ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (117)
  • American Meteorological Society
  • KIT Scientific Publishing
  • MDPI Publishing
  • PANGAEA
  • Taylor & Francis
  • 2020-2024  (117)
Collection
Language
Years
Year
Journal
Topic
  • 1
  • 2
    Publication Date: 2024-04-11
    Description: This dataset reports measurements from a laboratory incubation of soils sourced from a boreal peatland and surrounding habitats (Siikaneva Bog, Finland). In August 2021, soil cores were collected from three habitat zones: a well-drained upland forest, an intermediate margin ecotone, and a Sphagnum moss bog. The cores from each habitat were taken from surface to approximately 50cm below surface using an Eijelkamp peat corer and subdivided by soil horizon. The samples were then incubated anaerobically for 140 days in three temperature treatment groups (0, 4, 20°C). Subsamples of the incubations headspace (250 µL) were measured on a gas chromatograph (7890A, Agilent Technologies, USA) with flame ionization detection (FID) for CO2 and CH4 concentrations. The rate of respiration from the samples were calculated per gram carbon and per gram soil as described in the method of Robertson., et al. (1999) and reported here, along with other relevant parameters.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-01-11
    Description: We study the marine terraces of the southern side of the Sibari Plain in Northern Calabria (Italy) through the use of traditional and quantitative analyses of the Digital Terrain Model (DTM). The main aim of the present work consists in the extensive use of GIS tools that were never used before in the area, and in checking the applicability of this procedure. The terraced surfaces identified using photo interpretation and those recognized semi-automatically through the GIS tools were compared to finally produce a consensus map. In the final map, we identified 272 terraced surfaces and 62 morphological features associated with inner margins (i.e. paleoshorelines). The main map shows a well-developed flight of seven orders of marine terraces with elevation ranging from 45 to 360 m asl and age ranging from Marine Isotope Stage (MIS) 5a to 11.
    Description: Published
    Description: 2243983
    Description: OST3 Vicino alla faglia
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-01-19
    Description: In this paper, the Multi-Temporal Interferometric Synthetic Aperture Radar (MT-InSAR) technology is adopted to monitor the Line of Sight (LOS) displacement of Fushun West Opencast Coal Mine (FWOCM) and its surrounding areas in northeast China using Sentinel-1 Synthetic Aperture Radar (SAR) images acquired from 2018 to 2022. The spatial-temporal evolution of urban subsidence and the south-slope landslide are both analyzed in detail. Comparison with ground measurements and cross-correlation analysis via cross wavelet transform with monthly precipitation data are also conducted, to analyze the influence factors of displacements in FWOCM. The monitoring results show that a subsidence basin appeared in the urban area near the eastern part of the north slope in 2018, with settlement center located at the intersection of E3000 and fault F1. The Qian Tai Shan (QTS) landslide on the south slope, which experienced rapid sliding during 2014 to 2016, presents seasonal deceleration and acceleration with precipitation, with the maximum displacement in vicinity of the Liushan paleochannel. The results of this paper have fully taken in account for the complications of large topographic relief, geological conditions, spatial distribution and temporal evolution characteristics of surface displacements in opencast mining area. The wide range and long time series dynamic monitoring of opencast mine are of great significance to ensure mine safety production and geological disaster prevention in the investigated mining area.
    Description: In press
    Description: OSA5: Energia e georisorse
    Description: JCR Journal
    Keywords: Multi-Temporal InSAR ; opencast mine ; landslide ; land subsidence ; cross wavelet transform
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-03-25
    Description: Despite their protracted periods of inactivity, long-dormant volcanoes may be highly hazardous, as their reactivation can be characterized by violent explosive eruptions. An example of such volcanoes is the Colli Albani caldera, onto which deposits Rome Capital City is built, Italy. Its last volcanic activity was characterized by voluminous maar-forming phreatomagmatic eruptions dated between 36 and 25ka, but the volcano has produced several maar lake overflows during the Holocene till historical times. Presently, Colli Albani is affected by recurrent seismic events, anomalous heat flow, ground uplifts, hydrothermal circulation and gas emissions. For these reasons, the Italian Civil Protection has recently listed Colli Albani among the ten active volcanoes of Italy, but products for the evaluation of its volcanic hazards lacking. This work presents the first study on vent opening susceptibility mapping at Colli Albani. We explore the potential of an available geological dataset for building, through geographic information system analysis, an index that classifies areas at different vents opening susceptibility (low, moderate and high). Such result highlights as a solid geological mapping is a prerequisite for the volcanic hazard assessment, especially in remote or poorly studied long-dormant volcanoes such as caldera systems where the location of new vents could occur in different volcano sectors.
    Description: Published
    Description: 2215905
    Description: OSV1: Verso la previsione dei fenomeni vulcanici pericolosi
    Description: JCR Journal
    Keywords: Hazard map; ; vent opening susceptibility; ; Colli Albani volcano;
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Meteorological Society
    In:  EPIC3Journal of Climate, American Meteorological Society, 37(6), pp. 2059-2080, ISSN: 0894-8755
    Publication Date: 2024-04-22
    Description: Heat stress is projected to intensify with global warming, causing significant socioeconomic impacts and threatening human health. Wet-bulb temperature (WBT), which combines temperature and humidity effects, is a useful indicator for assessing regional and global heat stress variability and trends. However, the variations of European WBT and their underlying mechanisms remain unclear. Using observations and reanalysis datasets, we demonstrate a remarkable warming of summer WBT during the period 1958–2021 over Europe. Specifically, the European summer WBT has increased by over 1.08C in the past 64 years. We find that the increase in European summer WBT is driven by both near-surface warming temperatures and increasing atmospheric moisture content. We identify four dominant modes of European summer WBT variability and investigate their linkage with the large-scale atmospheric circulation and sea surface temperature anomalies. The first two leading modes of the European WBT variability exhibit prominent interdecadal to long-term variations, mainly driven by a circumglobal wave train and concurrent sea surface temperature variations. The last two leading modes of European WBT variability mainly show interannual variations, indicating a direct and rapid response to large-scale atmospheric dynamics and nearby sea surface temperature variations. Further analysis shows the role of global warming and changes in midlatitude circulations in the variations of summer WBT. Our findings can enhance the understanding of plausible drivers of heat stress in Europe and provide valuable insights for regional decision-makers and climate adaptation planning.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-07
    Description: This historical overview uses a political ecology approach to examine agricultural change over time in Northwest Cambodia. It focuses on key historical periods, actors, and processes that continue to shape power, land, and farming relations in the region, emphasizing the relevance of this history for contemporary investments in agricultural extension services and research as part of the Zero Hunger by 2030 policy agenda for achieving the Sustainable Development Goals (SDG). Agricultural extension projects need to engage critically with historically complex and dynamic power, land, and farming relations–not only as the basis of social relations but as central to understanding the contemporary manifestation of farmer decision making and practice. Initiatives such as the SDGs replicate long histories of externally driven power-relations that orient benefits from changed practices towards elites in urban centers or distant global actors. Efforts to realize zero hunger by 2030 are endangered by neglect for the path-dependency of power-land-farming relations, which stretch from the past into the present to structure farmer decision making and practices.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-04-08
    Description: We present a new 1:25,000-scale geological map of the lower Belice River valley, the area struck by the M 〉 5.0 devastating 1968 seismic sequence, whose seismic source and seismotectonic framework are still controversial. The map, utilizing dating methods and traditional field survey approaches integrated by high-resolution topography, provides an unprecedented detail and precision on the spatial distribution and on the compressional growth geometries of the prominent sedimentary sequence. This map, supported by the first recognition of an on-shore Chibanian-Calabrian deposition and by identifying a flight of marine terraces, offers new insights on the long-lasting syn-depositional tectonic forces up to late-Pleistocene-Holocene times. Such tectonic forces may take part in the regional ongoing deformational phase, prompting detailed studies on the potential seismic sources affecting the area.
    Description: Published
    Description: 2242725
    Description: OST3 Vicino alla faglia
    Description: JCR Journal
    Keywords: Earthquake ; Active tectonics ; Biostratigraphy ; Quaternary deposit ; 04.04. Geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Meteorological Society
    In:  EPIC3Journal of Physical Oceanography, American Meteorological Society, 54(4), pp. 1003-1018, ISSN: 0022-3670
    Publication Date: 2024-04-25
    Description: Coastal upwelling, driven by alongshore winds and characterized by cold sea surface temperatures and high upper-ocean nutrient content, is an important physical process sustaining some of the oceans’ most productive ecosystems. To fully understand the ocean properties in eastern boundary upwelling systems, it is important to consider the depth of the source waters being upwelled, as it affects both the SST and the transport of nutrients toward the surface. Here, we construct an upwelling source depth distribution for parcels at the surface in the upwelling zone. We do so using passive tracers forced at the domain boundary for every model depth level to quantify their contributions to the upwelled waters. We test the dependence of this distribution on the strength of the wind stress and stratification using high-resolution regional ocean simulations of an idealized coastal upwelling system. We also present an efficient method for estimating the mean upwelling source depth. Furthermore, we show that the standard deviation of the upwelling source depth distribution increases with increasing wind stress and decreases with increasing stratification. These results can be applied to better understand and predict how coastal upwelling sites and their surface properties have and will change in past and future climates.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-05-21
    Description: Misterbianco, located on the southern slope of Mt. Etna (eastern Sicily), was destroyed in the past by two catastrophic events that raised the old town to the ground. The first was the great eruption of 1669, whose lava front buried dozens of villages encountered along its path, entirely destroying the architectural heritage of Etna's southern flank. The second event was the disastrous 1693 Val di Noto earthquake, which caused major destruction throughout south-eastern Sicily, also damaging the few still standing buildings in the town. The GPR survey performed at this site, 350 years after the eruption, allowed a first attempt of planimetric reconstruction of the San Nicolò Church. Starting from the site history, we present the results of an integrated approach that involves history, volcanology and geophysics aimed at addressing future archaeological excavations for the protection of archaeological and monumental assets in a difficult setting as this volcanic environment.
    Description: Published
    Description: 42-50
    Description: JCR Journal
    Keywords: GPR, SfM,cultural heritage,Etna, 1669 eruption ; 04.02. Exploration geophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2024-05-09
    Description: The great potential of the Global Navigation Satellite System (GNSS) in monitoring ground deformation is widely recognized. As with other geophysical data, GNSS time series can be significantly noisy, hiding elusive ground deformation signals. Several denoising techniques have been proposed to improve the signal-to-noise ratio over the years. One of the most effective denoising techniques has been proved to be multi-resolution decomposition through the discrete wavelet transform. However, wavelet analysis requires long data sets to be effective, as well as long computation times, that hinder its use as a real or near real-time monitoring tool. We propose training by a Convolutional Neural Network (CNN) to perform the equivalent of wavelet analysis to overcome these limitations. Once trained, the CNN model provides answers within seconds, making it feasible as a real-time data analysis tool. Our Machine Learning algorithm is tested on daily GNSS time series collected in the Campi Flegrei caldera (Southern Italy), which is a highly volcanic risk area. Without significant gaps, the retrieved RMSE and R2 values vary in the ranges 0.65–0.98 and 0.06–0.52 cm, respectively. These results are encouraging, as they hint at the possibility of applying this methodology in more effective real-time monitoring solutions for active volcanoes.
    Description: Published
    Description: 2187271
    Description: OSV3: Sviluppo di nuovi sistemi osservazionali e di analisi ad alta sensibilità
    Description: JCR Journal
    Keywords: 04.03. Geodesy ; 04.08. Volcanology ; 05.06. Methods
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    American Meteorological Society
    In:  EPIC3Journal of Climate, American Meteorological Society, 37(8), pp. 2505-2518, ISSN: 0894-8755
    Publication Date: 2024-06-21
    Description: A fundamental statistic of climate variability is its spatiotemporal correlation function. Its complex structure can be concisely summarized by a frequency-dependent measure of the effective spatial degrees of freedom (ESDOF). Here we present, for the first time, frequency-dependent ESDOF estimates of global natural surface temperature variability from purely instrumental measurements, using the HadCRUT4 dataset (1850-2014). The approach is based on a newly developed method for estimating the frequency-dependent spatial correlation function from gappy data fields. Results reveal a multicomponent structure of the spatial correlation function, including a large-amplitude short-distance component (with weak time scale dependence) and a small-amplitude long-distance component (with increasing relative amplitude toward the longer time scales). Two frequency-dependent ESDOF measures are applied, each responding mainly to either of the two components. Both measures exhibit a significant ESDOF reduction from monthly to multidecadal time scales, implying an increase of the effective spatial scale of natural surface temperature fluctuations. Moreover, it is found that a good approximation to the global number of equally spaced samples needed to estimate the variance of global mean temperature is given, at any frequency, by the greater one of the two ESDOF measures, decreasing from ;130 at monthly to ;30 at multidecadal time scales. Finally, the multicomponent structure of the correlation function together with the detected ESDOF scaling properties indicate that the ESDOF reduction toward the longer time scales cannot be explained simply by diffusion acting on stochastically driven anomalies, as it might be suggested f rom simple stochastic-diffusive energy balance models.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2024-06-17
    Description: The intraplate rocks of the Dunedin Volcanic Group (DVG) in New Zealand’s South Island erupted in two discrete areas between 25 and 21 Ma before becoming distributed over 〉 7,800 km2 until ∼9 Ma. Although most eruptive centres were of small volume and mainly vented alkaline basanite, the largest centre–the 16–11 Ma composite Dunedin Volcano–discharged basanite and basalt through to trachyte and phonolite. DVG components were mainly derived from mantle sources with 87Sr/86Sr = ∼0.7029, 143Nd/144Nd = ∼0.5129, 206Pb/204Pb = ∼20.0, 207Pb/204Pb = ∼15.65, 208Pb/204Pb = 39.5 and εHf = +3.5 to + 10.1 that extended to anomalously light δ26Mg (−0.47). Exceptions are some potassic basalts in NW of the field with elevated 207Pb/204Pb and more radiogenic Sr. The DVG Sr-Nd-Pb isotopes mostly overlap with metasomatised anhydrous mantle peridotite xenoliths but have less radiogenic Hf, meaning that equivalent anhydrous mantle rock-types cannot be the sole magma sources. Although there is debate regarding whether DVG was derived from the lithospheric or asthenospheric mantle, intermittent melting of a middle lithospheric mantle metasomatised by hydrous asthenosphere-derived melts could account for: (1) the widely distributed magmatism for ∼16 Myr during which time Otago lithosphere shifted NW ∼ 870 km over the asthenosphere; (2) the small chemical range of the least evolved magmas; (3) the Sr-Nd-Pb-Hf isotopic range; and (4) an absence of lower lithosphere mantle xenoliths. This process could account for other occurrences of isotopically restricted Zealandia alkaline intraplate volcanism.
    Description: Published
    Description: 510-529
    Description: OSV2: Complessità dei processi vulcanici: approcci multidisciplinari e multiparametrici
    Description: JCR Journal
    Keywords: Dunedin volcanic Group ; intraplate ; alkaline ; volcanism ; Zealandia ; Petrology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    Taylor & Francis
    In:  EPIC3Arctic Antarctic and Alpine Research, Taylor & Francis, 56(1), pp. 2350546-2350546, ISSN: 1523-0430
    Publication Date: 2024-06-14
    Description: Arctic landscapes are characterized by diverse water bodies, which are covered with ice for most of the year. Ice controls surface albedo, hydrological properties, gas exchange, and ecosystem services, but freezing processes differ between water bodies. We studied the influence of geomor-phology and meteorology on winter ice of water bodies in the Lena Delta, Siberia. Electrical conductivity (EC) and stable water isotopes of ice cores from four winters and six water bodies were measured at unprecedented resolution down to 2-cm increments, revealing differences in freezing systems. Open-system freezing shows near-constant isotopic and EC gradients in ice, whereas closed-system freezing shows decreasing isotopic composition with depth. Lena River ice displays three zones of isotopic composition within the ice, reflecting open-system freezing that records changing water sources over the winter. The isotope composition of ice covers in landscape units of different ages also reflects the individual water reservoir settings (i.e., Pleistocene vs. Holocene ground ice thaw). Ice growth models indicate that snow properties are a dominant determinant of ice growth over winter. Our findings provide novel insights into the winter hydro-chemistry of Arctic ice covers, including the influences of meteorology and water body geomor-phology on freezing rates and processes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2024-06-28
    Description: 〈jats:title〉Abstract〈/jats:title〉 〈jats:p〉This study quantifies the state-of-the-art in the rapidly growing field of seasonal Arctic sea ice prediction. A novel multi-model dataset of retrospective seasonal predictions of September Arctic sea ice is created and analyzed, consisting of community contributions from 17 statistical models and 17 dynamical models. Prediction skill is compared over the period 2001–2020 for predictions of Pan-Arctic sea ice extent (SIE), regional SIE, and local sea ice concentration (SIC) initialized on June 1, July 1, August 1, and September 1. This diverse set of statistical and dynamical models can individually predict linearly detrended Pan-Arctic SIE anomalies with skill, and a multi-model median prediction has correlation coefficients of 0.79, 0.86, 0.92, and 0.99 at these respective initialization times. Regional SIE predictions have similar skill to Pan-Arctic predictions in the Alaskan and Siberian regions, whereas regional skill is lower in the Canadian, Atlantic, and Central Arctic sectors. The skill of dynamical and statistical models is generally comparable for Pan-Arctic SIE, whereas dynamical models outperform their statistical counterparts for regional and local predictions. The prediction systems are found to provide the most value added relative to basic reference forecasts in the extreme SIE years of 1996, 2007, and 2012. SIE prediction errors do not show clear trends over time, suggesting that there has been minimal change in inherent sea ice predictability over the satellite era. Overall, this study demonstrates that there are bright prospects for skillful operational predictions of September sea ice at least three months in advance.〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2023-08-25
    Description: Surface air temperature measurements obtained from different sensors are used to construct a unique time series with one minute time-interval. Apart from differences in design and environmental exposition, periods of missing data also exist in the data series of each sensor. A primary data set was selected in terms of quality and temporal extension. A combination of two different techniques is applied to complete this data set: one is based on the autocorrelation of the series and the other on measurements taken from other sensors. The resulting values constitute a complete series of surface air temperature at AGGO.
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2024-01-19
    Description: Presented are analytical data from lacustrine sediment cores, retrieved from Lake Nam Co (Tibetan Plateau). The sediment core is a composite of one gravity core, taken with a Rumohr-Meischner gravity corer (63 mm diameter) and a piston core, retrieved using an uwitec piston coring system (http://www.uwitec.at; 90 mm diameter). The composite core labelled 〈NC 08/01〉 comprises a total length of 10.378 m. The cores were obtained at N 30.737417, E 090.790333 at a water depth of 93 m on 2008-09-15. The purpose of obtaining this sediment core was to establish a high-resolution record of climate (monsoonal) and environmental change using multiple proxy data. The dataset comprises analytical data based on sedimentological, inorganic geochemical, mineralogical and isotope-geochemical methods. Specifically: sediment water content & density; magnetic susceptibility; particel size data; quantitative inorganic geochemical data (ICP-OES aqua regia and HCL digestions); semi-quantitative XRF elemental data; carbon, nitrogen, sulfur contents; qualitative mineralogical data; bulk sediment stable carbon and oxygen isotope data.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2024-01-19
    Description: This data set is part of a larger data harmonization effort to make lake sediment core data machine readable and comparable. Here we standardized X-ray fluorescence line scanning (XRF)-based element data of sediment core EN18208, retrieved in 2018 from Lake Ilirney (Chukotka, Russia) at 10.76 m water depth. The glacial lake Ilirney is situated in the forest tundra mountain area and has one outflow, one main inflow and several smaller inflows. It lies at an elevation of ca. 428 m a.s.l. with a surface area of ca. 30 km2 and a maximum lake water depth of estimated 44 m. The 10.76 m sediment core was retrieved by a UWITEC piston corer during the RU-Land_2018_Chukotka expedition of the Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI, Germany, Potsdam) in cooperation with the North Eastern Federal State University (NEFU, Russia, Yakutsk). The downcore elemental composition was measured using an AVAATECH x-ray fluorescence core scanner at Bundesanstalt für Geowissenschaften und Rohstoffe (BGR) in Berlin, Spandau.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2024-01-19
    Description: This data set is part of a larger data harmonization effort to make lake sediment core data machine readable and comparable. Here we standardized radiocarbon and OSL age data of sediment core EN18208, retrieved in 2018 from Lake Ilirney (Chukotka, Russia) at 10.76 m water depth. The glacial lake Ilirney is situated in the forest tundra mountain area and has one outflow, one main inflow and several smaller inflows. It lies at an elevation of ca. 428 m a.s.l. with a surface area of ca. 30 km2 and a maximum lake water depth of estimated 44 m. The 10.76 m sediment core was retrieved by a UWITEC piston corer during the RU-Land_2018_Chukotka expedition of the Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI, Germany, Potsdam) in cooperation with the North Eastern Federal State University (NEFU, Russia, Yakutsk). Radiocarbon data have been analysed from bulk sediment samples in Bremerhaven at the MICADAS laboratory. Optically stimulated luminescence (OSL) dating was performed at the Royal Holloway Luminescence Laboratory using a Risø TL/OSL-DA-15 automated dating system.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2024-01-19
    Description: A 25-cm long predominantly aragonite stalagmite was collected November 2, 2005 from Dharamjali Cave (29.5°N, 80.2°E) in the central Himalayas. This dataset contains stable isotope, trace element, XRF, U/Th dating, and dripwater data. The age model spans 4.2 to 2.3 ka BP, and the dataset records seasonal shifts in hydroclimate from 4.2 to 3.1 ka BP. Using the DHAR-1A half of the speleothem, 750 samples were milled at 100–300 µm resolution for stable isotope analysis (δ18O and δ13C) and analyzed at GFZ Potsdam. Further high-resolution stable isotope analysis at the University of Cambridge included 876 samples from the bottom 4 cm of the mirroring slab DHAR-1B, covering c. 4.2–3.6 ka BP. The δ44/40Ca measurements were made on 60 aragonite samples of aragonite and 1 calcite sample milled between 4.2 and 2.8 ka BP. The elemental composition of DHAR-1B was determined first with an Avaatech XRF scanner at the University of Cambridge, and later using laser ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) at the University of Waikato. U-series dating was performed at Caltech on 22 samples. Twelve U-series ages (between 2.55 and 4.14 ka BP) were used to construct the age models, using ensembles of 2000 Monte Carlo simulations for each proxy using the MATLAB-based COPRA script (Breitenbach et al., 2012, https://doi.org/10.5194/cp-8-1765-2012).
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2024-01-19
    Description: This data set is part of a larger data harmonization effort to make lake sediment core data machine readable and comparable. Here we standardized grain size element data of sediment core EN18208, retrieved in 2018 from Lake Ilirney (Chukotka, Russia) at 10.76 m water depth. The glacial lake Ilirney is situated in the forest tundra mountain area and has one outflow, one main inflow and several smaller inflows. It lies at an elevation of ca. 428 m a.s.l. with a surface area of ca. 30 km2 and a maximum lake water depth of estimated 44 m. The 10.76 m sediment core was retrieved by a UWITEC piston corer during the RU-Land_2018_Chukotka expedition of the Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI, Germany, Potsdam) in cooperation with the North Eastern Federal State University (NEFU, Russia, Yakutsk). Grain-size was measured using a Malvern Mastersizer 3000 laser diffraction particle analyser.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2024-01-19
    Description: This data set is part of a larger data harmonization effort to make lake sediment core data machine readable and comparable. Here we standardized mineral data of sediment core EN18208, retrieved in 2018 from Lake Ilirney (Chukotka, Russia) at 10.76 m water depth. The glacial lake Ilirney is situated in the forest tundra mountain area and has one outflow, one main inflow and several smaller inflows. It lies at an elevation of ca. 428 m a.s.l. with a surface area of ca. 30 km2 and a maximum lake water depth of estimated 44 m. The 10.76 m sediment core was retrieved by a UWITEC piston corer during the RU-Land_2018_Chukotka expedition of the Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI, Germany, Potsdam) in cooperation with the North Eastern Federal State University (NEFU, Russia, Yakutsk). Bulk mineralogy was analysed by (x-ray diffractometry (XRD) using a (PHILIPS, Netherlands) PW1820 goniometer.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2024-01-19
    Description: This data set is part of a larger data harmonization effort to make lake sediment core data machine readable and comparable. Here we standardized radiocarbon and OSL age data of sediment core EN18208, retrieved in 2018 from Lake Ilirney (Chukotka, Russia) at 10.76 m water depth. The glacial lake Ilirney is situated in the forest tundra mountain area and has one outflow, one main inflow and several smaller inflows. It lies at an elevation of ca. 428 m a.s.l. with a surface area of ca. 30 km2 and a maximum lake water depth of estimated 44 m. The 10.76 m sediment core was retrieved by a UWITEC piston corer during the RU-Land_2018_Chukotka expedition of the Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI, Germany, Potsdam) in cooperation with the North Eastern Federal State University (NEFU, Russia, Yakutsk). Water content and organic matter was analysed at AWI Potsdam. Dried and milled samples were analysed using a Vario EL III carbon-nitrogen-sulphur analyser. Organic carbon content was determined using a Vario MAX C analyser.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2023-09-18
    Description: Surface air temperature measurements obtained from different sensors are used to construct a unique time series with one minute time-interval. Apart from differences in design and environmental exposition, periods of missing data also exist in the data series of each sensor. A primary data set was selected in terms of quality and temporal extension. A combination of two different techniques is applied to complete this data set: one is based on the autocorrelation of the series and the other on measurements taken from other sensors. The resulting values constitute a complete series of surface air temperature at AGGO.
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2024-01-24
    Description: This dataset contain stable isotope values for water samples collected ~weekly from the Rio Bermejo at the Lavalle bridge (-25.6513, -60.1277) from March 2016 to February 2018. Water samples were filtered to 0.2 micron using a custom filtration device. We measured d2H and d18O on a Picarro L-2140i Cavity Ring-Down Spectrometer at the GFZ Potsdam. Measurements were made in duplicate, normalized to the Vienna Standard Mean Ocean Water (VSMOW), and analytical uncertainty is reported as one standard deviation from the mean. River discharge was measured at the El Colorado gauging station, which is ~100 km down slope from the sampling location.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2024-01-24
    Description: This dataset provides the geochemistry data for the Holocene sediment sequence retrieved from Lake Uddelermeer (The Netherlands) in 2012. Additionally, alkane concentrations for a set of modern leaf samples are provided. Concentrations of fossil alkanes, GDGTs as well as elemental (C, N, S, H) and compound-specific delta Deuterium measurements are presented against both depth (cm) and age (cal yr. BP). A total of 59 samples were analysed. Modern leaf alkane concentrations are presented as concentrations, 10 samples were analysed. The geochemical data provides information about regional vegetation change as well as changes in effective precipitation. It was produced to inform on the age and duration of major environmental transitions during the middle and late Holocene. Cores were retrieved from the lake using a 3-m long handheld piston corer deployed from a floating coring platform during field work in April and May 2012. Samples were obtained from splits of the core and processed in the laboratory of the University of Amsterdam (the Netherlands) using standard protocols (CNHS, alkane concentrations), the laboratory of Utrecht University (the Netherlands; GDGT concentrations) and at GFZ Potsdam (Germany; delta Deuterium). Name of the Campaign: UDD Event Label: UDD-E Method: Uwitec piston corer Latitude: 52.24652778 Longitude: 5.76097222 Elevation: 24m asl Date/Time of event: 2012-05-01T14:00:00 Further information about event: Lake sediment sequence retrieved using a 60 mm piston corer deployed from a floating platform.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2024-01-24
    Description: Water samples were filtered to 0.2 micron prior to measurement. Samples for cation analysis were acidified in the field to pH 〈 2 using 6N HNO3. Cation concentrations were measured with a Varian 720 inductively coupled plasma optical emission spectrometer (ICP-OES) at the GFZ Helmholtz Laboratory for the Geochemistry of the Earth Surface (HELGES), using SLRS-5 (Saint-Laurent River Surface, National Research Council - Conseil National de Recherches Canada) and USGS M212 and USGS T187 as external standards. We corrected for instrument drift by measuring an internal standard (GFZ-RW1) every 10 samples and we determined measurement uncertainty using calibration curve uncertainty. Anion concentrations were measured with a Dionex ICS1100 Ion Chromatograph, using USGS standards M206 and M212 as external standards for quality control, with uncertainty determined from triplicate analysis. We corrected cation concentrations for cyclic salt inputs following Bickle et al. (2005, doi:10.1016/j.gca.2004.11.019).
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2023-12-28
    Description: The coastal landscape of the Kachchh Upland (KU) region (NW-India) changed over the last fewthousand years from a shallow marine gulf to a salty desert (1-4 meters asl). In this area,bordered to the south by the Northern Hill Range (NHR), the tectonic-climatic interactiontriggered the sea level fall from +2/4 m circa (6000-2000 BP) to zero. An ancient riverpattern deposited a tidally regulated delta area during the sea level fall that stopped 2000-3000 years ago due to tectonic activity and a dry climate.Deltaic-alluvial fans (DAF) in front of the NHR suggest that the KU’s tectonic activity led tofast landscape evolution. We explored such drastic changes by integrating scientificinformation from a multidisciplinary literature review, identifying terraces and DAFs, andinferring faults through landform recognition, quantitative morphometry, andfield surveys.Our interpretation, summarized in a map, provides new information on active processesalong the NHR.
    Description: Published
    Description: 2167617
    Description: OSA4: Ambiente marino, fascia costiera ed Oceanografia operativa
    Description: JCR Journal
    Keywords: Kachchh ; coastal landscapeevolution ; tectonic-climatic interaction ; 04.04. Geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2023-02-28
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(12),(2022): 3199-3219, https://doi.org/10.1175/jpo-d-22-0009.1.
    Description: The abyssal overturning circulation is thought to be primarily driven by small-scale turbulent mixing. Diagnosed water-mass transformations are dominated by rough topography “hotspots,” where the bottom enhancement of mixing causes the diffusive buoyancy flux to diverge, driving widespread downwelling in the interior—only to be overwhelmed by an even stronger upwelling in a thin bottom boundary layer (BBL). These water-mass transformations are significantly underestimated by one-dimensional (1D) sloping boundary layer solutions, suggesting the importance of three-dimensional physics. Here, we use a hierarchy of models to generalize this 1D boundary layer approach to three-dimensional eddying flows over realistically rough topography. When applied to the Mid-Atlantic Ridge in the Brazil Basin, the idealized simulation results are roughly consistent with available observations. Integral buoyancy budgets isolate the physical processes that contribute to realistically strong BBL upwelling. The downward diffusion of buoyancy is primarily balanced by upwelling along the sloping canyon sidewalls and the surrounding abyssal hills. These flows are strengthened by the restratifying effects of submesoscale baroclinic eddies and by the blocking of along-ridge thermal wind within the canyon. Major topographic sills block along-thalweg flows from restratifying the canyon trough, resulting in the continual erosion of the trough’s stratification. We propose simple modifications to the 1D boundary layer model that approximate each of these three-dimensional effects. These results provide local dynamical insights into mixing-driven abyssal overturning, but a complete theory will also require the nonlocal coupling to the basin-scale circulation.
    Description: We acknowledge funding support from National Science Foundation Awards 1536515, 1736109, and 2149080. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant 174530.
    Description: 2023-05-18
    Keywords: Abyssal circulation ; Diapycnal mixing ; Meridional overturning circulation ; Topographic effects ; Upwelling/downwelling ; Bottom currents/bottom water
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2023-02-28
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(6), (2022): 1091–1110, https://doi.org/10.1175/JPO-D-21-0068.1.
    Description: Hundreds of full-depth temperature and salinity profiles collected by Deepglider autonomous underwater vehicles (AUVs) in the North Atlantic reveal robust signals in eddy isopycnal vertical displacement and horizontal current throughout the entire water column. In separate glider missions southeast of Bermuda, subsurface-intensified cold, fresh coherent vortices were observed with velocities exceeding 20 cm s−1 at depths greater than 1000 m. With vertical resolution on the order of 20 m or less, these full-depth glider slant profiles newly permit estimation of scaled vertical wavenumber spectra from the barotropic through the 40th baroclinic mode. Geostrophic turbulence theory predictions of spectral slopes associated with the forward enstrophy cascade and proportional to inverse wavenumber cubed generally agree with glider-derived quasi-universal spectra of potential and kinetic energy found at a variety of locations distinguished by a wide range of mean surface eddy kinetic energy. Water-column average spectral estimates merge at high vertical mode number to established descriptions of internal wave spectra. Among glider mission sites, geographic and seasonal variability implicate bottom drag as a mechanism for dissipation, but also the need for more persistent sampling of the deep ocean.
    Description: This work was funded by NSF Grant 1736217 and would not have been possible without the help of Kirk O’Donnell, James Bennett, Noel Pelland, and all contributors to Deepglider development. We additionally thank the captain crew of the R/V Atlantic Explorer and the BATS team at the Bermuda Institute of Ocean Sciences, particularly Rod Johnson, as well as Seakeepers International for their professionalism, capability, and generous assistance in deploying and recovering gliders.
    Keywords: North Atlantic Ocean ; Eddies ; Mesoscale processes ; Turbulence ; Energy transport ; In situ oceanic observations ; Oceanic variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2023-03-10
    Description: In this study, the scattering mechanisms associated to internal waves (IWs) are investigated at L-band. IWs represent key geophysical factors for sea-air heat exchange and play a paramount role in the biological primary production and in the understanding of the evolution of climate ecosystem. In addition, a better understanding of IWs microwave scattering mechanisms can improve the modeling capability and, therefore, can boost the development on advanced synthetic aperture radar (SAR)-based added-value products to mitigate the risk for offshore drilling operations and aquaculture activities associated to IWs. The analysis of L-band multi-polarization SAR scattering of IWs under the influence of surface current straining is performed using a meaningful full-polarimetric Advanced Land Observing Satellite Phased Array type L-band 1 SAR data set collected over IWs observed under different imaging and wind conditions. Time and space co-located ancillary information is also available. Experimental results demonstrate that the non-polarized scattering mechanisms constitute a significant contribution to the total IW backscattering, especially in the case of surface current gradients owing to IWs (about 48–57%). It is also found that the non-polarized scattering contribution associated to IW concentrates along the wave crests, i.e. it is at least 60% larger than the one observed along the wave troughs. In addition, considering the IW traveling directions relative to that of the wind, the non-polarized scattering contribution associated to IWs is more remarkable at upwind direction while it is less significant at down/crosswind directions. The non-polarized scattering mechanisms also calls for a modulation induced by IWs which is much more significant,i.e. at least three times, that the one that characterizes the polarized scattering mechanism.
    Description: Published
    Description: 1943–1959
    Description: 4A. Oceanografia e clima
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2023-03-10
    Description: This study focused on the analysis of the time variability of the morphology of the Drygalski ice tongue (DIT), Antarctica, using – for the first time – satellite synthetic aperture radar (SAR) images. A time series of Sentinel-1 interferometric wide swath SAR imagery collected from 2016 to 2021 is considered and an unsupervised methodology, based on a global threshold constant false alarm rate approach, is used to extract the boundary between the DIT and the surrounding ice-free/ice-infested sea water. The most prominent rifts/fractures identified on the extracted profiles and the ice front are selected to analyse the DIT time variability. The feature tracking allows deriving information on the morphological evolution of the DIT, including the annual displacement and average surface velocity. Experimental results show that the DIT ice front calls for a relatively stable motion trend towards the sea with an average surface velocity of about 670 m per year. Our outcomes show a fairly good agreement with similar studies appeared in the scientific literature, which are mostly based on optical imagery.
    Description: Published
    Description: 2581-2598
    Description: 5A. Ricerche polari e paleoclima
    Description: JCR Journal
    Keywords: Drygalski ice tongue ; Antarctica ; SAR ; Sentinel-1 ; ice edge extraction ; surface velocity
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2023-03-10
    Description: In this study, the non-Bragg (NB) scattering due to breaking waves as measured by the C-band synthetic aperture radar (SAR) is investigated using more than 300 Gaofen-3 (GF-3) SAR images, which were acquired in quad-polarization stripmap (QPS) mode, that is, co-polarization [vertical–vertical (VV) and horizontal–horizontal (HH)] and cross-polarization [vertical–horizontal (VH) and horizontal–vertical (HV)]. First, the quality of SAR-based wind estimation is checked against the Haiyang-2B (HY-2B) scatterometer and European Center for Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA-5), indicating a wind speed accuracy of 1.62 m s−1 root-mean-square error (RMSE) and a 0.89 correlation. Then, the SAR-derived wind and HYbrid Coordinate Ocean Model (HYCOM) sea surface current are used to simulate Bragg resonant roughness. The non-polarized (NP) wave breaking contribution σwb on co-polarized SAR-measured normalized radar cross section (NRCS) σ0 is studied, which is derived using two methods: an approach of the Bragg theory and empirical function. Numerical simulations are contrasted with actual SAR measurements: they show that the theoretical-based approach provides accurate enough simulations of the NP contribution, especially at the HH-polarization channel. To deeply understand the behavior of sea surface scattering under breaking conditions, the third-generation WAVEWATCH-III (WW3) model is used to simulate wake-breaking parameters, i.e. whitecap coverage (WCC), whitecap foam thickness (WCT) and whitecap breaking height (WCH), which are then collocated with SAR images. The difference between simulated co-polarized NRCS and the measured one versus sea surface dynamics parameters (i.e. SAR-derived wind speed, HYCOM sea surface speed, and WW3-simulated significant wave height) shows that NP enhances HH-polarized backscattering, while it damps the VV-polarized backscattering. In addition, the contribution of σwb could be ignored for WCC and WCT larger than 15 × 10−3 and 40 × 10−3 m, respectively. Moreover, the ratio reduces with the increasing WCH greater than 2.0 m; in particular, the ratio likely remains to be 0.1 as WCH is greater than 2.5 m. Generally, the HH-polarized backscattering is relatively sensitive with the wave-breaking parameters; however, this behavior has to be further studied utilizing buoy-measured wave breaking data.
    Description: Published
    Description: 1384–1408
    Description: 4A. Oceanografia e clima
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    facet.materialart.
    Unknown
    American Meteorological Society
    In:  EPIC3Journal of Climate, American Meteorological Society, pp. 1-40, ISSN: 0894-8755
    Publication Date: 2023-09-04
    Description: 〈jats:title〉Abstract〈/jats:title〉 〈jats:p〉Tipping points in the Earth system describe critical thresholds beyond which a single component, part of the system, or the system as a whole changes from one stable state to another. In the present-day Southern Ocean, the Weddell Sea constitutes an important dense-water formation site, associated with efficient deep-ocean carbon and oxygen transfer and low ice-shelf basal melt rates. Here, a regime shift will occur when continental shelves are continuously flushed with warm, oxygen-poor offshore waters from intermediate depth, leading to less efficient deep-ocean carbon and oxygen transfer and higher ice-shelf basal melt rates. We use a global ocean–biogeochemistry model including ice-shelf cavities and an eddy-permitting grid in the southern Weddell Sea to address the susceptibility of this region to such a system change for four 21〈jats:sup〉st〈/jats:sup〉-century emission scenarios. Assessing the projected changes in shelf–open ocean density gradients, bottom-water properties, and on-shelf heat transport, our results indicate that the Weddell Sea undergoes a regime shift by 2100 in the highest-emission scenario SSP5-8.5, but not yet in the lower-emission scenarios. The regime shift is imminent by 2100 in the scenarios SSP3-7.0 and SSP2-4.5, but avoidable under the lowest-emission scenario SSP1-2.6. While shelf-bottom waters freshen and acidify everywhere, bottom waters in the Filchner Trough undergo accelerated warming and deoxygenation following the system change, with implications for local ecosystems and ice-shelf basal melt. Additionally, deep-ocean carbon and oxygen transfer decline, implying that the local changes ultimately affect ocean circulation, climate, and ecosystems globally.〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2023-03-02
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(12), (2022): 3221–3240, https://doi.org/10.1175/jpo-d-22-0010.1.
    Description: Small-scale mixing drives the diabatic upwelling that closes the abyssal ocean overturning circulation. Indirect microstructure measurements of in situ turbulence suggest that mixing is bottom enhanced over rough topography, implying downwelling in the interior and stronger upwelling in a sloping bottom boundary layer. Tracer release experiments (TREs), in which inert tracers are purposefully released and their dispersion is surveyed over time, have been used to independently infer turbulent diffusivities—but typically provide estimates in excess of microstructure ones. In an attempt to reconcile these differences, Ruan and Ferrari derived exact tracer-weighted buoyancy moment diagnostics, which we here apply to quasi-realistic simulations. A tracer’s diapycnal displacement rate is exactly twice the tracer-averaged buoyancy velocity, itself a convolution of an asymmetric upwelling/downwelling dipole. The tracer’s diapycnal spreading rate, however, involves both the expected positive contribution from the tracer-averaged in situ diffusion as well as an additional nonlinear diapycnal distortion term, which is caused by correlations between buoyancy and the buoyancy velocity, and can be of either sign. Distortion is generally positive (stretching) due to bottom-enhanced mixing in the stratified interior but negative (contraction) near the bottom. Our simulations suggest that these two effects coincidentally cancel for the Brazil Basin Tracer Release Experiment, resulting in negligible net distortion. By contrast, near-bottom tracers experience leading-order distortion that varies in time. Errors in tracer moments due to realistically sparse sampling are generally small (〈20%), especially compared to the O(1) structural errors due to the omission of distortion effects in inverse models. These results suggest that TREs, although indispensable, should not be treated as “unambiguous” constraints on diapycnal mixing.
    Description: We acknowledge funding support from National Science Foundation Awards 1536515 and 1736109. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant 174530. This research is also supported by the NOAA Climate and Global Change Postdoctoral Fellowship Program, administered by UCAR’s Cooperative Programs for the Advancement of Earth System Science (CPAESS) under Award NA18NWS4620043B.
    Description: 2023-05-18
    Keywords: Diapycnal mixing ; Diffusion ; Upwelling/downwelling ; Bottom currents/bottom water ; Tracers
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2023-02-25
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(11), (2022): 2841–2852, https://doi.org/10.1175/jpo-d-22-0025.1.
    Description: Prediction of rapid intensification in tropical cyclones prior to landfall is a major societal issue. While air–sea interactions are clearly linked to storm intensity, the connections between the underlying thermal conditions over continental shelves and rapid intensification are limited. Here, an exceptional set of in situ and satellite data are used to identify spatial heterogeneity in sea surface temperatures across the inner core of Hurricane Sally (2020), a storm that rapidly intensified over the shelf. A leftward shift in the region of maximum cooling was observed as the hurricane transited from the open gulf to the shelf. This shift was generated, in part, by the surface heat flux in conjunction with the along- and across-shelf transport of heat from storm-generated coastal circulation. The spatial differences in the sea surface temperatures were large enough to potentially influence rapid intensification processes suggesting that coastal thermal features need to be accounted for to improve storm forecasting as well as to better understand how climate change will modify interactions between tropical cyclones and the coastal ocean.
    Description: This research was made possible by the NOAA RESTORE Science Program (NA17NOS4510101 and NA19NOS4510194) and the NASA Physical Oceanography program (80NSSC21K0553 and WBS 281945.02.25.04.67) and NOAA IOOS program via GCOOS (NA16NOS0120018). The authors declare that they have no competing interests.
    Keywords: Seas/gulfs/bays ; Atmosphere–ocean interaction ; Currents ; Tropical cyclones ; Buoy observations ; In situ oceanic observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2023-02-25
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(8), (2022): 1797–1815, https://doi.org/10.1175/JPO-D-21-0288.1.
    Description: Intruding slope water is a major source of nutrients to sustain the high biological productivity in the Gulf of Maine (GoM). Slope water intrusion into the GoM is affected by Gulf Stream warm-core rings (WCRs) impinging onto the nearby shelf edge. This study combines long-term mooring measurements, satellite remote sensing data, an idealized numerical ocean model, and a linear coastal-trapped wave (CTW) model to examine the impact of WCRs on slope water intrusion into the GoM through the Northeast Channel. Analysis of satellite sea surface height and temperature data shows that the slope sea region off the GoM is a hotspot of ring activities. A significant linear relationship is found between interannual variations of ring activities in the slope sea region off the GoM and bottom salinity at the Northeast Channel, suggesting the importance of WCRs in modulating variability of intruding slope water. Analysis of the mooring data reveals enhanced slope water intrusion through bottom-intensified along-channel flow following impingements of WCRs on the nearby shelf edge. Numerical simulations qualitatively reproduce the observed WCR impingement processes and associated episodic enhancement of slope water intrusion in the Northeast Channel. Diagnosis of the model result indicates that baroclinic CTWs excited by the ring–topography interaction are responsible for the episodically intensified subsurface along-channel inflow, which carries more slope water into the GoM. A WCR that impinges onto the shelf edge to the northeast of the Northeast Channel tends to generate stronger CTWs and cause stronger enhancement of the slope water intrusion into the GoM.
    Description: This study is supported by the National Science Foundation through Grant OCE-1634965.
    Keywords: Continental shelf/slope ; Channel flows ; Mesoscale processes ; In situ oceanic observations ; Satellite observations ; Numerical analysis/modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2023-02-17
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of the Atmospheric and Oceanic Technology 39(10), (2022): 1525–1539, https://doi.org/10.1175/jtech-d-21-0186.1.
    Description: The static and dynamic performances of the RBRargo3 are investigated using a combination of laboratory-based and in situ datasets from floats deployed as part of an Argo pilot program. Temperature and pressure measurements compare well to co-located reference data acquired from shipboard CTDs. Static accuracy of salinity measurements is significantly improved using 1) a time lag for temperature, 2) a quadratic pressure dependence, and 3) a unit-based calibration for each RBRargo3 over its full pressure range. Long-term deployments show no significant drift in the RBRargo3 accuracy. The dynamic response of the RBRargo3 demonstrates the presence of two different adjustment time scales: a long-term adjustment O(120) s, driven by the temperature difference between the interior of the conductivity cell and the water, and a short-term adjustment O(5–10) s, associated to the initial exchange of heat between the water and the inner ceramic. Corrections for these effects, including dependence on profiling speed, are developed.
    Keywords: Data processing/distribution ; In situ oceanic observations ; Profilers ; Oceanic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2023-04-26
    Description: Mechanisms behind the phenomenon of Arctic amplification are widely discussed. To contribute to this debate, the (AC)3 project was established in 2016 (www.ac3-tr.de/). It comprises modeling and data analysis efforts as well as observational elements. The project has assembled a wealth of ground-based, airborne, shipborne, and satellite data of physical, chemical, and meteorological properties of the Arctic atmosphere, cryosphere, and upper ocean that are available for the Arctic climate research community. Short-term changes and indications of long-term trends in Arctic climate parameters have been detected using existing and new data. For example, a distinct atmospheric moistening, an increase of regional storm activities, an amplified winter warming in the Svalbard and North Pole regions, and a decrease of sea ice thickness in the Fram Strait and of snow depth on sea ice have been identified. A positive trend of tropospheric bromine monoxide (BrO) column densities during polar spring was verified. Local marine/biogenic sources for cloud condensation nuclei and ice nucleating particles were found. Atmospheric–ocean and radiative transfer models were advanced by applying new parameterizations of surface albedo, cloud droplet activation, convective plumes and related processes over leads, and turbulent transfer coefficients for stable surface layers. Four modes of the surface radiative energy budget were explored and reproduced by simulations. To advance the future synthesis of the results, cross-cutting activities are being developed aiming to answer key questions in four focus areas: lapse rate feedback, surface processes, Arctic mixed-phase clouds, and airmass transport and transformation.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2023-10-24
    Description: he oceans cover roughly 2/3 of the Earth’s surface and are a fundamental ecosystem regulating climate, weather and representing a huge reservoir of biodiversity and natural resources . The preservation of the oceans is therefore not only relevant on an environmental perspective but also on an economical one. A sustainable approach is requested that cannot be simply achieved by improving technologies but calls for a shared new vision of common goods.Within such a complex and holistic problem, the role of satellite microwave remote sensing to observe marine ecosystem and to assist a sustainable development of human activities must be considered. In such a view the paper is meant. Accordingly, the key microwave sensor technologies are reviewed paying particular emphasis on those applications that can provide effective support to pursue some of the UN Sustainable Development Goals. Three meaningful sectors are showcased:oil and gas, where microwave sensors can provide continuous fine-resolution monitoring of critical infrastructures; renewable energy, where microwave satellite remote sensing allows supporting the management of offshore wind farms during both feasibility and operational stages; plastic pollution, where microwave technologies that exploit signals of opportunity offer large-scale monitoring capability to provide marine litter maps of the oceans.
    Description: Published
    Description: 507–519
    Description: 4A. Oceanografia e clima
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2024-01-18
    Description: On 29 June 2022, local observers reported the drainage of a 0.5 ha lake near Qikiqtaġruk (Kotzebue), Alaska, that prompted this collaborative study on the life cycle of a thermokarst lake in the Arctic. Prior to its drainage, the lake expanded from 0.13 ha in 1951 to 0.54 ha in 2021 at lateral rates that ranged from 0.25 to 0.35 m/year. During the drainage event, we estimate that 18,500 m3 of water drained from the lake into Kotzebue Sound, forming a 125-m-long thermo-erosional gully that incised 2 to 14 m in ice-rich permafrost. Between 29 June and 18 August 2022, the drainage gully expanded from 1 m to 〉10 m wide, mobilizing ~8,500 m3 of material through erosion and thaw. By reconstructing a pre-lake disturbance terrain model, we show that thaw subsidence occurs rapidly (0.78 m/year) upon transition from tundra to lake but that over a seventy-year period it slows to 0.12 m/year. The combination of multiple remote sensing tools and local environmental observations provided a rich data set that allowed us to assess rates of lake expansion relative to rates of sub-lake permafrost thaw subsidence as well as hypothesizing about the potential role of beavers in arctic lake drainage.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2024-05-29
    Description: NORP-SORP Workshop on Polar Fresh Water: Sources, Pathways and Impacts of Freshwater in Northern and Southern Polar Oceans and Seas (SPICE-UP) What: Up to 60 participants at a time and more than twice as many registrants in total from 20 nations and across experience levels met to discuss the current status of research on freshwater in both polar regions, future directions, and synergies between the Arctic and Southern Ocean research communities When: 19–21 September 2022 Where: Online
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    American Meteorological Society
    In:  EPIC3Bulletin of the American Meteorological Society, American Meteorological Society, 104(9), pp. s1-s10, ISSN: 0003-0007
    Publication Date: 2024-05-29
    Description: 〈jats:title〉Abstract〈/jats:title〉 〈jats:p〉—J. BLUNDEN, T. BOYER, AND E. BARTOW-GILLIES〈/jats:p〉 〈jats:p〉Earth’s global climate system is vast, complex, and intricately interrelated. Many areas are influenced by global-scale phenomena, including the “triple dip” La Niña conditions that prevailed in the eastern Pacific Ocean nearly continuously from mid-2020 through all of 2022; by regional phenomena such as the positive winter and summer North Atlantic Oscillation that impacted weather in parts the Northern Hemisphere and the negative Indian Ocean dipole that impacted weather in parts of the Southern Hemisphere; and by more localized systems such as high-pressure heat domes that caused extreme heat in different areas of the world. Underlying all these natural short-term variabilities are long-term climate trends due to continuous increases since the beginning of the Industrial Revolution in the atmospheric concentrations of Earth’s major greenhouse gases.〈/jats:p〉 〈jats:p〉In 2022, the annual global average carbon dioxide concentration in the atmosphere rose to 417.1±0.1 ppm, which is 50% greater than the pre-industrial level. Global mean tropospheric methane abundance was 165% higher than its pre-industrial level, and nitrous oxide was 24% higher. All three gases set new record-high atmospheric concentration levels in 2022.〈/jats:p〉 〈jats:p〉Sea-surface temperature patterns in the tropical Pacific characteristic of La Niña and attendant atmospheric patterns tend to mitigate atmospheric heat gain at the global scale, but the annual global surface temperature across land and oceans was still among the six highest in records dating as far back as the mid-1800s. It was the warmest La Niña year on record. Many areas observed record or near-record heat. Europe as a whole observed its second-warmest year on record, with sixteen individual countries observing record warmth at the national scale. Records were shattered across the continent during the summer months as heatwaves plagued the region. On 18 July, 104 stations in France broke their all-time records. One day later, England recorded a temperature of 40°C for the first time ever. China experienced its second-warmest year and warmest summer on record. In the Southern Hemisphere, the average temperature across New Zealand reached a record high for the second year in a row. While Australia’s annual temperature was slightly below the 1991–2020 average, Onslow Airport in Western Australia reached 50.7°C on 13 January, equaling Australia's highest temperature on record.〈/jats:p〉 〈jats:p〉While fewer in number and locations than record-high temperatures, record cold was also observed during the year. Southern Africa had its coldest August on record, with minimum temperatures as much as 5°C below normal over Angola, western Zambia, and northern Namibia. Cold outbreaks in the first half of December led to many record-low daily minimum temperature records in eastern Australia.〈/jats:p〉 〈jats:p〉The effects of rising temperatures and extreme heat were apparent across the Northern Hemisphere, where snow-cover extent by June 2022 was the third smallest in the 56-year record, and the seasonal duration of lake ice cover was the fourth shortest since 1980. More frequent and intense heatwaves contributed to the second-greatest average mass balance loss for Alpine glaciers around the world since the start of the record in 1970. Glaciers in the Swiss Alps lost a record 6% of their volume. In South America, the combination of drought and heat left many central Andean glaciers snow free by mid-summer in early 2022; glacial ice has a much lower albedo than snow, leading to accelerated heating of the glacier. Across the global cryosphere, permafrost temperatures continued to reach record highs at many high-latitude and mountain locations.〈/jats:p〉 〈jats:p〉In the high northern latitudes, the annual surface-air temperature across the Arctic was the fifth highest in the 123-year record. The seasonal Arctic minimum sea-ice extent, typically reached in September, was the 11th-smallest in the 43-year record; however, the amount of multiyear ice—ice that survives at least one summer melt season—remaining in the Arctic continued to decline. Since 2012, the Arctic has been nearly devoid of ice more than four years old.〈/jats:p〉 〈jats:p〉In Antarctica, an unusually large amount of snow and ice fell over the continent in 2022 due to several landfalling atmospheric rivers, which contributed to the highest annual surface mass balance, 15% to 16% above the 1991–2020 normal, since the start of two reanalyses records dating to 1980. It was the second-warmest year on record for all five of the long-term staffed weather stations on the Antarctic Peninsula. In East Antarctica, a heatwave event led to a new all-time record-high temperature of −9.4°C—44°C above the March average—on 18 March at Dome C. This was followed by the collapse of the critically unstable Conger Ice Shelf. More than 100 daily low sea-ice extent and sea-ice area records were set in 2022, including two new all-time annual record lows in net sea-ice extent and area in February.〈/jats:p〉 〈jats:p〉Across the world’s oceans, global mean sea level was record high for the 11th consecutive year, reaching 101.2 mm above the 1993 average when satellite altimetry measurements began, an increase of 3.3±0.7 over 2021. Globally-averaged ocean heat content was also record high in 2022, while the global sea-surface temperature was the sixth highest on record, equal with 2018. Approximately 58% of the ocean surface experienced at least one marine heatwave in 2022. In the Bay of Plenty, New Zealand’s longest continuous marine heatwave was recorded.〈/jats:p〉 〈jats:p〉A total of 85 named tropical storms were observed during the Northern and Southern Hemisphere storm seasons, close to the 1991–2020 average of 87. There were three Category 5 tropical cyclones across the globe—two in the western North Pacific and one in the North Atlantic. This was the fewest Category 5 storms globally since 2017. Globally, the accumulated cyclone energy was the lowest since reliable records began in 1981. Regardless, some storms caused massive damage. In the North Atlantic, Hurricane Fiona became the most intense and most destructive tropical or post-tropical cyclone in Atlantic Canada’s history, while major Hurricane Ian killed more than 100 people and became the third costliest disaster in the United States, causing damage estimated at $113 billion U.S. dollars. In the South Indian Ocean, Tropical Cyclone Batsirai dropped 2044 mm of rain at Commerson Crater in Réunion. The storm also impacted Madagascar, where 121 fatalities were reported.〈/jats:p〉 〈jats:p〉As is typical, some areas around the world were notably dry in 2022 and some were notably wet. In August, record high areas of land across the globe (6.2%) were experiencing extreme drought. Overall, 29% of land experienced moderate or worse categories of drought during the year. The largest drought footprint in the contiguous United States since 2012 (63%) was observed in late October. The record-breaking megadrought of central Chile continued in its 13th consecutive year, and 80-year record-low river levels in northern Argentina and Paraguay disrupted fluvial transport. In China, the Yangtze River reached record-low values. Much of equatorial eastern Africa had five consecutive below-normal rainy seasons by the end of 2022, with some areas receiving record-low precipitation totals for the year. This ongoing 2.5-year drought is the most extensive and persistent drought event in decades, and led to crop failure, millions of livestock deaths, water scarcity, and inflated prices for staple food items.〈/jats:p〉 〈jats:p〉In South Asia, Pakistan received around three times its normal volume of monsoon precipitation in August, with some regions receiving up to eight times their expected monthly totals. Resulting floods affected over 30 million people, caused over 1700 fatalities, led to major crop and property losses, and was recorded as one of the world’s costliest natural disasters of all time. Near Rio de Janeiro, Brazil, Petrópolis received 530 mm in 24 hours on 15 February, about 2.5 times the monthly February average, leading to the worst disaster in the city since 1931 with over 230 fatalities.〈/jats:p〉 〈jats:p〉On 14–15 January, the Hunga Tonga-Hunga Ha'apai submarine volcano in the South Pacific erupted multiple times. The injection of water into the atmosphere was unprecedented in both magnitude—far exceeding any previous values in the 17-year satellite record—and altitude as it penetrated into the mesosphere. The amount of water injected into the stratosphere is estimated to be 146±5 Terragrams, or ∼10% of the total amount in the stratosphere. It may take several years for the water plume to dissipate, and it is currently unknown whether this eruption will have any long-term climate effect.〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    American Meteorological Society
    In:  EPIC3Bulletin of the American Meteorological Society, American Meteorological Society, 104(9), pp. s271-s321, ISSN: 0003-0007
    Publication Date: 2024-05-29
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2024-06-21
    Description: The subarctic forest tundra transition zone is one of the most vulnerable ecological regions worldwide and susceptible to climate change. Forest changes could lead to biodiversity losses when tundra areas become colonized. However, the impact of complex landscapes with barriers and channels for seed dispersal is highly understudied. Hence, we investigated potential tree aboveground biomass (AGB) change in mountainous central Chukotka (Siberia) with the individual-based spatially explicit vegetation model Larix vegetation simulator (LAVESI). In a climate sensitivity study, we simulate forest dynamics until 3000 CE for Representative Concentration Pathways (RCPs) with and without hypothetical cooling after 2300 CE to twentieth-century levels. The current state and spatiotemporal dynamics of tree AGB are validated against field and satellite-derived data. Our results suggest densification of existing tree stands and a lagged forest expansion depending on the distance to the current tree line (~39 percent of the total study area, RCP 8.5) under all considered climate scenarios. In scenarios with cooling after 2300 CE, forests stopped expanding and then gradually retreated to their pre-twenty-first-century position (~10 percent, RCP 8.5). However, forest remnants remain in the colonized area, leaving an imprint of forests in former tundra areas, which will likely have an adverse impact on tundra biodiversity.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2023-01-30
    Description: Despite the importance of surface energy budgets (SEBs) for land-climate interactions in the Arctic, uncertainties in their prediction persist. In situ observational data of SEB components - useful for research and model validation - are collected at relatively few sites across the terrestrial Arctic, and not all available datasets are readily interoperable. Furthermore, the terrestrial Arctic consists of a diversity of vegetation types, which are generally not well represented in land surface schemes of current Earth system models. This dataset describes the data generated in a literature synthesis, covering 358 study sites on vegetation or glacier (〉=60°N latitude), which contained surface energy budget observations. The literature synthesis comprised 148 publications searched on the ISI Web of Science Core Collection.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2023-02-09
    Description: The rewetting of peatlands is a promising measure to mitigate greenhouse gas (GHG) emissions by preventing the further mineralization of the peat soil through aeration. In coastal peatland, the rewetting with brackish water can increase the GHG mitigation potential by the introduction of sulfate, a terminal electron acceptor (TEA). Sulfate is known to lower the CH4 production and thus, its emission by favoring the growth of sulfate-reducers, which outcompete methanogens for substrate. The data contain porewater variables such as pH, electrical conductivity (EC) and sulfate, chloride, dissolved CO2 and CH4 concentrations, as well as absolute abundances of methane- and sulfate-cycling microbial communities. The data were collected in spring and autumn 2019 after a storm surge with brackish water inflow in January 2019. Field sampling was conducted in the nature reserve Heiligensee and Hütelmoor in North-East Germany, close to the Southern Baltic Sea coast. We took peat cores using a Russian peat corer in addition to pore water diffusion samplers and plastic liners (length: 60cm; inner diameter 10 cm) at four locations along a transect from further inland towards the Baltic Sea. We wanted to compare the soil and pore water geochemistry as well as the microbial communities after the brackish water inflow to the common freshwater rewetting state. Pore water was extracted using pore water suction samplers in the lab and environmental variables were quantified with an ICP. Microbial samples were sampled from the peat core using sterile equipment. We used quantitative polymerase chain reaction (qPCR) to characterize pools of DNA and cDNA targeting total and putatively active bacteria and archaea. qPCR was performed on key functional genes of methane production (mcrA), aerobic methane oxidation (pmoA) and sulfate reduction (dsrB) in addition to the 16S rRNA gene for the absolute abundance of total prokaryotes. Furthermore, we retrieved soil plugs to determine the concentrations and isotopic signatures of dissolved trace gases (CO2/DIC and CH4) in the pore water.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2023-01-30
    Description: This dataset provides annually resolved microfacies data from ICDP core 5017-1-A, retrieved from the deep northern Dead Sea basin in 2010/11, for the last glacial-interglacial transition (ca. 14-13 ka BP). Sediments of the Lisan Formation were investigated between ~94.7 and 91.8 m sediment depth below lake floor (lithozone C2) by continuous thin section microscopy. Thin sections were prepared following the standard procedure by Brauer and Casanova (2001) that was adjusted for salty sediments. Thin section analyses were performed on overlapping large-scale thin sections using a Zeiss Axiolab pol microscope at magnifications of 50-400x. Microfacies analyses included varve counting and measurements of varve and sublayer thickness. The amount of varves in erosional gaps was interpolated and the position of mass flow deposits (MFD) is marked.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2023-01-30
    Description: We present sea ice temperature and salinity data from first-year ice (FYI) and second-year ice (SYI) relevant to the temporal development of sea ice permeability and brine drainage efficiency from the early growth phase in October 2019 to the onset of spring warming in May 2020. Our dataset was collected in the central Arctic Ocean during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) Expedition in 2019 to 2020. MOSAiC was an international transpolar drift expedition in which the German icebreaker RV Polarstern anchored into an ice floe to gain new insights into Arctic climate over a full annual cycle. In October 2019, RV Polarstern moored to an ice floe in the Siberian sector of the Arctic at 85 degrees north and 137 degrees east to begin the drift towards the North Pole and the Fram Strait via the Transpolar Drift Stream. The data presented here were collected during the first three legs of the expedition, so all the coring activities took place on the same floe. The end dates of legs 1, 2, and 3 were 13 December, 24 February, and 4 June, respectively. The dataset contributed to a baseline study entitled, Deciphering the properties of different Arctic ice types during the growth phase of the MOSAiC floes: Implications for future studies. The study highlights downward directed gas pathways in FYI and SYI by inferring sea ice permeability and potential brine release from several time series of temperature and salinity measurements. The physical properties presented in this paper lay the foundation for subsequent analyses on actual gas contents measured in the ice cores, as well as air-ice and ice-ocean gas fluxes. Sea ice cores were collected with a Kovacs Mark II 9 cm diameter corer. To measure ice temperatures, about 4.5 cm deep holes were drilled into the core (intervals varied by site and leg) . The temperatures were measured by a digital thermometer within minutes after the cores were retrieved. The ice cores were placed into pre-labelled plastic sleeves sealed at the bottom end. The ice cores were transported to RV Polarstern and stored in a -20 degrees Celsius freezer. Each of the cores was sub-sampled, melted at room temperature, and processed for salinity within one or two days. The practical salinity was estimated by measuring the electrical conductivity and temperature of the melted samples using a WTW Cond 3151 salinometer equipped with a Tetra-Con 325 four-electrode conductivity cell. The practical salinity represents the the salinity estimated from the electrical conductivity of the solution. The dataset also contains derived variables, including sea ice density, brine volume fraction, and the Rayleigh number.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2023-01-30
    Description: Organic carbon (OC) stored in Arctic permafrost represents one of Earth’s largest and most vulnerable terrestrial carbon pools. Amplified climate warming across the Arctic results in widespread permafrost thaw. Permafrost deposits exposed at river cliffs and coasts are particularly susceptible to thawing processes. Accelerating erosion of terrestrial permafrost along shorelines leads to increased transfer of organic matter (OM) to nearshore waters. However, the amount of terrestrial permafrost carbon and nitrogen as well as the OM quality in these deposits are still poorly quantified. Here, we characterise the sources and the quality of OM supplied to the Lena River at a rapidly eroding permafrost river shoreline cliff in the eastern part of the delta (Sobo-Sise Island). Our multi-proxy approach captures bulk elemental, molecular geochemical and carbon isotopic analyses of late Pleistocene Yedoma permafrost and Holocene cover deposits, discontinuously spanning the last ~52 ka. We show that the ancient permafrost exposed in the Sobo-Sise cliff has a high organic carbon content (mean of about 5 wt%).We found that the OM quality, which we define as the intrinsic potential to further transformation, decomposition, and mineralization, is also high as inferred by the lipid biomarker inventory. The oldest sediments stem from Marine Isotope Stage (MIS) 3 interstadial deposits (dated to 52 to 28 cal kyr BP) and is overlaid by Last Glacial MIS 2 (dated to 28 to 15 cal ka BP) and Holocene MIS 1 (dated to 7–0 cal ka BP) deposits. The relatively high average chain length (ACL) index of n-alkanes along the cliff profile indicates a predominant contribution of vascular plants to the OM composition. The elevated ratio of iso and anteiso-branched FAs relative to long chain (C ≥ 20) n-FAs in the interstadial MIS 3 and the interglacial MIS 1 deposits, suggests stronger microbial activity and consequently higher input of bacterial biomass during these climatically warmer periods. The overall high carbon preference index (CPI) and higher plant fatty acid (HPFA) values as well as high C / N ratios point to a good quality of the preserved OM and thus to a high potential of the OM for decomposition upon thaw. A decrease of HPFA values downwards along the profile probably indicates a relatively stronger OM decomposition in the oldest (MIS 3) deposits of the cliff.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2023-01-30
    Description: We present sea ice temperature and salinity data from first-year ice (FYI) and second-year ice (SYI) relevant to the temporal development of sea ice permeability and brine drainage efficiency from the early growth phase in October 2019 to the onset of spring warming in May 2020. Our dataset was collected in the central Arctic Ocean during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) Expedition in 2019 to 2020. MOSAiC was an international transpolar drift expedition in which the German icebreaker RV Polarstern anchored into an ice floe to gain new insights into Arctic climate over a full annual cycle. In October 2019, RV Polarstern moored to an ice floe in the Siberian sector of the Arctic at 85 degrees north and 137 degrees east to begin the drift towards the North Pole and the Fram Strait via the Transpolar Drift Stream. The data presented here were collected during the first three legs of the expedition, so all the coring activities took place on the same floe. The end dates of legs 1, 2, and 3 were 13 December, 24 February, and 4 June, respectively. The dataset contributed to a baseline study entitled, Deciphering the properties of different Arctic ice types during the growth phase of the MOSAiC floes: Implications for future studies. The study highlights downward directed gas pathways in FYI and SYI by inferring sea ice permeability and potential brine release from several time series of temperature and salinity measurements. The physical properties presented in this paper lay the foundation for subsequent analyses on actual gas contents measured in the ice cores, as well as air-ice and ice-ocean gas fluxes. Sea ice cores were collected with a Kovacs Mark II 9 cm diameter corer. To measure ice temperatures, about 4.5 cm deep holes were drilled into the core (intervals varied by site and leg) . The temperatures were measured by a digital thermometer within minutes after the cores were retrieved. The ice cores were placed into pre-labelled plastic sleeves sealed at the bottom end. The ice cores were transported to RV Polarstern and stored in a -20 degrees Celsius freezer. Each of the cores was sub-sampled, melted at room temperature, and processed for salinity within one or two days. The practical salinity was estimated by measuring the electrical conductivity and temperature of the melted samples using a WTW Cond 3151 salinometer equipped with a Tetra-Con 325 four-electrode conductivity cell. The practical salinity represents the the salinity estimated from the electrical conductivity of the solution. The dataset also contains derived variables, including sea ice density, brine volume fraction, and the Rayleigh number.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2023-01-30
    Description: These datasets describe sediment samples taken from the Batagay megaslump, located in Yana Uplands in northeastern Siberia. Most sediment samples were taken from the slump headwall (B19-P1) by rapelling down on a rope from the slump surface and taking samples with a hole saw (diameter 55 mm, 40 mm deep) mounted on a handheld power drill. A second profile (B19-02) of the lowest part of the slump headwall was sampled (~100 m south) using a hammer and axe from the slump floor. Two permafrost sediment blocks (B19-03 and B19-04) at the slump bottom that had fallen from the headwall were sampled using a chainsaw. Finally, a baidzherakh (thermokarst mound; B19-05) in the north of the slump was sampled using a hammer and axe. The samples cover 5 stratigraphical units: 1. lower ice complex, 2. lower sand unit, 3. woody layer, 4. upper ice complex, 5. Holocene cover.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2023-01-30
    Description: Organic carbon (OC) stored in Arctic permafrost represents one of Earth’s largest and most vulnerable terrestrial carbon pools. Amplified climate warming across the Arctic results in widespread permafrost thaw. Permafrost deposits exposed at river cliffs and coasts are particularly susceptible to thawing processes. Accelerating erosion of terrestrial permafrost along shorelines leads to increased transfer of organic matter (OM) to nearshore waters. However, the amount of terrestrial permafrost carbon and nitrogen as well as the OM quality in these deposits are still poorly quantified. Here, we characterise the sources and the quality of OM supplied to the Lena River at a rapidly eroding permafrost river shoreline cliff in the eastern part of the delta (Sobo-Sise Island). Our multi-proxy approach captures bulk elemental, molecular geochemical and carbon isotopic analyses of late Pleistocene Yedoma permafrost and Holocene cover deposits, discontinuously spanning the last ~52 ka. We show that the ancient permafrost exposed in the Sobo-Sise cliff has a high organic carbon content (mean of about 5 wt%).We found that the OM quality, which we define as the intrinsic potential to further transformation, decomposition, and mineralization, is also high as inferred by the lipid biomarker inventory. The oldest sediments stem from Marine Isotope Stage (MIS) 3 interstadial deposits (dated to 52 to 28 cal kyr BP) and is overlaid by Last Glacial MIS 2 (dated to 28 to 15 cal ka BP) and Holocene MIS 1 (dated to 7–0 cal ka BP) deposits. The relatively high average chain length (ACL) index of n-alkanes along the cliff profile indicates a predominant contribution of vascular plants to the OM composition. The elevated ratio of iso and anteiso-branched FAs relative to long chain (C ≥ 20) n-FAs in the interstadial MIS 3 and the interglacial MIS 1 deposits, suggests stronger microbial activity and consequently higher input of bacterial biomass during these climatically warmer periods. The overall high carbon preference index (CPI) and higher plant fatty acid (HPFA) values as well as high C / N ratios point to a good quality of the preserved OM and thus to a high potential of the OM for decomposition upon thaw. A decrease of HPFA values downwards along the profile probably indicates a relatively stronger OM decomposition in the oldest (MIS 3) deposits of the cliff.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2023-01-30
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2023-01-30
    Description: We present sea ice temperature and salinity data from first-year ice (FYI) and second-year ice (SYI) relevant to the temporal development of sea ice permeability and brine drainage efficiency from the early growth phase in October 2019 to the onset of spring warming in May 2020. Our dataset was collected in the central Arctic Ocean during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) Expedition in 2019 to 2020. MOSAiC was an international transpolar drift expedition in which the German icebreaker RV Polarstern anchored into an ice floe to gain new insights into Arctic climate over a full annual cycle. In October 2019, RV Polarstern moored to an ice floe in the Siberian sector of the Arctic at 85 degrees north and 137 degrees east to begin the drift towards the North Pole and the Fram Strait via the Transpolar Drift Stream. The data presented here were collected during the first three legs of the expedition, so all the coring activities took place on the same floe. The end dates of legs 1, 2, and 3 were 13 December, 24 February, and 4 June, respectively. The dataset contributed to a baseline study entitled, Deciphering the properties of different Arctic ice types during the growth phase of the MOSAiC floes: Implications for future studies. The study highlights downward directed gas pathways in FYI and SYI by inferring sea ice permeability and potential brine release from several time series of temperature and salinity measurements. The physical properties presented in this paper lay the foundation for subsequent analyses on actual gas contents measured in the ice cores, as well as air-ice and ice-ocean gas fluxes. Sea ice cores were collected with a Kovacs Mark II 9 cm diameter corer. To measure ice temperatures, about 4.5 cm deep holes were drilled into the core (intervals varied by site and leg) . The temperatures were measured by a digital thermometer within minutes after the cores were retrieved. The ice cores were placed into pre-labelled plastic sleeves sealed at the bottom end. The ice cores were transported to RV Polarstern and stored in a -20 degrees Celsius freezer. Each of the cores was sub-sampled, melted at room temperature, and processed for salinity within one or two days. The practical salinity was estimated by measuring the electrical conductivity and temperature of the melted samples using a WTW Cond 3151 salinometer equipped with a Tetra-Con 325 four-electrode conductivity cell. The practical salinity represents the the salinity estimated from the electrical conductivity of the solution. The dataset also contains derived variables, including sea ice density, brine volume fraction, and the Rayleigh number.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2023-01-30
    Description: Rock magnetic and paleomagnetic results covering the past 30 ka were constructed from two sediment cores MSM33_856-1 (MSM33-55-1) and MSM33_855-1 (54-3) from the Black Sea. After the Mediterranean Sea water ingression, finely laminated organic-rich sapropelic sediments and coccolith oozes were deposited in the Black Sea since about 8.3 ka. Relict magnetic minerals in the Black Sea sarpoples are ferrous hemoilmenite, Fe-Mn and Fe-Cr spinels, and magnetite inclusions. In sediments deposited between about 14 and 8 ka, greigite and pyrite were formed in sediments because of the seawater penetration from overlying sediments after the seawater ingression. Before ~14 ka, the Black Sea sediments are dominated by detrital (titano-)magnetite minerals and the sporadically formed greigite which has SIRM/kLF ratios 〉 10 kAm-2. By comparison with detrital (titano-)magnetite samples between 20-30 ka, we found that relict magnetic mineral samples between 0-8.3 ka have similar behavior in recording the geomagnetic field. Moreover, the geomagnetic field variations reconstructed from the Black Sea sapropels are comparable with other validated regional datasets for the past 8.3 ka. The natural remanent magnetization (NRM) and the anhysteretic remanent magnetization (ARM) were measured with a 2G Enterprises 755 SRM (cryogenic) long-core magnetometer equipped with a sample holder for eight discrete samples at a separation of 20 cm. The magnetometer's in-line tri-axial alternating field (AF) demagnetizer was used to demagnetize the NRM and ARM of the samples. The NRM was measured after application of AF peak amplitudes of 0, 5, 10, 15, 20, 30, 40, 50, 65, 80, and 100 mT. Directions of the characteristic remanent magnetization (ChRM) were determined by principle component analysis (PCA) according to Kirschvink (1980). The error range of the ChRM is given as the maximum angular deviation (MAD). The ARM was imparted along the samples' z-axis with a static field of 0.05 mT and an AF field of 100 mT. Demagnetization then was performed in steps of 0, 10, 20, 30, 40, 50, 65, and 80 mT. The median destructive field of the ARM (MDFARM) was determined to estimate the coercivity of the sediments. The slope of NRM versus ARM of common demagnetization steps was used to determine the relative paleointensity (RPI). In most cases, demagnetization steps from 20 to 65 mT were used to determine the RPI.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2023-01-30
    Description: This dataset provides data for four third-degree tidal constituents used in the publication of Sulzbach et al (2022). The tidal constituents provided are the 3M1, 3M3, 3N2 and 3L2 for 134 globally distributed stations. The tide information, such as the nodal modulations of these tides, are taken from Table 1 and Table S2 of Ray (2020). These tidal constants are estimated using the GESLA dataset (Woodworth et al 2014) following the approach presented in Piccioni et al (2019). This record is an add-on to the full TICON dataset (https://doi.org/10.1594/PANGAEA.896587), using exactly the same data format and pre-processing. These steps include using tide gauge data that contains at least ten years of continuous data. Further, the dataset is restricted to only contain open ocean tide gauges by limiting it to a mean surrounding depth of tide gauges to be deeper than 500 meters in a 2-degree radius and excluding stations not native to the ocean domain of the employed tidal model TiME. Duplicate and closely neighbouring tide gauges, found within a 0.2-degree radius, are also removed from the dataset. This resulted in the availability of the four tidal constants for 134 tide gauges. The results are stored in one tab-separated text/ASCII file with 13 columns: 1. Latitude of the tide gauge station 2. Longitude of the tide gauge station 3. Constituent name 4. Amplitude (in cm) 5. Phase (in degrees) 6. Standard deviation of the amplitude (in cm) 7. Standard deviation of the phase (in degrees) 8. Percentage of missing observations 9. Total number of observations analyzed 10. Length of the maximum temporal gap found in the time series in days 11. Date of the first observation 12. Date of the last observation 13. Code that corresponds to the original source of the record TICON is a useful and easy-to-handle data set for tide model validation and allows the users to select the records according to the different criteria most suitable for their purposes. The options span from the choice of a geographical region to the use of single constituents or time periods.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2023-01-30
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2023-01-30
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2023-01-30
    Description: These datasets provide sedimentological data partly at annual resolution and an age model for the lateglacial part of (1) the ICDP sediment core 5017-1-A retrieved from the deep northern Dead Sea basin in 2010/11, and (2) for the Masada outcrop located at the southwestern shore of the Dead Sea sampled in 2018. The here investigated two sediment sections cover the last glacial-interglacial transition (ca. 17-11.5 ka BP) in the hydroclimatically sensitive Levant, when the water level of Lake Lisan – the precursor of the Dead Sea – dropped dramatically from its glacial high-stand to the Holocene low levels. Here, we analyze the interval between the last two gypsum units – the Upper Gypsum Unit (UGU) and the Additional Gypsum Unit (AGU) – which were also used to correlate the two sites. In the ICDP core this section is located between ~101 and 88.5 m sediment depth below lake floor and at Masada it encompasses the uppermost ~3.8 m sediments of the Lisan Formation, which form the terminal deposit at this site. Due to the lake level decline, the complete transition into the Holocene is only recorded in the ICDP core, while sedimentation at Masada terminates earlier. The microfacies was investigated by continuous thin section microscopy, while additional macroscopic information is provided from over- and underlying sediment sections. A revised chronology using age modelling in OxCal (Ramsey 2008; Ramsey 2009; Ramsey and Lee 2013) was developed for the ICDP core and a floating varve chronology was constructed at Masada. Using these new microfacies data from marginal (Masada) and deep-water (ICDP core) sediments, the hydroclimatic variability during the final stage of Lake Lisan can be reconstructed, which could provide important insights into the development of human sedentism in the region at this time.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2023-01-30
    Description: We present sea ice temperature and salinity data from first-year ice (FYI) and second-year ice (SYI) relevant to the temporal development of sea ice permeability and brine drainage efficiency from the early growth phase in October 2019 to the onset of spring warming in May 2020. Our dataset was collected in the central Arctic Ocean during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) Expedition in 2019 to 2020. MOSAiC was an international transpolar drift expedition in which the German icebreaker RV Polarstern anchored into an ice floe to gain new insights into Arctic climate over a full annual cycle. In October 2019, RV Polarstern moored to an ice floe in the Siberian sector of the Arctic at 85 degrees north and 137 degrees east to begin the drift towards the North Pole and the Fram Strait via the Transpolar Drift Stream. The data presented here were collected during the first three legs of the expedition, so all the coring activities took place on the same floe. The end dates of legs 1, 2, and 3 were 13 December, 24 February, and 4 June, respectively. The dataset contributed to a baseline study entitled, Deciphering the properties of different Arctic ice types during the growth phase of the MOSAiC floes: Implications for future studies. The study highlights downward directed gas pathways in FYI and SYI by inferring sea ice permeability and potential brine release from several time series of temperature and salinity measurements. The physical properties presented in this paper lay the foundation for subsequent analyses on actual gas contents measured in the ice cores, as well as air-ice and ice-ocean gas fluxes. Sea ice cores were collected with a Kovacs Mark II 9 cm diameter corer. To measure ice temperatures, about 4.5 cm deep holes were drilled into the core (intervals varied by site and leg) . The temperatures were measured by a digital thermometer within minutes after the cores were retrieved. The ice cores were placed into pre-labelled plastic sleeves sealed at the bottom end. The ice cores were transported to RV Polarstern and stored in a -20 degrees Celsius freezer. Each of the cores was sub-sampled, melted at room temperature, and processed for salinity within one or two days. The practical salinity was estimated by measuring the electrical conductivity and temperature of the melted samples using a WTW Cond 3151 salinometer equipped with a Tetra-Con 325 four-electrode conductivity cell. The practical salinity represents the the salinity estimated from the electrical conductivity of the solution. The dataset also contains derived variables, including sea ice density, brine volume fraction, and the Rayleigh number.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2023-01-30
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2023-01-30
    Description: This dataset provides annually resolved microfacies data from ICDP core 5017-1-A, retrieved from the deep northern Dead Sea basin in 2010/11, for the last glacial-interglacial transition (ca. 17-11.5 ka BP). Sediments of the Lisan Formation were investigated between ~101 and 88.5 m sediment depth below lake floor by continuous thin section microscopy, while additional macroscopic information is provided from core catchers, as well as from over- and underlying sediment sections. Thin sections were prepared following the standard procedure by Brauer and Casanova (2001) that was adjusted for salty sediments. Thin section analyses were performed on overlapping large-scale thin sections using a Zeiss Axiolab pol microscope at magnifications of 50-400x. Microfacies analyses included varve counting and measurements of varve and sublayer thickness.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2023-01-30
    Description: Despite the importance of surface energy budgets (SEBs) for land-climate interactions in the Arctic, uncertainties in their prediction persist. In situ observational data of SEB components - useful for research and model validation - are collected at relatively few sites across the terrestrial Arctic, and not all available datasets are readily interoperable. Furthermore, the terrestrial Arctic consists of a diversity of vegetation types, which are generally not well represented in land surface schemes of current Earth system models. This dataset contains metadata information about surface energy budget components measured at 64 tundra and glacier sites 〉60° N across the Arctic. This information was taken from the open-access repositories FLUXNET, Ameriflux, AON, GC-Net and PROMICE. The contained datasets are associated with the publication vegetation type as an important predictor of the Arctic Summer Land Surface Energy Budget by Oehri et al. 2022, and intended to support research of surface energy budgets and their relationship with environmental conditions, in particular vegetation characteristics across the terrestrial Arctic.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2023-01-30
    Description: This dataset provides the results from Bayesian age depth modelling in OxCal for ICDP core 5017-1-A, retrieved from the deep northern Dead Sea basin in 2010/11, for the last glacial-interglacial transition between ~101 and 88.5 m sediment depth below lake floor (ca. 17-11.5 ka BP). The model was performed in OxCal v.4.4 using a P_Sequence (1,1,C(-2,2)) (Ramsey 2008; Ramsey 2009; Ramsey and Lee 2013) and includes three tephrochronological ages from Neugebauer et al. (2021) and three radiocarbon ages from Kitagawa et al. (2017).
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2023-01-30
    Description: Despite the importance of surface energy budgets (SEBs) for land-climate interactions in the Arctic, uncertainties in their prediction persist. In situ observational data of SEB components - useful for research and model validation - are collected at relatively few sites across the terrestrial Arctic, and not all available datasets are readily interoperable. Furthermore, the terrestrial Arctic consists of a diversity of vegetation types, which are generally not well represented in land surface schemes of current Earth system models. This dataset comprises harmonized, standardized and aggregated in-situ observations of surface energy budget components measured at 64 sites on vegetated and glaciated sites north of 60° latitude, in the time period from 1994 till 2021. The surface energy budget components include net radiation, sensible heat flux, latent heat flux, ground heat flux, net shortwave radiation, net longwave radiation, surface temperature and albedo, which were aggregated to daily mean, minimum and maximum values from hourly and half-hourly measurements. Data were retrieved from the monitoring networks FLUXNET, AmeriFlux, AON, GC-Net and PROMICE.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2023-01-30
    Description: We present sea ice temperature and salinity data from first-year ice (FYI) and second-year ice (SYI) relevant to the temporal development of sea ice permeability and brine drainage efficiency from the early growth phase in October 2019 to the onset of spring warming in May 2020. Our dataset was collected in the central Arctic Ocean during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) Expedition in 2019 to 2020. MOSAiC was an international transpolar drift expedition in which the German icebreaker RV Polarstern anchored into an ice floe to gain new insights into Arctic climate over a full annual cycle. In October 2019, RV Polarstern moored to an ice floe in the Siberian sector of the Arctic at 85 degrees north and 137 degrees east to begin the drift towards the North Pole and the Fram Strait via the Transpolar Drift Stream. The data presented here were collected during the first three legs of the expedition, so all the coring activities took place on the same floe. The end dates of legs 1, 2, and 3 were 13 December, 24 February, and 4 June, respectively. The dataset contributed to a baseline study entitled, Deciphering the properties of different Arctic ice types during the growth phase of the MOSAiC floes: Implications for future studies. The study highlights downward directed gas pathways in FYI and SYI by inferring sea ice permeability and potential brine release from several time series of temperature and salinity measurements. The physical properties presented in this paper lay the foundation for subsequent analyses on actual gas contents measured in the ice cores, as well as air-ice and ice-ocean gas fluxes. Sea ice cores were collected with a Kovacs Mark II 9 cm diameter corer. To measure ice temperatures, about 4.5 cm deep holes were drilled into the core (intervals varied by site and leg) . The temperatures were measured by a digital thermometer within minutes after the cores were retrieved. The ice cores were placed into pre-labelled plastic sleeves sealed at the bottom end. The ice cores were transported to RV Polarstern and stored in a -20 degrees Celsius freezer. Each of the cores was sub-sampled, melted at room temperature, and processed for salinity within one or two days. The practical salinity was estimated by measuring the electrical conductivity and temperature of the melted samples using a WTW Cond 3151 salinometer equipped with a Tetra-Con 325 four-electrode conductivity cell. The practical salinity represents the the salinity estimated from the electrical conductivity of the solution. The dataset also contains derived variables, including sea ice density, brine volume fraction, and the Rayleigh number.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2023-01-30
    Description: We present sea ice temperature and salinity data from first-year ice (FYI) and second-year ice (SYI) relevant to the temporal development of sea ice permeability and brine drainage efficiency from the early growth phase in October 2019 to the onset of spring warming in May 2020. Our dataset was collected in the central Arctic Ocean during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) Expedition in 2019 to 2020. MOSAiC was an international transpolar drift expedition in which the German icebreaker RV Polarstern anchored into an ice floe to gain new insights into Arctic climate over a full annual cycle. In October 2019, RV Polarstern moored to an ice floe in the Siberian sector of the Arctic at 85 degrees north and 137 degrees east to begin the drift towards the North Pole and the Fram Strait via the Transpolar Drift Stream. The data presented here were collected during the first three legs of the expedition, so all the coring activities took place on the same floe. The end dates of legs 1, 2, and 3 were 13 December, 24 February, and 4 June, respectively. The dataset contributed to a baseline study entitled, Deciphering the properties of different Arctic ice types during the growth phase of the MOSAiC floes: Implications for future studies. The study highlights downward directed gas pathways in FYI and SYI by inferring sea ice permeability and potential brine release from several time series of temperature and salinity measurements. The physical properties presented in this paper lay the foundation for subsequent analyses on actual gas contents measured in the ice cores, as well as air-ice and ice-ocean gas fluxes. Sea ice cores were collected with a Kovacs Mark II 9 cm diameter corer. To measure ice temperatures, about 4.5 cm deep holes were drilled into the core (intervals varied by site and leg) . The temperatures were measured by a digital thermometer within minutes after the cores were retrieved. The ice cores were placed into pre-labelled plastic sleeves sealed at the bottom end. The ice cores were transported to RV Polarstern and stored in a -20 degrees Celsius freezer. Each of the cores was sub-sampled, melted at room temperature, and processed for salinity within one or two days. The practical salinity was estimated by measuring the electrical conductivity and temperature of the melted samples using a WTW Cond 3151 salinometer equipped with a Tetra-Con 325 four-electrode conductivity cell. The practical salinity represents the the salinity estimated from the electrical conductivity of the solution. The dataset also contains derived variables, including sea ice density, brine volume fraction, and the Rayleigh number.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2023-01-30
    Description: This dataset describes two 17 m long sediment cores taken from beneath two thermokarst lakes in the Yukechi Alas, Central Yakutia, Russia. The first core was taken from below an Alas thermokarst lake (YU-L7; 61.76397°N, 130.46442°E) and the second core below and Yedoma lake (YU-L15; 61.76086°N, 130.47466°E). The dataset presents biogeochemical and biomarker parameters of sediment cores YU-L7 and YU-L15. Biogeochemical analyses include total carbon (TC) content, total organic carbon (TOC) content, total nitrogen (TN) content. Biomarker parameters include the n-alkane concentration, average chain length (ACL), carbon preference index (CPI), brGDGT concentration, archaeol concentration and the isoGDGT-0 concentration. The n-alkanes were measured in the aliphatic fraction by gas chromatography-mass spectromety using a Trace GC Ultra coupled to a DSQ MS. The branched and isoprenoid glycerol dialkyl glycerol tetraethers, as well as the dialkyl glycerol diether lipid (archaeol) were measured in the NSO fraction using a Shimadzu LC-10AD high-performance liquid chromatograph coupled to a Finnigan TSQ 7000 mass spectrometer via an atmospheric pressure chemical ionization interface. The pH soil is the sediment pH which was assessed by adding 6.12 mL of 0.01 M CaCl~2~ to ~2.5 g dried sediment and measuring with a Multilab 540 (WTW) at 20°C.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2023-01-30
    Description: We present sea ice temperature and salinity data from first-year ice (FYI) and second-year ice (SYI) relevant to the temporal development of sea ice permeability and brine drainage efficiency from the early growth phase in October 2019 to the onset of spring warming in May 2020. Our dataset was collected in the central Arctic Ocean during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) Expedition in 2019 to 2020. MOSAiC was an international transpolar drift expedition in which the German icebreaker RV Polarstern anchored into an ice floe to gain new insights into Arctic climate over a full annual cycle. In October 2019, RV Polarstern moored to an ice floe in the Siberian sector of the Arctic at 85 degrees north and 137 degrees east to begin the drift towards the North Pole and the Fram Strait via the Transpolar Drift Stream. The data presented here were collected during the first three legs of the expedition, so all the coring activities took place on the same floe. The end dates of legs 1, 2, and 3 were 13 December, 24 February, and 4 June, respectively. The dataset contributed to a baseline study entitled, Deciphering the properties of different Arctic ice types during the growth phase of the MOSAiC floes: Implications for future studies. The study highlights downward directed gas pathways in FYI and SYI by inferring sea ice permeability and potential brine release from several time series of temperature and salinity measurements. The physical properties presented in this paper lay the foundation for subsequent analyses on actual gas contents measured in the ice cores, as well as air-ice and ice-ocean gas fluxes. Sea ice cores were collected with a Kovacs Mark II 9 cm diameter corer. To measure ice temperatures, about 4.5 cm deep holes were drilled into the core (intervals varied by site and leg) . The temperatures were measured by a digital thermometer within minutes after the cores were retrieved. The ice cores were placed into pre-labelled plastic sleeves sealed at the bottom end. The ice cores were transported to RV Polarstern and stored in a -20 degrees Celsius freezer. Each of the cores was sub-sampled, melted at room temperature, and processed for salinity within one or two days. The practical salinity was estimated by measuring the electrical conductivity and temperature of the melted samples using a WTW Cond 3151 salinometer equipped with a Tetra-Con 325 four-electrode conductivity cell. The practical salinity represents the the salinity estimated from the electrical conductivity of the solution. The dataset also contains derived variables, including sea ice density, brine volume fraction, and the Rayleigh number.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2023-01-30
    Description: Despite the importance of surface energy budgets (SEBs) for land-climate interactions in the Arctic, uncertainties in their prediction persist. In-situ observational data of SEB components - useful for research and model validation - are collected at relatively few sites across the terrestrial Arctic, and not all available datasets are readily interoperable. Furthermore, the terrestrial Arctic consists of a diversity of vegetation types, which are generally not well represented in land surface schemes of current Earth system models. Therefore, we here provide four datasets comprising: 1. Harmonized, standardized and aggregated in situ observations of SEB components at 64 vegetated and glaciated sites north of 60° latitude, in the time period 1994-2021 2. A description of all study sites and associated environmental conditions, including the vegetation types, which correspond to the classification of the Circumpolar Arctic Vegetation Map (CAVM, Raynolds et al. 2019). 3. Data generated in a literature synthesis from 358 study sites on vegetation or glacier (〉=60°N latitude) covered by 148 publications. 4. Metadata, including data contributor information and measurement heights of variables associated with Oehri et al. 2022.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2023-01-30
    Description: This dataset provides lithological data from ICDP core 5017-1-A, retrieved from the deep northern Dead Sea basin in 2010/11, for the last glacial-interglacial transition (ca. 17-11.5 ka BP). The microfacies of the Lisan Formation was investigated between ~101 and 88.5 m sediment depth below lake floor by continuous thin section microscopy, while additional macroscopic information is provided from core catchers, as well as from over- and underlying sediment sections. Thin sections were prepared following the standard procedure by Brauer and Casanova (2001) that was adjusted for salty sediments. Thin section analyses were performed on overlapping large-scale thin sections using a Zeiss Axiolab pol microscope at magnifications of 50-400x.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2023-01-30
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2023-01-30
    Description: This dataset contains observations of water discharge rates and concentrations of dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) from a polygonal tundra site in the Lena River Delta, Russia. This dataset also contains lateral carbon fluxes of DOC and DIC that were estimated from these observations. Additionally, this dataset contains vertical fluxes of carbon dioxide and methane from the same study site. All observations were recorded on Samoylov Island (N 72.377188, E 126.495144) in the summer of 2014. The abbreviations A1, A2 and B refer to three outflows on the island where the hydrological parameters were observed (A1: N 72.379991, E 126.480886; A2: N 72.380134, E 126.481433; B: N 72.381348, E 126.483482). All outflows were approximately 10 meters. More information can be found in https://doi.org/10.5194/bg-19-3863-2022.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2023-01-30
    Description: Despite the importance of surface energy budgets (SEBs) for land-climate interactions in the Arctic, uncertainties in their prediction persist. In situ observational data of SEB components - useful for research and model validation - are collected at relatively few sites across the terrestrial Arctic, and not all available datasets are readily interoperable. Furthermore, the terrestrial Arctic consists of a diversity of vegetation types, which are generally not well represented in land surface schemes of current Earth system models. This dataset describes the environmental conditions for 64 tundra and glacier sites (〉=60°N latitude) across the Arctic, for which in situ measurements of surface energy budget components were harmonized (see Oehri et al. 2022). These environmental conditions are (proxies of) potential drivers of SEB-components and could therefore be called SEB-drivers. The associated environmental conditions, include the vegetation types graminoid tundra, prostrate dwarf-shrub tundra, erect-shrub tundra, wetland complexes, barren complexes (≤ 40% horizontal plant cover), boreal peat bogs and glacier. These land surface types (apart from boreal peat bogs) correspond to the main classification units of the Circumpolar Arctic Vegetation Map (CAVM, Raynolds et al. 2019). For each site, additional climatic and biophysical variables are available, including cloud cover, snow cover duration, permafrost characteristics, climatic conditions and topographic conditions.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2023-02-01
    Description: This dataset contains over 30 marine Electrical Resistivity Tomography (ERT) profiles taken in September 2021 around Tuktoyaktuk Island (NWT / Beaufort Sea, Canada). The measurements were part of the “Mackenzie Delta Permafrost Field Campaign” (mCan2021) within the “Modular Observation solutions for Earth Systems” (MOSES) program. The collected profiles consist of numerous adjacent vertical soundings in a (quasi-symmetric) reciprocal Wenner-Schlumberger array, using a floating cable towed behind a boat. GPS records along the electrode streamer were taken, enabling the improvement of pre- processing by excluding measurements for which the cable was curved and electrode positions deviated too widely. The aim of the study was to determine the depth of the submarine permafrost. Cleaned data is provided in csv format.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2023-02-01
    Description: This collection contains permafrost related measurements in the Mackenzie Delta, NWT, Canada from the MOSES (Modular Observation Solutions for Earth Systems) field campaign in September 2021. The field campaign was focused on three subaquatic sites: a small thermokarst lake along the ITH just south of Trail Valley Creek, "Lake 3", an elongated lake with known methane occurence in the outer Mackenzie Delta, "Swiss Cheese Lake", and north and south of Tuktoyaktuk Island. At "Swiss Cheese Lake", we measured methane and CO2 concentrations in surface water and in the air above the lake, lake bed temperatures and detailed bathymetry. At "Lake 3" we measured active layer thickness on the lake banks, lake bed temperatures, and detailed bathymetry, as well as an ERT survey to estimate the talik depth below the lake. North and south of Tuktoyaktuk Island, we measured active layer thickness and sea bed temperatures and did an extensive ERT survey to obtain the depth of the subsea permafrost table. An additional passive seismic survey was carried out and the data is available at https://doi.org/10.5880/GIPP.202199.1.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2023-02-01
    Description: This dataset contains seven Electrical Resistivity Tomography (ERT) profiles taken in September 2021 at “Lake 3”, a thermokarst lake near the Inuvik-Tuktoyaktuk-Highway (ITH), about 50 km north of Inuvik (NWT, Canada). The measurements were part of the “Mackenzie Delta Permafrost Field Campaign” (mCan2021) within the “Modular Observation solutions for Earth Systems” (MOSES) program. The collected profiles consist of numerous adjacent vertical soundings in a (quasi-symmetric) reciprocal Wenner-Schlumberger array. In addition to surveys on the lake, using a floating cable towed behind a boat, two “amphibian” profiles were taken. Starting as purely terrestrial surveys using metal spike electrodes, the cable was then moved towards the lake with some of the electrodes floating on the water surface, and some still on land. The aim of the study was to determine permafrost properties on the land, to detect a possible talik beneath the lake and to especially be able to infer the transition between the two below the shoreline.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2023-01-27
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(8), (2022): 1705-1730, https://doi.org/10.1175/jpo-d-21-0243.1.
    Description: Formation and evolution of barrier layers (BLs) and associated temperature inversions (TIs) were investigated using a 1-yr time series of oceanic and air–sea surface observations from three moorings deployed in the eastern Pacific fresh pool. BL thickness and TI amplitude showed a seasonality with maxima in boreal summer and autumn when BLs were persistently present. Mixed layer salinity (MLS) and mixed layer temperature (MLT) budgets were constructed to investigate the formation mechanism of BLs and TIs. The MLS budget showed that BLs were initially formed in response to horizontal advection of freshwater in boreal summer and then primarily maintained by precipitation. The MLT budget revealed that penetration of shortwave radiation through the mixed layer base is the dominant contributor to TI formation through subsurface warming. Geostrophic advection is a secondary contributor to TI formation through surface cooling. When the BL exists, the cooling effect from entrainment and the warming effect from detrainment are both significantly reduced. In addition, when the BL is associated with the presence of a TI, entrainment works to warm the mixed layer. The presence of BLs makes the shallower mixed layer more sensitive to surface heat and freshwater fluxes, acting to enhance the formation of TIs that increase the subsurface warming via shortwave penetration.
    Description: SK is supported by JSPS Overseas Research Fellowships. JS and SK are supported by NASA Grant 80NSSC18K1500. JTF and the mooring deployment were funded by NASA Grants NNX15AG20G and 80NSSC18K1494. DZ is supported by NASA Grant 80NSSC18K1499. This publication is partially funded by the Cooperative Institute for Climate, Ocean, and Ecosystem Studies (CICOES) under NOAA Cooperative Agreement NA20OAR4320271, Contribution 2021-1152. This is PMEL Contribution 5268.
    Description: 2023-01-27
    Keywords: Ocean ; North Pacific Ocean ; Tropics ; Entrainment ; Oceanic mixed layer ; Salinity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    facet.materialart.
    Unknown
    American Meteorological Society
    In:  EPIC3Journal of Climate, American Meteorological Society, 35(23), pp. 7811-7831, ISSN: 0894-8755
    Publication Date: 2023-06-23
    Description: Numerical simulations allow us to gain a comprehensive understanding of the underlying mechanisms of past, present, and future climate changes. The mid-Holocene (MH) and the last interglacial (LIG) were the two most recent warm episodes of Earth’s climate history and are the focus of paleoclimate research. Here, we present results of MH and LIG simulations with two versions of the state-of-the-art Earth system model AWI-ESM. Most of the climate changes in MH and LIG compared to the preindustrial era are agreed upon by the two model versions, including 1) enhanced seasonality in surface temperature that is driven by the redistribution of seasonal insolation; 2) a northward shift of the intertropical convergence zone (ITCZ) and tropical rain belt; 3) a reduction in annual mean Arctic sea ice concentration; 4) weakening and northward displacement of the Northern Hemisphere Hadley circulation, which is related to the decrease and poleward shift of the temperature gradient from the subtropical to the equator in the Northern Hemisphere; 5) a westward shift of the Indo-Pacific Walker circulation due to anomalous warming over the Eurasia and North Africa during boreal summer; and 6) an expansion and intensification of Northern Hemisphere summer monsoon rainfall, with the latter being dominated by the dynamic component of moisture budget (i.e., the strengthening of wind circulation). However, the simulated responses of the Atlantic meridional overturning circulation (AMOC) in the two models yield different results for both the LIG and the MH. AMOC anomalies between the warm interglacial and preindustrial periods are associated with changes in North Atlantic westerly winds and stratification of the water column at the North Atlantic due to changes in ocean temperature, salinity, and density.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2023-02-01
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(8), (2022): 1927-1943, https://doi.org/10.1175/jpo-d-21-0124.1.
    Description: The Galápagos Archipelago lies on the equator in the path of the eastward flowing Pacific Equatorial Undercurrent (EUC). When the EUC reaches the archipelago, it upwells and bifurcates into a north and south branch around the archipelago at a latitude determined by topography. Since the Coriolis parameter (f) equals zero at the equator, strong velocity gradients associated with the EUC can result in Ertel potential vorticity (Q) having sign opposite that of planetary vorticity near the equator. Observations collected by underwater gliders deployed just west of the Galápagos Archipelago during 2013–16 are used to estimate Q and to diagnose associated instabilities that may impact the Galápagos Cold Pool. Estimates of Q are qualitatively conserved along streamlines, consistent with the 2.5-layer, inertial model of the EUC by Pedlosky. The Q with sign opposite of f is advected south of the Galápagos Archipelago when the EUC core is located south of the bifurcation latitude. The horizontal gradient of Q suggests that the region between 2°S and 2°N above 100 m is barotropically unstable, while limited regions are baroclinically unstable. Conditions conducive to symmetric instability are observed between the EUC core and the equator and within the southern branch of the undercurrent. Using 2-month and 3-yr averages, e-folding time scales are 2–11 days, suggesting that symmetric instability can persist on those time scales.
    Description: This work was supported by the National Science Foundation (Grants OCE-1232971 and OCE-1233282), the NASA Earth and Space Science Fellowship Program (Grant 80NSSC17K0443), and the Global Ocean Monitoring and Observing Program of the National Oceanographic and Atmospheric Administration (NA13OAR4830216). Color maps are from Thyng et al. (2016).
    Description: 2023-02-01
    Keywords: Currents ; In situ oceanic observations ; Instability ; Mixing ; Ocean dynamics ; Pacific Ocean ; Potential vorticity ; Tropics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2023-02-01
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of the Atmospheric and Oceanic Technology 39(8), (2022): 1183-1198, https://doi.org/10.1175/jtech-d-21-0068.1.
    Description: Horizontal kinematic properties, such as vorticity, divergence, and lateral strain rate, are estimated from drifter clusters using three approaches. At submesoscale horizontal length scales O(1–10)km, kinematic properties become as large as planetary vorticity f, but challenging to observe because they evolve on short time scales O(hourstodays). By simulating surface drifters in a model flow field, we quantify the sources of uncertainty in the kinematic property calculations due to the deformation of cluster shape. Uncertainties arise primarily due to (i) violation of the linear estimation methods and (ii) aliasing of unresolved scales. Systematic uncertainties (iii) due to GPS errors, are secondary but can become as large as (i) and (ii) when aspect ratios are small. Ideal cluster parameters (number of drifters, length scale, and aspect ratio) are determined and error functions estimated empirically and theoretically. The most robust method—a two-dimensional, linear least squares fit—is applied to the first few days of a drifter dataset from the Bay of Bengal. Application of the length scale and aspect-ratio criteria minimizes errors (i) and (ii), and reduces the total number of clusters and so computational cost. The drifter-estimated kinematic properties map out a cyclonic mesoscale eddy with a surface, submesoscale fronts at its perimeter. Our analyses suggest methodological guidance for computing the two-dimensional kinematic properties in submesoscale flows, given the recently increasing quantity and quality of drifter observations, while also highlighting challenges and limitations.
    Description: This research was supported by the Office of Naval Research (ONR) Departmental Research Initiative ASIRI under Grant N00014-13-1-0451 (SE and AM) and Grant N00014-13-1-0477 (VH and LC). The authors thank the captain and crew of the R/V Roger Revelle, and Andrew Lucas with the Multiscale Ocean Dynamics group at the Scripps Institution for Oceanography for providing the FastCTD data collected in 2015, which was supported by ONR Grant N00014-13-1-0489, as well as Eric D’Asaro for helpful discussions and Lance Braasch for assistance with the drifter dataset. AM and SE further thank NSF (Grant OCE-I434788) and ONR (Grant N00014-16-1-2470) for support. VH and LC were additionally supported by ONR Grants N00014-15-1-2286, N00014-14-1-0183, N00014-19-1-26-91 and NOAA Global Drifter Program (GDP) Grant NA15OAR4320071.
    Description: 2023-02-01
    Keywords: Indian Ocean ; Eddies ; Frontogenesis/frontolysis ; Fronts ; Lagrangian circulation/transport ; Ocean circulation ; Ocean dynamics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2023-02-01
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 35(17), (2022): 5465-5482, https://doi.org/10.1175/jcli-d-21-0671.1.
    Description: Understanding the contribution of ocean circulation to glacial–interglacial climate change is a major focus of paleoceanography. Specifically, many have tried to determine whether the volumes and depths of Antarctic- and North Atlantic–sourced waters in the deep ocean changed at the Last Glacial Maximum (LGM; ∼22–18 kyr BP) when atmospheric pCO2 concentrations were 100 ppm lower than the preindustrial. Measurements of sedimentary geochemical proxies are the primary way that these deep ocean structural changes have been reconstructed. However, the main proxies used to reconstruct LGM Atlantic water mass geometry provide conflicting results as to whether North Atlantic–sourced waters shoaled during the LGM. Despite this, a number of idealized modeling studies have been advanced to describe the physical processes resulting in shoaled North Atlantic waters. This paper aims to critically assess the approaches used to determine LGM Atlantic circulation geometry and lay out best practices for future work. We first compile existing proxy data and paleoclimate model output to deduce the processes responsible for setting the ocean distributions of geochemical proxies in the LGM Atlantic Ocean. We highlight how small-scale mixing processes in the ocean interior can decouple tracer distributions from the large-scale circulation, complicating the straightforward interpretation of geochemical tracers as proxies for water mass structure. Finally, we outline promising paths toward ascertaining the LGM circulation structure more clearly and deeply.
    Description: S.K.H. was supported by the Investment in Science Fund at WHOI and the John E. and Anne W. Sawyer Endowed Fund in Support of Scientific Staff. F.J.P. was supported by a Stanback Postdoctoral Fellowship at Caltech.
    Description: 2023-02-01
    Keywords: Diapycnal mixing ; Meridional overturning circulation ; Ocean circulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    facet.materialart.
    Unknown
    Taylor & Francis
    In:  EPIC3Third World Thematics A TWQ Journal, Taylor & Francis, 6(4-6), pp. 267-289, ISSN: 2379-9978
    Publication Date: 2024-02-07
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2023-01-27
    Description: Organic carbon (OC) stored in Arctic permafrost represents one of Earth's largest and most vulnerable terrestrial carbon pools. Amplified climate warming across the Arctic results in widespread permafrost thaw. Permafrost deposits exposed at river cliffs and coasts are particularly susceptible to thawing processes. Accelerating erosion of terrestrial permafrost along shorelines leads to increased transfer of organic matter (OM) to nearshore waters. However, the amount of terrestrial permafrost carbon and nitrogen as well as the OM quality in these deposits are still poorly quantified. Here, we characterise the sources and the quality of OM supplied to the Lena River at a rapidly eroding permafrost river shoreline cliff in the eastern part of the delta (Sobo-Sise Island). Our multi-proxy approach captures bulk elemental, molecular geochemical and carbon isotopic analyses of late Pleistocene Yedoma permafrost and Holocene cover deposits, discontinuously spanning the last ~52 ka. We show that the ancient permafrost exposed in the Sobo-Sise cliff has a high organic carbon content (mean of about 5 wt%).We found that the OM quality, which we define as the intrinsic potential to further transformation, decomposition, and mineralization, is also high as inferred by the lipid biomarker inventory. The oldest sediments stem from Marine Isotope Stage (MIS) 3 interstadial deposits (dated to 52 to 28 cal kyr BP) and is overlaid by Last Glacial MIS 2 (dated to 28 to 15 cal ka BP) and Holocene MIS 1 (dated to 7–0 cal ka BP) deposits. The relatively high average chain length (ACL) index of n-alkanes along the cliff profile indicates a predominant contribution of vascular plants to the OM composition. The elevated ratio of iso and anteiso-branched FAs relative to long chain (C ≥ 20) n-FAs in the interstadial MIS 3 and the interglacial MIS 1 deposits, suggests stronger microbial activity and consequently higher input of bacterial biomass during these climatically warmer periods. The overall high carbon preference index (CPI) and higher plant fatty acid (HPFA) values as well as high C / N ratios point to a good quality of the preserved OM and thus to a high potential of the OM for decomposition upon thaw. A decrease of HPFA values downwards along the profile probably indicates a relatively stronger OM decomposition in the oldest (MIS 3) deposits of the cliff.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2023-03-13
    Description: Freshening of the oceans is a predicted outcome of climate change. Marine phytoplankton organisms are in general affected by salinity changes and, given their key role in oceanic food webs and geochemical cycles, it is important to investigate the response of phytoplankton species to salinity changes. Diatom species of the genus Pseudo-nitzschia can form massive and, at times, toxic blooms, because several Pseudo-nitzschia species produce the neurotoxin domoic acid. Domoic acid can cause amnesic shellfish poisoning in humans and harm animals in the marine food web. The species Pseudonitzschia seriata can produce domoic acid in cold-water areas, like the Arctic. Hence, it is relevant to investigate the response of P. seriata to different salinity levels. Three strains of P. seriata were exposed to four different salinity levels (15, 20, 30 and 40). None of the strains grew at salinity 15, and maximum growth rates were found at salinity 30. All three strains contained toxins at salinities 20–40, with the highest cellular content occurring at salinity 20. The peak in toxin content was related to a significantly lower growth rate. However, the higher toxin content overrode the lower growth rate, ultimately resulting in a higher toxin potential at salinity 20. In addition to domoic acid, all strains contained isodomoic acid C in surprisingly high amounts, similar to the domoic acid content.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2023-03-13
    Description: It is well known that modern resting cysts with morphologies matching those of species of the fossil genus Spiniferites germinate into motile cells of the genus Gonyaulax. Different Spiniferites species have been connected to a single Gonyaulax species, raising the question of whether they are over-classified. Through germination experiments of cysts with the morphological features of four species of Spiniferites, viz. S. bentorii, S. hyperacanthus, S. ramosus and S. scabratus, we established cyst-theca relationships. Cysts with the morphology of S. bentorii gave rise to vegetative, motile cells of Gonyaulax nezaniae sp. nov., which is characterized by two stout antapical spines. Cysts with S. hyperacanthus and S. ramosus morphologies germinated into Gonyaulax whaseongensis and G. spinifera, respectively. Cysts with S. scabratus morphology lacked a ventral pore and were attributed to Gonyaulax cf. spinifera. Gene sequences for SSU, LSU and/or ITS-5.8S rRNA were obtained from these four species, and from cysts with the morphology of Spiniferites belerius, S. mirabilis, S. lazus, Spiniferites cf. bentorii and Tectatodinium pellitum. The maximum likelihood and Bayesian inference analyses based on LSU and SSU rRNA gene sequences revealed that cysts assignable to Spiniferites formed a polyphyletic group, intermingled with Tectatodinium, Bitectatodinium, Ataxiodinium and Impagidinium, whereas Gonyaulax species appeared as monophyletic. From our results we inferred the phylogenetic positions of S. bentorii, S. mirabilis, S. lazus, S. scabratus, Tectatodinium pellitum and Gonyaulax digitale for the first time, supporting the idea that Spiniferites species are not over-classified and each of them may correspond to different Gonyaulax species.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    facet.materialart.
    Unknown
    American Meteorological Society
    In:  EPIC3Journal of Climate, American Meteorological Society, 34(18), pp. 7373-7388, ISSN: 0894-8755
    Publication Date: 2024-06-21
    Description: Climate variability occurs over wide ranges of spatial and temporal scales. It exhibits a complex spatial covariance structure, which depends on geographic location (e.g., tropics vs extratropics) and also consists of a superposition of (i) components with gradually decaying positive correlation functions and (ii) teleconnections that often involve anticorrelations. In addition, there are indications that the spatial covariance structure depends on frequency. Thus, a comprehensive assessment of the spatiotemporal covariance structure of climate variability would require an extensive set of statistical diagnostics. Therefore, it is often desirable to characterize the covariance structure by a simple summarizing metric that is easy to compute from datasets. Such summarizing metrics are useful, for example, in the context of comparisons between climate models or between models and observations. Here we introduce a frequency-dependent version of a simple measure of the effective spatial degrees of freedom. The measure is based on the temporal variance of the global average of some climate variable, and its novel aspect consists in its frequency dependence. We also provide a clear geometric interpretation of the measure. Its easy applicability is demonstrated using near-surface temperature and precipitation fields obtained from a paleoclimate model simulation. This application reveals a distinct scaling behavior of the spatial degrees of freedom as a function of frequency, ranging from monthly to millennial scales.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2021-10-08
    Description: This paper investigates the value of weather and climate information at different timescales for decision making in the Tanzanian disaster risk reduction sector using non-monetary approaches. Interviews and surveys were conducted with institutions responsible for disaster management at national, regional and district level. A range of values were identified including: 1) making informed decisions for disaster preparedness, response, recovery and restoration related activities; 2) tailoring of directives and actions based on sectoral impacts; 3) identification of hotspot areas for diseases outbreaks and surplus food production. However, while, a number of guidelines, policies, acts and regulations for disaster risk reduction exist it is not clear how well they promote the use of weather and climate information across climate sensitive sectors. Nonetheless, we find that well-structured disaster risk reduction coordination across sectors and institutions from the national to district level exists, although there is a need for further development of integrated Early Warning Systems, and a common platform to evaluate effectiveness and usefulness of weather warnings and advisories. Key challenges to address in increasing the uptake of weather warnings and advisories include language barriers, limited dissemination to rural areas, and limited awareness of forecasts. Based on the findings of this study, we recommend further quantitative evaluation of the skill of the severe weather warnings issued by the Tanzania Meteorological Authority, and an assessment of how decisions and actions are made by recipients of the warnings in the disaster risk reduction sector at different stages in the warning, response and recovery process.
    Print ISSN: 1948-8327
    Electronic ISSN: 1948-8335
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2021-09-27
    Description: This paper reports the assimilation of cloud optical depth datasets into a variational data assimilation system to improve cloud ice, cloud water, rain, snow, and graupel analysis in extreme weather events for improving forecasts. A cloud optical depth forward operator was developed and implemented in the Space and Time Multiscale Analysis System (STMAS), a multiscale three-dimensional variational analysis system. Using this improved analysis system, the NOAA GOES-15 DCOMP (Daytime Cloud Optical and Microphysical Properties) cloud optical depth products were assimilated to improve the microphysical states. For an eight-day period of extreme weather events in September 2013 in Colorado, the United States, the impact of the cloud optical depth assimilation on the analysis results and forecasts was evaluated. The DCOMP products improved the cloud ice and cloud water predictions significantly in convective and lower levels. The DCOMP products also reduced errors in temperature and relative humidity data at the top (250–150 hPa) and bottom (850–700 hPa) layers. With the cloud ice improvement at higher layers, the DCOMP products provided better forecasts of cloud liquid at low layers (900–700 hPa), temperature and wind at all layers, and relative humidity at middle and bottom layers. Furthermore, for this extreme weather event, both equitable threat score (ETS) and bias were improved throughout the 12 h period, with the most significant improvement observed in the first 3 h. This study will raise the expectation of cloud optical depth product assimilation in operational applications.
    Print ISSN: 0882-8156
    Electronic ISSN: 1520-0434
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2021-09-15
    Description: This study explores the possibilities of employing machine learning algorithms to predict foehn occurrence in Switzerland at a north-Alpine (Altdorf) and south-Alpine (Lugano) station from its synoptic fingerprint in reanalysis data and climate simulations. This allows for an investigation on a potential future shift in monthly foehn frequencies. First, inputs from various atmospheric fields from the European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis-Interim (ERAI) were used to train an XGBoost model. Here, similar predictive performance to previous work was achieved, showing that foehn can accurately be diagnosed from the coarse synoptic situation. In the next step, the algorithm was generalized to predict foehn based on Community Earth System Model (CESM) ensemble simulations of a present-day and warming future climate. The best generalization between ERAI and CESM was obtained by including the present-day data in the training procedure and simultaneously optimizing two objective functions, namely the negative log loss and squared mean loss, on both datasets, respectively. It is demonstrated that the same synoptic fingerprint can be identified in CESM climate simulation data. Finally, predictions for present-day and future simulations were verified and compared for statistical significance. Our model is shown to produce valid output for most months, revealing that south foehn in Altdorf is expected to become more common during spring, while north foehn in Lugano is expected to become more common during summer.
    Print ISSN: 0882-8156
    Electronic ISSN: 1520-0434
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2021-09-14
    Description: Forecasts of marine cold air outbreaks critically rely on the interplay of multiple parameterisation schemes to represent sub-grid scale processes, including shallow convection, turbulence, and microphysics. Even though such an interplay has been recognised to contribute to forecast uncertainty, a quantification of this interplay is still missing. Here, we investigate the tendencies of temperature and specific humidity contributed by individual parameterisation schemes in the operational weather prediction model AROME-Arctic. From a case study of an extensive marine cold air outbreak over the Nordic Seas, we find that the type of planetary boundary layer assigned by the model algorithm modulates the contribution of individual schemes and affects the interactions between different schemes. In addition, we demonstrate the sensitivity of these interactions to an increase or decrease in the strength of the parameterised shallow convection. The individual tendencies from several parameterisations can thereby compensate each other, sometimes resulting in a small residual. In some instances this residual remains nearly unchanged between the sensitivity experiments, even though some individual tendencies differ by up to an order of magnitude. Using the individual tendency output, we can characterise the subgrid-scale as well as grid-scale responses of the model and trace them back to their underlying causes. We thereby highlight the utility of individual tendency output for understanding process-related differences between model runs with varying physical configurations and for the continued development of numerical weather prediction models.
    Print ISSN: 0882-8156
    Electronic ISSN: 1520-0434
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2021-09-13
    Description: Tropical cyclones are associated with a variety of significant social hazards, including wind, rain, and storm surge. Despite this, most of the model validation effort has been directed toward track and intensity forecasts. In contrast, few studies have investigated the skill of state-of-the-art, high-resolution ensemble prediction systems in predicting associated TC hazards, which is crucial since TC position and intensity do not always correlate with the TC-related hazards, and can result in impacts far from the actual TC center. Furthermore, dynamic models can provide flow-dependent uncertainty estimates, which in turn can provide more specific guidance to forecasters than statistical uncertainty estimates based on past errors. This study validates probabilistic forecasts of wind speed and precipitation hazards derived from the HWRF ensemble prediction system and compares its skill to forecasts by the stochastically-based operational Monte Carlo Model (NHC), the IFS (ECMWF), and the GEFS (NOAA) in use 2017-2019. Wind and Precipitation forecasts are validated against NHC best track wind radii information and the National Stage IV QPE Product. The HWRF 34 kn wind forecasts have comparable skill to the global models up to 60 h lead time before HWRF skill decreases, possibly due to detrimental impacts of large track errors. In contrast, HWRF has comparable quality to its competitors for higher thresholds of 50 kn and 64 kn throughout 120 h lead time. In terms of precipitation hazards, HWRF performs similar or better than global models, but depicts higher, although not perfect, reliability, especially for events over 5 in120h−1. Post-processing, like Quantile Mapping, improves forecast skill for all models significantly and can alleviate reliability issues of the global models.
    Print ISSN: 0882-8156
    Electronic ISSN: 1520-0434
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2021-12-01
    Description: Future projections of precipitation change over tropical land are often enhanced by vegetation responses to CO2 forcing in Earth system models. Projected decreases in rainfall over the Amazon basin and increases over the Maritime Continent are both stronger when plant physiological changes are modeled than if these changes are neglected, but the reasons for this amplification remain unclear. The responses of vegetation to increasing CO2 levels are complex and uncertain, including possible decreases in stomatal conductance and increases in leaf area index due to CO2 fertilization. Our results from an idealized atmospheric general circulation model show that the amplification of rainfall changes occurs even when we use a simplified vegetation parameterization based solely on CO2-driven decreases in stomatal conductance, indicating that this mechanism plays a key role in complex model projections. Based on simulations with rectangular continents we find that reducing terrestrial evaporation to zero with increasing CO2 notably leads to enhanced rainfall over a narrow island. Strong heating and ascent over the island trigger moisture advection from the surrounding ocean. In contrast, over larger continents rainfall depends on continental evaporation. Simulations with two rectangular continents representing South America and Africa reveal that the stronger decrease in rainfall over the Amazon basin seen in Earth system models is due to a combination of local and remote effects, which are fundamentally connected to South America’s size and its location with respect to Africa. The response of tropical rainfall to changes in evapotranspiration is thus connected to size and configuration of the continents.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2021-09-13
    Description: This study investigates the stratosphere-troposphere coupling associated with the Scandinavian (SCA) pattern in boreal winter. The results indicate that the SCA impacts stratospheric circulation but that its positive and negative phases have different effects. The positive phase of the SCA (SCA+) pattern is restricted to the troposphere, but the negative phase (SCA−) extends to the upper stratosphere. The asymmetry between phases is also visible in the lead-lag evolution of the stratosphere and troposphere. Prominent stratospheric anomalies are found to be intensified following SCA+ events, but prior to SCA− events. Further analysis reveals that the responses are associated with upward propagation of planetary waves, especially wavenumber 1 which is asymmetric between SCA phases. The wave amplitudes in the stratosphere, originating from the troposphere, are enhanced after the SCA+ events and before the SCA− events. Furthermore, the anomalous planetary wave activity can be understood through its interference with climatological stationary waves. Constructive wave interference is accompanied by clear upward propagation in the SCA+ events, while destructive interference suppresses stratospheric waves in the SCA− events. Our results also reveal that the SCA+ events are more likely to be followed by sudden stratospheric warming (SSW) events, because of the deceleration of stratospheric westerlies following the SCA+ events.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2021-09-13
    Description: The Subantarctic Mode Water (SAMW) is a major water mass in the South Indian and Pacific oceans and plays an important role in the ocean uptake and anthropogenic heat and carbon. The characteristics, formation, and long-term evolution of the SAMW are investigated in the “historical” and “SSP245” scenario simulations of the sixth Coupled Models Intercomparison Project (CMIP6). Defined by the low potential vorticity, the simulated SAMW is consistently thinner, shallower, lighter, and warmer than in observations, due to biases in the winter mixed layer properties and spatial distribution. The biases are especially large in the South Pacific Ocean. The winter mixed layer bias can be attributed to unrealistic heat loss and stratification in the models. Nevertheless, the SAMW is presented better in the CMIP6 than CMIP5, regarding its volume, location, and physical characteristics. In warmer climate, the simulated SAMW in the South Indian Ocean consistently becomes lighter in density, with a reduced volume and a southward shift in the subduction region. The reduced heat loss, instead of the increased Ekman pumping induced by the poleward intensified westerly wind, dominates in the SAMW change. The winter mixed layer shoals in the northern outcrop region and the SAMW subduction shifts southward where the mixed layer remains deep. The projected reduction of the SAMW volume is likely to impact the heat and freshwater redistribution in the Southern Ocean.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2021-09-08
    Description: This study examines historical simulations of ENSO in the E3SM-1-0, CESM2, and GFDL-CM4 climate models, provided by three leading U.S. modeling centers as part of the Coupled Model Intercomparison Project phase 6 (CMIP6). These new models have made substantial progress in simulating ENSO’s key features, including: amplitude; timescale; spatial patterns; phase-locking; spring persistence barrier; and recharge oscillator dynamics. However, some important features of ENSO are still a challenge to simulate. In the central and eastern equatorial Pacific, the models’ weaker-than-observed subsurface zonal current anomalies and zonal temperature gradient anomalies serve to weaken the nonlinear zonal advection of subsurface temperatures, leading to insufficient warm/cold asymmetry of ENSO’s sea surface temperature anomalies (SSTA). In the western equatorial Pacific, the models’ excessive simulated zonal SST gradients amplify their zonal temperature advection, causing their SSTA to extend farther west than observed. The models underestimate both ENSO’s positive dynamic feedbacks (due to insufficient zonal wind stress responses to SSTA) and its thermodynamic damping (due to insufficient convective cloud shading of eastern Pacific SSTA during warm events); compensation between these biases leads to realistic linear growth rates for ENSO, but for somewhat unrealistic reasons. The models also exhibit stronger-than-observed feedbacks onto eastern equatorial Pacific SSTAs from thermocline depth anomalies, which accelerates the transitions between events and shortens the simulated ENSO period relative to observations. Implications for diagnosing and simulating ENSO in climate models are discussed.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2021-09-09
    Description: The all-sky assimilation of radiances from microwave instruments is developed in the 4D-EnVar analysis system at Environment and Climate Change Canada (ECCC). Assimilation of cloud-affected radiances from Advanced Microwave Sounding Unit A (AMSUA) temperature sounding channels 4 and 5 for non-precipitating scenes over the ocean surface is the focus of this study. Cloud-affected radiances are discarded in the ECCC operational data assimilation system due to the limitations of forecast model physics, radiative transfer models, and the strong non-linearity of the observation operator. In addition to using symmetric estimate of innovation standard deviation for quality control, a state-dependent observation error inflation is employed at the analysis stage. The background state clouds are scaled by a factor of 0.5 to compensate for a systematic overestimation by the forecast model, before being used in the observation operator. The changes in the fit of the background state to observations show mixed results. The number of AMSUA channels 4 and 5 assimilated observations in the all-sky experiment is 5-12% higher than in the operational system. The all-sky approach improves temperature analysis when verified against ECMWF operational analysis in the areas where the extra cloud-affected observations were assimilated. Statistically significant reductions in error standard deviation by 1-4% for the analysis and forecasts of temperature, specific humidity, and horizontal wind speed up to maximum 4 days were achieved in the all-sky experiment in the lower troposphere. These improvements result mainly from the use of cloud information for computing the observation-minus-background departures. The operational implementation of all-sky assimilation is planned for Fall 2021.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2021-09-09
    Description: The reproducibility of precipitation in the early stages of forecasts, often called a spin-down or spin-up problem, has been a significant issue in numerical weather prediction. This problem is caused by moisture imbalance in the analysis data, and in the case of the Japan Meteorological Agency’s (JMA’s) mesoscale data assimilation system JNoVA, we found that the imbalance stems from the existence of unrealistic supersaturated states in the minimal solution of the cost function in JNoVA. Based on the theory of constrained optimization problems, we implemented an exterior penalty function method for the mixing ratio within JNoVA to suppress unrealistic supersaturated states. The advantage of this method is the simplicity of its theory and implementation. The results of twin data assimilation cycle experiments conducted for the Heavy Rain Event of July 2018 over Japan show that—with the new method—unrealistic supersaturated states are reduced successfully, negative temperature bias to the observations is alleviated, and a sharper distribution of the mixing ratio is obtained. These changes help to initiate the development of convection at the proper location and improve the fractions skill score (FSS) of precipitation in the early stages of the forecast. From these results, we conclude that the initial shock caused by moisture imbalance is mitigated by implementing the penalty function method, and the new moisture balance has a positive impact on the reproducibility of precipitation in the early stages of forecasts.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2021-09-07
    Description: Accurate representation of stratospheric trace gas transport is important for ozone modeling and climate projection. Intermodel spread can arise from differences in the representation of transport by the diabatic (overturning) circulation vs. comparatively faster adiabatic mixing by breaking waves, or through numerical errors, primarily diffusion. This study investigates the impact of these processes on transport using an idealised tracer, the age-of-air. Transport is assessed in two state-of-the-art dynamical cores based on fundamentally different numerical formulations: finite volume and spectral element. Integrating the models in free-running and nudged tropical wind configurations reveals the crucial impact of tropical dynamics on stratospheric transport. Using age-budget theory, vertical and horizontal gradients of age allow comparison of the roles of the diabatic circulation, adiabatic mixing, and the numerical diffusive flux. Their respective contribution is quantified by connecting the full 3-d model to the tropical leaky pipe framework of Neu and Plumb (1999). Transport by the two cores varies significantly in the free-running integrations, with the age in the middle stratosphere differing by about 2 years primarily due to differences in adiabatic mixing. When winds in the tropics are constrained, the difference in age drops to about 0.5 years; in this configuration, more than half the difference is due to the representation of the diabatic circulation. Numerical diffusion is very sensitive to the resolution of the core, but does not play a significant role in differences between the cores when they are run at comparable resolution. It is concluded that fundamental differences rooted in dynamical core formulation can account for a substantial fraction of transport bias between climate models.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...