (CH4) between soils and the atmosphere were measured monthly for one year in a 77-year-old temperate hardwood forest following a simulated hurricane blowdown. Emissions of CO2 and uptake of CH4 for the control plot were 4.92 MT C ha−1 y−1 and 3.87 kg C ha−1 y−1, respectively, and were not significantly different from the blowdown plot. Annual N2O emissions in the control plot (0.23 kg N ha−1 y−1) were low and were reduced 78% by the blowdown. Net N mineralization was not affected by the blowdown. Net nitrification was greater in the blowdown than in the control, however, the absolute rate of net nitrification, as well as the proportion of mineralized N that was nitrified, remained low. Fluxes of CO2 and CH4 were correlated positively to soil temperature, and CH, uptake showed a negative relationship to soil moisture. Substantial resprouting and leafing out of downed or damaged trees, and increased growth of understory vegetation following the blowdown, were probably responsible for the relatively small differences in soil temperature, moisture, N availability, and net N mineralization and net nitrification between the control and blowdown plots, thus resulting in no change in CO2 or CH4 fluxes, and no increase in N2O emissions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1573-5036
    Keywords: nitrogen ; nitrogen fixation ; stable isotopes ; tropical forest ; tropical pasture
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The natural abundance of 15N was examined in soil profiles from forests and pastures of the Brazilian Amazon Basin to compare tropical forests on a variety of soil types and to investigate changes in the sources of nitrogen to soils following deforestation for cattle ranching. Six sites in the state of Rondônia, two sites in Pará and one in Amazonas were studied. All sites except one were chronosequences and contained native forest and one or more pastures ranging from 2 to 27 years old. Forest soil δ15N values to a depth of 1 m ranged from 8‰ to 23‰ and were higher than values typically found in temperate forests. A general pattern of increasing δ15N values with depth near the soil surface was broadly similar to patterns in other forests but a decrease in δ15N values in many forest profiles between 20 and 40 cm suggests that illuviation of 15N-depleted nitrate may influence total soil δ15N values in deeper soil where total N concentrations are low. In four chronosequences in Rondônia, the δ15N values of surface soil from pastures were lower than in the original forest and δ15N values were increasingly depleted in older pastures. Inputs of atmospheric N by dinitrogen fixation could be an important N source in these pastures. Other pastures in Amazonas and Pará and Rondônia showed no consistent change from forest values. The extent of fractionation that leads to 15N enrichment in soils was broadly similar over a wide range of soil textures and indicated that similar processes control N fractionation and loss under tropical forest over a broad geographic region. Forest δ15N profiles were consistent with conceptual models that explain enrichment of soil δ15N values by selective loss of 14N during nitrification and denitrification.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...