ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Byrne, James M; Klueglein, Nicole; Pearce, Carolyn; Rosso, Kevin; Appel, Erwin; Kappler, Andreas (2015): Redox cycling of Fe(II) and Fe(III) in magnetite by Fe-metabolizing bacteria. Science, 347(6229), 1473-1476, https://doi.org/10.1126/science.aaa4834
    Publication Date: 2023-01-13
    Description: Microorganisms are a primary control on the redox-induced cycling of iron in the environment. Despite the ability of bacteria to grow using both Fe(II) and Fe(III) bound in solid-phase iron minerals, it is currently unknown if changing environmental conditions enable the sharing of electrons in mixed-valent iron oxides between bacteria with different metabolisms. We show through magnetic and spectroscopic measurements that the phototrophic Fe(II)-oxidizing bacterium Rhodopseudomonas palustris TIE-1 oxidizes magnetite (Fe3O4) nanoparticles using light energy. This process is reversible in co-cultures by the anaerobic Fe(III)-reducing bacterium Geobacter sulfurreducens. These results demonstrate that Fe ions bound in the highly crystalline mineral magnetite are bioavailable as electron sinks and electron sources under varying environmental conditions, effectively rendering a naturally occurring battery.
    Type: Dataset
    Format: application/zip, 810.6 kBytes
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Byrne, James M; Coker, V S; Moise, S; Wincott, P L; Vaughan, D J; Tuna, F; Arenholz, E; van der Laan, G; Pattrick, R A D P; Lloyd, J R; Telling, N D (2013): Controlled cobalt doping in biogenic magnetite nanoparticles. Journal of The Royal Society Interface, 10(83), 20130134-20130134, https://doi.org/10.1098/rsif.2013.0134
    Publication Date: 2023-01-13
    Description: Cobalt doped magnetite (CoxFe3-xO4) nanoparticles have been produced through the microbial reduction of cobalt-iron oxyhydroxide by the bacterium Geobacter sulfurreducens. The materials produced, as measured by SQUID, x-ray magnetic circular dichroism, Mössbauer spectroscopy, etc., show dramatic increases in coercivity with increasing cobalt content without a major decrease in overall saturation magnetization. Structural and magnetization analyses reveal a reduction in particle size to 〈4 nm at the highest Co content, combined with an increase in the effective anisotropy of the magnetic nanoparticles. The potential use of these biogenic nanoparticles in aqueous suspensions for magnetic hyperthermia applications is demonstrated. Further analysis of the distribution of cations within the ferrite spinel indicates that the cobalt is predominantly incorporated in octahedral coordination, achieved by the substitution of Fe2+ site with Co2+, with up to 17 per cent Co substituted into tetrahedral sites.
    Type: Dataset
    Format: application/zip, 695.2 kBytes
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Byrne, James M; Muhamadali, H; Coker, V S; Cooper, J; Lloyd, J R (2015): Scale-up of the production of highly reactive biogenic magnetite nanoparticles using Geobacter sulfurreducens. Journal of The Royal Society Interface, 12(107), 20150240, https://doi.org/10.1098/rsif.2015.0240
    Publication Date: 2024-04-14
    Description: Although there are numerous examples of large-scale commercial microbial synthesis routes for organic bioproducts, few studies have addressed the obvious potential for microbial systems to produce inorganic functional biomaterials at scale. Here we address this by focusing on the production of nano-scale biomagnetite particles by the Fe(III)-reducing bacterium Geobacter sulfurreducens, which was scaled-up successfully from lab-scale to pilot plant-scale production, whilst maintaining the surface reactivity and magnetic properties which make this material well suited to commercial exploitation. At the largest scale tested, the bacterium was grown in a 50 L bioreactor, harvested and then inoculated into a buffer solution containing Fe(III)-oxyhydroxide and an electron donor and mediator, which promoted the formation of magnetite in under 24 hours. This procedure was capable of producing up to 120 g biomagnetite. The particle size distribution was maintained between 10 and 15 nm during scale-up of this second step from 10 ml to 10 L, with conserved magnetic properties and surface reactivity; the latter demonstrated by the reduction of Cr(VI). The process presented provides an environmentally benign route to magnetite production and serves as an alternative to harsher synthetic techniques, with the clear potential to be used to produce kg to tonne quantities.
    Type: Dataset
    Format: application/zip, 6 MBytes
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of the American Water Resources Association 37 (2001), S. 0 
    ISSN: 1752-1688
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Notes: : In southern Alberta, as elsewhere, pressures on limited water supplies are increasing. Not surprisingly, a great deal of attention has been focused on irrigated agriculture, which accounts for the largest share of water consumed in the region. In order to meet broadly accepted water conservation goals, some commentators have suggested that irrigation water use should be metered and that irrigators should be charged based on the amount of water used. An alternative proposal would have water management authorities rely upon the perceived adaptability of irrigators. This paper offers a perspective on the willingness of irrigators to conserve water.Based on a survey of 183 irrigation farmers conducted over the summer and early fall of 1998, we found that irrigators are generally aware of the need to conserve water and soil moisture, and that a variety of water conserving strategies were being employed. Water saving technologies specific to irrigation agriculture were less widely adopted. The findings suggest that there is considerable potential to reduce the amount of water consumed by the irrigation sector through increased efficiency, but that change will be limited if current economic circumstances and institutional arrangements persist.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Water, air & soil pollution 36 (1987), S. 115-130 
    ISSN: 1573-2932
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract A modified version of the Ontario Ministry of the Environment Statistical Long-Range Transport (LRT) Model has been developed at the University of Waterloo. The model incorporates wind rose data at pollutant sources and receptors to reflect the percent of time that a source pollutant plume is affecting a down-wind receptor. Comparison of output to results generated by complex LRT models (i.e., the AES and MOE Lagrangian models) has demonstrated that the modified model results replicate complex model results fairly well. However, the model presented preserves the advantages of low execution costs and simple data input. This benefit permits the user to efficiently simulate a large number of LRT scenarios.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Visser, A., Wankel, S. D., Niklaus, P. A., Byrne, J. M., Kappler, A. A., & Lehmann, M. F. Impact of reactive surfaces on the abiotic reaction between nitrite and ferrous iron and associated nitrogen and oxygen isotope dynamics. Biogeosciences, 17(16), (2020): 4355-4374, doi:10.5194/bg-17-4355-2020.
    Description: Anaerobic nitrate-dependent Fe(II) oxidation (NDFeO) is widespread in various aquatic environments and plays a major role in iron and nitrogen redox dynamics. However, evidence for truly enzymatic, autotrophic NDFeO remains limited, with alternative explanations involving the coupling of heterotrophic denitrification with the abiotic oxidation of structurally bound or aqueous Fe(II) by reactive intermediate nitrogen (N) species (chemodenitrification). The extent to which chemodenitrification is caused (or enhanced) by ex vivo surface catalytic effects has not been directly tested to date. To determine whether the presence of either an Fe(II)-bearing mineral or dead biomass (DB) catalyses chemodenitrification, two different sets of anoxic batch experiments were conducted: 2 mM Fe(II) was added to a low-phosphate medium, resulting in the precipitation of vivianite (Fe3(PO4)2), to which 2 mM nitrite (NO−2) was later added, with or without an autoclaved cell suspension (∼1.96×108 cells mL−1) of Shewanella oneidensis MR-1. Concentrations of nitrite (NO−2), nitrous oxide (N2O), and iron (Fe2+, Fetot) were monitored over time in both set-ups to assess the impact of Fe(II) minerals and/or DB as catalysts of chemodenitrification. In addition, the natural-abundance isotope ratios of NO−2 and N2O (δ15N and δ18O) were analysed to constrain the associated isotope effects. Up to 90 % of the Fe(II) was oxidized in the presence of DB, whereas only ∼65 % of the Fe(II) was oxidized under mineral-only conditions, suggesting an overall lower reactivity of the mineral-only set-up. Similarly, the average NO−2 reduction rate in the mineral-only experiments (0.004±0.003 mmol L−1 d−1) was much lower than in the experiments with both mineral and DB (0.053±0.013 mmol L−1 d−1), as was N2O production (204.02±60.29 nmol L−1 d−1). The N2O yield per mole NO−2 reduced was higher in the mineral-only set-ups (4 %) than in the experiments with DB (1 %), suggesting the catalysis-dependent differential formation of NO. N-NO−2 isotope ratio measurements indicated a clear difference between both experimental conditions: in contrast to the marked 15N isotope enrichment during active NO−2 reduction (15εNO2=+10.3 ‰) observed in the presence of DB, NO−2 loss in the mineral-only experiments exhibited only a small N isotope effect (〈+1 ‰). The NO−2-O isotope effect was very low in both set-ups (18εNO2 〈1 ‰), which was most likely due to substantial O isotope exchange with ambient water. Moreover, under low-turnover conditions (i.e. in the mineral-only experiments as well as initially in experiments with DB), the observed NO−2 isotope systematics suggest, transiently, a small inverse isotope effect (i.e. decreasing NO−2 δ15N and δ18O with decreasing concentrations), which was possibly related to transitory surface complexation mechanisms. Site preference (SP) of the 15N isotopes in the linear N2O molecule for both set-ups ranged between 0 ‰ and 14 ‰, which was notably lower than the values previously reported for chemodenitrification. Our results imply that chemodenitrification is dependent on the available reactive surfaces and that the NO−2 (rather than the N2O) isotope signatures may be useful for distinguishing between chemodenitrification catalysed by minerals, chemodenitrification catalysed by dead microbial biomass, and possibly true enzymatic NDFeO.
    Description: This research has been supported by the Deutsche Forschungsgemeinschaft (DFG; grant no. GRK 1708, “Molecular principles of bacterial survival strategies”) and the University of Basel, Switzerland.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-03-18
    Description: The exergonic reaction of FeS with H2S to form FeS2(pyrite) and H2was postulated to have operated as an early form of energy metabolism on primordial Earth. Since the Archean, sedimentary pyrite formation has played a major role in the global iron and sulfur cycles, with direct impact on the redox chemistry of the atmosphere. However, the mechanism of sedimentary pyrite formation is still being debated. We present microbial enrichment cultures which grew with FeS, H2S, and CO2as their sole substrates to produce FeS2and CH4. Cultures grew over periods of 3 to 8 mo to cell densities of up to 2 to 9 × 106cells per mL−1. Transformation of FeS with H2S to FeS2was followed by57Fe Mössbauer spectroscopy and showed a clear biological temperature profile with maximum activity at 28 °C and decreasing activities toward 4 °C and 60 °C. CH4was formed concomitantly with FeS2and exhibited the same temperature dependence. Addition of either penicillin or 2-bromoethanesulfonate inhibited both FeS2and CH4production, indicating a coupling of overall pyrite formation to methanogenesis. This hypothesis was supported by a 16S rRNA gene-based phylogenetic analysis, which identified at least one archaeal and five bacterial species. The archaeon was closely related to the hydrogenotrophic methanogenMethanospirillum stamsii, while the bacteria were most closely related to sulfate-reducing Deltaproteobacteria, as well as uncultured Firmicutes and Actinobacteria. Our results show that pyrite formation can be mediated at ambient temperature through a microbially catalyzed redox process, which may serve as a model for a postulated primordial iron−sulfur world.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-08-28
    Description: Anaerobic nitrate-dependent Fe(II) oxidation (NDFeO) is widespread in various aquatic environments and plays a major role in iron and nitrogen redox dynamics. However, evidence for truly enzymatic, autotrophic NDFeO remains limited, with alternative explanations involving the coupling of heterotrophic denitrification with the abiotic oxidation of structurally bound or aqueous Fe(II) by reactive intermediate nitrogen (N) species (chemodenitrification). The extent to which chemodenitrification is caused (or enhanced) by ex vivo surface catalytic effects has not been directly tested to date. To determine whether the presence of either an Fe(II)-bearing mineral or dead biomass (DB) catalyses chemodenitrification, two different sets of anoxic batch experiments were conducted: 2 mM Fe(II) was added to a low-phosphate medium, resulting in the precipitation of vivianite (Fe3(PO4)2), to which 2 mM nitrite (NO2-) was later added, with or without an autoclaved cell suspension (∼1.96×108 cells mL−1) of Shewanella oneidensis MR-1. Concentrations of nitrite (NO2-), nitrous oxide (N2O), and iron (Fe2+, Fetot) were monitored over time in both set-ups to assess the impact of Fe(II) minerals and/or DB as catalysts of chemodenitrification. In addition, the natural-abundance isotope ratios of NO2- and N2O (δ15N and δ18O) were analysed to constrain the associated isotope effects. Up to 90 % of the Fe(II) was oxidized in the presence of DB, whereas only ∼65 % of the Fe(II) was oxidized under mineral-only conditions, suggesting an overall lower reactivity of the mineral-only set-up. Similarly, the average NO2- reduction rate in the mineral-only experiments (0.004±0.003 mmol L−1 d−1) was much lower than in the experiments with both mineral and DB (0.053±0.013 mmol L−1 d−1), as was N2O production (204.02±60.29 nmol L−1 d−1). The N2O yield per mole NO2- reduced was higher in the mineral-only set-ups (4 %) than in the experiments with DB (1 %), suggesting the catalysis-dependent differential formation of NO. N-NO2- isotope ratio measurements indicated a clear difference between both experimental conditions: in contrast to the marked 15N isotope enrichment during active NO2- reduction (15εNO2=+10.3 ‰) observed in the presence of DB, NO2- loss in the mineral-only experiments exhibited only a small N isotope effect (
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-07-07
    Print ISSN: 0013-936X
    Electronic ISSN: 1520-5851
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-10-16
    Print ISSN: 0013-936X
    Electronic ISSN: 1520-5851
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...