ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (1,462)
  • Institut für Meereskunde  (964)
  • Nature Research  (498)
  • 101
    Publication Date: 2024-02-07
    Description: In the deep ocean symbioses between microbes and invertebrates are emerging as key drivers of ecosystem health and services. We present a large-scale analysis of microbial diversity in deep-sea sponges (Porifera) from scales of sponge individuals to ocean basins, covering 52 locations, 1077 host individuals translating into 169 sponge species (including understudied glass sponges), and 469 reference samples, collected anew during 21 ship-based expeditions. We demonstrate the impacts of the sponge microbial abundance status, geographic distance, sponge phylogeny, and the physical-biogeochemical environment as drivers of microbiome composition, in descending order of relevance. Our study further discloses that fundamental concepts of sponge microbiology apply robustly to sponges from the deep-sea across distances of 〉10,000 km. Deep-sea sponge microbiomes are less complex, yet more heterogeneous, than their shallow-water counterparts. Our analysis underscores the uniqueness of each deep-sea sponge ground based on which we provide critical knowledge for conservation of these vulnerable ecosystems.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 102
    Publication Date: 2024-02-07
    Description: The distributions of dissolved O2 and CO2 have not previously been systematically compared across the global surface ocean, despite their significance for life and climate. Here we analyze carbon dioxide and oxygen concentrations relative to saturation (equilibrium with the atmosphere) in surface waters, using two large datasets (ship-collected and float-collected data). When applied to a high-quality global ship-collected dataset, CO2 and O2 concentrations relative to saturation exhibit large seasonal and geographic variations. However, linear fits of CO2 and O2 deviations from saturation (ΔCO2 against ΔO2) yield y-intercepts close to zero, which suggests a requirement for data validity. We utilize this finding to investigate the accuracy of carbonate system data from biogeochemical-Argo floats. We find significant discrepancies in ΔCO2-ΔO2 y-intercepts compared to the global reference, implying overestimations of float-based CO2 release in the Southern Ocean. We conclude that this technique can be applied to data from autonomous platforms for quality assessment.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 103
    Publication Date: 2024-02-07
    Description: Northern Hemisphere (NH) climate has experienced various coherent wintertime multidecadal climate trends in stratosphere, troposphere, ocean, and cryosphere. However, the overall mechanistic framework linking these trends is not well established. Here we show, using long-term transient forced coupled climate simulation, that large parts of the coherent NH-multidecadal changes can be understood within a damped coupled stratosphere/troposphere/ocean-oscillation framework. Wave-induced downward propagating positive stratosphere/troposphere-coupled Northern Annular Mode (NAM) and associated stratospheric cooling initiate delayed thermohaline strengthening of Atlantic overturning circulation and extratropical Atlantic-gyres. These increase the poleward oceanic heat transport leading to Arctic sea-ice melting, Arctic warming amplification, and large-scale Atlantic warming, which in turn initiates wave-induced downward propagating negative NAM and stratospheric warming and therefore reverse the oscillation phase. This coupled variability improves the performance of statistical models, which project further weakening of North Atlantic Oscillation, North Atlantic cooling and hiatus in wintertime North Atlantic-Arctic sea-ice and global surface temperature just like the 1950s-1970s.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 104
    Publication Date: 2024-02-07
    Description: The stratified Chilean Comau Fjord sustains a dense population of the cold-water coral (CWC) Desmophyllum dianthus in aragonite supersaturated shallow and aragonite undersaturated deep water. This provides a rare opportunity to evaluate CWC fitness trade-offs in response to physico-chemical drivers and their variability. Here, we combined year-long reciprocal transplantation experiments along natural oceanographic gradients with an in situ assessment of CWC fitness. Following transplantation, corals acclimated fast to the novel environment with no discernible difference between native and novel (i.e. cross-transplanted) corals, demonstrating high phenotypic plasticity. Surprisingly, corals exposed to lowest aragonite saturation (omega(arag) 〈 1) and temperature (T 〈 12.0 degrees C), but stable environmental conditions, at the deep station grew fastest and expressed the fittest phenotype. We found an inverse relationship between CWC fitness and environmental variability and propose to consider the high frequency fluctuations of abiotic and biotic factors to better predict the future of CWCs in a changing ocean. The cold-water coral Desmophyllum dianthus benefits from stable environmental conditions in deep waters of Comau Fjord (Chile) and is able to acclimatise quickly to new environmental conditions after transplantation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 105
    Publication Date: 2024-02-07
    Description: Millions of tons of riverine plastic waste enter the ocean via estuaries annually. The plastics accumulate, fragment, mix and interact with organisms in these dynamic systems, but such processes have received limited attention relative to open-ocean sites. In this Perspective, we discuss the occurrence and convergence of microplastics at estuarine fronts, focusing on their interactions with physical, geochemical and biological processes. Microplastic transformation can be enhanced within frontal systems owing to strong turbulence and interactions with sediment and biological particles, exacerbating the potential ecosystem impacts. The formation of microplastic hotspots at estuarine fronts could be a target for future plastic pollution mitigation efforts. Knowledge of the mechanics of plastic dispersal, accumulation and fate in frontal zones will, in turn, improve our understanding of plastic waste along the land–sea aquatic continuum.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 106
    Publication Date: 2024-02-07
    Description: Several ocean Western Boundary Currents (WBCs) encounter a lateral gap along their path. Examples are the Kuroshio Current penetrating into the South China Sea through the Luzon Strait and the Gulf of Mexico Loop Current leaping from the Yucatan peninsula to Florida as part of the Gulf Stream system. Here, we present results on WBC relevant flows, generated in the world’s largest rotating platform, where the Earth’s sphericity necessary to support WBCs is realized by an equivalent topographic effect. The fluid is put in motion by a pump system, which produces a current that is stationary far from the gap. When the jet reaches the gap entrance, time-dependent patterns with complex spatial structures appear, with the jet leaking, leaping or looping through the gap. The occurrence of these intrinsic self-sustained periodic or aperiodic oscillations depending on current intensity is well known in nonlinear dynamical systems theory and occurs in many real systems. It has been observed here for the first time in real rotating fluid flows and is thought to be highly relevant to explain low-frequency variability in ocean WBCs.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 107
    Publication Date: 2024-02-07
    Description: The Atlantic Meridional Overturning Circulation (AMOC) is a key component of the climate through its transport of heat in the North Atlantic Ocean. Decadal changes in the AMOC, whether through internal variability or anthropogenically forced weakening, therefore have wide-ranging impacts. In this Review, we synthesize the understanding of contemporary decadal variability in the AMOC, bringing together evidence from observations, ocean reanalyses, forced models and AMOC proxies. Since 1980, there is evidence for periods of strengthening and weakening, although the magnitudes of change (5–25%) are uncertain. In the subpolar North Atlantic, the AMOC strengthened until the mid-1990s and then weakened until the early 2010s, with some evidence of a strengthening thereafter; these changes are probably linked to buoyancy forcing related to the North Atlantic Oscillation. In the subtropics, there is some evidence of the AMOC strengthening from 2001 to 2005 and strong evidence of a weakening from 2005 to 2014. Such large interannual and decadal variability complicates the detection of ongoing long-term trends, but does not preclude a weakening associated with anthropogenic warming. Research priorities include developing robust and sustainable solutions for the long-term monitoring of the AMOC, observation–modelling collaborations to improve the representation of processes in the North Atlantic and better ways to distinguish anthropogenic weakening from internal variability.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 108
    Publication Date: 2024-02-07
    Description: During Earth’s history, geosphere-biosphere interactions were often determined by momentary, catastrophic changes such as large explosive volcanic eruptions. The Miocene ignimbrite flare-up in the Pannonian Basin, which is located along a complex convergent plate boundary between Europe and Africa, provides a superb example of this interaction. In North Hungary, the famous Ipolytarnóc Fossil Site, often referred to as “ancient Pompeii”, records a snapshot of rich Early Miocene life buried under thick ignimbrite cover. Here, we use a multi-technique approach to constrain the successive phases of a catastrophic silicic eruption (VEI ≥ 7) dated at 17.2 Ma. An event-scale reconstruction shows that the initial PDC phase was phreatomagmatic, affecting ≥ 1500 km2 and causing the destruction of an interfingering terrestrial–intertidal environment at Ipolytarnóc. This was followed by pumice fall, and finally the emplacement of up to 40 m-thick ignimbrite that completely buried the site. However, unlike the seemingly similar AD 79 Vesuvius eruption that buried Pompeii by hot pyroclastic density currents, the presence of fallen but uncharred tree trunks, branches, and intact leaves in the basal pyroclastic deposits at Ipolytarnóc as well as rock paleomagnetic properties indicate a low-temperature pyroclastic event, that superbly preserved the coastal habitat, including unique fossil tracks.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 109
    Publication Date: 2024-02-07
    Description: Landslide-dams, which are often transient, can strongly affect the geomorphology, and sediment and geochemical fluxes, within subaerial fluvial systems. The potential occurrence and impact of analogous landslide-dams in submarine canyons has, however, been difficult to determine due to a scarcity of sufficiently time-resolved observations. Here we present repeat bathymetric surveys of a major submarine canyon, the Congo Canyon, offshore West Africa, from 2005 and 2019. We show how an ~0.09 km3 canyon-flank landslide dammed the canyon, causing temporary storage of a further ~0.4 km3 of sediment, containing ~5 Mt of primarily terrestrial organic carbon. The trapped sediment was up to 150 m thick and extended 〉26 km up-canyon of the landslide-dam. This sediment has been transported by turbidity currents whose sediment load is trapped by the landslide-dam. Our results suggest canyon-flank collapses can be important controls on canyon morphology as they can generate or contribute to the formation of meander cut-offs, knickpoints and terraces. Flank collapses have the potential to modulate sediment and geochemical fluxes to the deep sea and may impact efficiency of major submarine canyons as transport conduits and locations of organic carbon sequestration. This has potential consequences for deep-sea ecosystems that rely on organic carbon transported through submarine canyons.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 110
    Publication Date: 2024-02-07
    Description: The Last Interglacial (~129,000–116,000 years ago) is the most recent geologic period with a warmer-than-present climate. Proxy-based temperature reconstructions from this interval can help contextualize natural climate variability in our currently warming world, especially if they can define changes on decadal timescales. Here, we established a ~4.800-year-long record of sea surface temperature (SST) variability from the eastern Mediterranean Sea at 1–4-year resolution by applying mass spectrometry imaging of long-chain alkenones to a finely laminated organic-matter-rich sapropel deposited during the Last Interglacial. We observe the highest amplitude of decadal variability in the early stage of sapropel deposition, plausibly due to reduced vertical mixing of the highly stratified water column. With the subsequent reorganization of oceanographic conditions in the later stage of sapropel deposition, when SST forcing resembled the modern situation, we observe that the maximum amplitude of reconstructed decadal variability did not exceed the range of the recent period of warming climate. The more gradual, centennial SST trends reveal that the maximal centennial scale SST increase in our Last Interglacial record is below the projected temperature warming in the twenty-first century.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 111
    Publication Date: 2024-02-07
    Description: Iron (Fe) is an essential trace element for life. In the ocean, Fe can be exceptionally scarce and thus biolimiting or extremely enriched causing microbial stress. The ability of hydrothermal plume microbes to counteract unfavorable Fe-concentrations up to 10 mM is investigated through experiments. While Campylobacterota (Sulfurimonas) are prominent in a diverse community at low to intermediate Fe-concentrations, the highest 10 mM Fe-level is phylogenetically less diverse and dominated by the SUP05 clade (Gammaproteobacteria), a species known to be genetically well equipped to strive in high-Fe environments. In all incubations, Fe-binding ligands were produced in excess of the corresponding Fe-concentration level, possibly facilitating biological Fe-uptake in low-Fe incubations and detoxification in high-Fe incubations. The diversity of Fe-containing formulae among dissolved organics (SPE-DOM) decreased with increasing Fe-concentration, which may reflect toxic conditions of the high-Fe treatments. A DOM-derived degradation index (IDEG) points to a degradation magnitude (microbial activity) that decreases with Fe and/or selective Fe-DOM coagulation. Our results show that some hydrothermal microbes (especially Gammaproteobacteria) have the capacity to thrive even at unfavorably high Fe-concentrations. These ligand-producing microbes could hence play a key role in keeping Fe in solution, particularly in environments, where Fe precipitation dominates and toxic conditions prevail.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 112
    Publication Date: 2024-02-07
    Description: Quantifying past oxygen concentrations in oceans is crucial to improving understanding of current global ocean deoxygenation. Here, we use a record of pore density of the epibenthic foraminifer Planulina limbata from the Peruvian Oxygen Minimum Zone to reconstruct oxygen concentrations in bottom waters from the Last Glacial Maximum to the Late Holocene at 17.5°S about 500 meters below the sea surface. We found that oxygen levels were 40% lower during the Last Glacial Maximum than during the Late Holocene (about 6.7 versus 11.1 µmol/kg, respectively). A comparison with other reconstructions of oxygen concentrations in the region reveals a shallow Oxygen Minimum Zone during the Last Glacial Maximum that was similar in water depth and extent but weaker than during the Late Holocene. Increased glacial oxygen concentrations are probably related to lower temperatures (higher oxygen solubility), decreased nutrient and increased oxygen supply by source waters, and a decrease in coastal upwelling.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 113
    Publication Date: 2024-02-07
    Description: Nitrogen fixers, or diazotrophs, play a key role in the nitrogen and carbon cycle of the world oceans. Diazotrophs are capable of utilising atmospheric dinitrogen which is a competitive advantage over generally faster growing ordinary phytoplankton in nitrogen-depleted conditions in the sun-lit surface ocean. In this study we argue that additional competitive advantages must be at play in order to explain the dynamics and distribution of diazotrophs in the global oceans. Backed by growing published evidence we test the effects of preferential grazing (where zooplankton partly avoids diazotrophs) and high-affinity diazotrophic phosphorus uptake in an Earth System Model of intermediate complexity. Our results illustrate that these fundamentally different model assumptions result in a very similar match to observation-based estimates of nitrogen fixation while, at the same time, they imply very different trajectories into our warming future. The latter applies to biomass, fixation rates as well as to the ratio of the two. We conclude that a more comprehensive understanding of the competition between ordinary and diazotrophic phytoplankton will reduce uncertainties in model-based projections of the oceanic N cycle.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 114
    Publication Date: 2024-02-07
    Description: In late summer, massive blooms and surface scums of cyanobacteria emerge regularly in the Baltic Sea. The bacteria can produce toxins and add bioavailable nitrogen fixed from atmospheric nitrogen to an already over-fertilized system. This counteracts management efforts targeted at improving water quality. Despite their critical role, the controls on cyanobacteria blooms are not comprehensively understood yet. This limits the usability of models-based bloom forecasts and projections into our warming future. Here we add to the discussion by combining, for the first time, satellite estimates of cyanobacteria blooms with output of a high-resolution general ocean circulation model and in-situ nutrient observations. We retrace bloom origins and conditions by calculating the trajectories of respective water parcels backwards in time. In an attempt to identify drivers of bloom development, we find that blooms originate and manifest themselves predominantly offshore where conditions are more nutrient-depleted compared to more coastal environments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 115
    Publication Date: 2024-02-07
    Description: Deep-sea microbial communities are exposed to high-pressure conditions, which has a variable impact on prokaryotes depending on whether they are piezophilic (that is, pressure-loving), piezotolerant or piezosensitive. While it has been suggested that elevated pressures lead to higher community-level metabolic rates, the response of these deep-sea microbial communities to the high-pressure conditions of the deep sea is poorly understood. Based on microbial activity measurements in the major oceanic basins using an in situ microbial incubator, we show that the bulk heterotrophic activity of prokaryotic communities becomes increasingly inhibited at higher hydrostatic pressure. At 4,000 m depth, the bulk heterotrophic prokaryotic activity under in situ hydrostatic pressure was about one-third of that measured in the same community at atmospheric pressure conditions. In the bathypelagic zone—between 1,000 and 4,000 m depth—~85% of the prokaryotic community was piezotolerant and ~5% of the prokaryotic community was piezophilic. Despite piezosensitive-like prokaryotes comprising only ~10% (mainly members of Bacteroidetes, Alteromonas) of the deep-sea prokaryotic community, the more than 100-fold metabolic activity increase of these piezosensitive prokaryotes upon depressurization leads to high apparent bulk metabolic activity. Overall, the heterotrophic prokaryotic activity in the deep sea is likely to be substantially lower than hitherto assumed, with major impacts on the oceanic carbon cycling.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 116
    Publication Date: 2024-02-07
    Description: Ice core and marine archives provide detailed quantitative records of last glacial climate changes, whereas comparable terrestrial records from the mid-latitudes remain scarce. Here we quantify warm season land-surface temperatures and precipitation over millennial timescales for central Europe for the period spanning 45,000–22,000 years before present that derive from two temporally overlapping loess-palaeosol-sequences, dated at high resolution by radiocarbon on earthworm calcite granules. Interstadial temperatures were 1–4 °C warmer than stadial climate, a temperature difference which is strongly attenuated compared to Greenland records. We show that climate in the Rhine Valley was significantly cooler during the warm season and overall drier with annual precipitation values reduced by up to 70% compared to the present day. We combine quantitative estimates with mesoscale wind and moisture transport modelling demonstrating that this region was dominated by westerlies and thereby inextricably linked to North Atlantic climate forcing, although ameliorated.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Format: other
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 117
    Publication Date: 2024-02-07
    Description: Oceanic crust forms at mid-ocean spreading centres through a combination of magmatic and tectonic processes, with the magmatic processes creating two distinct layers: the upper and the lower crust. While the upper crust is known to form from lava flows and basaltic dykes based on geophysical and drilling results, the formation of the gabbroic lower crust is still debated. Here we perform a full waveform inversion of wide-angle seismic data from relatively young (7–12-Myr-old) crust formed at the slow-spreading Mid-Atlantic Ridge. The seismic velocity model reveals alternating, 400–500 m thick, high- and low-velocity layers with ±200 m s−1 velocity variations, below ~2 km from the oceanic basement. The uppermost low-velocity layer is consistent with hydrothermal alteration, defining the base of extensive hydrothermal circulation near the ridge axis. The underlying layering supports that the lower crust is formed through the intrusion of melt as sills at different depths, which cool and crystallize in situ. The layering extends up to 5–15 km distance along the seismic profile, covering 300,000–800,000 years, suggesting that this form of lower crustal accretion is a stable process.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 118
    Publication Date: 2024-02-07
    Description: Marine sponges host a wide diversity of microorganisms, which have versatile modes of carbon and energy metabolism. In this study we describe the major lithoheterotrophic and autotrophic processes in 21 microbial sponge-associated phyla using novel and existing genomic and transcriptomic datasets. We show that the main microbial carbon fixation pathways in sponges are the Calvin–Benson–Bassham cycle (energized by light in Cyanobacteria, by sulfur compounds in two orders of Gammaproteobacteria, and by a wide range of compounds in filamentous Tectomicrobia), the reductive tricarboxylic acid cycle (used by Nitrospirota), and the 3-hydroxypropionate/4-hydroxybutyrate cycle (active in Thaumarchaeota). Further, we observed that some sponge symbionts, in particular Acidobacteria, are capable of assimilating carbon through anaplerotic processes. The lithoheterotrophic lifestyle was widespread and CO oxidation is the main energy source for sponge lithoheterotrophs. We also suggest that the molybdenum-binding subunit of dehydrogenase (encoded by coxL) likely evolved to benefit also organoheterotrophs that utilize various organic substrates. Genomic potential does not necessarily inform on actual contribution of autotrophs to light and dark carbon budgets. Radioisotope assays highlight variability in the relative contributions of photo- and chemoautotrophs to the total carbon pool across different sponge species, emphasizing the importance of validating genomic potential with physiology experimentation.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 119
    Publication Date: 2024-02-07
    Description: The discovery of atmospheric micro(nano)plastic transport and ocean–atmosphere exchange points to a highly complex marine plastic cycle, with negative implications for human and ecosystem health. Yet, observations are currently limited. In this Perspective, we quantify the processes and fluxes of the marine-atmospheric micro(nano)plastic cycle, with the aim of highlighting the remaining unknowns in atmospheric micro(nano)plastic transport. Between 0.013 and 25 million metric tons per year of micro(nano)plastics are potentially being transported within the marine atmosphere and deposited in the oceans. However, the high uncertainty in these marine-atmospheric fluxes is related to data limitations and a lack of study intercomparability. To address the uncertainties and remaining knowledge gaps in the marine-atmospheric micro(nano)plastic cycle, we propose a future global marine-atmospheric micro(nano)plastic observation strategy, incorporating novel sampling methods and the creation of a comparable, harmonized and global data set. Together with long-term observations and intensive investigations, this strategy will help to define the trends in marine-atmospheric pollution and any responses to future policy and management actions.
    Type: Article , PeerReviewed
    Format: other
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 120
    Publication Date: 2024-02-07
    Description: Ocean acidification is a threat to deep-sea corals and could lead to dramatic and rapid loss of the reef framework habitat they build. Weakening of structurally critical parts of the coral reef framework can lead to physical habitat collapse on an ecosystem scale, reducing the potential for biodiversity support. The mechanism underpinning crumbling and collapse of corals can be described via a combination of laboratory-scale experiments and mathematical and computational models. We synthesise data from electron back-scatter diffraction, micro-computed tomography, and micromechanical experiments, supplemented by molecular dynamics and continuum micromechanics simulations to predict failure of coral structures under increasing porosity and dissolution. Results reveal remarkable mechanical properties of the building material of cold-water coral skeletons of 462 MPa compressive strength and 45-67 GPa stiffness. This is 10 times stronger than concrete, twice as strong as ultrahigh performance fibre reinforced concrete, or nacre. Contrary to what would be expected, CWCs retain the strength of their skeletal building material despite a loss of its stiffness even when synthesised under future oceanic conditions. As this is on the material length-scale, it is independent of increasing porosity from exposure to corrosive water or bioerosion. Our models then illustrate how small increases in porosity lead to significantly increased risk of crumbling coral habitat. This new understanding, combined with projections of how seawater chemistry will change over the coming decades, will help support future conservation and management efforts of these vulnerable marine ecosystems by identifying which ecosystems are at risk and when they will be at risk, allowing assessment of the impact upon associated biodiversity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 121
    Publication Date: 2024-02-07
    Description: Microbial predators such as choanoflagellates are key players in ocean food webs. Choanoflagellates, which are the closest unicellular relatives of animals, consume bacteria and also exhibit marked biological transitions triggered by bacterial compounds, yet their native microbiomes remain uncharacterized. Here we report the discovery of a ubiquitous, uncultured bacterial lineage we name Candidatus Comchoanobacterales ord. nov., related to the human pathogen Coxiella and physically associated with the uncultured marine choanoflagellate Bicosta minor. We analyse complete ‘Comchoano’ genomes acquired after sorting single Bicosta cells, finding signatures of obligate host-dependence, including reduction of pathways encoding glycolysis, membrane components, amino acids and B-vitamins. Comchoano encode the necessary apparatus to import energy and other compounds from the host, proteins for host-cell associations and a type IV secretion system closest to Coxiella’s that is expressed in Pacific Ocean metatranscriptomes. Interactions between choanoflagellates and their microbiota could reshape the direction of energy and resource flow attributed to microbial predators, adding complexity and nuance to marine food webs.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 122
    Publication Date: 2024-02-07
    Description: Global biodiversity loss and mass extinction of species are two of the most critical environmental issues the world is currently facing, resulting in the disruption of various ecosystems central to environmental functions and human health. Microbiome-targeted interventions, such as probiotics and microbiome transplants, are emerging as potential options to reverse deterioration of biodiversity and increase the resilience of wildlife and ecosystems. However, the implementation of these interventions is urgently needed. We summarize the current concepts, bottlenecks and ethical aspects encompassing the careful and responsible management of ecosystem resources using the microbiome (termed microbiome stewardship) to rehabilitate organisms and ecosystem functions. We propose a real-world application framework to guide environmental and wildlife probiotic applications. This framework details steps that must be taken in the upscaling process while weighing risks against the high toll of inaction. In doing so, we draw parallels with other aspects of contemporary science moving swiftly in the face of urgent global challenges.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 123
    Publication Date: 2024-02-07
    Description: Climate change is impacting virtually all marine life. Adaptation strategies will require a robust understanding of the risks to species and ecosystems and how those propagate to human societies. We develop a unified and spatially explicit index to comprehensively evaluate the climate risks to marine life. Under high emissions (SSP5-8.5), almost 90% of similar to 25,000 species are at high or critical risk, with species at risk across 85% of their native distributions. One tenth of the ocean contains ecosystems where the aggregated climate risk, endemism and extinction threat of their constituent species are high. Climate change poses the greatest risk for exploited species in low-income countries with a high dependence on fisheries. Mitigating emissions (SSP1-2.6) reduces the risk for virtually all species (98.2%), enhances ecosystem stability and disproportionately benefits food-insecure populations in low-income countries. Our climate risk assessment can help prioritize vulnerable species and ecosystems for climate-adapted marine conservation and fisheries management efforts.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 124
    facet.materialart.
    Unknown
    Nature Research
    Publication Date: 2024-02-07
    Description: The 2021 Nobel Prize in Physics recognized the importance of climate modeling and its role in explaining anthropogenic effects on climate change and global warming. To further understand our Earth’s climates, computational models pose new challenges to account for various complexities.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 125
    Publication Date: 2024-02-07
    Description: Mapping and monitoring of seafloor habitats are key tasks for fully understanding ocean ecosystems and resilience, which contributes towards sustainable use of ocean resources. Habitat mapping relies on seafloor classification typically based on acoustic methods, and ground truthing through direct sampling and optical imaging. With the increasing capabilities to record high-resolution underwater images, manual approaches for analyzing these images to create seafloor classifications are no longer feasible. Automated workflows have been proposed as a solution, in which algorithms assign pre-defined seafloor categories to each image. However, in order to provide consistent and repeatable analysis, these automated workflows need to address e.g., underwater illumination artefacts, variances in resolution and class-imbalances, which could bias the classification. Here, we present a generic implementation of an Automated and Integrated Seafloor Classification Workflow (AI-SCW). The workflow aims to classify the seafloor into habitat categories based on automated analysis of optical underwater images with only minimal amount of human annotations. AI-SCW incorporates laser point detection for scale determination and color normalization. It further includes semi-automatic generation of the training data set for fitting the seafloor classifier. As a case study, we applied the workflow to an example seafloor image dataset from the Belgian and German contract areas for Manganese-nodule exploration in the Pacific Ocean. Based on this, we provide seafloor classifications along the camera deployment tracks, and discuss results in the context of seafloor multibeam bathymetry. Our results show that the seafloor in the Belgian area predominantly comprises densely distributed nodules, which are intermingled with qualitatively larger-sized nodules at local elevations and within depressions. On the other hand, the German area primarily comprises nodules that only partly cover the seabed, and these occur alongside turned-over sediment (artificial seafloor) that were caused by the settling plume following a dredging experiment conducted in the area.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 126
    Publication Date: 2024-02-07
    Description: How fast the Northern Hemisphere (NH) forest biome tracks strongly warming climates is largely unknown. Regional studies reveal lags between decades and millennia. Here we report a conundrum: Deglacial forest expansion in the NH extra-tropics occurs approximately 4000 years earlier in a transient MPI-ESM1.2 simulation than shown by pollen-based biome reconstructions. Shortcomings in the model and the reconstructions could both contribute to this mismatch, leaving the underlying causes unresolved. The simulated vegetation responds within decades to simulated climate changes, which agree with pollen-independent reconstructions. Thus, we can exclude climate biases as main driver for differences. Instead, the mismatch points at a multi-millennial disequilibrium of the NH forest biome to the climate signal. Therefore, the evaluation of time-slice simulations in strongly changing climates with pollen records should be critically reassessed. Our results imply that NH forests may be responding much slower to ongoing climate changes than Earth System Models predict.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 127
    Publication Date: 2024-02-07
    Description: Paleotemperature proxy data form the cornerstone of paleoclimate research and are integral to understanding the evolution of the Earth system across the Phanerozoic Eon. Here, we present PhanSST, a database containing over 150,000 data points from five proxy systems that can be used to estimate past sea surface temperature. The geochemical data have a near-global spatial distribution and temporally span most of the Phanerozoic. Each proxy value is associated with consistent and queryable metadata fields, including information about the location, age, and taxonomy of the organism from which the data derive. To promote transparency and reproducibility, we include all available published data, regardless of interpreted preservation state or vital effects. However, we also provide expert-assigned diagenetic assessments, ecological and environmental flags, and other proxy-specific fields, which facilitate informed and responsible reuse of the database. The data are quality control checked and the foraminiferal taxonomy has been updated. PhanSST will serve as a valuable resource to the paleoclimate community and has myriad applications, including evolutionary, geochemical, diagenetic, and proxy calibration studies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 128
    Publication Date: 2024-02-07
    Description: Salt marshes provide wave and flow attenuation, making them attractive for coastal protection. It is necessary to predict their coastal protection capacity in the future, when climate change will increase hydrodynamic forcing and environmental parameters such as water temperature and CO2 content. We exposed the European salt marsh species Spartina anglica and Elymus athericus to enhanced water temperature (+ 3°) and CO2 (800 ppm) levels in a mesocosm experiment for 13 weeks in a full factorial design. Afterwards, the effect on biomechanic vegetation traits was assessed. These traits affect the interaction of vegetation with hydrodynamic forcing, forming the basis for wave and flow attenuation. Elymus athericus did not respond to any of the treatments suggesting that it is insensitive to such future climate changes. Spartina anglica showed an increase in diameter and flexural rigidity, while Young’s bending modulus and breaking force did not differ between treatments. Despite some differences between the future climate scenario and present conditions, all values lie within the natural trait ranges for the two species. Consequently, this mesocosm study suggests that the capacity of salt marshes to provide coastal protection is likely to remain constantly high and will only be affected by future changes in hydrodynamic forcing.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 129
    Publication Date: 2024-02-07
    Description: The ocean has recently taken centre stage in the global geopolitical landscape. Despite rising challenges to the effectiveness of multilateralism, attention to ocean issues appears as an opportunity to co-create pathways to ocean sustainability at multiple levels. The ocean science community, however, is not sufficiently well organised to advance these pathways and provide policy input. The Intergovernmental Panel on Climate Change and the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services demonstrate how knowledge consensus and integration have been instrumental in charting global pathways and eliciting commitments to address, respectively, climate change and biodiversity loss. An equally impactful global platform with a thematic focus on ocean sustainability is needed. Here we introduce the International Panel for Ocean Sustainability (IPOS) as a coordinating mechanism to integrate knowledge systems to forge a bridge across ocean science-policy divides collectively. The IPOS will enrich the global policy debate in the Ocean Decade and support a shift toward ocean sustainability.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 130
    Publication Date: 2024-02-07
    Description: Here we show how major rivers can efficiently connect to the deep-sea, by analysing the longest runout sediment flows (of any type) yet measured in action on Earth. These seafloor turbidity currents originated from the Congo River-mouth, with one flow travelling 〉1,130 km whilst accelerating from 5.2 to 8.0 m/s. In one year, these turbidity currents eroded 1,338-2,675 [〉535-1,070] Mt of sediment from one submarine canyon, equivalent to 19–37 [〉7–15] % of annual suspended sediment flux from present-day rivers. It was known earthquakes trigger canyon-flushing flows. We show river-floods also generate canyon-flushing flows, primed by rapid sediment-accumulation at the river-mouth, and sometimes triggered by spring tides weeks to months post-flood. It is demonstrated that strongly erosional turbidity currents self-accelerate, thereby travelling much further, validating a long-proposed theory. These observations explain highly-efficient organic carbon transfer, and have important implications for hazards to seabed cables, or deep-sea impacts of terrestrial climate change.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 131
    Publication Date: 2024-02-07
    Description: The eastern Clarion Clipperton Fracture Zone (CCZ) is a heterogeneous abyssal environment harbouring relatively low abundances of highly diverse megafauna communities. Potential future mining of polymetallic nodules threatens these benthic communities and calls for detailed spatial investigation of megafauna. Based on the predicted probability of occurrence of 68 megafauna morphotypes, a seabed area extending over 62,000 km 2 was divided into three assemblages covering an eastern plain area, a deeper western plain area and an area covering both seamount and abyssal hill sites. Richness, estimated as the sum of morphotypes with a predicted probability of occurrence larger than 0.5, amounts to 15.4 of 68 morphotypes. Highest richness was predicted at seamount sites, and lowest richness in the western part of the study area. Combining the predicted probability of megafauna occurrences with bathymetric variables, two seamount habitats and two plain habitats could be defined. One of these megafauna plain habitats corresponds with contiguous nodule fields of high abundance that may be targeted for future mining, showing that prospective nodule fields have a clearly differentiated megafauna assemblage. Monitoring and management schemes, including the delineation of preservation and protection areas within contract areas, need to incorporate this geological and biological heterogeneity.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 132
    Publication Date: 2024-02-07
    Description: The changes in atmospheric pCO2 provide evidence for the release of large amounts of ancient carbon during the last deglaciation. However, the sources and mechanisms that contributed to this process remain unresolved. Here, we present evidence for substantial ancient terrestrial carbon remobilization in the Canadian Arctic following the Laurentide Ice Sheet retreat. Glacial-retreat-induced physical erosion of bedrock has mobilized petrogenic carbon, as revealed by sedimentary records of radiocarbon dates and thermal maturity of organic carbon from the Canadian Beaufort Sea. Additionally, coastal erosion during the meltwater pulses 1a and 1b has remobilized pre-aged carbon from permafrost. Assuming extensive petrogenic organic carbon oxidation during the glacial retreat, a model-based assessment suggests that the combined processes have contributed 12 ppm to the deglacial CO2 rise. Our findings suggest potentially positive climate feedback of ice-sheet retreat by accelerating terrestrial organic carbon remobilization and subsequent oxidation during the glacial-interglacial transition.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 133
    Publication Date: 2024-02-07
    Description: We have better maps of the surfaces of Venus, Mars, and the Moon than of the Earth’s seafloor. There is even less information available about the geologic structure below the seafloor. In particular, the transition zone deep beneath and crossing the coastline is a very poorly studied frontier resulting from limitations of technology and logistical barriers. Here, we point out the significance of this region for understanding fundamental geologic processes, geohazards, and especially coastal aquifers. One prominent example is the increasing awareness of the importance of groundwater exchange between land and sea. This Perspective defines the region beneath the coastal transition zone, or coastal white ribbon as an underexplored frontier, and highlights the need for characterization of this critical region to depths of tens of km. We discuss available geophysical methods and their limitations with coastal groundwater used as the primary illustration. Advances in geophysical and drilling technology, coupled with numerical modeling, are needed to enable better accounting of this poorly understood component of the geosphere.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 134
    Publication Date: 2024-02-14
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 135
    Publication Date: 2024-02-14
    Description: Although the global environmental impact of Laurentide Ice-Sheet destabilizations on glacial climate during Heinrich Events is well-documented, the mechanism driving these ice-sheet instabilities remains elusive. Here we report foraminifera-based subsurface (~150 m water depth) ocean temperature and salinity reconstructions from a sediment core collected in the western subpolar North Atlantic, showing a consistent pattern of rapid subsurface ocean warming preceding the transition into each Heinrich Event identified in the same core of the last 27,000 years. These results provide the first solid evidence for the massive accumulation of ocean heat near the critical depth to trigger melting of marine-terminating portions of the Laurentide Ice Sheet around Labrador Sea followed by Heinrich Events. The repeated build-up of a subsurface heat reservoir in the subpolar Atlantic closely corresponds to times of weakened Atlantic Meridional Overturning Circulation, indicating a precursor role of ocean circulation changes for initiating abrupt ice-sheet instabilities during Heinrich Events. We infer that a weaker ocean circulation in future may result in accelerated interior-ocean warming of the subpolar Atlantic, which could be critical for the stability of modern, marine-terminating Arctic glaciers and the freshwater budget of the North Atlantic.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 136
    Publication Date: 2024-04-19
    Description: The updip limit of seismic rupture during a megathrust earthquake exerts a major control on the size of the resulting tsunami. Offshore Northern Chile, the 2014 Mw 8.1 Iquique earthquake ruptured the plate boundary between 19.5° and 21°S. Rupture terminated under the mid-continental slope and did not propagate updip to the trench. Here, we use state-of-the-art seismic reflection data to investigate the tectonic setting associated with the apparent updip arrest of rupture propagation at 15 km depth during the Iquique earthquake. We document a spatial correspondence between the rupture area and the seismic reflectivity of the plate boundary. North and updip of the rupture area, a coherent, highly reflective plate boundary indicates excess fluid pressure, which may prevent the accumulation of elastic strain. In contrast, the rupture area is characterized by the absence of plate boundary reflectivity, which suggests low fluid pressure that results in stress accumulation and thus controls the extent of earthquake rupture. Generalizing these results, seismic reflection data can provide insights into the physical state of the shallow plate boundary and help to assess the potential for future shallow rupture in the absence of direct measurements of interplate deformation from most outermost forearc slopes.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 137
    Publication Date: 2024-05-28
    Description: It has long been believed that climate shifts during the last 2 million years had a pivotal role in the evolution of our genus Homo 1–3 . However, given the limited number of representative palaeo-climate datasets from regions of anthropological interest, it has remained challenging to quantify this linkage. Here, we use an unprecedented transient Pleistocene coupled general circulation model simulation in combination with an extensive compilation of fossil and archaeological records to study the spatiotemporal habitat suitability for five hominin species over the past 2 million years. We show that astronomically forced changes in temperature, rainfall and terrestrial net primary production had a major impact on the observed distributions of these species. During the Early Pleistocene, hominins settled primarily in environments with weak orbital-scale climate variability. This behaviour changed substantially after the mid-Pleistocene transition, when archaic humans became global wanderers who adapted to a wide range of spatial climatic gradients. Analysis of the simulated hominin habitat overlap from approximately 300–400 thousand years ago further suggests that antiphased climate disruptions in southern Africa and Eurasia contributed to the evolutionary transformation of Homo heidelbergensis populations into Homo sapiens and Neanderthals, respectively. Our robust numerical simulations of climate-induced habitat changes provide a framework to test hypotheses on our human origin.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 138
    Publication Date: 2022-01-06
    Description: Deep sea mining for poly-metallic nodules impacts the environment in many ways. A key potential hazard is the creation of a sediment plume from resuspending sediment during seabed mining. The resuspended matter disperses with currents but eventually resettles on the seabed. Resettling causes a blanketing of the seafloor environment, potentially causing harm to in-, epi- and hyperbenthic communities with possible cascading effects into food webs of deep sea habitats. Mapping the extent of such blanketing is thus an important factor in quantifying potential impacts of deep-sea mining.One technology that can assess seabed blanketing is optical imaging with cameras at square-kilometre scale. To efficiently analyse the resulting Terabytes of image data with minimized bias, automated image analysis is required. Moreover, effective quantitative monitoring of the blanketing requires ground truthing of the image data. Here, we present results from a camera-based monitoring of a deep-sea mining simulation combined with automated image analysis using the CoMoNoD method and low-cost seabed sediment traps for quantification of the blanketing thickness. We found that the impacted area was about 50 percent larger than previously determined by manual image annotation.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 139
    Publication Date: 2024-02-07
    Description: The magmatic character of early subduction zone and arc development is unlike mature systems. Low-Ti-K tholeiitic basalts and boninites dominate the early Izu-Bonin-Mariana (IBM) system. Basalts recovered from the Amami Sankaku Basin (ASB), underlying and located west of the IBM’s oldest remnant arc, erupted at ~49 Ma. This was 3 million years after subduction inception (51-52 Ma) represented by forearc basalt (FAB), at the tipping point between FAB-boninite and typical arc magmatism. We show ASB basalts are low-Ti-K, aluminous spinel-bearing tholeiites, distinct compared to mid-ocean ridge (MOR), backarc basin, island arc or ocean island basalts. Their upper mantle source was hot, reduced, refractory peridotite, indicating prior melt extraction. ASB basalts transferred rapidly from pressures (~0.7-2 GPa) at the plagioclase-spinel peridotite facies boundary to the surface. Vestiges of a polybaric-polythermal mineralogy are preserved in this basalt, and were not obliterated during persistent recharge-mix-tap-fractionate regimes typical of MOR or mature arcs.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 140
    facet.materialart.
    Unknown
    Nature Research
    Publication Date: 2024-02-07
    Description: Less than a quarter of ocean deoxygenation that will ultimately be caused by historical CO2 emissions is already realized, according to millennial-scale model simulations that assume zero CO2 emissions from year 2021 onwards. About 80% of the committed oxygen loss occurs below 2000 m depth, where a more sluggish overturning circulation will increase water residence times and accumulation of respiratory oxygen demand. According to the model results, the deep ocean will thereby lose more than 10% of its pre-industrial oxygen content even if CO2 emissions and thus global warming were stopped today. In the surface layer, however, the ongoing deoxygenation will largely stop once CO2 emissions are stopped. Accounting for the joint effects of committed oxygen loss and ocean warming, metabolic viability representative for marine animals declines by up to 25% over large regions of the deep ocean, posing an unavoidable escalation of anthropogenic pressure on deep-ocean ecosystems.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 141
    Publication Date: 2024-02-07
    Description: Originating in the equatorial Pacific, the El Niño–Southern Oscillation (ENSO) has highly consequential global impacts, motivating the need to understand its responses to anthropogenic warming. In this Review, we synthesize advances in observed and projected changes of multiple aspects of ENSO, including the processes behind such changes. As in previous syntheses, there is an inter-model consensus of an increase in future ENSO rainfall variability. Now, however, it is apparent that models that best capture key ENSO dynamics also tend to project an increase in future ENSO sea surface temperature variability and, thereby, ENSO magnitude under greenhouse warming, as well as an eastward shift and intensification of ENSO-related atmospheric teleconnections — the Pacific–North American and Pacific–South American patterns. Such projected changes are consistent with palaeoclimate evidence of stronger ENSO variability since the 1950s compared with past centuries. The increase in ENSO variability, though underpinned by increased equatorial Pacific upper-ocean stratification, is strongly influenced by internal variability, raising issues about its quantifiability and detectability. Yet, ongoing coordinated community efforts and computational advances are enabling long-simulation, large-ensemble experiments and high-resolution modelling, offering encouraging prospects for alleviating model biases, incorporating fundamental dynamical processes and reducing uncertainties in projections. Key points Under anthropogenic warming, the majority of climate models project faster background warming in the eastern equatorial Pacific compared with the west. The observed equatorial Pacific surface warming pattern since 1980, though opposite to the projected faster warming in the equatorial eastern Pacific, is within the inter-model range in terms of sea surface temperature (SST) gradients and is subject to influence from internal variability. El Niño–Southern Oscillation (ENSO) rainfall responses in the equatorial Pacific are projected to intensify and shift eastward, leading to an eastward intensification of extratropical teleconnections. ENSO SST variability and extreme ENSO events are projected to increase under greenhouse warming, with a stronger inter-model consensus in CMIP6 compared with CMIP5. However, the time of emergence for ENSO SST variability is later than that for ENSO rainfall variability, opposite to that for mean SST versus mean rainfall. Future ENSO change is likely influenced by past variability, such that quantification of future ENSO in the only realization of the real world is challenging. Although there is no definitive relationship of ENSO variability with the mean zonal SST gradient or seasonal cycle, palaeoclimate records suggest a causal connection between vertical temperature stratification and ENSO strength, and a greater ENSO strength since the 1950s than in past centuries, supporting an emerging increase in ENSO variability under greenhouse warming.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 142
    Publication Date: 2024-02-07
    Description: Invasive species are co-introduced with microbiota from their native range and also interact with microbiota found in the novel environment to which they are introduced. Host flexibility toward microbiota, or host promiscuity, is an important trait underlying terrestrial plant invasions. To test whether host promiscuity may be important in macroalgal invasions, we experimentally simulated an invasion in a common garden setting, using the widespread invasive macroalga Agarophyton vermiculophyllum as a model invasive seaweed holobiont. After disturbing the microbiota of individuals from native and non-native populations with antibiotics, we monitored the microbial succession trajectories in the presence of a new source of microbes. Microbial communities were strongly impacted by the treatment and changed compositionally and in terms of diversity but recovered functionally by the end of the experiment in most respects. Beta-diversity in disturbed holobionts strongly decreased, indicating that different populations configure more similar –or more common– microbial communities when exposed to the same conditions. This decline in beta-diversity occurred not only more rapidly, but was also more pronounced in non-native populations, while individuals from native populations retained communities more similar to those observed in the field. This study demonstrates that microbial communities of non-native A. vermiculophyllum are more flexibly adjusted to the environment and suggests that an intraspecific increase in host promiscuity has promoted the invasion process of A. vermiculophyllum. This phenomenon may be important among invasive macroalgal holobionts in general.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 143
    Publication Date: 2024-02-07
    Description: Temperature and bioavailable energy control the distribution of life on Earth, and interact with each other due to the dependency of biological energy requirements on temperature. Here we analyze how temperature-energy interactions structure sediment microbial communities in two hydrothermally active areas of Guaymas Basin. Sites from one area experience advective input of thermogenically produced electron donors by seepage from deeper layers, whereas sites from the other area are diffusion-dominated and electron donor-depleted. In both locations, Archaea dominate at temperatures 〉45 °C and Bacteria at temperatures 〈10 °C. Yet, at the phylum level and below, there are clear differences. Hot seep sites have high proportions of typical hydrothermal vent and hot spring taxa. By contrast, high-temperature sites without seepage harbor mainly novel taxa belonging to phyla that are widespread in cold subseafloor sediment. Our results suggest that in hydrothermal sediments temperature determines domain-level dominance, whereas temperature-energy interactions structure microbial communities at the phylum-level and below.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 144
    Publication Date: 2024-02-07
    Description: The Atlantic Niño is the leading mode of interannual sea-surface temperature (SST) variability in the equatorial Atlantic and assumed to be largely governed by coupled ocean-atmosphere dynamics described by the Bjerknes-feedback loop. However, the role of the atmospheric diabatic heating, which can be either an indicator of the atmosphere’s response to, or its influence on the SST, is poorly understood. Here, using satellite-era observations from 1982–2015, we show that diabatic heating variability associated with the seasonal migration of the Inter-Tropical Convergence Zone controls the seasonality of the Atlantic Niño. The variability in precipitation, a measure of vertically integrated diabatic heating, leads that in SST, whereas the atmospheric response to SST variability is relatively weak. Our findings imply that the oceanic impact on the atmosphere is smaller than previously thought, questioning the relevance of the classical Bjerknes-feedback loop for the Atlantic Niño and limiting climate predictability over the equatorial Atlantic sector.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 145
    Publication Date: 2024-02-07
    Description: The evolution of past global ice sheets is highly uncertain. One example is the missing ice problem during the Last Glacial Maximum (LGM, 26 000-19 000 years before present) – an apparent 8-28 m discrepancy between far-field sea level indicators and modelled sea level from ice sheet reconstructions. In the absence of ice sheet reconstructions, researchers often use marine δ18O proxy records to infer ice volume prior to the LGM. We present a global ice sheet reconstruction for the past 80 000 years, called PaleoMIST 1.0, constructed independently of far-field sea level and δ18O proxy records. Our reconstruction is compatible with LGM far-field sea-level records without requiring extra ice volume, thus solving the missing ice problem. However, for Marine Isotope Stage 3 (57 000-29 000 years before present) - a pre-LGM period - our reconstruction does not match proxy-based sea level reconstructions, indicating the relationship between marine δ18O and sea level may be more complex than assumed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 146
    Publication Date: 2024-02-07
    Description: Changes in the magnitude of millennial-scale climate variability (MCV) during the Late Pleistocene occur as a function of changing background climate state over tens of thousands of years, an indirect consequence of slowly varying incoming solar radiation associated with changes in Earth’s orbit. However, whether astronomical forcing can stimulate MCV directly (without a change in the background state) remains to be determined. Here we use a comprehensive fully coupled climate model to demonstrate that orbitally driven insolation changes alone can give rise to spontaneous millennial-scale climate oscillations under intermediate glacial conditions. Our results demonstrate that an abrupt transition from warm interstadial to cold stadial conditions can be triggered directly by a precession-controlled increase in low-latitude boreal summer insolation and/or an obliquity-controlled decrease in high-latitude mean annual insolation, by modulating North Atlantic low-latitude hydroclimate and/or high-latitude sea ice–ocean–atmosphere interactions, respectively. Furthermore, contrasting insolation effects over the tropical versus subpolar North Atlantic, exerted by obliquity or precession, result in an oscillatory climate regime, even within an otherwise stable climate. With additional sensitivity experiments under different glacial–interglacial climate backgrounds, we synthesize a coherent theoretical framework for climate stability, elaborating the direct and indirect (dual) control by Earth’s orbital cycles on millennial-scale climate variability during the Pleistocene.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 147
    Publication Date: 2024-02-07
    Description: The transfer of vast amounts of carbon from a deep oceanic reservoir to the atmosphere is considered to be a dominant driver of the deglacial rise in atmospheric CO2. Paleoceanographic reconstructions reveal evidence for the existence of CO2-rich waters in the mid to deep Southern Ocean. These water masses ventilate to the atmosphere south of the Polar Front, releasing CO2 prior to the formation and subduction of intermediate-waters. Changes in the amount of CO2 in the sea water directly affect the oceanic carbon chemistry system. Here we present B/Ca ratios, a proxy for delta carbonate ion concentrations Δ[CO32−], and stable isotopes (δ13C) from benthic foraminifera from a sediment core bathed in Antarctic Intermediate Water (AAIW), offshore New Zealand in the Southwest Pacific. We find two transient intervals of rising [CO32−] and δ13C that that are consistent with the release of CO2 via the Southern Ocean. These intervals coincide with the two pulses in rising atmospheric CO2 at ~ 17.5–14.3 ka and 12.9–11.1 ka. Our results lend support for the release of sequestered CO2 from the deep ocean to surface and atmospheric reservoirs during the last deglaciation, although further work is required to pin down the detailed carbon transfer pathways.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 148
    Publication Date: 2024-02-07
    Description: We studied the food web structure and functioning of a coral reef ecosystem in the Marquesas Islands, French Polynesia, characterized by low coral cover, high sea surface temperature and meso- to eutrophic waters. The Marquesas constitute a relevant ecosystem to understand the functioning of low diversity reefs that are also subject to global change. A multi-tracer assessment of organic matter pathways was run to delineate ecosystem functioning, using analysis of fatty acids, bulk and compound specific stable isotope analysis and stable isotopes mixing models. Macroalgae and phytoplankton were the two major food sources fueling this food web with, however, some marked seasonal variations. Specifically, zooplankton relied on phytoplankton-derived organic matter and herbivorous fishes on macroalgae-derived organic matter to a much higher extent in summer than in winter (~ 75% vs. ~ 15%, and ~ 70 to 75% vs. ~ 5 to 15%, respectively). Despite remarkably high δ15N values for all trophic compartments, likely due to local dynamics in the nitrogen stock, trophic levels of consumers were similar to those of other coral reef ecosystems. These findings shed light on the functioning of low coral cover systems, which are expected to expand worldwide under global change.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 149
    Publication Date: 2024-02-07
    Description: The marine picoeukaryote Bathycoccus prasinos has been considered a cosmopolitan alga, although recent studies indicate two ecotypes exist, Clade BI (B. prasinos) and Clade BII. Viruses that infect Bathycoccus Clade BI are known (BpVs), but not that infect BII. We isolated three dsDNA prasinoviruses from the Sargasso Sea against Clade BII isolate RCC716. The BII-Vs do not infect BI, and two (BII-V2 and BII-V3) have larger genomes (~210 kb) than BI-Viruses and BII-V1. BII-Vs share ~90% of their proteins, and between 65% to 83% of their proteins with sequenced BpVs. Phylogenomic reconstructions and PolB analyses establish close-relatedness of BII-V2 and BII-V3, yet BII-V2 has 10-fold higher infectivity and induces greater mortality on host isolate RCC716. BII-V1 is more distant, has a shorter latent period, and infects both available BII isolates, RCC716 and RCC715, while BII-V2 and BII-V3 do not exhibit productive infection of the latter in our experiments. Global metagenome analyses show Clade BI and BII algal relative abundances correlate positively with their respective viruses. The distributions delineate BI/BpVs as occupying lower temperature mesotrophic and coastal systems, whereas BII/BII-Vs occupy warmer temperature, higher salinity ecosystems. Accordingly, with molecular diagnostic support, we name Clade BII Bathycoccus calidus sp. nov. and propose that molecular diversity within this new species likely connects to the differentiated host-virus dynamics observed in our time course experiments. Overall, the tightly linked biogeography of Bathycoccus host and virus clades observed herein supports species-level host specificity, with strain-level variations in infection parameters.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 150
    Publication Date: 2024-02-07
    Description: The remaining carbon budget quantifies the future CO2 emissions to limit global warming below a desired level. Carbon budgets are subject to uncertainty in the Transient Climate Response to Cumulative CO2 Emissions (TCRE), as well as to non-CO2 climate influences. Here we estimate the TCRE using observational constraints, and integrate the geophysical and socioeconomic uncertainties affecting the distribution of the remaining carbon budget. We estimate a median TCRE of 0.44 °C and 5–95% range of 0.32–0.62 °C per 1000 GtCO2 emitted. Considering only geophysical uncertainties, our median estimate of the 1.5 °C remaining carbon budget is 440 GtCO2 from 2020 onwards, with a range of 230–670 GtCO2, (for a 67–33% chance of not exceeding the target). Additional socioeconomic uncertainty related to human decisions regarding future non-CO2 emissions scenarios can further shift the median 1.5 °C remaining carbon budget by ±170 GtCO2.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 151
    Publication Date: 2024-02-07
    Description: Anaerobic oxidation of ammonium (anammox) in oxygen minimum zones (OMZs) is a major pathway of oceanic nitrogen loss. Ammonium released from sinking particles has been suggested to fuel this process. During cruises to the Peruvian OMZ in April–June 2017 we found that anammox rates are strongly correlated with the volume of small particles (128–512 µm), even though anammox bacteria were not directly associated with particles. This suggests that the relationship between anammox rates and particles is related to the ammonium released from particles by remineralization. To investigate this, ammonium release from particles was modelled and theoretical encounters of free-living anammox bacteria with ammonium in the particle boundary layer were calculated. These results indicated that small sinking particles could be responsible for ~75% of ammonium release in anoxic waters and that free-living anammox bacteria frequently encounter ammonium in the vicinity of smaller particles. This indicates a so far underestimated role of abundant, slow-sinking small particles in controlling oceanic nutrient budgets, and furthermore implies that observations of the volume of small particles could be used to estimate N-loss across large areas.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 152
    Publication Date: 2024-02-07
    Description: Succession of cold glacials and warm interglacials during the Quaternary results from large global climate responses to variable orbital configurations, accompanied by fluctuating greenhouse gas concentrations. Despite the influences of sea ice and atmospheric and ocean circulations in the Southern Ocean on atmospheric CO2 concentrations and climate, past changes in this region remain poorly documented. Here, we present the 800 ka deuterium excess record from the East Antarctica EPICA Dome C ice core, tracking sea surface temperature in evaporative regions of the Indian sector of the Southern Ocean from which moisture precipitated in East Antarctica is derived. We find that low obliquity leads to surface warming in evaporative moisture source regions during each glacial inception, although this relative temperature increase is counterbalanced by global cooling during glacial maxima. Links between the two regions during interglacials depends on the existence of a temperature maximum at the interglacial onset. In its absence, temperature maxima in the evaporative moisture source regions and in East Antarctica were synchronous. For the other interglacials, temperature maxima in the source areas lag early local temperature maxima by several thousand years, probably because of a change in the position of the evaporative source areas.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 153
    Publication Date: 2024-02-07
    Description: Pelagic biogeochemical models (BGCMs) have matured into generic components of Earth System Models. BGCMs mimic the effects of marine biota on oceanic nutrient, carbon and oxygen cycles. They rely on parameters that are adjusted to match observed conditions. Such parameters are key to determining the models’ responses to changing environmental conditions. However, many of these parameters are difficult to constrain and constitute a major source of uncertainty in BGCM projections. Here we use, for the first time, variance-based sensitivity analyses to map BGCM parameter uncertainties onto their respective local manifestation in model entities (such as oceanic oxygen concentrations) for both contemporary climate and climate projections. The mapping effectively relates local uncertainties of projections to the uncertainty of specific parameters. Further, it identifies contemporary benchmarking regions, where the uncertainties of specific parameters manifest themselves, thereby facilitating an effective parameter refinement and a reduction of the associated uncertainty. Our results demonstrate that the parameters that are linked to uncertainties in projections may differ from those parameters that facilitate model conformity with present-day observations. In summary, we present a practical approach to the general question of where present-day model fidelity may be indicative for reliable projections.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 154
    Publication Date: 2024-02-07
    Description: Seahorses have a circum-global distribution in tropical to temperate coastal waters. Yet, seahorses show many adaptations for a sedentary, cryptic lifestyle: they require specific habitats, such as seagrass, kelp or coral reefs, lack pelvic and caudal fins, and give birth to directly developed offspring without pronounced pelagic larval stage, rendering long-range dispersal by conventional means inefficient. Here we investigate seahorses’ worldwide dispersal and biogeographic patterns based on a de novo genome assembly of Hippocampus erectus as well as 358 re-sequenced genomes from 21 species. Seahorses evolved in the late Oligocene and subsequent circum-global colonization routes are identified and linked to changing dynamics in ocean currents and paleo-temporal seaway openings. Furthermore, the genetic basis of the recurring “bony spines” adaptive phenotype is linked to independent substitutions in a key developmental gene. Analyses thus suggest that rafting via ocean currents compensates for poor dispersal and rapid adaptation facilitates colonizing new habitats.
    Type: Article , PeerReviewed
    Format: other
    Format: text
    Format: text
    Format: text
    Format: other
    Format: other
    Format: other
    Format: other
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 155
    Publication Date: 2024-02-07
    Description: All models of the magmatic and plate tectonic processes that create continental crust predict the presence of a mafic lower crust. Earlier proposed crustal doubling in Tibet and the Himalayas by underthrusting of the Indian plate requires the presence of a mafic layer with high seismic P-wave velocity (Vp 〉 7.0 km/s) above the Moho. Our new seismic data demonstrates that some of the thickest crust on Earth in the middle Lhasa Terrane has exceptionally low velocity (Vp 〈 6.7 km/s) throughout the whole 80 km thick crust. Observed deep crustal earthquakes throughout the crustal column and thick lithosphere from seismic tomography imply low temperature crust. Therefore, the whole crust must consist of felsic rocks as any mafic layer would have high velocity unless the temperature of the crust were high. Our results form basis for alternative models for the formation of extremely thick juvenile crust with predominantly felsic composition in continental collision zones.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 156
    Publication Date: 2024-02-07
    Description: Oceanic transform faults are seismically and tectonically active plate boundaries1 that leave scars—known as fracture zones—on oceanic plates that can cross entire ocean basins2. Current descriptions of plate tectonics assume transform faults to be conservative two-dimensional strike–slip boundaries1,3, at which lithosphere is neither created nor destroyed and along which the lithosphere cools and deepens as a function of the age of the plate4. However, a recent compilation of high-resolution multibeam bathymetric data from 41 oceanic transform faults and their associated fracture zones that covers all possible spreading rates shows that this assumption is incorrect. Here we show that the seafloor along transform faults is systemically deeper (by up to 1.6 kilometres) than their associated fracture zones, in contrast to expectations based on plate-cooling arguments. Accretion at intersections between oceanic ridges and transform faults seems to be strongly asymmetric: the outside corners of the intersections show shallower relief and more extensive magmatism, whereas the inside corners have deep nodal basins and seem to be magmatically starved. Three-dimensional viscoplastic numerical models show that plastic-shear failure within the deformation zone around the transform fault results in the plate boundary experiencing increasingly oblique shear at increasing depths below the seafloor. This results in extension around the inside corner, which thins the crust and lithosphere at the transform fault and is linked to deepening of the seafloor along the transform fault. Bathymetric data suggest that the thinned transform-fault crust is augmented by a second stage of magmatism as the transform fault intersects the opposing ridge axis. This makes accretion at transform-fault systems a two-stage process, fundamentally different from accretion elsewhere along mid-ocean ridges.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 157
    Publication Date: 2024-02-07
    Description: The carbon balance of peatlands is predicted to shift from a sink to a source this century. However, peatland ecosystems are still omitted from the main Earth system models that are used for future climate change projections, and they are not considered in integrated assessment models that are used in impact and mitigation studies. By using evidence synthesized from the literature and an expert elicitation, we define and quantify the leading drivers of change that have impacted peatland carbon stocks during the Holocene and predict their effect during this century and in the far future. We also identify uncertainties and knowledge gaps in the scientific community and provide insight towards better integration of peatlands into modelling frameworks. Given the importance of the contribution by peatlands to the global carbon cycle, this study shows that peatland science is a critical research area and that we still have a long way to go to fully understand the peatland–carbon–climate nexus.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 158
    Publication Date: 2024-02-07
    Description: Global warming has driven a loss of dissolved oxygen in the ocean in recent decades. We demonstrate the potential for an additional anthropogenic driver of deoxygenation, in which zooplankton consumption of microplastic reduces the grazing on primary producers. In regions where primary production is not limited by macronutrient availability, the reduction of grazing pressure on primary producers causes export production to increase. Consequently, organic particle remineralisation in these regions increases. Employing a comprehensive Earth system model of intermediate complexity, we estimate this additional remineralisation could decrease water column oxygen inventory by as much as 10% in the North Pacific and accelerate global oxygen inventory loss by an extra 0.2–0.5% relative to 1960 values by the year 2020. Although significant uncertainty accompanies these estimates, the potential for physical pollution to have a globally significant biogeochemical signal that exacerbates the consequences of climate warming is a novel feedback not yet considered in climate research.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 159
    Publication Date: 2024-02-07
    Description: Gelatinous zooplankton are increasingly acknowledged to contribute significantly to the carbon cycle worldwide, yet many taxa within this diverse group remain poorly studied. Here, we investigate the pelagic tunicate Pyrosoma atlanticum in the waters surrounding the Cabo Verde Archipelago. By using a combination of pelagic and benthic in situ observations, sampling, and molecular genetic analyses (barcoding, eDNA), we reveal that: P. atlanticum abundance is most likely driven by local island-induced productivity, that it substantially contributes to the organic carbon export flux and is part of a diverse range of biological interactions. Downward migrating pyrosomes actively transported an estimated 13% of their fecal pellets below the mixed layer, equaling a carbon flux of 1.96–64.55 mg C m−2 day−1. We show that analysis of eDNA can detect pyrosome material beyond their migration range, suggesting that pyrosomes have ecological impacts below the upper water column. Moribund P. atlanticum colonies contributed an average of 15.09 ± 17.89 (s.d.) mg C m−2 to the carbon flux reaching the island benthic slopes. Our pelagic in situ observations further show that P. atlanticum formed an abundant substrate in the water column (reaching up to 0.28 m2 substrate area per m2), with animals using pyrosomes for settlement, as a shelter and/or a food source. In total, twelve taxa from four phyla were observed to interact with pyrosomes in the midwater and on the benthos.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 160
    Publication Date: 2024-02-07
    Description: The Antarctic Circumpolar Current (ACC) plays a crucial role in global ocean circulation by fostering deep-water upwelling and formation of new water masses. On geological time-scales, ACC variations are poorly constrained beyond the last glacial. Here, we reconstruct changes in ACC strength in the central Drake Passage in vicinity of the modern Polar Front over a complete glacial-interglacial cycle (i.e., the past 140,000 years), based on sediment grain-size and geochemical characteristics. We found significant glacial-interglacial changes of ACC flow speed, with weakened current strength during glacials and a stronger circulation in interglacials. Superimposed on these orbital-scale changes are high-amplitude millennial-scale fluctuations, with ACC strength maxima correlating with diatom-based Antarctic winter sea-ice minima, particularly during full glacial conditions. We infer that the ACC is closely linked to Southern Hemisphere millennial-scale climate oscillations, amplified through Antarctic sea ice extent changes. These strong ACC variations modulated Pacific-Atlantic water exchange via the “cold water route” and potentially affected the Atlantic Meridional Overturning Circulation and marine carbon storage.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 161
    Publication Date: 2024-02-07
    Description: The release of potentially toxic metals, such as copper (Cu), into the water column is of concern during polymetallic nodule mining. The bioavailability and thus toxicity of Cu is strongly influenced by its speciation which is dominated by organic ligand (L) complexation in seawater, with L-complexes being considered less bioavailable than free Cu 2+ . The presence of CuL-complexes in deep-sea sediments has, however, not been systematically studied in the context of deep-sea mining. We thus analyzed the Cu-binding L concentration ([L]) in deep-sea pore waters of two polymetallic nodule provinces in the Pacific Ocean, the Peru Basin and the Clarion-Clipperton-Zone, using competitive ligand equilibration–adsorptive stripping voltammetry. The pore-water dissolved Cu concentration ([dCu]) ranged from 3 to 96 nM, generally exceeding bottom water concentrations (4–44 nM). Based on fitting results from ProMCC and Excel, Cu was predominantly complexed by L (3–313 nM) in bottom waters and undisturbed pore waters. We conclude that processes like deep-sea mining are unlikely to cause a release of toxic Cu 2+ concentrations ([Cu 2+ ]) to the seawater as 〉 99% Cu was organically complexed in pore waters and the [Cu 2+ ] was 〈 6 pM for 8 of 9 samples. Moreover, the excess of L found especially in shallow pore waters implied that even with a Cu release through mining activities, Cu 2+ likely remains beneath toxic thresholds.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 162
    Publication Date: 2024-02-07
    Description: The geological record shows that abrupt changes in the Earth system can occur on timescales short enough to challenge the capacity of human societies to adapt to environmental pressures. In many cases, abrupt changes arise from slow changes in one component of the Earth system that eventually pass a critical threshold, or tipping point, after which impacts cascade through coupled climate–ecological–social systems. The chance of detecting abrupt changes and tipping points increases with the length of observations. The geological record provides the only long-term information we have on the conditions and processes that can drive physical, ecological and social systems into new states or organizational structures that may be irreversible within human time frames. Here, we use well-documented abrupt changes of the past 30 kyr to illustrate how their impacts cascade through the Earth system. We review useful indicators of upcoming abrupt changes, or early warning signals, and provide a perspective on the contributions of palaeoclimate science to the understanding of abrupt changes in the Earth system.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 163
    Publication Date: 2024-02-07
    Description: The endosymbiotic origin of plastids from cyanobacteria gave eukaryotes photosynthetic capabilities and launched the diversification of countless forms of algae. These primary plastids are found in members of the eukaryotic supergroup Archaeplastida. All known archaeplastids still retain some form of primary plastids, which are widely assumed to have a single origin. Here, we use single-cell genomics from natural samples combined with phylogenomics to infer the evolutionary origin of the phylum Picozoa, a globally distributed but seemingly rare group of marine microbial heterotrophic eukaryotes. Strikingly, the analysis of 43 single-cell genomes shows that Picozoa belong to Archaeplastida, specifically related to red algae and the phagotrophic rhodelphids. These picozoan genomes support the hypothesis that Picozoa lack a plastid, and further reveal no evidence of an early cryptic endosymbiosis with cyanobacteria. These findings change our understanding of plastid evolution as they either represent the first complete plastid loss in a free-living taxon, or indicate that red algae and rhodelphids obtained their plastids independently of other archaeplastids.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 164
    Publication Date: 2024-02-07
    Description: Greenhouse gas emissions and air pollution have changed the composition of the atmosphere, and thereby initiated global warming and reduced air quality. Our editorial board members note the need for a deeper understanding of atmospheric fluxes and processes to tackle climate and human health issues.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 165
    Publication Date: 2024-02-07
    Description: The land ice contribution to global mean sea level rise has not yet been predicted1 using ice sheet and glacier models for the latest set of socio-economic scenarios, nor using coordinated exploration of uncertainties arising from the various computer models involved. Two recent international projects generated a large suite of projections using multiple models2,3,4,5,6,7,8, but primarily used previous-generation scenarios9 and climate models10, and could not fully explore known uncertainties. Here we estimate probability distributions for these projections under the new scenarios11,12 using statistical emulation of the ice sheet and glacier models. We find that limiting global warming to 1.5 degrees Celsius would halve the land ice contribution to twenty-first-century sea level rise, relative to current emissions pledges. The median decreases from 25 to 13 centimetres sea level equivalent (SLE) by 2100, with glaciers responsible for half the sea level contribution. The projected Antarctic contribution does not show a clear response to the emissions scenario, owing to uncertainties in the competing processes of increasing ice loss and snowfall accumulation in a warming climate. However, under risk-averse (pessimistic) assumptions, Antarctic ice loss could be five times higher, increasing the median land ice contribution to 42 centimetres SLE under current policies and pledges, with the 95th percentile projection exceeding half a metre even under 1.5 degrees Celsius warming. This would severely limit the possibility of mitigating future coastal flooding. Given this large range (between 13 centimetres SLE using the main projections under 1.5 degrees Celsius warming and 42 centimetres SLE using risk-averse projections under current pledges), adaptation planning for twenty-first-century sea level rise must account for a factor-of-three uncertainty in the land ice contribution until climate policies and the Antarctic response are further constrained.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 166
    Publication Date: 2024-02-07
    Description: Abstract Deglacial transitions of the middle to late Pleistocene (terminations) are linked to gradual changes in insolation accompanied by abrupt shifts in ocean circulation. However, the reason these deglacial abrupt events are so special compared with their sub-glacial-maximum analogues, in particular with respect to the exaggerated warming observed across Antarctica, remains unclear. Here we show that an increase in the relative importance of salt versus temperature stratification in the glacial deep South Atlantic decreases the potential cooling effect of waters that may be upwelled in response to abrupt perturbations in ocean circulation, as compared with sub-glacial-maximum conditions. Using a comprehensive coupled atmosphere–ocean general circulation model, we then demonstrate that an increase in deep-ocean salinity stratification stabilizes relatively warm waters in the glacial deep ocean, which amplifies the high southern latitude surface ocean temperature response to an abrupt weakening of the Atlantic meridional overturning circulation during deglaciation. The mechanism can produce a doubling in the net rate of warming across Antarctica on a multicentennial timescale when starting from full glacial conditions (as compared with interglacial or subglacial conditions) and therefore helps to explain the large magnitude and rapidity of glacial terminations during the late Quaternary.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 167
    Publication Date: 2024-02-07
    Description: Many studies show the sensitivity of our environment to manmade changes, especially the anthropogenic impact on atmospheric and hydrological processes. The effect on Solid Earth processes such as subsidence is less straightforward. Subsidence is usually slow and relates to the interplay of complex hydro-mechanical processes, thus making relations to atmospheric changes difficult to observe. In the Dead Sea (DS) region, however, climatic forcing is strong and over-use of fresh water is massive. An observation period of 3 years was thus sufficient to link the high evaporation (97 cm/year) and the subsequent drop of the Dead Sea lake level (− 110 cm/year), with high subsidence rates of the Earth’s surface (− 15 cm/year). Applying innovative Global Navigation Satellite System (GNSS) techniques, we are able to resolve this subsidence of the “Solid Earth” even on a monthly basis and show that it behaves synchronous to atmospheric and hydrological changes with a time lag of two months. We show that the amplitude and fluctuation period of ground deformation is related to poro-elastic hydro-mechanical soil response to lake level changes. This provides, to our knowledge, a first direct link between shore subsidence, lake-level drop and evaporation.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 168
    Publication Date: 2024-02-07
    Description: Polymetallic nodule fields provide hard substrate for sessile organisms on the abyssal seafloor between 3000 and 6000 m water depth. Deep-seabed mining targets these mineral-rich nodules and will likely modify the consumer-resource (trophic) and substrate-providing (non-trophic) interactions within the abyssal food web. However, the importance of nodules and their associated sessile fauna in supporting food-web integrity remains unclear. Here, we use seafloor imagery and published literature to develop highly-resolved trophic and non-trophic interaction webs for the Clarion-Clipperton Fracture Zone (CCZ, central Pacific Ocean) and the Peru Basin (PB, South-East Pacific Ocean) and to assess how nodule removal may modify these networks. The CCZ interaction web included 1028 compartments connected with 59,793 links and the PB interaction web consisted of 342 compartments and 8044 links. We show that knock-down effects of nodule removal resulted in a 17.9% (CCZ) to 20.8% (PB) loss of all taxa and 22.8% (PB) to 30.6% (CCZ) loss of network links. Subsequent analysis identified stalked glass sponges living attached to the nodules as key structural species that supported a high diversity of associated fauna. We conclude that polymetallic nodules are critical for food-web integrity and that their absence will likely result in reduced local benthic biodiversity.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: other
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 169
    Publication Date: 2024-02-07
    Description: Spring 2020 broke sunshine duration records across Western Europe. The Netherlands recorded the highest surface irradiance since 1928, exceeding the previous extreme of 2011 by 13%, and the diffuse fraction of the irradiance measured a record low percentage (38%). The coinciding irradiance extreme and a reduction in anthropogenic pollution due to COVID-19 measures triggered the hypothesis that cleaner-than-usual air contributed to the record. Based on analyses of ground-based and satellite observations and experiments with a radiative transfer model, we estimate a 1.3% (2.3 W m−2) increase in surface irradiance with respect to the 2010–2019 mean due to a low median aerosol optical depth, and a 17.6% (30.7 W m−2) increase due to several exceptionally dry days and a very low cloud fraction overall. Our analyses show that the reduced aerosols and contrails due to the COVID-19 measures are far less important in the irradiance record than the dry and particularly cloud-free weather.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 170
    Publication Date: 2024-02-07
    Description: Ocean acidification (OA) will affect marine biotas from the organism to the ecosystem level. Yet, the consequences for the biological carbon pump and thereby the oceanic sink for atmospheric CO2 are still unclear. Here we show that OA considerably alters the C/N ratio of organic-matter export (C/Nexport), a key factor determining efficiency of the biological pump. By synthesizing sediment-trap data from in situ mesocosm studies in different marine biomes, we find distinct but highly variable impacts of OA on C/Nexport, reaching up to a 20% increase/decrease under partial pressure of CO2 (pCO2) conditions projected for 2100. These changes are driven by pCO2 effects on a variety of plankton taxa and corresponding shifts in food-web structure. Notably, our findings suggest a pivotal role of heterotrophic processes in controlling the response of C/Nexport to OA, thus contradicting the paradigm of primary producers as the principal driver of biogeochemical responses to ocean change.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 171
    Publication Date: 2024-02-07
    Description: Sunlight is the most important environmental control on diel fluctuations in phytoplankton activity, and understanding diel microbial processes is essential to the study of oceanic biogeochemical cycles. Yet, little is known about the in situ temporal dynamics of phytoplankton metabolic activities and their coordination across different populations. We investigated diel orchestration of phytoplankton activity in photosynthesis, photoacclimation, and photoprotection by analyzing pigment and quinone distributions in combination with metatranscriptomes in surface waters of the North Pacific Subtropical Gyre (NPSG). We found diel cycles in pigment abundances resulting from the balance of their synthesis and consumption. These dynamics suggest that night represents a metabolic recovery phase, refilling cellular pigment stores, while photosystems are remodeled towards photoprotection during daytime. Transcript levels of genes involved in photosynthesis and pigment metabolism had synchronized diel expression patterns among all taxa, reflecting the driving force light imparts upon photosynthetic organisms in the ocean, while other environmental factors drive niche differentiation. For instance, observed decoupling of diel oscillations in transcripts and related pigments indicates that pigment abundances are modulated by environmental factors extending beyond gene expression/regulation reinforcing the need to combine metatranscriptomics with proteomics and metabolomics to fully understand the timing of these critical processes in situ.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: other
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 172
    Publication Date: 2024-02-07
    Description: Within the Late Pleistocene, terminations describe the major transitions marking the end of glacial cycles. While it is established that abrupt shifts in the ocean/atmosphere system are a ubiquitous component of deglaciation, significant uncertainties remain concerning their specific role and the likelihood that terminations may be interrupted by large-amplitude abrupt oscillations. In this perspective we address these uncertainties in the light of recent developments in the understanding of glacial terminations as the ultimate interaction between millennial and orbital timescale variability. Innovations in numerical climate simulation and new geologic records allow us to highlight new avenues of research and identify key remaining uncertainties such as sea-level variability.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 173
    Publication Date: 2024-02-07
    Description: Recent geodetic studies have shown that slow-slip events can occur on subduction faults, including their shallow (〈15 km depth) parts where tsunamis are also generated. Although observations of such events are now widespread, the physical conditions promoting shallow slow-slip events remain poorly understood. Here we use full waveform inversion of controlled-source seismic data from the central Hikurangi (New Zealand) subduction margin to constrain the physical conditions in a region hosting slow slip. We find that the subduction fault is characterized by compliant, overpressured and mechanically weak material. We identify sharp lateral variations in pore pressure, which reflect focused fluid flow along thrust faults and have a fundamental influence on the distribution of mechanical properties and frictional stability along the subduction fault. We then use high-resolution data-derived mechanical properties to underpin rate–state friction models of slow slip. These models show that shallow subduction fault rocks must be nearly velocity neutral to generate shallow frictional slow slip. Our results have implications for understanding fault-loading processes and slow transient fault slip along megathrust faults.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 174
    Publication Date: 2024-02-07
    Description: Groundwater-derived solute fluxes to the ocean have long been assumed static and subordinate to riverine fluxes, if not neglected entirely, in marine isotope budgets. Here we present concentration and isotope data for Li, Mg, Ca, Sr, and Ba in coastal groundwaters to constrain the importance of groundwater discharge in mediating the magnitude and isotopic composition of terrestrially derived solute fluxes to the ocean. Data were extrapolated globally using three independent volumetric estimates of groundwater discharge to coastal waters, from which we estimate that groundwater-derived solute fluxes represent, at a minimum, 5% of riverine fluxes for Li, Mg, Ca, Sr, and Ba. The isotopic compositions of the groundwater-derived Mg, Ca, and Sr fluxes are distinct from global riverine averages, while Li and Ba fluxes are isotopically indistinguishable from rivers. These differences reflect a strong dependence on coastal lithology that should be considered a priority for parameterization in Earth-system models.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 175
    Publication Date: 2024-02-07
    Description: A spectrophotometric approach for quantification of dissolved manganese (DMn) with 1-(2-pyridylazo)-2-naphthol (PAN) has been adapted for in situ application in coastal and estuarine waters. The analyser uses a submersible microfluidic lab-on-chip device, with low power (~ 1.5 W) and reagent consumption (63 µL per sample). Laboratory characterization showed an absorption coefficient of 40,838 ± 1127 L⋅mol−1⋅cm−1 and a detection limit of 27 nM, determined for a 34.6 mm long optical detection cell. Laboratory tests showed that long-term stability of the PAN reagent was achieved by addition of 4% v/v of a non-ionic surfactant (Triton-X100). To suppress iron (Fe) interferences with the PAN reagent, the Fe(III) masking agents deferoxamine mesylate (DFO-B) or disodium 4,5-dihydroxy-1,3-benzenedisulfonate (Tiron) were added and their Fe masking efficiencies were investigated. The analyser was tested during a deployment over several weeks in Kiel Fjord (Germany), with successful acquisition of 215 in situ data points. The time series was in good agreement with DMn concentrations determined from discretely collected samples analysed via inductively coupled plasma mass spectrometry (ICP-MS), exhibiting a mean accuracy of 87% over the full deployment duration (with an accuracy of 〉 99% for certain periods) and clear correlations to key hydrographic parameters.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 176
    Publication Date: 2024-02-07
    Description: Sponges underpin the productivity of coral reefs, yet few of their microbial symbionts have been functionally characterised. Here we present an analysis of ~1200 metagenome-assembled genomes (MAGs) spanning seven sponge species and 25 microbial phyla. Compared to MAGs derived from reef seawater, sponge-associated MAGs were enriched in glycosyl hydrolases targeting components of sponge tissue, coral mucus and macroalgae, revealing a critical role for sponge symbionts in cycling reef organic matter. Further, visualisation of the distribution of these genes amongst symbiont taxa uncovered functional guilds for reef organic matter degradation. Genes for the utilisation of sialic acids and glycosaminoglycans present in sponge tissue were found in specific microbial lineages that also encoded genes for attachment to sponge-derived fibronectins and cadherins, suggesting these lineages can utilise specific structural elements of sponge tissue. Further, genes encoding CRISPR and restriction-modification systems used in defence against mobile genetic elements were enriched in sponge symbionts, along with eukaryote-like gene motifs thought to be involved in maintaining host association. Finally, we provide evidence that many of these sponge-enriched genes are laterally transferred between microbial taxa, suggesting they confer a selective advantage within the sponge niche and therefore play a critical role in host ecology and evolution.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 177
    Publication Date: 2024-02-07
    Description: Agulhas leakage, the warm and salty inflow of Indian Ocean water into the Atlantic Ocean, is of importance for the climate-relevant Atlantic Meridional Overturning Circulation. South of Africa, the eastward turning Agulhas Current sheds Agulhas rings, cyclones and filaments of order 100 km that carry the Indian Ocean water into the Cape Basin and further into the Atlantic. Here, we show that the resolution of submesoscale flows of order 10 km in an ocean model leads to 40 % more Agulhas leakage and more realistic Cape Basin water-masses compared to a parallel non-submesoscale resolving simulation. Moreover, we show that submesoscale flows strengthen shear-edge eddies and in consequence lee cyclones at the northern edge of the Agulhas Current, as well as the leakage pathway in the region of the filaments that takes place outside of mesoscale eddies. This indicates that the increase in leakage can be attributed to stronger Agulhas filaments, when submesoscale flows are resolved.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 178
    Publication Date: 2024-02-07
    Description: North African greening phases, during which large rivers ran through the Sahara Desert, occurred repeatedly during the Quaternary and are regarded as key periods for the development of past human populations. However, the timing and mechanisms responsible for the reactivation of the presently dormant fluvial systems remain highly uncertain. Here we present hydroclimate changes over the past 160,000 years, reconstructed from analyses of the provenance of terrestrial sediments in a marine sediment record from the Gulf of Sirte (offshore Libya). By combining high-resolution proxy data with transient Earth system model simulations, we are able to identify the various drivers that led to the observed shifts in hydroclimate and landscapes. We show that river runoff occurred during warm interglacial phases of Marine Isotope Stages 1 and 5 due to precession-forced enhancements in the summer and autumn rainfall over the entire watershed, which fed presently dry river systems and intermittent coastal streams. In contrast, shorter-lasting and less-intense humid events during glacial Marine Isotope Stages 3 and 4 were related to autumn and winter precipitation over the Libyan coastal regions driven by Mediterranean storms. Our results reveal large shifts in hydroclimate environments during the last glacial cycle, which probably exerted a strong evolutionary and structural control on past human populations, potentially pacing their dispersal across northern Africa.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Format: other
    Format: other
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 179
    Publication Date: 2024-02-07
    Description: The Arctic has the highest warming rates on Earth. Glaciated fjord ecosystems, which are hotspots of carbon cycling and burial, are extremely sensitive to this warming. Glaciers are important for the transport of iron from land to sea and supply this essential nutrient to phytoplankton in high-latitude marine ecosystems. However, up to 95% of the glacially-sourced iron settles to sediments close to the glacial source. Our data show that while 0.6–12% of the total glacially-sourced iron is potentially bioavailable, biogeochemical cycling in Arctic fjord sediments converts the glacially-derived iron into more labile phases, generating up to a 9-fold increase in the amount of potentially bioavailable iron. Arctic fjord sediments are thus an important source of potentially bioavailable iron. However, our data suggests that as glaciers retreat onto land the flux of iron to the sediment-water interface may be reduced. Glacial retreat therefore likely impacts iron cycling in coastal marine ecosystems.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 180
    Publication Date: 2024-02-07
    Description: Residual macronutrients in the surface Southern Ocean result from restricted biological utilization, caused by low wintertime irradiance, cold temperatures, and insufficient micronutrients. Variability in utilization alters oceanic CO2 sequestration at glacial-interglacial timescales. The role for insufficient iron has been examined in detail, but manganese also has an essential function in photosynthesis and dissolved concentrations in the Southern Ocean can be strongly depleted. However, clear evidence for or against manganese limitation in this system is lacking. Here we present results from ten experiments distributed across Drake Passage. We found manganese (co-)limited phytoplankton growth and macronutrient consumption in central Drake Passage, whilst iron limitation was widespread nearer the South American and Antarctic continental shelves. Spatial patterns were reconciled with the different rates and timescales for removal of each element from seawater. Our results suggest an important role for manganese in modelling Southern Ocean productivity and understanding major nutrient drawdown in glacial periods.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 181
    Publication Date: 2024-02-07
    Description: Bacteriophages (phages) are ubiquitous elements in nature, but their ecology and role in animals remains little understood. Sponges represent the oldest known extant animal-microbe symbiosis and are associated with dense and diverse microbial consortia. Here we investigate the tripartite interaction between phages, bacterial symbionts, and the sponge host. We combined imaging and bioinformatics to tackle important questions on who the phage hosts are and what the replication mode and spatial distribution within the animal is. This approach led to the discovery of distinct phage-microbe infection networks in sponge versus seawater microbiomes. A new correlative in situ imaging approach (‘PhageFISH-CLEM‘) localised phages within bacterial symbiont cells, but also within phagocytotically active sponge cells. We postulate that the phagocytosis of free virions by sponge cells modulates phage-bacteria ratios and ultimately controls infection dynamics. Prediction of phage replication strategies indicated a distinct pattern, where lysogeny dominates the sponge microbiome, likely fostered by sponge host-mediated virion clearance, while lysis dominates in seawater. Collectively, this work provides new insights into phage ecology within sponges, highlighting the importance of tripartite animal-phage-bacterium interplay in holobiont functioning. We anticipate that our imaging approach will be instrumental to further understanding of viral distribution and cellular association in animal hosts.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 182
    Publication Date: 2024-02-07
    Description: Information about the survival of species is important in many ecological applications. Yet, the estimation of a species’ natural mortality rate M remains a major problem in the management and conservation of wild populations, often circumvented by applying empirical equations that relate mortality to other traits that are more easily observed. We show that mean adult M can be approximated from the general law of decay if the average maximum age reached by individuals in a cohort is known. This is possible because the proportion P of individuals surviving to the average maximum age in a cohort is surprisingly similar across a wide range of examined species at 1.5%. The likely reason for the narrow range of P is a universal increase in the rate of mortality near the end of life, providing strong evidence that the evolutionary theories of ageing are the norm in natural populations.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 183
    Publication Date: 2024-02-07
    Description: The ocean is mitigating global warming by absorbing large amounts of excess carbon dioxide from human activities. To quantify and monitor the ocean carbon sink, we need a state-of-the-art data resource that makes data submission and retrieval machine-compatible and efficient.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 184
    Publication Date: 2024-02-07
    Description: Comment on the paper by Nichols & Peteet (2019) in Nature Geoscience, 12, 917-921
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 185
    Publication Date: 2024-02-07
    Description: The ocean contains unique biodiversity, provides valuable food resources and is a major sink for anthropogenic carbon. Marine protected areas (MPAs) are an effective tool for restoring ocean biodiversity and ecosystem services1,2, but at present only 2.7% of the ocean is highly protected3. This low level of ocean protection is due largely to conflicts with fisheries and other extractive uses. To address this issue, here we developed a conservation planning framework to prioritize highly protected MPAs in places that would result in multiple benefits today and in the future. We find that a substantial increase in ocean protection could have triple benefits, by protecting biodiversity, boosting the yield of fisheries and securing marine carbon stocks that are at risk from human activities. Our results show that most coastal nations contain priority areas that can contribute substantially to achieving these three objectives of biodiversity protection, food provision and carbon storage. A globally coordinated effort could be nearly twice as efficient as uncoordinated, national-level conservation planning. Our flexible prioritization framework could help to inform both national marine spatial plans4 and global targets for marine conservation, food security and climate action.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 186
    Publication Date: 2024-02-07
    Description: The surface mixed layer of the world ocean regulates global climate by controlling heat and carbon exchange between the atmosphere and the oceanic interior1,2,3. The mixed layer also shapes marine ecosystems by hosting most of the ocean’s primary production4 and providing the conduit for oxygenation of deep oceanic layers. Despite these important climatic and life-supporting roles, possible changes in the mixed layer during an era of global climate change remain uncertain. Here we use oceanographic observations to show that from 1970 to 2018 the density contrast across the base of the mixed layer increased and that the mixed layer itself became deeper. Using a physically based definition of upper-ocean stability that follows different dynamical regimes across the global ocean, we find that the summertime density contrast increased by 8.9 ± 2.7 per cent per decade (10−6–10−5 per second squared per decade, depending on region), more than six times greater than previous estimates. Whereas prior work has suggested that a thinner mixed layer should accompany a more stratified upper ocean5,6,7, we find instead that the summertime mixed layer deepened by 2.9 ± 0.5 per cent per decade, or several metres per decade (typically 5–10 metres per decade, depending on region). A detailed mechanistic interpretation is challenging, but the concurrent stratification and deepening of the mixed layer are related to an increase in stability associated with surface warming and high-latitude surface freshening8,9, accompanied by a wind-driven intensification of upper-ocean turbulence10,11. Our findings are based on a complex dataset with incomplete coverage of a vast area. Although our results are robust within a wide range of sensitivity analyses, important uncertainties remain, such as those related to sparse coverage in the early years of the 1970–2018 period. Nonetheless, our work calls for reconsideration of the drivers of ongoing shifts in marine primary production, and reveals stark changes in the world’s upper ocean over the past five decades.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 187
    Publication Date: 2024-02-07
    Description: The crustal and tectonic structure of the Red Sea and especially the maximum northward extent of the (ultra)slow Red Sea spreading centre has been debated—mainly due to a lack of detailed data. Here, we use a compilation of earthquake and vertical gravity gradient data together with high-resolution bathymetry to show that ocean spreading is occurring throughout the entire basin and is similar in style to that at other (ultra)slow spreading mid-ocean ridges globally, with only one first-order offset along the axis. Off-axis traces of axial volcanic highs, typical features of (ultra)slow-spreading ridges, are clearly visible in gravity data although buried under thick salt and sediments. This allows us to define a minimum off-axis extent of oceanic crust of 〈55 km off the coast along the complete basin. Hence, the Red Sea is a mature ocean basin in which spreading began along its entire length 13 Ma ago.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 188
    Publication Date: 2024-02-07
    Description: One pathway by which the oceans influence climate is via the emission of sea spray that may subsequently influence cloud properties. Sea spray emissions are known to be dependent on atmospheric and oceanic physicochemical parameters, but the potential role of ocean biology on sea spray fluxes remains poorly characterized. Here we show a consistent significant relationship between seawater nanophytoplankton cell abundances and sea-spray derived Cloud Condensation Nuclei (CCN) number fluxes, generated using water from three different oceanic regions. This sensitivity of CCN number fluxes to ocean biology is currently unaccounted for in climate models yet our measurements indicate that it influences fluxes by more than one order of magnitude over the range of phytoplankton investigated.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 189
    Publication Date: 2024-02-07
    Description: The organic carbon produced in the ocean’s surface by phytoplankton is either passed through the food web or exported to the ocean interior as marine snow. The rate and efficiency of such vertical export strongly depend on the size, structure and shape of individual particles, but apart from size, other morphological properties are still not quantitatively monitored. With the growing number of in situ imaging technologies, there is now a great possibility to analyze the morphology of individual marine snow. Thus, automated methods for their classification are urgently needed. Consequently, here we present a simple, objective categorization method of marine snow into a few ecologically meaningful functional morphotypes using field data from successive phases of the Arctic phytoplankton bloom. The proposed approach is a promising tool for future studies aiming to integrate the diversity, composition and morphology of marine snow into our understanding of the biological carbon pump.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 190
    Publication Date: 2024-02-07
    Description: Carbon sequestration and storage in mangroves, salt marshes and seagrass meadows is an essential coastal ‘blue carbon’ ecosystem service for climate change mitigation. Here we offer a comprehensive, global and spatially explicit economic assessment of carbon sequestration and storage in three coastal ecosystem types at the global and national levels. We propose a new approach based on the country-specific social cost of carbon that allows us to calculate each country’s contribution to, and redistribution of, global blue carbon wealth. Globally, coastal ecosystems contribute a mean ± s.e.m. of US$190.67 ± 30 bn yr−1 to blue carbon wealth. The three countries generating the largest positive net blue wealth contribution for other countries are Australia, Indonesia and Cuba, with Australia alone generating a positive net benefit of US$22.8 ± 3.8 bn yr−1 for the rest of the world through coastal ecosystem carbon sequestration and storage in its territory.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 191
    Publication Date: 2024-02-07
    Description: We present two 40 year records of monthly coral Sr/Ca ratios from the eastern pole of the Indian Ocean Dipole. A modern coral covers the period from 1968 to 2007. A sub-fossil coral derives from the medieval climate anomaly (MCA) and spans 1100–1140 ad. The modern coral records SST variability in the eastern pole of the Indian Ocean Dipole. A strong correlation is also found between coral Sr/Ca and the IOD index. The correlation with ENSO is asymmetric: the coral shows a moderate correlation with El Niño and a weak correlation with La Niña. The modern coral shows large interannual variability. Extreme IOD events cause cooling 〉 3 °C (1994, 1997) or ~ 2 °C (2006). In total, the modern coral indicates 32 warm/cool events, with 16 cool and 16 warm events. The MCA coral shows 24 warm/cool events, with 14 cool and 10 warm events. Only one cool event could be comparable to the positive Indian Ocean Dipole in 2006. The seasonal cycle of the MCA coral is reduced (〈 50% of to the modern) and the skewness of the Sr/Ca data is lower. This suggests a deeper thermocline in the eastern Indian Ocean associated with a La Niña-like mean state in the Indo-Pacific during the MCA.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 192
    Publication Date: 2024-02-07
    Description: Ground subsidence caused by natural or anthropogenic processes affects major urban areas worldwide. Sinkhole formation and infrastructure fractures have intensified in the federal capital of Maceió (Alagoas, Brazil) since early 2018, forcing authorities to relocate affected residents and place buildings under demolition. In this study, we present a 16-year history (2004–2020) of surface displacement, which shows precursory deformations in 2004–2005, reaching a maximum cumulative subsidence of approximately 200 cm near the Mundaú Lagoon coast in November 2020. By integrating the displacement observations with numerical source modelling, we suggest that extensive subsidence can be primarily associated with the removal of localized, deep-seated material at the location and depth where salt is mined. We discuss the accelerating subsidence rates, influence of severe precipitation events on the aforementioned geological instability, and related hazards. This study suggests that feedback destabilization mechanisms may arise in evaporite systems due to anthropogenic activities, fostering enhanced and complex superficial ground deformation.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 193
    Publication Date: 2024-02-07
    Description: The Siberian rivers supply large amounts of freshwater and terrestrial derived material to the Arctic Ocean. Although riverine freshwater and constituents have been identified in the central Arctic Ocean, the individual contributions of the Siberian rivers to and their spatiotemporal distributions in the Transpolar Drift (TPD), the major wind-driven current in the Eurasian sector of the Arctic Ocean, are unknown. Determining the influence of individual Siberian rivers downstream the TPD, however, is critical to forecast responses in polar and sub-polar hydrography and biogeochemistry to the anticipated individual changes in river discharge and freshwater composition. Here, we identify the contributions from the largest Siberian river systems, the Lena and Yenisei/Ob, in the TPD using dissolved neodymium isotopes and rare earth element concentrations. We further demonstrate their vertical and lateral separation that is likely due to distinct temporal emplacements of Lena and Yenisei/Ob waters in the TPD as well as prior mixing of Yenisei/Ob water with ambient waters.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 194
    Publication Date: 2024-02-07
    Description: Approximately half of the freshwater discharged from the Greenland and Antarctic Ice Sheets enters the ocean subsurface as a result of basal ice melt, or runoff draining via the grounding line of a deep ice shelf or marine-terminating glacier. Around Antarctica and parts of northern Greenland, this freshwater then experiences prolonged residence times in large cavities beneath floating ice tongues. Due to the inaccessibility of these cavities, it is unclear how they moderate the freshwater associated supply of nutrients such as iron (Fe) to the ocean. Here, we show that subglacial dissolved Fe export from Nioghalvfjerdsbrae (the ‘79°N Glacier’) is decoupled from particulate inputs including freshwater Fe supply, likely due to the prolonged ~162-day residence time of Atlantic water beneath Greenland’s largest floating ice-tongue. Our findings indicate that the overturning rate and particle-dissolved phase exchanges in ice cavities exert a dominant control on subglacial nutrient supply to shelf regions.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 195
    Publication Date: 2024-02-07
    Description: The Weissert Event ~133 million years ago marked a profound global cooling that punctuated the Early Cretaceous greenhouse. We present modelling, high-resolution bulk organic carbon isotopes and chronostratigraphically calibrated sea surface temperature (SSTs) based on an organic paleothermometer (the TEX86 proxy), which capture the Weissert Event in the semi-enclosed Weddell Sea basin, offshore Antarctica (paleolatitude ~54 °S; paleowater depth ~500 meters). We document a ~3–4 °C drop in SST coinciding with the Weissert cold end, and converge the Weddell Sea data, climate simulations and available worldwide multi-proxy based temperature data towards one unifying solution providing a best-fit between all lines of evidence. The outcome confirms a 3.0 °C ( ±1.7 °C) global mean surface cooling across the Weissert Event, which translates into a ~40% drop in atmospheric pCO2 over a period of ~700 thousand years. Consistent with geologic evidence, this pCO2 drop favoured the potential build-up of local polar ice.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 196
    Publication Date: 2024-02-07
    Description: The nature of the lower crust and the crust-mantle transition is fundamental to Earth sciences. Transformation of lower crustal rocks into eclogite facies is usually expected to result in lower crustal delamination. Here we provide compelling evidence for long-lasting presence of lower crustal eclogite below the seismic Moho. Our new wide-angle seismic data from the Paleoproterozoic Fennoscandian Shield identify a 6–8 km thick body with extremely high velocity (Vp ~ 8.5–8.6 km/s) and high density (〉3.4 g/cm 3 ) immediately beneath equally thinned high-velocity (Vp ~ 7.3–7.4 km/s) lowermost crust, which extends over 〉350 km distance. We relate this observed structure to partial (50–70%) transformation of part of the mafic lowermost crustal layer into eclogite facies during Paleoproterozoic orogeny without later delamination. Our findings challenge conventional models for the role of lower crustal eclogitization and delamination in lithosphere evolution and for the long-term stability of cratonic crust.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 197
    Publication Date: 2024-05-24
    Description: Europe’s recent summer droughts have had devastating ecological and economic consequences, but the severity and cause of these extremes remain unclear. Here we present 27,080 annually resolved and absolutely dated measurements of tree-ring stable carbon and oxygen (δ13C and δ18O) isotopes from 21 living and 126 relict oaks (Quercus spp.) used to reconstruct central European summer hydroclimate from 75 BCE to 2018 CE. We find that the combined inverse δ13C and δ18O values correlate with the June–August Palmer Drought Severity Index from 1901–2018 at 0.73 (P 〈 0.001). Pluvials around 200, 720 and 1100 CE, and droughts around 40, 590, 950 and 1510 CE and in the twenty-first century, are superimposed on a multi-millennial drying trend. Our reconstruction demonstrates that the sequence of recent European summer droughts since 2015 CE is unprecedented in the past 2,110 years. This hydroclimatic anomaly is probably caused by anthropogenic warming and associated changes in the position of the summer jet stream.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 198
    Publication Date: 2021-01-08
    Description: The 2010 Deepwater Horizon disaster remains the largest single accidental release of oil and gas into the ocean. During the 87-day release, scientists used oceanographic tools to collect wellhead oil and gas samples, interrogate microbial community shifts and activities, and track the chemical composition of dissolved oil in the ocean’s interior. In the decade since the disaster, field and laboratory investigations studied the physics and chemistry of irrupted oil and gas at high pressure and low temperature, the role of chemical dispersants in oil composition and microbial hydrocarbon degradation, and the impact of combined oil, gas and dispersants on the flora and fauna of coastal and deep-sea environments. The multi-faceted, multidisciplinary scientific response to the released oil, gas and dispersants culminated in a better understanding of the environmental factors that influence the short-term and long-term fate and transport of oil in marine settings. In this Review, we summarize the unique aspects of the Deepwater Horizon release and highlight the advances in oil chemistry and microbiology that resulted from novel applications of emerging technologies. We end with an outlook on the applicability of these findings to possible oil releases in future deep-sea drilling locations and newly-opened high-latitude shipping lanes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 199
    facet.materialart.
    Unknown
    Nature Research
    In:  Nature Communications, 11 . Art.Nr. 5019.
    Publication Date: 2020-10-30
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 200
    Publication Date: 2023-02-08
    Description: Diverse microbial ecosystems underpin life in the sea. Among these microbes are many unicellular eukaryotes that span the diversity of the eukaryotic tree of life. However, genetic tractability has been limited to a few species, which do not represent eukaryotic diversity or environmentally relevant taxa. Here, we report on the development of genetic tools in a range of protists primarily from marine environments. We present evidence for foreign DNA delivery and expression in 13 species never before transformed and for advancement of tools for eight other species, as well as potential reasons for why transformation of yet another 17 species tested was not achieved. Our resource in genetic manipulation will provide insights into the ancestral eukaryotic lifeforms, general eukaryote cell biology, protein diversification and the evolution of cellular pathways.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: other
    Format: other
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...