ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Call number: M 17.90395
    Type of Medium: Monograph available for loan
    Pages: XI, 88 S. , graph. Darst.
    Classification:
    Photogrammetry, Remote Sensing
    Language: English
    Note: @Potsdam, Univ., Diss., 2007
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Call number: S 99.0139(348)
    In: Wissenschaftliche Arbeiten der Fachrichtung Vermessungswesen der Universität Hannover
    Type of Medium: Series available for loan
    Pages: 145 Seiten , Illustrationen, Diagramme, Karten
    ISSN: 0174-1454
    Series Statement: Wissenschaftliche Arbeiten der Fachrichtung Vermessungswesen der Universität Hannover Nr. 348
    Language: English
    Note: Dissertation, Gottfried Wilhelm Leibniz Universität Hannover, 2018 , Introduction 1.1 Synthetic Aperture Radar from Spaceborne Remote Sensing 1.2 Satellite-Based Monitoring of the Terrestrial Water Cycle 1.3 Remote Sensing of Water Storage in Central Asia 1.4 GFZ Activities in Central Asia and Study Areas in Kyrgyzstan 1.5 Research Objectives 1.6 Outline and Structure of the Thesis 2 Fundamentals of Synthetic Aperture Radar Remote Sensing 2.1 SAR Satellite Data 2.2 SAR Satellite Missions 2.3 Interferometric SAR 2.4 DInSAR Time Series with PSI 2.5 DInSAR Time Series with SBAS 2.6 Feature Tracking 3 State of the Art 3.1 Inter- and Intra-Annual Glacier Surface Velocities from SAR Data 3.2 Inter- and Intra-Annual Glacier Elevation Changes from SAR Data 3.3 Inter- and Intra-Annual Loading-Induced Crustal Deformations at Water Reservoirs from SAR Data 4 Quantification of Inylchek Glacier Surface Kinematics 4.1 Abstract 4.2 Introduction 4.3 Inylchek Glacier 4.4 Data and Methodology 4.4.1 TerraSAR-X Data Set 4.4.2 Feature Tracking 4.4.3 Decomposition to 3D Velocities 4.5 Results 4.6 Discussion 4.6.1 Error Estimation 4.6.2 Inter-Annual Kinematics of the Upper Southern Inylchek Glacier Branch .... 4.6.3 Lake Level Extent and GLOF 4.7 Conclusions 4.8 Acknowledgements 4.9 Author Contribution 5 Quantification of Inylchek Glacier Elevation Changes 5.1 Abstract 5.2 Introduction 5.3 Data 5.3.1 TanDEM X Data 5.3.2 External DEMs 5.3.3 Glacier Outlines of Inylchek 5.4 Methodology 5.4.1 Interferometric Processing of TanDEM-X Data 5.4.2 Alignment of the SRTM and TDX DEMs 5.4.3 Radar Penetration Correction 5.4.4 DEM Elevation Difference Calculation 5.4.5 Accuracy Assessment 5.5 Results and Discussion 5.5.1 Uncertainty of Measurements 5.5.2 DEM Alignment Quality 5.5.3 Inylchek Elevation Changes 5.6 Conclusions 5.7 Acknowledgements 5.8 Author Contribution 6 Quantification of Toktogul Water-Level-Induced Ground Deformations 6.1 Abstract 6.2 Introduction 6.3 Materials and Methods 6.3.1 Lake Altimetry 6.3.2 DInSAR processing of Envisat ASAR and Sentinel-1 Data 6.3.3 Atmospheric Correction 6.3.4 Deformation Decomposition of SentineH Data 6.3.5 Modelling of Elastic Surface Deformations 6.4 Results 6.4.1 Atmospheric Corrections 6.4.2 Ground Deformation 6.5 Discussion 6.5.1 Atmospheric Corrections 6.5.2 Ground Deformation 6.6 Conclusions 6.7 Acknowledgments 6.8 Author Contribution 7 Subsequent Work 7.1 Scope of the Chapter 7.2 GNSS-derived Inylchek Glacier Surface Kinematics 7.2.1 Abstract 7.2.2 Author Contribution 7.3 Monitoring of Lake Merzbacher's GLOF Event 7.3.1 Abstract 7.3.2 Author Contribution 7.4 Ongoing Work at GFZ Based on the Results of this Thesis 8 Summary and Outlook 8.1 Summary of Main Results 8.1.1 Methodological Aspects 8.1.2 Monitoring of Short-Time Changes 8.2 Outlook Bibliography
    Location: Lower compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Call number: S 99.0139(354)
    In: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover, Nr. 354
    Type of Medium: Series available for loan
    Pages: 155 Seiten , Illustrationen, Diagramme, Karten
    ISBN: 978-3-7696-5252-9 , 9783769652529
    ISSN: 0065-5325
    Series Statement: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover Nr. 354
    Language: English
    Note: Dissertation, Gottfried Wilhelm Leibniz Universität Hannover, 2019 , 1. Introduction 1.1. Research Objectives 1.2. Outline and Structure of the Thesis 2. Theoretical Background 2.1. Introduction 2.2. SAR Imaging 2.2.1. SAR Image Distortions 2.2.2. SAR Imaging Modes 2.2.3. SAR Missions 2.3. SAR Interferometry 2.3.1. InSAR Workflow 2.3.2. InSAR Decorrelation 2.3.3. Errors in InSAR 2.3.4. Examples of Interferograms 2.3.5. Decomposition of Line-of-Sight Measurements 2.4. Multi Temporal InSAR 2.4.1. Scattering Mechanisms in SAR Images 2.4.2. Interferogram Stacking 2.4.3. Persistent Scatterer InSAR 2.4.4. Small Baseline InSAR 2.5. Analysis of Displacement Time Series 2.5.1. Continuous Wavelet Transform 2.5.2. Cross Wavelet Transform 2.5.3. Application of CWT and XWT to InSAR Time Series 3. Methodological Contribution 37 3.1. Introduction 3.2. Challenges in Large-scale InSAR 3.3. Proposed Method 3.3.1. Interferogram Formation 3.3.2. Adaptive Correction of Interferograms 3.3.3. Estimating the Displacement Rate 3.3.4. Estimating the Time Series of Displacement 4. InSAR Monitoring of Localized Landslide in Taihape, New Zealand 4.1. Abstract 4.2. Introduction 4.3. Study Area 4.4. Methods 4.4.1. InSAR Measurement 4.4.2. Ancillary Data 4.4.3. Cause-Effect Analysis 4.5. Results 4.5.1. Small-baseline Interferograms 4.5.2. Time-series Results 4.6. Discussion 4.6.1. Suitability of InSAR Measurements for Monitoring the Taihape Landslide 4.6.2. Interpretation of InSAR Results 4.6.3. Comparison with Ground Truth 4.6.4. Comparison with Rainfall and Groundwater Level 4.7. Conclusion 4.8. Acknowledgments 4.9. Supplementary Materials 5. InSAR Measurement of Regional Land Subsidence in Tehran, Iran 5.1. Abstract 5.2. Introduction 5.3. Study Area and Problem Description 5.4. Datasets 5.4.1. SAR Data 5.4.2. Leveling 5.4.3. Groundwater Level 5.5. Methods 5.5.1. Multi-temporal InSAR Analysis 5.5.2. Merging InSAR Time Series 5.5.3. Cause-Effect Analysis 5.6. Results 5.6.1. Southwest of Tehran 5.6.2. IKA Airport 5.6.3. Varamin County 5.6.4. Time Series of Displacement 5.6.5. Accuracy, Precision and Consistency Assessments 5.7. Discussion 5.7.1. Structural Control of the Displacement 5.7.2. Comparison with Groundwater 5.7.3. Elastic vs. Inelastic Compaction 5.8. Conclusion 5.9. Acknowledgments 5.10. Supplementary materials 5.10.1. Significance of Tropospheric Delay 5.10.2. Decomposition of LOS Measurement 5.10.3. Under/Overestimation of Displacement Rates 6. Sentinel-1 InSAR Measurement of Anthropogenic Deformation in Germany 6.1. Summary 6.2. Introduction 6.3. Sentinel-1 InSAR Processing 6.4. Large-scale Sentinel-1 Processing 6.5. Anthropogenic Ground Motion in Berlin 6.6. Mining-induced Deformation in Leipzig 6.7. Conclusions and Prospect 6.8. Acknowledgements 7. Subsequent Work: Measurement of Localized Deformations over Extensive Areas 7.1. Introduction 7.2. SAR Datasets 7.3. Sentinel-1 Interferograms 7.4. Corrected Interferograms 7.5. Displacement Maps and Time Series 7.6. Discussion 7.7. Conclusion 8. Cooperation Works 8.1. Quantifying Land Subsidence in the Rafsanjan Plain, Iran Using InSAR Measurements 8.1.1. Abstract 8.1.2. Author Contribution 8.2. Characterizing Post-construction Settlement of Masjed-Soleyman Dam Using TerraSAR-X SpotLight InSAR 8.2.1. Abstract 8.2.2. Author Contribution 8.3. InSAR Observation of the 18 August 2014 Mormori (Iran) Earthquake 8.3.1. Author Contribution 9. Summary and Future Work 9.1. Future works , Zusammenfassung in Englisch und Deutsch Seite 3-6
    Location: Lower compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-08-02
    Description: A large, deep-seated ancient landslide was partially reactivated on 17 June 2020 close to the Aniangzhai village of Danba County in Sichuan Province of Southwest China. It was initiated by undercutting of the toe of this landslide resulting from increased discharge of the Xiaojinchuan River caused by the failure of a landslide dam, which had been created by the debris flow originating from the Meilong valley. As a result, 12 townships in the downstream area were endangered leading to the evacuation of more than 20000 people. This study investigated the Aniangzhai landslide area by optical and radar satellite remote sensing techniques. A horizontal displacement map produced using cross-correlation of high-resolution optical images from Planet shows a maximum horizontal motion of approximately 15 meters for the slope failure between the two acquisitions. The undercutting effects on the toe of the landslide are clearly revealed by exploiting optical data and field surveys, indicating the direct influence of the overflow from the landslide dam and water release from a nearby hydropower station on the toe erosion. Pre-disaster instability analysis using a stack of SAR data from Sentinel-1 between 2014 and 2020 suggests that the Aniangzhai landslide has long been active before the failure, with the largest annual LOS deformation rate more than 50 mm/yr. The 3-year wet period that followed a relative drought year in 2016 resulted in a 14% higher average velocity in 2018–2020, in comparison to the rate in 2014–2017. A detailed analysis of slope surface kinematics in different parts of the landslide indicates that temporal changes in precipitation are mainly correlated with kinematics of motion at the head part of the failure body, where an accelerated creep is observed since spring 2020 before the large failure. Overall, this study provides an example of how full exploitation of optical and radar satellite remote sensing data can be used for a comprehensive analysis of destabilization and reactivation of an ancient landslide in response to a complex cascading event chain in the transition zone between the Qinghai-Tibetan Plateau and the Sichuan Basin.
    Description: China Scholarship Council http://dx.doi.org/10.13039/501100004543
    Description: Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum - GFZ (4217)
    Keywords: ddc:551.3 ; Landslide ; Multi-temporal InSAR (MTI) ; Cross-correlation ; Satellite remote sensing ; Sentinel-1/2 ; Slope failure ; NDVI
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-03-25
    Description: We use interferometric synthetic aperture radar observations to investigate the fault geometry and afterslip evolution within 3 years after a mainshock. The postseismic observations favor a ramp‐flat structure in which the flat angle should be lower than 10°. The postseismic deformation is dominated by afterslip, while the viscoelastic response is negligible. A multisegment, stress‐driven afterslip model (hereafter called the SA‐2 model) with depth‐varying frictional properties better explains the spatiotemporal evolution of the postseismic deformation than a two‐segment, stress‐driven afterslip model (hereafter called the SA‐1 model). Although the SA‐2 model does not improve the misfit significantly, this multisegment fault with depth‐varying friction is more physically plausible given the depth‐varying mechanical stratigraphy in the region. Compared to the kinematic afterslip model, the mechanical afterslip models with friction variation tend to underestimate early postseismic deformation to the west, which may indicate more complex fault friction than we expected. Both the kinematic and stress‐driven models can resolve downdip afterslip, although it could be affected by data noise and model resolution. The transition depth of the sedimentary cover basement interface inferred by afterslip models is ∼12 km in the seismogenic zone, which coincides with the regional stratigraphic profile. Because the coseismic rupture propagated along a basement‐involved fault while the postseismic slip may activate the frontal structures and/or shallower detachments in the sedimentary cover, the 2017 Sarpol‐e Zahab earthquake may have acted as a typical event that contributed to both thick‐ and thin‐skinned shortening of the Zagros in both seismic and aseismic ways.
    Description: Plain Language Summary: The 2017 Mw 7.3 Sarpol‐e Zahab earthquake is the largest instrumentally recorded event to have ruptured in the Zagros fold thrust belt. Although much work has been conducted for a better understanding of the relationship between crustal shortening and seismic and aseismic slip of the earthquakes in the Zagros, active debate remains. Here, we use interferometric synthetic aperture radar observations to study the fault geometry and afterslip evolution within 3 years after the 2017 Mw 7.3 Sarpol‐e Zahab earthquake. For postseismic deformation sources, afterslip and viscoelastic relaxation are considered to be possible causes of postseismic deformation. Our results show that the kinematic afterslip model can spatiotemporally explain the postseismic deformation. However, the mechanical afterslip models tend to underestimate the earlier western part of the postseismic deformation, which may indicate a more complex spatial heterogeneity of the frictional property of the fault plane. We find that there is deep afterslip downdip of coseismic slip from both the kinematic and stress‐driven afterslip models, although it could be affected by data noise and model resolution. We additionally find that the viscoelastic response is negligible. Postseismic slip on more complex geological structures may also be reactivated and triggered, combined with geodetic inversions, geological cross‐section data and local structures in the Zagros.
    Description: Key Points: The Spatiotemporal evolution of postseismic observations favors a ramp‐flat structure in which the flat angle should be lower than 10°, Depth‐varying friction is required to better simulate the rate‐strengthening afterslip evolution. Downdip afterslip can be resolved by afterslip models, although it relies on data accuracy and model resolution.
    Description: National Natural Science Foundation of China http://dx.doi.org/10.13039/501100001809
    Description: China Scholarship Council http://dx.doi.org/10.13039/501100004543
    Description: Ministry of Science and Technology in Taiwan
    Description: https://www.asf.alaska.edu/
    Description: http://irsc.ut.ac.ir/
    Description: https://www.globalcmt.org/
    Description: https://doi.org/10.5281/zenodo.7113073
    Keywords: ddc:551.22 ; Zagros fold thrust belt ; Sarpol-e Zahab earthquake ; postseismic observations ; postseismic deformation ; InSAR
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-11-01
    Description: The 22 February (local time) MW ~6.2 Christchurch earthquake occurred within the aftershock region of the 4 September 2010 MW 7.1 Darfield (Canterbury) earthquake (Gledhill et al. 2011). Both the Darfield and Christchurch earthquakes occurred on previously unknown faults in a region of historically low seismicity, but within the zone of plate boundary deformation between the Pacific and Australian plates. The Darfield earthquake caused surface rupture up to 5 m (Quigley et al. 2010, forthcoming), but none has been observed associated with the Christchurch earthquake. Geodetic data indicate that strain has been slowly accumulating within the region (Wallace et al. 2007; Beavan et al. 2002), and the presence of active subsurface faults was known or suspected (e.g., Pettinga et al. 2001). Earthquakes of magnitude up to 7.2 in this region had been allowed for in the national seismic hazard model (Stirling et al. 2002), but the observed high apparent stresses (Fry and Gerstenberger 2011, page 833 of this issue) and high ground accelerations (Fry et al. 2011, page 846 of this issue) had not been anticipated, particularly those experienced in the Christchurch event. These and other factors (Fry and Gerstenberger 2011, page 833 of this issue; Fry et al. 2011, page 846 of this issue; Holden 2011, page 783 of this issue), plus the close proximity of the February earthquake to Christchurch city center, were responsible for the major damage caused by the earthquake (e.g., Kaiser et al. 2011). A large amount of geodetic ground-displacement data is available to constrain the source of the earthquake, in part because we reoccupied nearly 200 GPS sites that had been observed following the Darfield earthquake, and in part because a number of space agencies collected synthetic aperture radar (SAR) data over...
    Print ISSN: 0895-0695
    Electronic ISSN: 1938-2057
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-03-01
    Description: Splay faults are thrusts that emerge from the plate boundaries of subduction zones. Such structures have been mapped at several convergent margins and their activity commonly ascribed to large megathrust earthquakes. However, the behavior of splay faults during the earthquake cycle is poorly constrained because typically these structures are located offshore and are difficult to access. Here we use geologic mapping combined with space and land geodesy, as well as offshore sonar data, to document surface-fault ruptures and coastal uplift at Isla Santa María in south-central Chile (37°S) caused by the 27 February 2010 Maule earthquake (Mw 8.8). During the earthquake, the island was tilted parallel to the margin, and normal faults ruptured the surface and adjacent ocean bottom. We associate tilt and crestal normal faulting with growth of an anticline above a blind reverse fault rooted in the Nazca–South America plate boundary, which slipped during the Maule earthquake. The splay fault system has formed in an area of reduced coseismic plate-boundary slip, suggesting that anelastic deformation in the upper plate may have restrained the 2010 megathrust rupture. Surface fault breaks were accompanied by prominent discharge of fluids. Our field observations support the notion that splay faulting may frequently complement and influence the rupture of subduction-zone earthquakes.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-05-12
    Description: Recent earthquakes off the northeastern Kamchatka coast reveal that this region is seismically active, although details of the locations and complexity of the fault system are lacking. The northern part of Kamchatka has poor coverage by permanent seismic stations and ground geodetic instruments. Here, we exploit the Differential Interferometric Synthetic Aperture Radar (DInSAR) technique to characterize the fault geometry and kinematics associated with the 29 March 2017 Mw 6.6 Yuzhno-Ozernovskoe earthquake. The aim is to contribute to identifying the active fault branches and to better understanding the complex tectonic regime in this region using the DInSAR technique, which has never before been applied to the analysis of coseismic offsets in Kamchatka. We produced coseismic deformation maps using Advanced Land Observation Satellite-2 ascending and descending and Sentinel-1A descending Synthetic Aperture Radar (SAR) scenes and detected a predominant uplift up to 20 cm and a westward motion of approximately 7 cm near the shoreline. We jointly inverted the three geodetic datasets using elastic half-space fault modeling to retrieve source geometry and fault kinematics. The best-fit solution for the nonlinear inversion suggests a north–west-dipping oblique reverse fault with right-lateral rupture. The model fault geometry is not only generally consistent with the seismic data but also reveals that a hitherto unknown fault was ruptured. The identified fault structure is interpreted as the northern extension of the east Kamchatka fault zone, implying that the region is more complex than previously thought. Important implications arise for the presence of unknown faults at the edges of subduction zones that can generate earthquakes with magnitudes greater than Mw 6.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-06-01
    Print ISSN: 1866-6280
    Electronic ISSN: 1866-6299
    Topics: Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-07-01
    Print ISSN: 2150-704X
    Electronic ISSN: 2150-7058
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Published by Taylor & Francis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...