ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (131)
  • Springer  (67)
  • Nature Research  (63)
  • American Institute of Physics (AIP)
  • International Union of Crystallography (IUCr)
  • Taylor & Francis
  • 2015-2019  (131)
  • 1950-1954
  • 2019  (131)
Collection
Years
  • 2015-2019  (131)
  • 1950-1954
Year
  • 1
    facet.materialart.
    Unknown
    Springer
    In:  Archaeological and Anthropological Sciences, 11 (4). pp. 1359-1371.
    Publication Date: 2020-01-02
    Description: Using a portable gas analyzer system, the geogenic gas regime below and around an ancient gate to hell at Hierapolis/Phrygia was characterized. The site was first described by Strabo and Plinius as a gate to the underworld. During centuries, it attracted even ancient tourists. In a grotto below the temple of Pluto, CO2 was found to be at deadly concentrations of up to 91%. Astonishingly, these vapors are still emitted in concentrations that nowadays kill insects, birds, and mammals. The concentrations of CO2 escaping from the mouth of the grotto to the outside atmosphere are still in the range of 4–53% CO2 depending on the height above ground level. They reach concentrations during the night that would easily kill even a human being within a minute. These emissions are thought to reflect the Hadean breath and/or the breath of the hellhound Kerberos guarding the entrance to hell. The origin of the geogenic CO2 is the still active seismic structure that crosses the old town of ancient Hierapolis as part of the Babadag fracture zone. Our measurements confirm the presence of geogenic CO2 in concentrations that explain ancient stories of killed bulls, rams, and songbirds during religious ceremonies. They also strongly corroborate that at least in the case of Hierapolis, ancient writers like Strabo or Plinius described a mystic phenomenon very exactly without much exaggeration. Two thousand years ago, only supernatural forces could explain these phenomena from Hadean depths whereas nowadays, modern techniques hint to the well-known phenomenon of geogenic CO2 degassing having mantle components with relatively higher helium and radon concentrations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Springer
    In:  In: Geological Setting, Palaeoenvironment and Archaeology of the Red Sea. , ed. by Rasul, N. M. A. and Stewart, I. C. F. Springer, Cham, Switzerland, pp. 37-52. ISBN 978-3-319-99407-9
    Publication Date: 2019-04-16
    Description: Continental rifting and ocean basin formation can be observed at the present day in the Red Sea, which is used as the modern analogue for the formation of mid-ocean ridges. Competing theories for how spreading begins—either by quasi-instantaneous formation of a whole spreading segment or by initiation of spreading at multiple discrete “nodes” separated by thinned continental lithosphere—have been put forward based, until recently, on the observations that many seafloor features and geophysical anomalies (gravity, magnetics) along the axis of the Red Sea appeared anomalous compared to ancient and modern examples of ocean basins in other parts of the world. The latest research shows, however, that most of the differences between the Red Sea Rift (RSR) and other (ultra)slow-spreading mid-ocean ridges can be related to its relatively young age and the presence and movement of giant submarine salt flows that blanket large portions of the rift valley. In addition, the geophysical data that was previously used to support the presence of continental crust between the axial basins with outcropping oceanic crust (formerly named “spreading nodes”) can be equally well explained by processes related to the sedimentary blanketing and hydrothermal alteration. The observed spreading nodes are not separated from one another by tectonic boundaries but rather represent “windows” onto a continuous spreading axis which is locally inundated and masked by massive slumping of sediments or evaporites from the rift flanks. Volcanic and tectonic morphologies are comparable to those observed along slow and ultra-slow spreading ridges elsewhere and regional systematics of volcanic occurrences are related to variations in volcanic activity and mantle heat flow. Melt-salt interaction due to salt flows, that locally cover the active spreading segments, and the absence of large detachment faults as a result of the nearby Afar plume are unique features of the RSR. The differences and anomalies seen in the Red Sea still may be applicable to all young oceanic rifts, associated with plumes and/or evaporites, which makes the Red Sea a unique but highly relevant type example for the initiation of slow rifting and seafloor spreading and one of the most interesting targets for future ocean research.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Springer
    In:  In: Oceanographic and Biological Aspects of the Red Sea. , ed. by Rasul, N. M. A. and Stewart, I. C. F. Springer, Cham, Switzerland, pp. 401-418. ISBN 978-3-319-99416-1
    Publication Date: 2018-12-14
    Description: Coral reefs in the Red Sea belong to the most diverse and productive reef ecosystems worldwide, although they are exposed to strong seasonal variability, high temperature, and high salinity. These factors are considered stressful for coral reef biota and challenge reef growth in other oceans, but coral reefs in the Red Sea thrive despite these challenges. In the central Red Sea high temperatures, high salinities, and low dissolved oxygen on the one hand reflect conditions that are predicted for ‘future oceans’ under global warming. On the other hand, alkalinity and other carbonate chemistry parameters are considered favourable for coral growth. In coral reefs of the central Red Sea, temperature and salinity follow a seasonal cycle, while chlorophyll and inorganic nutrients mostly vary spatially, and dissolved oxygen and pH fluctuate on the scale of hours to days. Within these strong environmental gradients micro- and macroscopic reef communities are dynamic and demonstrate plasticity and acclimatisation potential. Epilithic biofilm communities of bacteria and algae, crucial for the recruitment of reef-builders, undergo seasonal community shifts that are mainly driven by changes in temperature, salinity, and dissolved oxygen. These variables are predicted to change with the progression of global environmental change and suggest an immediate effect of climate change on the microbial community composition of biofilms. Corals are so-called holobionts and associate with a variety of microbial organisms that fulfill important functions in coral health and productivity. For instance, coral-associated bacterial communities are more specific and less diverse than those of marine biofilms, and in many coral species in the central Red Sea they are dominated by bacteria from the genus Endozoicomonas. Generally, coral microbiomes align with ecological differences between reef sites. They are similar at sites where these corals are abundant and successful. Coral microbiomes reveal a measurable footprint of anthropogenic influence at polluted sites. Coral-associated communities of endosymbiotic dinoflagellates in central Red Sea corals are dominated by Symbiodinium from clade C. Some corals harbour the same specific symbiont with a high physiological plasticity throughout their distribution range, while others maintain a more flexible association with varying symbionts of high physiological specificity over depths, seasons, or reef locations. The coral-Symbiodinium endosymbiosis drives calcification of the coral skeleton, which is a key process that provides maintenance and formation of the reef framework. Calcification rates and reef growth are not higher than in other coral reef regions, despite the beneficial carbonate chemistry in the central Red Sea. This may be related to the comparatively high temperatures, as indicated by reduced summer calcification and long-term slowing of growth rates that correlate with ocean warming trends. Indeed, thermal limits of abundant coral species in the central Red Sea may have been exceeded, as evidenced by repeated mass bleaching events during previous years. Recent comprehensive baseline data from central Red Sea reefs allow for insight into coral reef functioning and for quantification of the impacts of environmental change in the region.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Springer
    In:  In: Remote Sensing of the Asian Seas. , ed. by Barale, V. and Gade, M. Springer, Cham, pp. 123-138. ISBN 978-3-319-94065-6
    Publication Date: 2019-09-23
    Description: The Laptev and Eastern Siberian shelves are the world’s broadest shallow shelf systems. Large Siberian rivers and coastal erosion of up to meters per summer deliver large volumes of terrestrial matter into the Arctic shelf seas. In this chapter we investigate the applicability of Ocean Colour Remote Sensing during the ice-free summer season in the Siberian Laptev Sea region. We show that the early summer river peak discharge may be traced using remote sensing in years characterized by early sea-ice retreat. In the summer time after the peak discharge, the spreading of the main Lena River plume east and north-east of the Lena River Delta into the shelf system becomes hardly traceable using optical remote sensing methods. Measurements of suspended particulate matter (SPM) and coloured dissolved organic matter (cDOM) are of the same magnitude in the coastal waters of Buor Khaya Bay as in the Lena River. Match-up analyses of in situ chlorophyll-a (Chl-a) show that standard Medium Resolution Imaging Spectrometer (MERIS) and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite-derived Chl-a is not a valid remote sensing product for the coastal waters and the inner shelf region of the Laptev Sea. All MERIS and MODIS-derived Chl-a products are overestimated by at least a factor of ten, probably due to absorption by the extraordinarily high amount of non-algal particles and cDOM in these coastal and inner-shelf waters. Instead, Ocean Colour remote sensing provides information on wide-spread resuspension over shallows and lateral advection visible in satellite-derived turbidity. Satellite Sea Surface Temperature (SST) data clearly show hydrodynamics and delineate the outflow of the Lena River for hundreds of kilometres out into the shelf seas.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Springer
    In:  In: Pattern Recognition - GCPR 2018. , ed. by Brox, T., Bruhn, A. and Fritz, M. Lecture Notes in Computer Science, 11269 . Springer, Cham, Switzerland, pp. 391-404. ISBN 978-3-030-12939-2
    Publication Date: 2019-09-23
    Description: The size of current plankton image datasets renders manual classification virtually infeasible. The training of models for machine classification is complicated by the fact that a large number of classes consist of only a few examples. We employ the recently introduced weight imprinting technique in order to use the available training data to train accurate classifiers in absence of enough examples for some classes. The model architecture used in this work succeeds in the identification of plankton using machine learning with its unique challenges, i.e. a limited number of training examples and a severely skewed class size distribution. Weight imprinting enables a neural network to recognize small classes immediately without re-training. This permits the mining of examples for novel classes.
    Type: Book chapter , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-01-02
    Description: This review article aims to provide an overview and insight into the most relevant aspects of wind energy development and current state-of-the-art. The industry is in a very mature stage, so it seems to be the right time to take stock of the relevant areas of wind energy use for power generation. For this review, the authors considered the essential aspects of the development of wind energy technology: research, modeling, and prediction of wind speed as an energy source, the technology development of the plants divided into the mechanical and electrical systems and the plant control, and finally the optimal plant operation including the maintenance strategies. The focus is on the development in Europe, with a partial focus on Germany. The authors are employees of the Fraunhofer Institutes, Institute for Energy Economics and Energy Systems Technology and Institute for Wind Energy Systems, who have contributed to the development of this technology for decades.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Springer
    In:  In: The Geology of Iberia: A Geodynamic Approach Volume 3: The Alpine Cycle. , ed. by Quesada, C. and Oliveira, J. T. Springer, Cham, pp. 487-505. ISBN 978-3-030-11294-3
    Publication Date: 2020-01-07
    Description: The Alpine orogeny is well recorded onshore and offshore by tectonic inversion of the Mesozoic rift basins. Large scale linear seamounts (more than 250 km long and with up to 5 km of uplift) involving oceanic and continental lithosphere were carried on top of thrusts, such as the Gorringe seamount and the Estremadura Spur in the SouthWest and West Iberia Margin, respectively. The SouthWest Iberia Margin also recorded the westward migration of the Gibraltar Oceanic slab as the westwards propagation of the Neo-Tethys subduction. Rotation of the tectonic compression from NW-SE to WNW-ESE inPliocene times caused the development of large scale dextral wrench faults as the present day Africa-Iberia plate boundary. Neotectonics of this plate boundary caused large to mega-scale destructive earthquakes and tsunamis.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Springer
    In:  In: Geological Setting, Palaeoenvironment and Archaeology of the Red Sea. , ed. by Rasul, N. M. A. and Stewart, I. C. F. Springer, Cham, Switzerland, pp. 221-232.
    Publication Date: 2019-04-16
    Description: Hydrothermal circulation at mid-ocean ridges and assimilation of hydrothermally altered crust or hydrothermal fluids by rising magma can be traced by measuring chlorine (Cl) excess in erupted lavas. The Red Sea Rift provides a unique opportunity to study assimilation of hydrothermally altered crust at an ultra-slow spreading ridge (maximum 1.6 cm yr−1 full spreading rate) by Cl, due to its saline seawater (40–42‰, cf. 35‰ in open ocean water), the presence of (hot) brine pools (up to 270‰ salinity and 68 °C) and the thick evaporite sequences that flank the young rift. Absolute chlorine concentrations (up to 1300 ppm) and Cl concentrations relative to minor or trace elements of similar mantle incompatibility (e.g., K, Nb) are much higher in Red Sea basalts than in basalts from average slow spreading ridges. Mantle Cl/Nb concentrations can be used to calculate the Cl-excess, above the magmatic Cl, that is present in the samples. Homogeneous within-sample Cl concentrations, high Cl/H2O, the decoupling of Cl-excess from other trace elements and its independence of the presence of highly saline seafloor brines at the site of eruption indicate that Cl is not enriched at the seafloor. Instead we find basaltic Cl-excess to be spatially closely correlated with evidence of hydrothermal activity, suggesting that deeper assimilation of hydrothermal Cl is the dominant Cl-enrichment process. A proximity of samples to both evaporite outcrops and bathymetric signs of volcanism on the seafloor enhance Cl-excess in basalts. The basaltic Cl-excess can be used as a tracer together with new bathymetric maps as well as indications of hydrothermal venting (hot brine pools, metalliferous Hydrothermal circulation at mid-ocean ridges and assimilation of hydrothermally altered crust or hydrothermal fluids by rising magma can be traced by measuring chlorine (Cl) excess in erupted lavas. The Red Sea Rift provides a unique opportunity to study assimilation of hydrothermally altered crust at an ultra-slow spreading ridge (maximum 1.6 cm yr−1 full spreading rate) by Cl, due to its saline seawater (40–42‰, cf. 35‰ in open ocean water), the presence of (hot) brine pools (up to 270‰ salinity and 68 °C) and the thick evaporite sequences that flank the young rift. Absolute chlorine concentrations (up to 1300 ppm) and Cl concentrations relative to minor or trace elements of similar mantle incompatibility (e.g., K, Nb) are much higher in Red Sea basalts than in basalts from average slow spreading ridges. Mantle Cl/Nb concentrations can be used to calculate the Cl-excess, above the magmatic Cl, that is present in the samples. Homogeneous within-sample Cl concentrations, high Cl/H2O, the decoupling of Cl-excess from other trace elements and its independence of the presence of highly saline seafloor brines at the site of eruption indicate that Cl is not enriched at the seafloor. Instead we find basaltic Cl-excess to be spatially closely correlated with evidence of hydrothermal activity, suggesting that deeper assimilation of hydrothermal Cl is the dominant Cl-enrichment process. A proximity of samples to both evaporite outcrops and bathymetric signs of volcanism on the seafloor enhance Cl-excess in basalts. The basaltic Cl-excess can be used as a tracer together with new bathymetric maps as well as indications of hydrothermal venting (hot brine pools, metalliferous sediments) to predict where hydrothermal venting or now inactive hydrothermal vent fields can be expected. Sites of particular interest for future hydrothermal research are the Mabahiss Deep, the Thetis-HadarbaHatiba Deeps and Shagara-Aswad-Erba Deeps (especially their large axial domes), and Poseidon Deep. Older hydrothermal vent fields may be present at the Nereus and Suakin Deeps. These sites significantly increase the potential of hydrothermal vent field prospection in the Red Sea.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Springer
    In:  In: Oceanographic and Biological Aspects of the Red Sea. , ed. by Rasul, N. M. A. and Stewart, I. C. F. Springer Oceanography Book series . Springer, Cham, pp. 185-194.
    Publication Date: 2020-08-05
    Description: The deep-sea brines of the Red Sea are unusual extreme environments and form characteristically steep gradients across the brine-seawater interfaces. Due to their unusual nature and unique combination of physical-chemical conditions these interfaces provide an interesting source of new findings in the fields of geochemistry, geology, microbiology, biotechnology, virology, and general biology. The current chapter summarizes recent and new results in the study of geochemistry and life at the interfaces of brine-filled deeps of the Red Sea.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Nature Research
    In:  Nature, 574 (7776). p. 36.
    Publication Date: 2020-01-09
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    Springer
    In:  In: AI Technology for Underwater Robots. , ed. by Kirchner, F., Straube, S., Kühn, D. and Hoyer, N. Intelligent Systems, Control and Automation: Science and Engineering , 96 . Springer, Cham, Switzerland, pp. 125-135. ISBN 978-3-030-30682-3
    Publication Date: 2020-02-24
    Description: This paper addresses visual navigation of autonomous underwater vehicles (AUVs) with and without a given map, where the latter is called Simultaneous Localization and Mapping (SLAM). We summarize the challenges and opportunities in underwater environments that make visual navigation different from land navigation and also briefly survey the current state-of-the-art in this area. Then as a position paper we argue why many of these challenges could be met by a proper modeling of uncertainties in the SLAM representation. This would in particular allow the SLAM algorithm to thoroughly handle the ambiguity between “I see the same feature again.”, “I see a different but similar looking feature.” and “The environment has changed and the feature moved.”.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    Springer
    In:  In: Landscapes and Landforms of the Maltese Islands. , ed. by Gauci, R. and Schembri, J. Springer, Cham, Switzerland, pp. 117-128.
    Publication Date: 2020-01-09
    Description: The application of acoustic techniques, such as multibeam echosounders, has permitted the identification of Maltese submarine landscapes and landforms that were progressively inundated during the postglacial sea-level rise. Remarkably, geomorphological features due to fluvial, gravity-induced and karst processes that took place under former subaerial conditions can be clearly recognised on the present seafloor around the Maltese archipelago, and they were only slightly modified by sea action during the postglacial transgression phases. The analysis of the submerged landforms described in this chapter is crucial for understanding the evolution of the Maltese Islands during the last ca. 20,000 years.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2021-01-08
    Description: The study presents the results of continuous measurements of carbon dioxide concentration in the atmospheric surface layer at Tiksi and Cape Baranov Arctic stations over the period of August 2010–May 2017 and over the whole 2016, respectively. The amplitude of diurnal variations in the CO2 concentration in Tiksi from June to September is 1.1 ± 1.3, 2.4 ± 2.0, 4.1 ± 2.3, and 2.0 ± 2.4 ppm. Diurnal variations in CO2 at Cape Baranov station are absent. The observed seasonal variations in the CO2 concentration are compared with the data of the MBL empirical model for the marine atmospheric boundary layer of the Arctic region. In 2016, the difference between the observed and model concentrations at Tiksi and Cape Baranov stations amounted to 1.7 and 0.5 ppm, respectively, in winter and −3.0 and −1.9 ppm, respectively, in summer. It is shown that wildfires in Siberia caused a long synchronous increase in the CO2 concentration by 20 ppm in Tiksi and by 15 ppm at Cape Baranov station.
    Type: Article , PeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    Springer
    In:  Russian Meteorology and Hydrology, 44 (4). pp. 238-249.
    Publication Date: 2021-01-08
    Description: The water of Atlantic origin (Atlantic water) is of special importance for the formation of the hydrological regime of the Arctic Ocean and provides a “building material” for the main water masses in the surface and intermediate layers. Atlantic water are structurally included to the Arctic Transpolar System (ATS); it is a multicomponent physical object whose state defines the role of the Arctic Ocean in the planetary climate. The recent advances in the Atlantic water research are discussed, in particular, the role of Atlantic water in the Arctic sea ice reduction. Particular attention is paid to the possible activation of feedbacks in ATS that may result in an accelerated Arctic sea ice loss recorded after 2007.
    Type: Article , PeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2021-01-08
    Description: Three most common Arctic foraminiferal species of the family Cassidulinidae from the Laptev Sea sediment cores were analyzed for paleoenvironmental reconstructions. This paleontological study is focused on morphological characteristics of apertural elements and the wall structure. The species Cassidulina neoteretis is considered an indicator of the Atlantic influence in contrast to the Arctic species Cassidulina reniforme and Islandiella norcrossi.
    Type: Article , PeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2021-01-08
    Description: The ecology and taxonomy of Islandiella norcrossi (Cushman, 1933), a typical representative of the Arctic calcareous benthic foraminifers, are analyzed based on microfossils from the Late Pleistocene-Holocene deposits of the Laptev Sea. This species is distributed on the shelf and continental slope of the Arctic seas, and indicates normal marine conditions with a seasonal ice cover and cold Arctic water masses. The species is also associated with a high seasonal productivity in sea-ice marginal zone. Tests are abundant in the Laptev Sea sediments, and show some variability in the size and shape of chambers, which was possibly caused by harsh environmental conditions of the Arctic (limited period of growth and reproduction); aberrant forms with an additional aperture being also present. The population contains tests of macrospherical and microspherical generations, as well as juveniles.
    Type: Article , PeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    Springer
    In:  In: Pattern Recognition: 41st DAGM German Conference, DAGM GCPR 2019, Dortmund, Germany, September 10–13, 2019, Proceedings. , ed. by Fink, G. A., Frintrop, S. and Jiang, X. Lecture Notes in Computer Science, 11824 . Springer, Cham, pp. 79-92. ISBN 978-3-030-33676-9
    Publication Date: 2020-02-26
    Description: Dome ports act as spherical windows in underwater housings through which a camera can observe objects in the water. As compared to flat glass interfaces, they do not limit the field of view, and they do not cause refraction of light observed by a pinhole camera positioned exactly in the center of the dome. Mechanically adjusting a real lens to this position is a challenging task, in particular for those integrated in deep sea housings. In this contribution a mechanical adjustment procedure based on straight line observations above and below water is proposed that allows for accurate alignments. Additionally, we show a chessboard-based method employing an underwater/above-water image pair to estimate potentially remaining offsets from the dome center to allow refraction correction in photogrammetric applications. Besides providing intuition about the severity of refraction in certain settings, we demonstrate the methods on real data for acrylic and glass domes in the water.
    Type: Book chapter , NonPeerReviewed , info:eu-repo/semantics/bookPart
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2021-01-08
    Description: We discuss the results of measurements in the region of Cape Baranov (the Severnaya Zemlya archipelago) of the set of physicochemical characteristics of atmospheric aerosol: aerosol optical depth, aerosol and black carbon concentrations, elemental and ion compositions of aerosol, organic and elemental carbon contents in aerosol, as well as the isotopic composition of carbon in the aerosol and snow samples. It is shown that the average values of most aerosol characteristics, measured in April–June 2018, are a little lower than in the Arctic settlement Barentsburg (Spitsbergen archipelago) and several-fold smaller than in the south of Western Siberia in the same period.
    Type: Article , PeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    Springer
    In:  In: YOUMARES 9 - The Oceans: Our Research, Our Future. , ed. by Jungblut, S., Liebich, V. and Bode-Dalby, M. Springer, Cham, pp. 101-120.
    Publication Date: 2020-03-06
    Description: Plastic has become indispensable for human life. When plastic debris is discarded into waterways, these items can interact with organisms. Of particular concern are microscopic plastic particles (microplastics) which are subject to ingestion by several taxa. This review summarizes the results of cutting-edge research about the interactions between a range of aquatic species and microplastics, including effects on biota physiology and secondary ingestion. Uptake pathways via digestive or ventilatory systems are discussed, including (1) the physical penetration of microplastic particles into cellular structures, (2) leaching of chemical additives or adsorbed persistent organic pollutants (POPs), and (3) consequences of bacterial or viral microbiota contamination associated with microplastic ingestion. Following uptake, a number of individual-level effects have been observed, including reduction of feeding activities, reduced growth and reproduction through cellular modifications, and oxidative stress. Microplastic-associated effects on marine biota have become increasingly investigated with growing concerns regarding human health through trophic transfer. We argue that research on the cellular interactions with microplastics provide an understanding of their impact to the organisms’ fitness and, therefore, its ability to sustain their functional role in the ecosystem. The review summarizes information from 236 scientific publications. Of those, only 4.6% extrapolate their research of microplastic intake on individual species to the impact on ecosystem functioning. We emphasize the need for risk evaluation from organismal effects to an ecosystem level to effectively evaluate the effect of microplastic pollution on marine environments. Further studies are encouraged to investigate sublethal effects in the context of environmentally relevant microplastic pollution conditions.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    Nature Research
    In:  In: The Ecosystem of Kongsfjorden, Svalbard. Nature Research, Cham, Switzerland, pp. 229-300. ISBN 978-3-319-46423-7
    Publication Date: 2020-01-13
    Description: Zooplankton in Kongsfjorden, Svalbard, is shaped by irregular advection of seawater from the West Spitsbergen Current as well as input of freshwater of glacial and riverine origin. The zooplankton community reflects contributions of Arctic vs. Atlantic water masses in the fjord, and is changing with increasing temperature and declining sea ice. Here, we review zooplankton studies from Kongsfjorden, and present new data from a 20-year time series (1996–2016) of zooplankton abundance/biomass in the fjord based on annual surveys during summer. During the last decade, the marine environment of the West Spitsbergen Shelf and adjacent fjords has undergone changes with increasing temperatures and volume of inflowing Atlantic Water and declining sea ice. Annual monitoring of mesozooplankton since 1996 has shown high seasonal, spatial, and inter-annual variation in species abundance and biomass, and in the proportion of Atlantic and Arctic species. Inter-annual variations in species composition and abundance demonstrate fluctuating patterns related to changes in hydrography. “Warm years” in Kongsfjorden were characterized by higher abundances of Atlantic species, such as Calanus finmarchicus, Oithona atlantica, Thysanoessa longicaudata and Themisto abyssorum. Other krill species, particularly Thysanoessa inermis and to a lesser extent T. longicaudata, increased in abundance during the warming period in 2006–2007, mainly in the inner basin. “Cold years”, on the other hand, were characterized by higher abundance of Themisto libellula. There was no clear impact, however, of changes in environmental factors on the abundance or biomass of the Arctic species Calanus glacialis suggesting that the changes in environmental conditions have not reached critical levels for this species. The long-term zooplankton data demonstrate that some Atlantic species have become more abundant in the Kongsfjorden’s pelagic realm, suggesting that they may benefit from increasing temperature, and also that the total biomass of zooplankton has increased in the fjord implying potentially higher secondary production.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2021-01-08
    Description: Stable carbon isotopes of sediment organic matter (δ13COM) are widely applied in paleoenvironmental studies. Interpretations of δ13COM, however, remain challenging and factors that influence δ13COM may not apply across all lakes. Common explanations for stratigraphic shifts in δ13COM include changes in lake productivity or changes in inputs of allochthonous OM. We investigated the influence of different oxygen conditions (oxic versus anoxic) on the δ13COM values in the sediments of Lake Tiefer See. We analysed (1) a long sediment core from the deepest part of the lake, (2) two short, sediment–water interface cores from shallower water depths, and (3) OM in the water column, i.e. from sediment traps. Fresh OM throughout the entire water column showed a relatively constant δ13COM value of approximately − 30.5‰. Similar values, about − 31‰, were obtained for well-varved sediments in both the long and short, sediment–water interface cores. In contrast, δ13COM values from non-varved sediments in all cores were significantly less negative (− 29‰). The δ13COM values in the sediment–water interface cores from different water depths differ for sediments of the same age, if oxygen conditions at the time of deposition were different at these sites, as suggested by the state of varve preservation. Sediments deposited from AD 1924 to 1980 at 62 m water depth are varved and exhibit δ13COM values around − 31‰, whereas sediments of the same age in the core from 35 m water depth are not varved and show less negative δ13COM values of about − 29‰. The relation between varve occurrence and δ13COM values suggests that δ13COM is associated with oxygen conditions because varve preservation depends on hypolimnetic anoxia. A mechanism that likely influences δ13COM is selective degradation of OM under oxic conditions, such that organic components with more negative δ13COM are preferably decomposed, leading to less negative δ13COM values in the remaining, undegraded OM pool. Greater decomposition of OM in non-varved sediments is supported by lower TOC concentrations in these deposits (~ 5%) compared to well-varved sediments (~ 15%). Even in lakes that display small variations in productivity and terrestrial OM input through time, large spatial and temporal differences in hypolimnetic oxygen concentrations may be an important factor controlling sediment δ13COM.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    Springer
    In:  In: Die Folgen des Klimawandels. Springer, Berlin, Germany, pp. 257-274. ISBN 978-3-662-59580-0
    Publication Date: 2020-01-23
    Description: In den tropischen und subtropischen Meeren existieren in mittleren Tiefen riesige sauerstoffarme Zonen. Im Zuge des Klimawandels dehnen sie sich immer stärker aus. Auch in Küstenregionen entstehen durch Stickstoffbelastung aus der Landwirtschaft lebensfeindliche Zonen ohne Sauerstoff – mit verheerenden Folgen für das marine Ökosystem.
    Type: Book chapter , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2021-01-08
    Description: The invasive round goby has established a viable population within 9 years of its first introduction to Lithuanian coastal waters (SE Baltic Sea). During its expansion phase, abundances increased 23-fold, which led to the near complete eradication of its main prey, the blue mussel, at 〈 20 m depth. The round goby population showed a stabilizing trend after blue mussel biomass was depleted; however, their abundance has not declined. The round goby feeds efficiently on newly settled mollusks, causing a severe constraint for blue mussel recovery. Changes in blue mussel availability and size structure induced a dietary shift in wintering long-tailed duck towards fish prey. An energetically dense food source sustains a good body condition in long-tailed ducks, however the change in trophic position (from 3.1 to 4.3 trophic level) suggests the potential for a reduction in their carrying capacity. Results from this study also show that coastal habitats with low and unpredictable population dynamics of blue mussel become less attractive wintering sites for long-tailed duck in the Baltic Sea. We also document a cascading effect of invasive species in the food web.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    Springer
    In:  In: Computational Science – ICCS 2019. Lecture Notes in Computer Science, 11539 . Springer, Berlin, Germany, pp. 393-409.
    Publication Date: 2020-05-13
    Description: We introduce a new parallelizable numerical multiscale method for advection-dominated problems as they often occur in engineering and geosciences. State of the art multiscale simulation methods work well in situations in which stationary and elliptic scenarios prevail but are prone to fail when the model involves dominant lower order terms which is common in applications. We suggest to overcome the associated difficulties through a reconstruction of subgrid variations into a modified basis by solving many independent (local) inverse problems that are constructed in a semi-Lagrangian step. Globally the method looks like a Eulerian method with multiscale stabilized basis. The method is extensible to other types of Galerkin methods, higher dimensions, nonlinear problems and can potentially work with real data. We provide examples inspired by tracer transport in climate systems in one and two dimensions and numerically compare our method to standard methods.
    Type: Book chapter , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    Springer
    In:  In: Marine-Derived Biomaterials for Tissue Engineering Applications. , ed. by Choi, A. and Ben-Nissan, B. Springer Series in Biomaterials Science and Engineering, 14 . Springer, Singapore, pp. 443-487, 45 pp. ISBN 978-981-13-8855-2
    Publication Date: 2020-06-12
    Description: Natural polysaccharides of marine origin are gaining interest in biomedical applications. Seaweeds are most abundant source of polysaccharides, as alginates, agar and agarose as well as Carrageenans. Even cellulose and amylose have been extracted from the macroalgae. Chitin and chitosan are derived from the exoskeleton of marine crustaceans. Interdisciplinary fields involving various science and technology aspects such as cell sciences, biomaterials, medical sciences and engineering are referred to as tissue engineering, which is an upcoming new field intended to replace biological functions in human body. Tissue engineered scaffolds and artificial organs developed by such technique has replace injured parts in human body. Technological advancements have made it possible to obtain active ingredient in marine organisms by controlling the growth and isolation conditions. Present review has focused on progress in discovering and producing new applications of marine polysaccharides in biomedical and tissue engineering.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2022-01-31
    Description: Differences in habitat and diet between species are often associated with morphological differences. Habitat and trophic adaptation have therefore been proposed as important drivers of speciation and adaptive radiation. Importantly, habitat and diet shifts likely impose changes in exposure to different parasites and infection risk. As strong selective agents influencing survival and mate choice, parasites might play an important role in host diversification. We explore this possibility for the adaptive radiation of Lake Tanganyika (LT) cichlids. We first compare metazoan macroparasites infection levels between cichlid tribes. We then describe the cichlids’ genetic diversity at the major histocompatibility complex (MHC), which plays a key role in vertebrate immunity. Finally, we evaluate to what extent trophic ecology and morphology explain variation in infection levels and MHC, accounting for phylogenetic relationships. We show that different cichlid tribes in LT feature partially non-overlapping parasite communities and partially non-overlapping MHC diversity. While morphology explained 15% of the variation in mean parasite abundance, trophic ecology accounted for 16% and 22% of the MHC variation at the nucleotide and at the amino acid level, respectively. Parasitism and immunogenetic adaptation may thus add additional dimensions to the LT cichlid radiation.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2022-01-31
    Description: Common problems in state-of-the-art climate models are a cold sea surface temperature (SST) bias in the equatorial Pacific and the underestimation of the two most important atmospheric feedbacks operating in the El Niño/Southern Oscillation (ENSO): the positive, i.e. amplifying wind-SST feedback and the negative, i.e. damping heat flux-SST feedback. To a large extent, the underestimation of those feedbacks can be explained by the cold equatorial SST bias, which shifts the rising branch of the Pacific Walker Circulation (PWC) too far to the west by up to 30°, resulting in an erroneous convective response during ENSO events. Based on simulations from the Kiel Climate Model (KCM) and the 5th phase of Coupled Model Intercomparison Project (CMIP5), we investigate how well ENSO dynamics are simulated in case of underestimated ENSO atmospheric feedbacks (EAF), with a special focus on ocean–atmosphere coupling over the equatorial Pacific. While models featuring realistic atmospheric feedbacks simulate ENSO dynamics close to observations, models with underestimated EAF exhibit fundamental biases in ENSO dynamics. In models with too weak feedbacks, ENSO is not predominantly wind-driven as observed; instead ENSO is driven significantly by a positive shortwave radiation feedback. Thus, although these models simulate ENSO, which in terms of simple indices is consistent with observations, it originates from very different dynamics. A too weak oceanic forcing on the SST via the positive thermocline, the Ekman and the zonal advection feedback is compensated by weaker atmospheric heat flux damping. The latter is mainly caused by a biased shortwave-SST feedback that erroneously is positive in most climate models. In the most biased models, the shortwave-SST feedback contributes to the SST anomaly growth to a similar degree as the ocean circulation. Our results suggest that a broad continuum of ENSO dynamics can exist in climate models and explain why climate models with less than a half of the observed EAF strength can still depict realistic ENSO amplitude.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2022-01-31
    Description: Ice sheets are currently ignored in global methane budgets1,2. Although ice sheets have been proposed to contain large reserves of methane that may contribute to a rise in atmospheric methane concentration if released during periods of rapid ice retreat3,4, no data exist on the current methane footprint of ice sheets. Here we find that subglacially produced methane is rapidly driven to the ice margin by the efficient drainage system of a subglacial catchment of the Greenland ice sheet. We report the continuous export of methane-supersaturated waters (CH4(aq)) from the ice-sheet bed during the melt season. Pulses of high CH4(aq) concentration coincide with supraglacially forced subglacial flushing events, confirming a subglacial source and highlighting the influence of melt on methane export. Sustained methane fluxes over the melt season are indicative of subglacial methane reserves that exceed methane export, with an estimated 6.3 tonnes (discharge-weighted mean; range from 2.4 to 11 tonnes) of CH4(aq) transported laterally from the ice-sheet bed. Stable-isotope analyses reveal a microbial origin for methane, probably from a mixture of inorganic and ancient organic carbon buried beneath the ice. We show that subglacial hydrology is crucial for controlling methane fluxes from the ice sheet, with efficient drainage limiting the extent of methane oxidation5 to about 17 per cent of methane exported. Atmospheric evasion is the main methane sink once runoff reaches the ice margin, with estimated diffusive fluxes (4.4 to 28 millimoles of CH4 per square metre per day) rivalling that of major world rivers6. Overall, our results indicate that ice sheets overlie extensive, biologically active methanogenic wetlands and that high rates of methane export to the atmosphere can occur via efficient subglacial drainage pathways. Our findings suggest that such environments have been previously underappreciated and should be considered in Earth’s methane budget.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2022-01-31
    Description: Diseases increasingly threaten aquaculture of kelps and other seaweeds. At the same time, protection concepts that are based upon application of biocides are usually not applicable, as such compounds would be rapidly diluted in the sea, causing ecological damage. An alternative concept could be the application of immune stimulants to prevent and control diseases in farmed seaweeds. We here present a pilot study that investigated the effects of oligoalginate elicitation on juvenile and adult sporophytes of Saccharina japonica cultivated in China and on adult sporophytes of Saccharina latissima cultivated in Germany. In two consecutive years, treatment with oligoalginate clearly reduced the detachment of S. japonica juveniles from their substrate curtains during the nursery stage in greenhouse ponds. Oligoalginate elicitation also decreased the density of endobionts and the number of bacterial cells on sporophytes of S. latissima that were cultivated on sea-based rafts. However, the treatment increased the susceptibility of kelp adults to settlement of epibionts (barnacles in Germany and filamentous algal epiphytes in China). In addition, oligoalginate elicitation accelerated the aging of S. japonica adults. Based upon these findings, oligoalginate elicitation could be a feasible way to provide “environmentally friendly” protection of kelp juveniles in nurseries. The same treatment causes not only beneficial, but also unwanted effects in adult kelp sporophytes. Therefore, it is not recommended as a treatment after the juvenile stage is completed. Future tests with other elicitors and other cultivated seaweed species may allow for the development of more feasible applications of targeted defense elicitation in seaweed aquaculture.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2022-01-31
    Description: Near-term climate predictions — which operate on annual to decadal timescales — offer benefits for climate adaptation and resilience, and are thus important for society. Although skilful near-term predictions are now possible, particularly when coupled models are initialized from the current climate state (most importantly from the ocean), several scientific challenges remain, including gaps in understanding and modelling the underlying physical mechanisms. This Perspective discusses how these challenges can be overcome, outlining concrete steps towards the provision of operational near-term climate predictions. Progress in this endeavour will bridge the gap between current seasonal forecasts and century-scale climate change projections, allowing a seamless climate service delivery chain to be established.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2022-01-31
    Description: The present study details the effects of basin-scale hydrographic characteristics of the Red Sea on the macroecology of Chaetognatha, a major plankton component in the pelagic realm. The hydrographic attributes and circulation of the Red Sea as a result of its limited connection with the northern Indian Ocean make it a unique ecohydrographic region in the world ocean. Here, we aimed to identify the prime determinants governing the community structure and vertical distribution of the Cheatognatha in this ecologically significant world ocean basin. The intrusion of Gulf of Aden Water influenced the Chaetognatha community composition in the south, whereas the overturning circulation altered their vertical distribution in the north. The existence of hypoxic waters (〈 100 µmol kg−1) at mid-depth also influenced their vertical distribution. The detailed evaluation of the responses of the different life stages of Chaetognatha revealed an increased susceptibility of adult individuals to hypoxic waters compared to immature stages. Higher oxygen demands of the adults for the egg and sperm production might have prevented them from inhabiting the oxygen-deficient mid-depth zones. The carbon and nitrogen content of the Copepoda and Chaetognatha communities and the quantification of the predation impact of Chaetognatha on Copepoda based on the feeding rate helped in corroborating the significant trophic link between these two prey–predator taxa. The observed influences of physical and chemical attributes on the distribution of Chaetognatha can be used as a model example for the role of the hydrography on the zooplankton community of the Red Sea.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2022-01-31
    Description: The fibrous calcite layer of modern brachiopod shells is a hybrid composite material and forms a substantial part of the hard tissue. We investigated how cells of the outer mantle epithelium (OME) secrete calcite material and generate the characteristic fibre morphology and composite microstructure of the shell. We employed AFM, FE-SEM, and TEM imaging of embedded/etched, chemically fixed/decalcified and high-pressure frozen/freeze substituted samples. Calcite fibres are secreted by outer mantle epithelium (OME) cells. Biometric analysis of TEM micrographs indicates that about 50% of these cells are attached via hemidesmosomes to an extracellular organic membrane present at the proximal, convex surface of the fibres. At these sites, mineral secretion is not active. Instead, ion transport from OME cells to developing fibres occurs at regions of closest contact between cells and fibres, however only at sites where the extracellular membrane at the proximal fibre surface is not developed yet. Fibre formation requires the cooperation of several adjacent OME cells. It is a spatially and temporally changing process comprising of detachment of OME cells from the extracellular organic membrane, mineral secretion at detachment sites, termination of secretion with formation of the extracellular organic membrane, and attachment of cells via hemidesmosomes to this membrane.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2022-01-31
    Description: Marine sponges are early-branching, filter-feeding metazoans that usually host complex microbiomes comprised of several, currently uncultivatable symbiotic lineages. Here, we use a low-carbon based strategy to cultivate low-abundance bacteria from Spongia officinalis. This approach favoured the growth of Alphaproteobacteria strains in the genera Anderseniella, Erythrobacter, Labrenzia, Loktanella, Ruegeria, Sphingorhabdus, Tateyamaria and Pseudovibrio, besides two likely new genera in the Rhodobacteraceae family. Mapping of complete genomes against the metagenomes of S. officinalis, seawater, and sediments confirmed the rare status of all the above-mentioned lineages in the marine realm. Remarkably, this community of low-abundance Alphaproteobacteria possesses several genomic attributes common to dominant, presently uncultivatable sponge symbionts, potentially contributing to host fitness through detoxification mechanisms (e.g. heavy metal and metabolic waste removal, degradation of aromatic compounds), provision of essential vitamins (e.g. B6 and B12 biosynthesis), nutritional exchange (especially regarding the processing of organic sulphur and nitrogen) and chemical defence (e.g. polyketide and terpenoid biosynthesis). None of the studied taxa displayed signs of genome reduction, indicative of obligate mutualism. Instead, versatile nutrient metabolisms along with motility, chemotaxis, and tight-adherence capacities - also known to confer environmental hardiness – were inferred, underlying dual host-associated and free-living life strategies adopted by these diverse sponge-associated Alphaproteobacteria.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2022-01-31
    Description: The aim of the present study was to investigate the impact of dietary plant proteins on the gut microbiome of first feeding brown trout (Salmo trutta) reproduced from wild stocks and to evaluate whether the initial microbiome of brown trout fry can be permanently manipulated by the first feeding diet. Therefore, brown trout fry was fed diets based on either 0%, 50% or 90% plant-derived proteins from first feeding onwards and via 16S rRNA gene sequencing a strong dietary influence on the bacterial gut community on phylum and order level was detected. Proteobacteria and Fusobacteria were significantly enhanced when fishmeal was integrated into the experimental diet, whereas plant-derived proteins significantly promoted Firmicutes and Bacteroidetes. In order to evaluate whether the first feeding diet had a permanent effect on the initially established microbial gut community of juvenile brown trout, a cross-over diet-change was applied 61 days post first feeding. 48 days after the diet-change, the gut microbiome of all dietary groups was significantly different from the one initially established after first feeding. Moreover, the first feeding diet had no statistically significant influence on the gut microbiome after the diet-change, demonstrating no permanent effect on the gut microbiome formation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2022-01-31
    Description: As coastal areas become increasingly vulnerable to climate change, the study of nearshore sediment textures along the littoral cell of the Medjerda delta in the Gulf of Tunis, southern Mediterranean coast can provide valuable information (i) on the origin (continental or marine) of the sediment, (ii) its transport direction, and (iii) constitutes an important tool in the assessment of coastal sensitivity. A total of 120 sediments samples underwent grain size analysis and statistic parameters have been calculated. These allowed the identification of five different Sedimentary Types (ST). Accordingly, using grain size indexes (i.e. Mz, SKI and Ku), Sediment Trend Analysis (STA) modeling tools were applied to define the seasonal sediment transport pathways throughout the nearshore of the Medjerda sedimentary cell. Results show that grain size distribution (GSD) and STA model pathways are determined by cross-shore geomorphology, location of the sediment-cell, seasonal incident wave and local terrestrial supply. The appearance in an atypical seabed location of the finer (Mo = 0.1 mm) and the coarser STs (Mo = 0.8 mm) can be indicative of human influence since the coarser particles are usually retained by dam structures. Moreover, the bimodality and the increased distribution of mud are also related to the seasonal incident wave winnowing of the historic deltaic plain submerged by the relative rise in sea level. The evolution of the sediment pattern towards a greater proportion of very fine grains indicates a deficit of sediment supply, particularly of the coarser grains, and demonstrates the coastal vulnerability of the Gulf of Tunis due to anthropic effects.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2022-01-31
    Description: Predictive species distribution models are mostly based on statistical dependence between environmental and distributional data and therefore may fail to account for physiological limits and biological interactions that are fundamental when modelling species distributions under future climate conditions. Here, we developed a state-of-the-art method integrating biological theory with survey and experimental data in a way that allows us to explicitly model both physical tolerance limits of species and inherent natural variability in regional conditions and thereby improve the reliability of species distribution predictions under future climate conditions. By using a macroalga-herbivore association (Fucus vesiculosus - Idotea balthica) as a case study, we illustrated how salinity reduction and temperature increase under future climate conditions may significantly reduce the occurrence and biomass of these important coastal species. Moreover, we showed that the reduction of herbivore occurrence is linked to reduction of their host macroalgae. Spatial predictive modelling and experimental biology have been traditionally seen as separate fields but stronger interlinkages between these disciplines can improve species distribution projections under climate change. Experiments enable qualitative prior knowledge to be defined and identify cause-effect relationships, and thereby better foresee alterations in ecosystem structure and functioning under future climate conditions that are not necessarily seen in projections based on non-causal statistical relationships alone.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2022-01-31
    Description: A broad variety of materials of biological origin have been successfully used in recent decades for the removal of pollutants from waters. These biosorbents include natural polymers that play a key role for adsorption. It is therefore critical to understand the physicochemical properties of the chemical groups of these biopolymers. The acid–base properties of biomass are affected by pH, ionic strength and medium composition. Nevertheless, these parameters are not always considered during biosorption studies. According to the literature, less than 3% of biosorption reports include studies on proton binding. Moreover, in 60% of these papers, there is key experimental information missing such as the calibration of the electrodes employed for potentiometric titrations. We consider therefore that there is an important need for reviewing the role of proton binding in biosorption studies. This review outlines the major advances on data interpretation and modelling of proton binding on biosorbents. In addition, we discuss issues concerning the acid–base properties of biosorbents.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2022-01-31
    Description: Climate models generally simulate a long-term slowdown of the Pacific Walker Circulation in a warming world. However, despite increasing greenhouse forcing, there was an unprecedented intensification of the Pacific Trade Winds during 1992–2011, that co-occurred with a temporary slowdown in global surface warming. Using ensemble simulations from three different climate models starting from different initial conditions, we find a large spread in projected 20-year globally averaged surface air temperature trends that can be linked to differences in Pacific climate variability. This implies diminished predictive skill for global surface air temperature trends over decadal timescales, to a large extent due to intrinsic Pacific Ocean variability. We show, however, that this uncertainty can be considerably reduced when the initial oceanic state is known and well represented in the model. In this case, the spatial patterns of 20-year surface air temperature trends depend largely on the initial state of the Pacific Ocean.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2022-01-31
    Description: Marine snow aggregates represent heterogeneous agglomerates of dead and living organic matter. Composition is decisive for their sinking rates, and thereby for carbon flux to the deep sea. For oligotrophic oceans, information on aggregate composition is particularly sparse. To address this, the taxonomic composition of aggregates collected from the subtropical and oligotrophic Sargasso Sea (Atlantic Ocean) was characterized by 16S and 18S rRNA gene sequencing. Taxonomy assignment was aided by a collection of the contemporary plankton community consisting of 75 morphologically and genetically identified plankton specimens. The diverse rRNA gene reads of marine snow aggregates, not considering Trichodesmium puffs, were dominated by copepods (52%), cnidarians (21%), radiolarians (11%), and alveolates (8%), with sporadic contributions by cyanobacteria, suggesting a different aggregate composition than in eutrophic regions. Composition linked significantly with sampling location but not to any measured environmental parameters or plankton biomass composition. Nevertheless, indicator and network analyses identified key roles of a few rare taxa. This points to complex regulation of aggregate composition, conceivably affected by the environment and plankton characteristics. The extent to which this has implications for particle densities, and consequently for sinking rates and carbon sequestration in oligotrophic waters, needs further interrogation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    facet.materialart.
    Unknown
    Springer
    In:  Mineralium Deposita, 54 (6). pp. 789-820.
    Publication Date: 2022-01-31
    Description: Hydrothermal fluids on the modern seafloor are important carriers of base and precious metals in a wide range of volcanic and tectonic settings. The concentrations and distribution, especially of gold and silver, in associated seafloor massive sulfide (SMS) deposits are strongly influenced by variable source rocks, fluid chemistry, and precipitation mechanisms. Compositional data of 130 SMS deposits around the world show a large range of gold and silver grades, in part reflecting strong buffering of the hydrothermal fluids by their host rocks. Geochemical reaction-path modeling shows that in most cases the investigated hydrothermal fluids are undersaturated with gold and silver, and solubilities can be orders of magnitude higher than the Au and Ag concentrations measured in the corresponding fluids. Precipitation of gold during conductive cooling of mid-ocean ridge black smoker (MOR) fluids occurs at low temperatures but can be very rapid, with 〉 90% of the gold deposited in the first 25 °C of cooling below ~ 150 °C. The result is a Zn–Au polymetallic assemblage with Au and Ag deposited at the same time together with Pb and sulfosalts. In ultramafic-dominated (UM) systems, the strongly reduced hydrothermal fluids promote the deposition of gold at higher temperatures and explain the correlation between gold and copper in these deposits. In this case, the lower stability of the AuHS° complex at low ƒO2 (buffered by fayalite, magnetite, and quartz) results in gold deposition at 〉 250 °C with early bornite and chalcopyrite and before sphalerite and silver, producing a high-temperature Cu–Au assemblage. In sediment-hosted (SED) systems, the much higher pH stabilizes Au(HS)2− and keeps gold in solution to very low temperatures, after the precipitation of chalcopyrite, sphalerite, and galena, resulting in Au-poor polymetallic sulfides and very late-stage deposition of gold, commonly with amorphous silica. In arc-related (ARC) systems, gold deposition occurs at somewhat higher temperatures than in the MOR case, in part because the fluids start with higher gold concentrations. This can be explained by probable direct magmatic contributions, and the high ƒO2 of the fluids, which promotes the solubility of gold at the source. During cooling, gold precipitates at about 160 °C with sphalerite, tennantite, silver, and galena, resulting in an Au-rich polymetallic sulfide assemblage. The mixing of hydrothermal fluids with seawater generally causes oxidation and eventually a decrease in the pH at a mixing ratio of 1:1, causing an initial increase in the solubility of gold and silver. This can delay gold deposition from aqueous species to very low temperatures. These complex systematics make prediction of Au and Ag grades difficult. However, important new data are coming to light on the actual concentrations of the precious metals in hydrothermal fluids. In particular, the input of magmatic volatiles and leaching of pre-existing gold can lead to significant increases in the Au and Ag concentrations of the venting fluids and earlier deposition. In several cases, it appears that at least part of the gold load is present as nanoparticles in suspension, allowing bulk gold concentrations that may be far in excess of liquid saturation. Boiling at the seafloor is now widely observed, even at great water depths close to the critical point of seawater. Model calculations of phase separation during boiling show the competing effects on gold solubility of H2, H2S, and CO2 partitioning into the vapor, which can result in highly variable gold-to-base metal ratios in the deposits. Flashing of the vent fluids into steam at high temperatures is also commonly observed and can lead to spectacular Au grades, with a strong Cu–Au association in the deepest and hottest vents.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2022-01-31
    Description: The formation of the Antarctic Circumpolar Current (ACC) is critical for the evolution of the global climate, but the timing of its onset is not well constrained. Here, we present new seismic evidence of widespread Late Eocene to Oligocene marine diagenetic chert in sedimentary drift deposits east of New Zealand indicating prolonged periods of blooms of siliceous microorganisms starting ~36 million years ago (Ma). These major blooms reflect the initiation of the arrival and upwelling of northern-sourced, nutrient-rich deep equatorial Pacific waters at the high latitudes of the South Pacific. We show that this change in circulation was linked to the initiation of a proto-ACC, which occurred ~6 Ma earlier than the currently estimated onset of the ACC at 30 Ma. We propose that the associated increased primary productivity and carbon burial facilitated atmospheric carbon dioxide reduction contributing to the expansion of Antarctic Ice Sheet at the Eocene-Oligocene Transition.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2022-01-31
    Description: Large explosive tropical volcanic eruptions inject high amounts of gases into the stratosphere, where they disperse globally through the large-scale meridional circulation. There is now increasing observational evidence that volcanic halogens can reach the upper troposphere and lower stratosphere. Here, we present the first study that combines measurement-based data of sulfur, chlorine and bromine releases from tropical volcanic eruptions with complex coupled chemistry climate model simulations taking radiative-dynamical-chemical feedbacks into account. Halogen model input parameters represent a size-time-region-wide average for the Central American eruptions over the last 200 ka ensuring a comprehensive perspective. The simulations reveal global, long-lasting impact on the ozone layer affecting atmospheric composition and circulation for a decade. Column ozone drops below 220 DU (ozone hole conditions) in the tropics, Arctic and Antarctica, increasing biologically active UV by 80 to 400%. Our model results could potentially be validated using high-resolution proxies from ice cores and pollen records.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2022-01-31
    Description: The ecological approach to comparative cognition emphasizes that the ecological and social environment are important predictors of cognitive performance. We used this approach to test whether differences in habitat use and social behavior in the facultative Caribbean cleaning goby Elacatinus prochilos predict differences in learning performance in two discriminatory two-choice tasks. This species has two behavioral ecotypes: one that frequently engages in cleaning interactions and inhabits corals in male–female pairs (cleaning gobies) and another that rarely engages in cleaning interactions and inhabits barrel sponges in large groups (sponge-dwellers). We predicted that cleaning gobies would outperform sponge-dwellers in a pattern-cued task, which consisted of identifying the pattern on a plate that consistently provided food, while sponge-dwellers would outperform cleaning gobies in a spatial task, which consisted of identifying the location of the plate. Contrary to our predictions, there was no difference in performance between the two ecotypes. Most of the gobies performed poorly in the pattern-cued task and well in the spatial task. A possible explanation for these results is that the association of a pattern with positive and negative reinforcement may not be a pre-requisite for engaging in cleaning interactions, while spatial skills might be equally required in both ecotypes. Alternatively, the two ecotypes can flexibly adjust to new feeding conditions, which would explain their similar performance in the spatial task. Further research should investigate which aspects of E. prochilos’ social and ecological environment might impose challenges that require spatial cognition and whether individuals can flexibly adjust to new habitats and feeding conditions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2022-01-31
    Description: Precipitation in California is modulated by variability in the tropical Pacific associated with El Nino/Southern Oscillation (ENSO): more rainfall is expected during El Nino episodes, and reduced rainfall during La Nina. It has been suggested that besides the shape and location of the sea surface temperature ( SST) anomaly this remote connection depends on the strength and location of the atmospheric convection response in the tropical Pacific. Here we show in a perturbed physics ensemble of the Kiel Climate Model and CMIP5 models that due to a cold equatorial SST bias many climate models are in a La Nina-like mean state, resulting in a too westward position of the rising branch of the Pacific Walker Circulation. This in turn results in a convective response along the equator during ENSO events that is too far west in comparison to observations. This effect of the equatorial cold SST bias is not restricted to the tropics, moreover it leads to a too westward SLP response in the North Pacific and too westward precipitation response that does not reach California. Further we show that climate models with a reduced equatorial cold SST bias have a more realistic representation of the spatial asymmetry of the teleconnections between El Nino and La Nina.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2022-01-31
    Description: The Guaymas Basin spreading center, at 2000 m depth in the Gulf of California, is overlain by a thick sedimentary cover. Across the basin, localized temperature anomalies, with active methane venting and seep fauna exist in response to magma emplacement into sediments. These sites evolve over thousands of years as magma freezes into doleritic sills and the system cools. Although several cool sites resembling cold seeps have been characterized, the hydrothermally active stage of an off-axis site was lacking good examples. Here, we present a multidisciplinary characterization of Ringvent, an ~1 km wide circular mound where hydrothermal activity persists ~28 km northwest of the spreading center. Ringvent provides a new type of intermediate-stage hydrothermal system where off-axis hydrothermal activity has attenuated since its formation, but remains evident in thermal anomalies, hydrothermal biota coexisting with seep fauna, and porewater biogeochemical signatures indicative of hydrothermal circulation. Due to their broad potential distribution, small size and limited life span, such sites are hard to find and characterize, but they provide critical missing links to understand the complex evolution of hydrothermal systems.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2022-01-31
    Description: Back-arc basins are found at convergent plate boundaries. Nevertheless, they are zones of significant crustal extension that show volcanic and hydrothermal processes somewhat similar to those of mid-ocean ridges. Accepted models imply the initial rifting and thinning of a pre-existing volcanic arc until seafloor spreading gradually develops over timescales of a few million years. The Havre Trough northeast of New Zealand is a unique place on Earth where the early stages of back-arc basin formation are well displayed in the recent geological record. Here we present evidence that, in this region, rifting of the original volcanic arc occurred in a very narrow area about 10–15 km wide, which could only accommodate minimal stretching for a very short time before mass balance required oceanic crustal accretion. An initial burst of seafloor spreading started around 5.5–5.0 million years ago and concluded abruptly about 3.0–2.5 million years ago, after which arc magmatism dominated the crustal accretion. The sudden transition between these different tectonomagmatic regimes is linked to trench rollback promoted by gradual sinking of the subducting lithosphere, which could have diverted the arc flux outside the region of seafloor spreading and induced the vertical realignment of surface volcanism with the source of arc melts at depth.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2022-01-31
    Description: Large continental faults extend for thousands of kilometres to form boundaries between rigid tectonic blocks. These faults are associated with prominent topographic features and can produce large earthquakes. Here we show the first evidence of a major tectonic structure in its initial-stage, the Al-Idrissi Fault System (AIFS), in the Alboran Sea. Combining bathymetric and seismic reflection data, together with seismological analyses of the 2016 Mw 6.4 earthquake offshore Morocco – the largest event ever recorded in the area – we unveil a 3D geometry for the AIFS. We report evidence of left-lateral strike-slip displacement, characterise the fault segmentation and demonstrate that AIFS is the source of the 2016 events. The occurrence of the Mw 6.4 earthquake together with historical and instrumental events supports that the AIFS is currently growing through propagation and linkage of its segments. Thus, the AIFS provides a unique model of the inception and growth of a young plate boundary fault system.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2022-01-31
    Description: Cumulative CO2 emissions are a robust predictor of mean temperature increase. However, many societal impacts are driven by exposure to extreme weather conditions. Here, we show that cumulative emissions can be robustly linked to regional changes of a heat exposure indicator, as well as the resulting socioeconomic impacts associated with labour productivity loss in vulnerable economic sectors. We estimate historical and future increases in heat exposure using simulations from eight Earth System Models. Both the global intensity and spatial pattern of heat exposure evolve linearly with cumulative emissions across scenarios (1% CO2, RCP4.5 and RCP8.5). The pattern of heat exposure at a given level of global temperature increase is strongly affected by non-CO2 forcing. Global non-CO2 greenhouse gas emissions amplify heat exposure, while high local emissions of aerosols could moderate exposure. Considering CO2 forcing only, we commit ourselves to an additional annual loss of labour productivity of about 2% of total GDP per unit of trillion tonne of carbon emitted. This loss doubles when adding non-CO2 forcing of the RCP8.5 scenario. This represents an additional economic loss of about 4,400 G$ every year (i.e. 0.59 $/tCO2), varying across countries with generally higher impact in lower-income countries.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2022-01-31
    Description: The marine iodine cycle has significant impacts on air quality and atmospheric chemistry. Specifically, the reaction of iodide with ozone in the top few micrometres of the surface ocean is an important sink for tropospheric ozone (a pollutant gas) and the dominant source of reactive iodine to the atmosphere. Sea surface iodide parameterisations are now being implemented in air quality models, but these are currently a major source of uncertainty. Relatively little observational data is available to estimate the global surface iodide concentrations, and this data has not hitherto been openly available in a collated, digital form. Here we present all available sea surface (〈20 m depth) iodide observations. The dataset includes values digitised from published manuscripts, published and unpublished data supplied directly by the originators, and data obtained from repositories. It contains 1342 data points, and spans latitudes from 70°S to 68°N, representing all major basins. The data may be used to model sea surface iodide concentrations or as a reference for future observations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2022-01-31
    Description: SeaFlow is an underway flow cytometer that provides continuous shipboard observations of the abundance and optical properties of small phytoplankton (〈5 mu m in equivalent spherical diameter, ESD). Here we present data sets consisting of SeaFlow-based cell abundance, forward light scatter, and pigment fluorescence of individual cells, as well as derived estimates of ESD and cellular carbon content of picophytoplankton, which includes the cyanobacteria Prochlorococcus, Synechococcus and small-sized Crocosphaera (〈5 mu m ESD), and picophytoplankton and nanophytoplankton (2-5 mu m ESD). Data were collected in surface waters (approximate to 5 m depth) from 27 oceanographic cruises carried out in the Northeast Pacific Ocean between 2010 and 2018. Thirteen cruises provide high spatial resolution (approximate to 1 km) measurements across 32,500 km of the Northeast Pacific Ocean and 14 near-monthly cruises beginning in 2015 provide seasonal distributions at the long-term sampling site (Station ALOHA) of the Hawaii Ocean Time-Series. These data sets expand our knowledge of the current spatial and temporal distributions of picophytoplankton in the surface ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2022-01-31
    Description: Ocean acidification (OA), a direct consequence of increasing atmospheric CO2 concentration dissolving in ocean waters, is impacting many fish species. Little is known about the molecular mechanisms underlying the observed physiological impacts in fish. We used RNAseq to characterize the transcriptome of 3 different larval stages of Atlantic cod (Gadus morhua) exposed to simulated OA at levels (1179 µatm CO2) representing end-of-century predictions compared to controls (503 µatm CO2), which were shown to induce tissue damage and elevated mortality in G. morhua. Only few genes were differentially expressed in 6 and 13 days-post-hatching (dph) (3 and 16 genes, respectively), during a period when maximal mortality as a response to elevated pCO2 occurred. At 36 dph, 1413 genes were differentially expressed, most likely caused by developmental asynchrony between the treatment groups, with individuals under OA growing faster. A target gene analysis revealed only few genes of the universal and well-defined cellular stress response to be differentially expressed. We thus suggest that predicted ocean acidification levels constitute a “stealth stress” for early Atlantic cod larvae, with a rapid breakdown of cellular homeostasis leading to organismal death that was missed even with an 8-fold replication implemented in this study.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2022-01-31
    Description: Vampyroteuthis infernalis Chun, 1903, is a widely distributed deepwater cephalopod with unique morphology and phylogenetic position. We assessed its habitat and trophic ecology on a global scale via stable isotope analyses of a unique collection of beaks from 104 specimens from the Atlantic, Pacific and Indian Oceans. Cephalopods typically are active predators occupying a high trophic level (TL) and exhibit an ontogenetic increase in δ15N and TL. Our results, presenting the first global comparison for a deep-sea invertebrate, demonstrate that V. infernalis has an ontogenetic decrease in δ15N and TL, coupled with niche broadening. Juveniles are mobile zooplanktivores, while larger Vampyroteuthis are slow-swimming opportunistic consumers and ingest particulate organic matter. Vampyroteuthis infernalis occupies the same TL (3.0–4.3) over its global range and has a unique niche in deep-sea ecosystems. These traits have enabled the success and abundance of this relict species inhabiting the largest ecological realm on the planet.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2022-01-31
    Description: Subtropical gyres are the oceanic regions where plastic litter accumulates over long timescales, exposing surrounding oceanic islands to plastic contamination, with potentially severe consequences on marine life. Islands’ exposure to such contaminants, littered over long distances in marine or terrestrial habitats, is due to the ocean currents that can transport plastic over long ranges. Here, this issue is addressed for the Easter Island ecoregion (EIE). High-resolution ocean circulation models are used with a Lagrangian particle-tracking tool to identify the connectivity patterns of the EIE with industrial fishing areas and coastline regions of the Pacific basin. Connectivity patterns for “virtual” particles either floating (such as buoyant macroplastics) or neutrally-buoyant (smaller microplastics) are investigated. We find that the South American shoreline between 20°S and 40°S, and the fishing zone within international waters off Peru (20°S, 80°W) are associated with the highest probability for debris to reach the EIE, with transit times under 2 years. These regions coincide with the most-densely populated coastal region of Chile and the most-intensely fished region in the South Pacific. The findings offer potential for mitigating plastic contamination reaching the EIE through better upstream waste management. Results also highlight the need for international action plans on this important issue.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2022-01-31
    Description: In Paris in 2015, the global community agreed to limit global warming to well below 2 ∘C, aiming at even 1.5 ∘C. It is still uncertain whether these targets are sufficient to preserve marine ecosystems and prevent a severe alteration of marine biogeochemical cycles. Here, we show that stringent mitigation strategies consistent with the 1.5 ∘C scenario could, indeed, provoke a critical difference for the ocean’s carbon cycle and calcium carbonate saturation states. Favorable conditions for calcifying organisms like tropical corals and polar pteropods, both of major importance for large ecosystems, can only be maintained if CO2 emissions fall rapidly between 2025 and 2050, potentially requiring an early deployment of CO2 removal techniques in addition to drastic emissions reduction. Furthermore, this outcome can only be achieved if the terrestrial biosphere remains a carbon sink during the entire 21st century.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2022-01-31
    Description: The spatial pattern of the first mode of interannual variability associated with the East Asian summer monsoon (EASM), obtained from a multivariate Empirical Orthogonal Functions (MV-EOF) analysis, corresponds to the Pacific–Japan (PJ) pattern and is referred to as the PJ-mode. The present study investigates the interannual variation of the PJ-mode from the perspective of the intraseasonal timescale. In particular, the impact of the Madden–Julian oscillation (MJO) on the interannual variation of the PJ-mode is investigated. The results show that the MJO has a significant influence on the interannual variation of the PJ-mode mainly in the lower troposphere (850 hPa) and that the former accounts for approximately 11% of the amplitude of the latter. The major part of the contribution comes from a change in frequency of the different phases of the MJO, especially that of MJO phase 6. This suggests that intraseasonal variation of the convection anomalies over the tropical eastern Indian and western Pacific Oceans plays an important role in the interannual variation of the PJ-mode. In addition, MJO phase 7 also contributes to the interannual variability of the PJ-mode, in this case induced by both the change in frequency and the change in circulation anomalies associated with MJO phase 7.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    facet.materialart.
    Unknown
    Springer
    In:  Springer Oceanography Book series . Springer, Cham, Switzerland, 550 pp. ISBN 978-3-319-99417-8
    Publication Date: 2022-01-31
    Description: This book includes invited contributions presenting the latest research on the oceanography and environment of the Red Sea. In addition to covering topics relevant to research in the region and providing insights into marine science for non-experts, it is also of interest to those involved in the management of coastal zones and encourages further research on the Red Sea
    Type: Book , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    facet.materialart.
    Unknown
    Springer
    In:  International Journal of Earth Sciences, 108 . pp. 587-620.
    Publication Date: 2022-01-31
    Description: The nature of the warm climates of the Cretaceous has been enigmatic since the first numerical climate models were run in the late 1970s. Quantitative simulations of the paleoclimate have consistently failed to agree with information from plant and animal fossils and climate sensitive sediments. The ‘cold continental interior paradox’ (first described by DeConto et al. in Barrera E, Johnson C (eds) Evolution of the Cretaceous Ocean/climate system, vol 332. Geological Society of America Special Paper, Boulder, pp 391–406, 1999), has been an enigma, with extensive continental interiors, especially in northeast Asia, modeled as below freezing in spite of plant and other evidence to the contrary. We reconsider the paleoelevations of specific areas, particularly along the northeastern Siberian continental margin, where paleofloras indeed indicate higher temperatures than suggested by current climate models. Evidence for significant masses of ice on land during even the otherwise warmest times of the Cretaceous is solved by reinterpretation of the δ18O record of fossil plankton. The signal interpreted as an increase in ice volume on land is the same as the signal for an increase in the volume of groundwater reservoirs on land. The problem of a warm Arctic, where fossil floras indicate that they never experienced freezing conditions in winter, could not be solved by numerical simulations using higher CO2 equivalent greenhouse gas concentrations. We propose a solution by assuming that paleoelevations were less than today and that there were much more extensive wetlands (lakes, meandering rivers, swamps, bogs) on the continents than previously assumed. Using ~ 8 × CO2 equivalent greenhouse gas concentrations and assuming 50–75% water surfaces providing water vapor as a supplementary greenhouse gas on the continents reduces the meridional temperature gradients. Under these conditions the equatorial to polar region temperature gradients produce conditions compatible with fossil and sedimentological evidence.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2022-01-31
    Description: Climate model components involve both high-dimensional input and output fields. It is desirable to efficiently generate spatio-temporal outputs of these models for applications in integrated assessment modelling or to assess the statistical relationship between such sets of inputs and outputs, for example, uncertainty analysis. However, the need for efficiency often compromises the fidelity of output through the use of low complexity models. Here, we develop a technique which combines statistical emulation with a dimensionality reduction technique to emulate a wide range of outputs from an atmospheric general circulation model, PLASIM, as functions of the boundary forcing prescribed by the ocean component of a lower complexity climate model, GENIE-1. Although accurate and detailed spatial information on atmospheric variables such as precipitation and wind speed is well beyond the capability of GENIE-1’s energy-moisture balance model of the atmosphere, this study demonstrates that the output of this model is useful in predicting PLASIM’s spatio-temporal fields through multi-level emulation. Meaningful information from the fast model, GENIE-1 was extracted by utilising the correlation between variables of the same type in the two models and between variables of different types in PLASIM. We present here the construction and validation of several PLASIM variable emulators and discuss their potential use in developing a hybrid model with statistical components.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2022-01-31
    Description: A significant reduction in the Atlantic Meridional Overturning Circulation and rapid northern Hemisphere cooling 8200 years ago have been linked to the final melting of the Laurentide Ice Sheet. Although many studies associated this cold event with the drainage of Lake Agassiz-Ojibway, recent model simulations have shown that the Hudson Bay Ice Saddle collapse would have had much larger effects on the Atlantic Meridional Overturning Circulation than the lake outburst itself. Based on a combination of Mg/Ca and oxygen isotope ratios of benthic foraminifera, this study presents the first direct evidence of a major Labrador shelfwater freshening at 8.5 ka BP, which we associate with the Hudson Bay Ice Saddle collapse. The freshening is preceded by a subsurface warming of the western Labrador Sea, which we link to the strengthening of the West Greenland Current that could concurrently have accelerated the ice saddle collapse in Hudson Bay.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2022-01-31
    Description: The individual impact of North Atlantic and Pacific Ocean Western Boundary Currents (OWBCs) on the tropospheric circulation has recently been studied in depth. However, their simultaneous role in shaping the hemisphere-scale wintertime troposphere/stratosphere-coupled circulation and its variability have not been considered. Through semi-idealized Atmospheric General-Circulation-Model experiments, we show that the North Atlantic and Pacific OWBCs jointly maintain and shape the wintertime hemispheric circulation and its leading mode of variability Northern Annular Mode (NAM). The OWBCs energize baroclinic waves that reinforce quasi-annular hemispheric structure in the tropospheric eddy-driven jetstreams and NAM variability. Without the OWBCs, the wintertime NAM variability is much weaker and its impact on the continental and maritime surface climate is largely insignificant. Atmospheric energy redistribution caused by the OWBCs acts to damp the near-surface atmospheric baroclinicity and compensates the associated oceanic meridional energy transport. Furthermore, the OWBCs substantially weaken the wintertime stratospheric polar vortex by enhancing the upward planetary wave propagation, and thereby affecting both stratospheric and tropospheric NAM-annularity. Whereas the overall impact of the extra-tropical OWBCs on the stratosphere results mainly from the Pacific, the impact on the troposphere results from both the Pacific and Atlantic OWBCs.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2022-01-31
    Description: Plants rely on both mechanical and chemical defence mechanisms to protect their surfaces against microorganisms. The recently completed genome of the eelgrass Zostera marina, a marine angiosperm with fundamental importance for coastal ecosystems, showed that its re-adaptation from land to the sea has led to the loss of essential genes (for chemical communication and defence) and structural features (stomata and thick cuticle) that are typical of terrestrial plants. This study was designed to understand the molecular nature of surface protection and fouling-control strategy of eelgrass against marine epiphytic yeasts. Different surface extraction methods and comparative metabolomics by tandem mass spectrometry (LC-MS/MS) were used for targeted and untargeted identification of the metabolite profiles of the leaf surface and the whole tissue extracts. Desorption electrospray ionization-imaging mass spectrometry (DESI-IMS) coupled with traditional bioassays revealed, for the first time, the unique spatial distribution of the eelgrass surface-associated phenolics and fatty acids, as well as their differential bioactivity against the growth and settlement of epiphytic yeasts. This study provides insights into the complex chemical defence system of the eelgrass leaf surface. It suggests that surface-associated metabolites modulate biotic interactions and provide chemical defence and structural protection to eelgrass in its marine environment.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    facet.materialart.
    Unknown
    Springer
    In:  Climate Dynamics, 53 (1-2). pp. 1111-1124.
    Publication Date: 2022-01-31
    Description: There is a controversy about the origin of the recent decadal Atlantic Meridional Overturning Circulation (AMOC) slowing observed at 26.5°N and concurrent sea surface temperature cooling in the central and eastern mid-latitude North Atlantic. We investigate decadal AMOC slowing events simulated in a multi-millennial preindustrial control integration of the Kiel Climate Model (KCM), providing an estimate of internal AMOC variability. Preindustrial control integrations of 15 models participating in the Coupled Model Intercomparison Project phase 5 also are investigated, as well as historical simulations with them providing estimates of AMOC variability during 1856–2005. It is shown that the recent decadal AMOC decline is still within the range of the models’ internal AMOC variability and thus could be of natural origin. In this case, the decline would represent an extreme realization of internal variability provided the climate models yield realistic levels of AMOC variability. The model results suggest that internal decadal AMOC variability is large, requiring multi-decadal observational records to detect an anthropogenic AMOC signal with high confidence. When analyzing the strongest decadal AMOC slowing events in the KCM, which have amplitudes similar to or larger than the recently observed decadal AMOC decline, the following composite picture emerges: a very strong decadal AMOC decline is preceded by a decadal rise in atmospheric surface pressure over large parts of the mid-latitude North Atlantic. The change in low-level atmospheric circulation drives reduced oceanic heat loss over and diminished upper-ocean salt content in the Labrador Sea. In response, oceanic deep convection and subsequently the AMOC and northward oceanic heat transport weaken, and anomalously cold sea surface temperatures develop in the central and eastern mid-latitude North Atlantic
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2022-01-31
    Description: Recombination between loci underlying mate choice and ecological traits is a major evolutionary force acting against speciation with gene flow. The evolution of linkage disequilibrium between such loci is therefore a fundamental step in the origin of species. Here, we show that this process can take place in the absence of physical linkage in hamlets—a group of closely related reef fishes from the wider Caribbean that differ essentially in colour pattern and are reproductively isolated through strong visually-based assortative mating. Using full-genome analysis, we identify four narrow genomic intervals that are consistently differentiated among sympatric species in a backdrop of extremely low genomic divergence. These four intervals include genes involved in pigmentation (sox10), axial patterning (hoxc13a), photoreceptor development (casz1) and visual sensitivity (SWS and LWS opsins) that develop islands of long-distance and inter-chromosomal linkage disequilibrium as species diverge. The relatively simple genomic architecture of species differences facilitates the evolution of linkage disequilibrium in the presence of gene flow.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2022-01-31
    Description: Climate engineering (CE) deployment would alter prevailing relationships between Earth system variables, making indicators and metrics used so far in the climate change assessment context less appropriate to assess CE measures. Achieving a comprehensive CE assessment requires a systematic and transparent reevaluation of the indicator selection process from Earth system variables. Here, we provide a first step towards such a systematic assessment of changes in correlations between Earth system variables following simulated deployment of different CE methods. We therefore analyze changes in the correlation structure of a broad set of Earth system variables for two conventional climate change scenarios without CE and with three idealized CE model experiments: (i) solar radiation management, (ii) large-scale afforestation, and (iii) ocean alkalinity enhancement. First, we investigate how the three CE scenarios alter prevailing correlations between Earth system variables when compared to an intermediate-high and a business-as-usual future climate change scenario. Second, we contrast the indicators identified for the non-CE climate change scenarios and the indicators identified when all five scenarios are considered. Finally, we use the identified indicator sets for an evaluation of the five climate change scenarios. We find that the additional indicators provide valuable information for the assessment of the CE measures, and their application hence allows for a more comprehensive and a comparative assessment of the mitigation and CE deployment scenarios.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2022-01-31
    Description: Reproductive systems of rare adult specimens of the deep-sea squid genera Chiroteuthis, Mastigoteuthis, Liocranchia, and Bathoteuthis were collected in 2006 and 2015 in the different research surveys in the Atlantic Ocean between 46 degrees 40'S and 17 degrees 11'N. Whole squids were preserved in 4% buffered formaldehyde solution, subsequently transferred into 70% ethanol and studied in laboratory condition providing initial observations on spawning pattern in these animals. The potential fecundity of Ch. cf. joubini was similar to 45,000-50,000, the maximum egg size was 1.6-1.7 mm, while those of M. agassizii were similar to 8000-16,000 and 1.7-1.9 mm respectively. A maturing female of B. skolops had similar to 4800 eggs of which some similar to 1200 were atretic. The ovary of a spent L. reinhardti contained similar to 116,500 post-ovulatory follicles and no residual egg. Mature females of Chiroteuthis and Mastigoteuthis had spematangia implanted externally in the mantle, whereas Liocranchia had a specialised spermatangia receptacle on the inside of the mantle. Reproductive adaptations of these genera are discussed in relation to spawning habits of other deep-sea squids. Synchronous ovulation was found to be a prevailing type of the gonad development with all eggs being spawned as a single batch, with ot without brooding. In some species, this single batch is not released at once but in several consequent portions exhibiting 'extended synchronous' spawning.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    facet.materialart.
    Unknown
    Spanish Society for Microbiology (SEM) | Springer
    In:  International Microbiology, 22 (3). pp. 377-390.
    Publication Date: 2022-01-31
    Description: Easter Island is an isolated volcanic island in the Pacific Ocean. Despite the extended knowledge about its origin, flora, and fauna, little is known about the bacterial diversity inhabiting this territory. Due to its isolation, Easter Island can be considered as a suitable place to evaluate microbial diversity in a geographically isolated context, what could shed light on actinobacterial occurrence, distribution, and potential novelty. In the present study, we performed a comprehensive analysis of marine Actinobacteria diversity of Easter Island by studying a large number of coastal sampling sites, which were inoculated into a broad spectrum of different culture media, where most important variations in composition included carbon and nitrogen substrates, in addition to salinity. The isolates were characterized on the basis of 16S ribosomal RNA gene sequencing and phylogenetic analysis. High actinobacterial diversity was recovered with a total of 163 pure cultures of Actinobacteria representing 72 phylotypes and 20 genera, which were unevenly distributed in different locations of the island and sample sources. The phylogenetic evaluation indicated a high degree of novelty showing that 45% of the isolates might represent new taxa. The most abundant genera in the different samples were Micromonospora, Streptomyces, Salinispora, and Dietzia. Two aspects appear of primary importance in regard to the high degree of novelty and diversity of Actinobacteria found. First, the application of various culture media significantly increased the number of species and genera obtained. Second, the geographical isolation is considered to be of importance regarding the actinobacterial novelty found.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2022-01-31
    Description: Dramatic changes from a cold and dry last glacial to a warm and wet Holocene period intensified the Indian summer monsoon (ISM), resulting in vigorous hydrology and increased terrestrial erosion. Here we present seawater neodymium (Nd) data (expressed in εNd) from Andaman Sea sediments to assess past changes in the ISM and the related impact of Irrawaddy–Salween and Sittoung (ISS) river discharge into the Andaman Sea in the northeastern Indian Ocean. Four major isotopic changes were identified: (1) a gradual increase in εNd toward a more radiogenic signature during the Last Glacial Maximum (22–18 ka), suggesting a gradual decrease in the ISS discharge; (2) a relatively stable radiogenic seawater εNd between 17.2 and 8.8 ka, perhaps related to a stable reduced outflow; (3) a rapid transition to less radiogenic εNd signature after 8.8 ka, reflecting a very wet early–mid-Holocene with the highest discharge; and (4) a decrease in εNd signal stability in the mid–late Holocene. Taking into account the contribution of the ISS rivers to the Andaman Sea εNd signature that changes proportionally with the strengthening (less radiogenic εNd) or weakening (more radiogenic εNd) of the ISM, we propose a binary model mixing between the Salween and Irrawaddy rivers to explain the εNd variability in Andaman Sea sediments. We hypothesize that the Irrawaddy river mainly contributed detrital sediment to the northeastern Andaman Sea for the past 24 ka. Our εNd data shed new light on the regional changes in Indo-Asian monsoon systems when compared with the existing Indian and Chinese paleo-proxy records.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2022-01-31
    Description: The genus Tabrizicola with its type species and strain Tabrizicola aquatica RCRI19T was previously described as a purely chemotrophic genus of Gram-negative, aerobic, non-motile and rod-shaped bacteria. With the present study, we expand the description of the metabolic capabilities of this genus and the T. aquatica type strain to include chlorophyll-dependent phototrophy. Our results confirmed that T. aquatica, does not grow under anaerobic photoautotrophic or photoheterotrophic conditions. However, the presence of the photosynthesis-related genes pufL and pufM could be demonstrated in the genomes of several Tabrizicola strains. Additionally, photosynthetic pigments (bacteriochlorophyll a) were formed under aerobic, heterotrophic and low light conditions in T. aquatica strain RCRI19T. Furthermore, all the genes necessary for a fully operational photosynthetic apparatus and bacteriochlorophyll a are present in the T. aquatica type strain genome. Therefore, we suggest categorising T. aquatica RCRI19T, isolated from freshwater environment of Qurugöl Lake, as an aerobic anoxygenic phototrophic (AAP) bacterium.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2022-01-31
    Description: High sea surface temperatures often lead to coral bleaching wherein reef-building corals lose significant numbers of their endosymbiotic dinoflagellates (Symbiodiniaceae). These increasingly frequent bleaching events often result in large scale coral mortality, thereby devasting reef systems throughout the world. The reef habitats surrounding Palau are ideal for investigating coral responses to climate perturbation, where many inshore bays are subject to higher water temperature as compared with offshore barrier reefs. We examined fourteen physiological traits in response to high temperature across various symbiotic dinoflagellates in four common Pacific coral species, Acropora muricata, Coelastrea aspera, Cyphastrea chalcidicum and Pachyseris rugosa found in both offshore and inshore habitats. Inshore corals were dominated by a single homogenous population of the stress tolerant symbiont Durusdinium trenchii, yet symbiont thermal response and physiology differed significantly across coral species. In contrast, offshore corals harbored specific species of Cladocopium spp. (ITS2 rDNA type-C) yet all experienced similar patterns of photoinactivation and symbiont loss when heated. Additionally, cell volume and light absorption properties increased in heated Cladocopium spp., leading to a greater loss in photo-regulation. While inshore coral temperature response was consistently muted relative to their offshore counterparts, high physiological variability in D. trenchii across inshore corals suggests that bleaching resilience among even the most stress tolerant symbionts is still heavily influenced by their host environment.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2022-01-31
    Description: Using offshore geodetic observations, we show that a segment of the North Anatolian Fault in the central Sea of Marmara is locked and therefore accumulating strain. The strain accumulation along this fault segment was previously extrapolated from onshore observations or inferred from the absence of seismicity, but both methods could not distinguish between fully locked or fully creeping fault behavior. A network of acoustic transponders measured crustal deformation with mm-precision on the seafloor for 2.5 years and did not detect any significant fault displacement. Absence of deformation together with sparse seismicity monitored by ocean bottom seismometers indicates complete fault locking to at least 3 km depth and presumably into the crystalline basement. The slip-deficit of at least 4m since the last known rupture in 1766 is equivalent to an earthquake of magnitude 7.1 to 7.4 in the Sea of Marmara offshore metropolitan Istanbul.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2022-01-31
    Description: Iron (Fe) bioavailability limits phytoplankton growth in vast ocean regions. Iron-rich dust uplifted from deserts is transported in the atmosphere and deposited on the ocean surface. However, this dust is a poor source of iron for most phytoplankton since dust-bound Fe is poorly soluble in seawater and dust rapidly sinks out of the photic zone. An exception is Trichodesmium, a globally important, N2 fixing, colony forming, cyanobacterium, which efficiently captures and shuffles dust to its colony core. Trichodesmium and bacteria that reside within its colonies carry out diverse metabolic interactions. Here we show evidence for mutualistic interactions between Trichodesmium and associated bacteria for utilization of iron from dust, where bacteria promote dust dissolution by producing Fe-complexing molecules (siderophores) and Trichodesmium provides dust and optimal physical settings for dissolution and uptake. Our results demonstrate how intricate relationships between producers and consumers can influence productivity in the nutrient starved open ocean.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2022-01-31
    Description: Ecological impact of global change is generated by multiple synchronous or asynchronous drivers which interact with each other and with intraspecific variability of sensitivities. In three near-natural experiments, we explored response correlations of full-sibling germling families of the seaweed Fucus vesiculosus towards four global change drivers: elevated CO2 (ocean acidification, OA), ocean warming (OW), combined OA and warming (OAW), nutrient enrichment and hypoxic upwelling. Among families, performance responses to OA and OW as well as to OAW and nutrient enrichment correlated positively whereas performance responses to OAW and hypoxia anti-correlated. This indicates (i) that families robust to one of the three drivers (OA, OW, nutrients) will also not suffer from the two other shifts, and vice versa and (ii) families benefitting from OAW will more easily succumb to hypoxia. Our results may imply that selection under either OA, OW or eutrophication would enhance performance under the other two drivers but simultaneously render the population more susceptible to hypoxia. We conclude that intraspecific response correlations have a high potential to boost or hinder adaptation to multifactorial global change scenarios.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2022-01-31
    Description: MicroRNAs (miRNAs) play crucial roles in the post-transcriptional control of messenger RNA (mRNA). These miRNA-mRNA regulatory networks are present in nearly all organisms and contribute to development, phenotypic divergence, and speciation. To examine the miRNA landscape of cichlid fishes, one of the most species-rich families of vertebrates, we profiled the expression of both miRNA and mRNA in a diverse set of cichlid lineages. Among these, we found that conserved miRNAs differ from recently arisen miRNAs (i.e. lineage specific) in average expression levels, number of target sites, sequence variability, and physical clustering patterns in the genome. Furthermore, conserved miRNA target sites tend to be enriched at the 5′ end of protein-coding gene 3′ UTRs. Consistent with the presumed regulatory role of miRNAs, we detected more negative correlations between the expression of miRNA-mRNA functional pairs than in random pairings. Finally, we provide evidence that novel miRNA targets sites are enriched in genes involved in protein synthesis pathways. Our results show how conserved and evolutionarily novel miRNAs differ in their contribution to the genomic landscape and highlight their particular evolutionary roles in the adaptive diversification of cichlids.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2022-01-31
    Description: Warming is one of the most dramatic aspects of climate change and threatens future ecosystem functioning. It may alter primary productivity and thus jeopardize carbon sequestration, a crucial ecosystem service provided by coastal environments. Fucus vesiculosus is an important canopy-forming macroalga in the Baltic Sea, and its main consumer is Idotea balthica. The objective of this study is to understand how temperature impacts a simplified food web composed of macroalgae and herbivores to quantify the effect on organic carbon storage. The organisms were exposed to a temperature gradient from 5 to 25 °C. We measured and modeled primary production, respiration, growth and epiphytic load on the surface of Fucus and respiration, growth and egestion of Idotea. The results show that temperature affects physiological responses of Fucus and Idotea separately. However, Idotea proved more sensitive to increasing temperatures than the primary producers. The lag between the collapse of the grazer and the decline of Fucus and epiphytes above 20 °C allows an increase of carbon storage of the primary productivity at higher temperatures. Therefore, along the temperature gradient, the simplified food web stores carbon in a non-monotonic way (reaching minimum at 20 °C). Our work stresses the need of considering the combined metabolic performance of all organisms for sound predictions on carbon circulation in food webs.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2022-01-31
    Description: This study applied the Systems Approach Framework (SAF) to address the issue of declining Atlantic cod fishery in coastal areas. Interviews of 58 fishers from 26 harbours and meetings with national fisheries organisations and managers revealed the perception of an offshore movement of coastal cod. Numerical modelling based on fishing survey data did not substantiate these perceptions in the data-poor coastal waters. However, Data Storage Tag (DST) information combined with bottom sea water temperature data from the spatio-temporal hydrodynamic Baltic Sea Ice-Ocean Model showed changes in potential cod habitat distribution in the Skagerrak-Kattegat and western Baltic from 1979 to 2016. Subsequently, cod habitats were defined in three categories: (i) potentially suitable (T 〈= 12 degrees C); (ii) episodic (12 〈 T 〈= 16 degrees C); and (iii) unsuitable (T 〉 16 degrees C). The environmental changes were linked to the socio-economic component of cod fishery. Cod catches (weight and monetary value) were retrieved using logbook information and data from the Vessel Monitoring System (VMS, 2005-2016) and the Automatic Identification System (AIS, 2006-2016). General additive modelling significantly showed the largest proportion of catches took place in the potentially suitable habitat whereas catches were lower in the episodic habitat and rare in the unsuitable habitat. The results of this first large-scale SAF application are highly valuable for adapting existing fisheries management by: (i) providing information on habitat shrinkage for Maximum Sustainable Yield (MSY) based stock assessments; (ii) adding a spatio-temporal dimension for coastal productivity relative to the vessel-based Individual Transferable Quota (ITQ) system; and (iii) providing a predictive scenario simulation tool for sustainable management under changing environmental conditions.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2022-01-31
    Description: Spreading processes associated with slow-spreading ridges are a complex interplay of volcanic accretion and tectonic dismemberment of the oceanic crust, resulting in an irregular seafloor morphology made up of blocks created by episodes of intense volcanic activity or tectonic deformation. These blocks undergo highly variable evolution, such as tilts or dissection by renewed tectonic extension, depending on their positions with respect to the spreading axis, core complexes, detachment or transform faults. Here, we use near-seafloor magnetic and bathymetric data and seismic profiles collected over the TAG Segment of the Mid-Atlantic Ridge to constrain the tectonic evolution of these blocks. Our study reveals that the presence and evolution of oceanic core complexes play a key role in triggering block movements. The deep subvertical detachment fault roots on the plate boundary, marked by a thermal anomaly and transient magma bodies. Thermal and magmatic variations control the structure and morphology of the seafloor above the subhorizontal detachment surface, occasionally leading to relocating the detachment.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2022-01-31
    Description: The enactment of the Water Framework Directive (WFD) initiated scientific efforts to develop reliable methods for comparing prevailing lake conditions against reference (or nonimpaired) states, using the state of a set biological elements. Drawing a distinction between impaired and natural conditions can be a challenging exercise. Another important aspect is to ensure that water quality assessment is comparable among the different Member States. In this context, the present paper offers a constructive critique of the practices followed during the WFD implementation in Greece by pinpointing methodological weaknesses and knowledge gaps that undermine our ability to classify the ecological quality of Greek lakes. One of the pillars of WDF is a valid lake typology that sets ecological standards transcending geographic regions and national boundaries. The national typology of Greek lakes has failed to take into account essential components. WFD compliance assessments based on the descriptions of phytoplankton communities are oversimplified and as such should be revisited. Exclusion of most chroococcal species from the analysis of cyanobacteria biovolume in Greek lakes/reservoirs and most reservoirs in Spain, Portugal, and Cyprus is not consistent with the distribution of those taxa in lakes. Similarly, the total biovolume reference values and the indices used in classification schemes reflect misunderstandings of WFD core principles. This hampers the comparability of ecological status across Europe and leads to quality standards that are too relaxed to provide an efficient target for the protection of Greek/transboundary lakes such as the ancient Lake Megali Prespa.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    facet.materialart.
    Unknown
    Springer | German Mycological Society
    In:  Mycological Progress, 18 (11). pp. 1341-1361.
    Publication Date: 2022-01-31
    Description: The order Botryosphaeriales includes many latent fungal pathogens with a wide range of woody hosts. The taxonomy of these pathogens has been difficult due to the use of poorly informing markers in phylogenetic analyses and the lack of good morphological characters. Many genera and families in this order have not yet been systematically studied in different hosts and from different regions. In this study, a total of 29 fungal strains from the Aplosporellaceae and Botryosphaeriaceae were isolated from branches or twigs with symptoms of canker and dieback disease in Mount Yudu of China. Morphology and multigene analyses (ITS, LSU and TEF1-α) indicated five distinct lineages, including Aplosporella javeedii, Botryosphaeria dothidea, Diplodia quercicola sp. nov., Phaeobotryon aplospora sp. nov. and Phaeobotryon rhois. Diplodia quercicola is characterized by multiloculate conidiomata, producing oblong to cylindrical, thick-walled, hyaline, aseptate conidia. Phaeobotryon aplospora is characterized by pulvinate, multiloculate conidiomata, producing ellipsoid to oblong, brown, aseptate conidia. The new species differ from related species phylogenetically and ecologically and in morphological features.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2022-01-31
    Description: We have studied iron (Fe)-isotope signals in particles (〉 0.22 µm) and the dissolved phase (〈 0.22 µm) in two subarctic, boreal rivers, their estuaries and the adjacent sea in northern Sweden. Both rivers, the Råne and the Kalix, are enriched in Fe and organic carbon (up to 29 µmol/L and up to 730 µmol/L, respectively). Observed changes in the particulate and dissolved phase during spring flood in May suggest different sources of Fe to the rivers during different seasons. While particles show a positive Fe-isotope signal during winter, during spring flood, the values are negative. Increased discharge due to snowmelt in the boreal region is most times accompanied by flushing of the organic-rich sub-surface layers. These upper podzol soil layers have been shown to be a source for Fe-organic carbon aggregates with a negative Fe-isotope signal. During winter, the rivers are mostly fed by deep groundwater, where Fe occurs as Fe(oxy)hydroxides, with a positive Fe-isotope signal. Flocculation during initial estuarine mixing does not change the Fe-isotope compositions of the two phases. Data indicate that the two groups of Fe aggregates flocculate diversely in the estuaries due to differences in their surface structure. Within the open sea, the particulate phase showed heavier δ56Fe values than in the estuaries. Our data indicate the flocculation of the negative Fe-isotope signal in a low salinity environment, due to changes in the ionic strength and further the increase of pH.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2022-01-31
    Description: The climate system can potentially switch from one stable state to another. The closer a system is to a bifurcation point (i.e., ‘tipping point’), the more likely it is that even small perturbations can force the system to experience a state shift, e.g., a collapsing Atlantic meridional overturning circulation (AMOC) and associated cooling in parts of the North Atlantic. Here, we present an abrupt state transition from a warm to a cold North Atlantic climate state with expanded sea ice during an orbitally forced transient Holocene simulation performed with the Community Climate System Model version 3. The state transition is associated with a weakening of the AMOC by about 33% in this simulation. The changing background climate induced by slow external orbital forcing plays an important role for the abrupt climate shift. The model allows the identification of regions and variables that play a key role for a potential climate transition and show early-warning signals. Increase in autocorrelation and standard deviation as well as trends in skewness especially for sea-surface salinity in the northern North Atlantic are identified as robust early-warning signals, whereas no early-warning signals are found in the time series of the AMOC stream function.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2022-01-31
    Description: Groundwater, the largest available store of global freshwater1, is relied upon by more than two billion people2. It is therefore important to quantify the spatiotemporal interactions between groundwater and climate. However, current understanding of the global-scale sensitivity of groundwater systems to climate change3,4—as well as the resulting variation in feedbacks from groundwater to the climate system5,6—is limited. Here, using groundwater model results in combination with hydrologic data sets, we examine the dynamic timescales of groundwater system responses to climate change. We show that nearly half of global groundwater fluxes could equilibrate with recharge variations due to climate change on human (~100 year) timescales, and that areas where water tables are most sensitive to changes in recharge are also those that have the longest groundwater response times. In particular, groundwater fluxes in arid regions are shown to be less responsive to climate variability than in humid regions. Adaptation strategies must therefore account for the hydraulic memory of groundwater systems, which can buffer climate change impacts on water resources in many regions, but may also lead to a long, but initially hidden, legacy of anthropogenic and climatic impacts on river flows and groundwater-dependent ecosystems.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2022-01-31
    Description: Beside its global effects, climate change is manifested in many regionally pronounced features mainly resulting from changes in the oceanic and atmospheric circulation. Here we investigate the influence of the North Atlantic SST on shaping the winter-time response to global warming. Our results are based on a long-term climate projection with the Max Planck Institute Earth System Model (MPI-ESM) to investigate the influence of North Atlantic sea surface temperature pattern changes on shaping the atmospheric climate change signal. In sensitivity experiments with the model’s atmospheric component we decompose the response into components controlled by the local SST structure and components controlled by global/remote changes. MPI-ESM simulates a global warming response in SST similar to other climate models: there is a warming minimum—or ”warming hole”—in the subpolar North Atlantic, and the sharp SST gradients associated with the Gulf Stream and the North Atlantic Current shift northward by a few a degrees. Over the warming hole, global warming causes a relatively weak increase in rainfall. Beyond this, our experiments show more localized effects, likely resulting from future SST gradient changes in the North Atlantic. This includes a significant precipitation decrease to the south of the Gulf Stream despite increased underlying SSTs. Since this region is characterised by a strong band of precipitation in the current climate, this is contrary to the usual case that wet regions become wetter and dry regions become drier in a warmer climate. A moisture budget analysis identifies a complex interplay of various processes in the region of modified SST gradients: reduced surface winds cause a decrease in evaporation; and thermodynamic, modified atmospheric eddy transports, and coastal processes cause a change in the moisture convergence. The changes in the the North Atlantic storm track are mainly controlled by the non-regional changes in the forcing. The impact of the local SST pattern changes on regions outside the North Atlantic is small in our setup.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2022-01-31
    Description: Solar signals in the atmosphere and the ocean, especially in tropopause temperatures and lower stratospheric water vapour are investigated using recent observational and reanalyses data sets for the period from 1958 through 2013. Previous observational and modeling studies demonstrated solar influences in the lower stratosphere resembling a positive Northern Annular Mode due to the top-down mechanism involving enhanced solar UV radiation in the stratosphere during solar maxima and dynamical amplification mechanisms in the atmosphere. We found that these stratospheric changes might propagate down to the troposphere and become zonally asymmetric with characteristic pressure and wind pattern over the North Atlantic and North Pacific. Such changes in tropospheric circulation are related to anomalous positive SST anomalies in the central Pacific which resemble an El Niño Modoki event. We show for the first time with ocean reanalysis data that these SST anomalies are amplified by a positive feedback through oceanic subsurface currents and heat transport in the equatorial Pacific. Anomalous warm SSTs in the equatorial central Pacific change the zonal SST gradient and lead to anomalous westerly winds and currents in the western Pacific and easterly winds and currents in the eastern Pacific. This indicates a convergence and less upwelling and therefore enhances the positive SST anomalies in the equatorial central Pacific. Such a positive feedback results in a peak of El Niño Modoki events about 2 years after the solar maximum. These solar-induced signals in the ocean in turn modify the circulation and convection in the troposphere, resulting in lagged solar signals of anomalous high tropopause heights and negative anomalies in tropopause temperatures as well as in lower stratospheric water vapour over the equatorial Pacific which are in agreement with a time evolving solar-induced El Niño Modoki-like SST pattern. We demonstrate a solar modulation of intrinsic decadal climate variability over the Pacific which is amplified by positive feedbacks between the ocean and the atmosphere.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    facet.materialart.
    Unknown
    Nature Research
    In:  Nature Geoscience, 12 . pp. 84-86.
    Publication Date: 2022-01-31
    Description: Atmospheric levels of chloroform, an ozone-depleting substance not part of the Montreal Protocol, have risen. The increase may be attributable to industrial emissions in Eastern China
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2022-01-31
    Description: While originally acquired from the environment, a fraction of the microbiota is transferred from parents to offspring. The immune system shapes the microbial colonization, while commensal microbes may boost host immune defences. Parental transfer of microbes in viviparous animals remains ambiguous, as the two transfer routes (transovarial vs. pregnancy) are intermingled within the maternal body. Pipefishes and seahorses (syngnathids) are ideally suited to disentangle transovarial microbial transfer from a contribution during pregnancy due to their maternal egg production and their unique male pregnancy. We assessed the persistency and the changes in the microbial communities of the maternal and paternal reproductive tracts over proceeding male pregnancy by sequencing microbial 16S rRNA genes of swabs from maternal gonads and brood pouches of non-pregnant and pregnant fathers. Applying parental immunological activation with heat-killed bacteria, we evaluated the impact of parental immunological status on microbial development. Our data indicate that maternal gonads and paternal brood pouches harbor distinct microbial communities, which could affect embryonal development in a sex-specific manner. Upon activation of the immune system, a shift of the microbial community was observed. The activation of the immune system induced the expansion of microbiota richness during late pregnancy, which corresponds to the time point of larval mouth opening, when initial microbial colonization must take place
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2022-01-31
    Description: Dosidicus gigas (the Humboldt squid) is a widely distributed and ecologically important predator in the eastern Pacific Ocean, but its mating behaviour is poorly understood. Individuals of this species have undergone a drastic change in size at maturity in the last years. We investigated mating activity of Humboldt squid in the Gulf of California in 2013, 2014, and 2015 by quantifying spermatangia deposited in the tissue of the buccal area. In 2015, we encountered the smallest mean mantle length of mature specimens recorded to date in the Gulf of California. In all years, numerous males were encountered that had been mated by other males. Spermatangia in males were deposited on the tissue in similar numbers and in the same location as normally occurs in females (the buccal area), suggesting that male-to-male mating behaviour is similar to male-to-female. This behaviour is referred to as same-sex sexual behaviour and has been described for various taxa, including other cephalopods. Overall similarity in mating frequency between males and females and in body size of mated individuals (in 2015) suggests non-discriminative and brief encounters with body size being a cue for mating. This mating strategy may be beneficial for males, as Humboldt squid live in groups where competition for mates is likely high. The energetic costs of male-to-male mating events may be counterbalanced by the fitness profits of indiscriminate mating behaviour.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2022-01-31
    Description: the brown alga Fucus vesiculosus is a keystone marine species, which is subject to heavy surface colonisation. this study was designed to analyse the surface epibiome of F. vesiculosus in conjunction with the composition and spatial distribution of its surface metabolome. the amplicon sequencing, seM and CARD-FIsH imaging studies showed Alphaproteobacteria to predominate the epibiotic bacteria. Fungi of the class Eurotiomycetes were visualised for the first time on an algal surface. An untargeted metabolomics approach using molecular networks, in silico prediction and manual dereplication showed the differential metabolome of the surface and the whole tissue extracts. In total, 50 compounds were putatively dereplicated by UPLC-MS/MS, 37 of which were previously reported from both seaweeds and microorganisms. Untargeted spatial metabolomics by DESI-Imaging MS identified the specific localisation and distribution of various primary and secondary metabolites on surface imprints and in algal cross sections. The UPLC-MS, DESI-IMS and NMR analyses failed to confirm the presence of any surface-associated metabolite, except for mannitol, which were previously reported from F. vesiculosus. This is the first study analysing the seaweed surface microbiome in conjunction with untargeted surface metabolomics and spatial metabolomics approaches.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2022-01-31
    Description: Gelatinous zooplankton (GZ) such as medusae, ctenophores, siphonophores, pyrosomes and salps are important components of oceanic pelagic communities and small calycophoran siphonophores (CS) are typically abundant at shallow depths. The Sargasso Sea spawning area of the Atlantic catadromous freshwater eels has a regular pattern of shallow autumn to spring temperature fronts. There is limited information about the southern Sargasso Sea GZ fauna, and it is not known which species are distributed across these frontal zones. Plankton samples from a survey of larval European eel (Anguilla anguilla) abundance in March and April 2017 using an Isaacs-Kidd Midwater Trawl (0–300 m, 35 stations, three transects) were used to examine the distribution and abundance of net-captured CS and other GZ species in relation to oceanographic characteristics. More than 2200 specimens of 15 taxa were sub-sampled, with five CS (Abylopsis tetragona, A. eschscholtzii, Chelophyes appendiculata, Eudoxoides spiralis and E. mitra) dominating catches at every station. GZ were most abundant around the 22 and 24 °C isotherms, and higher abundances of CS in the north were correlated with lower water temperature. The widespread presence of CS across the European eel spawning area is consistent with a recent study detecting their DNA sequences in the gut contents of young eel larvae collected in the Sargasso Sea, suggesting CS material was either eaten directly or as part of ingested marine snow particles. The present study shows that both types of organisms occupy the southern Sargasso Sea during the European eel spawning season.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2022-01-31
    Description: The Tethys Ocean was compartmentalized into the Mediterranean Sea and Indian Ocean during the early Miocene, yet the exact nature and timing of this disconnection are not well understood. Here we present two new neodymium isotope records from isolated carbonate platforms on both sides of the closing seaway, Malta (outcrop sampling) and the Maldives (IODP Site U1468), to constrain the evolution of past water mass exchange between the present day Mediterranean Sea and Indian Ocean via the Mesopotamian Seaway. Combining these data with box modeling results indicates that water mass exchange was reduced by similar to 90% in a first step at ca. 20 Ma. The terminal closure of the seaway then coincided with the sea level drop caused by the onset of permanent glaciation of Antarctica at ca. 13.8 Ma. The termination of meridional water mass exchange through the Tethyan Seaway resulted in a global reorganization of currents, paved the way to the development of upwelling in the Arabian Sea and possibly led to a strengthening of South Asian Monsoon.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    facet.materialart.
    Unknown
    Nature Research
    In:  Nature Ecology & Evolution, 3 (10). Art.Nr. 1404.
    Publication Date: 2022-01-31
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2022-01-31
    Description: Climate change has been altering the ocean environment, affecting as a consequence the biological communities including microorganisms. We performed a mesocosm experiment to test whether biodiversity loss caused by one stressor would influence plankton community sensitivity to a subsequent stressor, as envisioned in Vinebrooke's multiple stressor concept. A natural Baltic Sea diatom-dominated phytoplankton assemblage was used as a model system where we examined whether a preceding heat shock would affect the community's response to changing salinity. Initially, the community was treated by a short-term temperature increase of 6 °C, which resulted in a loss of species compared to the control. Thereafter, the control and the heat-shocked communities were subject to a salinity change (- 5 psu, control, + 5 psu). The species Skeletonema dohrnii, Thalassiosira anguste-lineata, Thalassiosira nordenskioeldii, Chaetoceros socialis and Ditylum brightwellii were major components of the control and heat-shocked assemblages (〉 80% of the total biomass). We examined the effect on species composition and biodiversity (morphospecies and operational taxonomic units (OTUs) related to phytoplankton) and on phytoplankton biomass. In addition, we explored the single species response of five dominant diatoms on these environmental perturbations. Our results showed that increased salinity significantly reduced the OTUs richness both in the control and the less diverse heated community as well as the phytoplankton biomass in the heated community. On the other hand, decreased salinity significantly increased species richness and phytoplankton biomass in both communities and OTUs richness in the control community. The five dominant diatoms reached their highest biomass under decreased salinity and responded negatively to increased salinity (lower biomass than ambient salinity). Contrary to Vinebrooke's multiple stressor concept, there was no indication that the heat treatment had altered the community's sensitivity to the salinity stress in our study system.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2022-01-31
    Description: The cycling of carbon on Earth exerts a fundamental influence upon the greenhouse gas content of the atmosphere, and hence global climate over millennia. Until recently, ice sheets were viewed as inert components of this cycle and largely disregarded in global models. Research in the past decade has transformed this view, demonstrating the existence of uniquely adapted microbial communities, high rates of biogeochemical/physical weathering in ice sheets and storage and cycling of organic carbon (〉104 Pg C) and nutrients. Here we assess the active role of ice sheets in the global carbon cycle and potential ramifications of enhanced melt and ice discharge in a warming world.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2022-01-31
    Description: Export of warm and salty waters from the Caribbean to the North Atlantic is an essential component of the Atlantic Meridional Overturning Circulation (AMOC). However, there was also an active AMOC during the Miocene, despite evidence for an open Central American Seaway (CAS) that would have allowed low-salinity Pacific waters to enter the Caribbean. To address this apparent contradiction and to constrain the timing of CAS closure we present the first continuous Nd isotope record of intermediate waters in the Florida Strait over the past 12.5 million years. Our results indicate that there was no direct intermediate water mass export from the Caribbean to the Florida Strait between 11.5 and 9.5 Ma, at the same time as a strengthened AMOC. After 9 Ma a strong AMOC was maintained due to a major step in CAS closure and the consequent cessation of low-salinity Pacific waters entering the Caribbean.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2022-01-31
    Description: This manuscript reports the first sightings and collection of the swimming crab Cronius ruber (Lamarck, 1818) on the coast of Madeira Island, Portugal. After the recent record in the Canary Islands, this represents a further step northward on this species’ expansion in distribution in the eastern Atlantic. The crab was first spotted during underwater visual census surveys done by scuba diving in July 2018 and was repeatedly observed during the following months, in different locations on the south coast of Madeira. Analysis of temperature data from several geographic locations where C. ruber is present was performed to assess how thermal regimes and ongoing changes may influence this recent distribution shift. Current temperature trends in Madeira suggest that the arrival and establishment of C. ruber to Madeira might have been facilitated this thermophilic species, adding evidence for the ongoing tropicalization of this area. Finally, the current spread of C. ruber in both Canaries and Madeira island systems highlights the need for a long-term monitoring program targeting this and other non-indigenous species (NIS).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2022-01-31
    Description: Despite the development of several cultivation methods, the rate of discovery of microorganisms that are yet-to-be cultivated outpaces the rate of isolating and cultivating novel species in the laboratory. Furthermore, no current cultivation technique is capable of selectively isolating and cultivating specific bacterial taxa or phylogenetic groups independently of morphological or physiological properties. Here, we developed a new method to isolate living bacteria solely based on their 16S rRNA gene sequence. We showed that bacteria can survive a modified version of the standard fluorescence in situ hybridization (FISH) procedure, in which fixation is omitted and other factors, such as centrifugation and buffers, are optimized. We also demonstrated that labelled DNA probes can be introduced into living bacterial cells by means of chemical transformation and that specific hybridization occurs. This new method, which we call live-FISH, was then combined with fluorescence-activated cell sorting (FACS) to sort specific taxonomic groups of bacteria from a mock and natural bacterial communities and subsequently culture them. Live-FISH represents the first attempt to systematically optimize conditions known to affect cell viability during FISH and then to sort bacterial cells surviving the procedure. No sophisticated probe design is required, making live-FISH a straightforward method to be potentially used in combination with other single-cell techniques and for the isolation and cultivation of new microorganisms.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2022-01-31
    Description: Shallow hydrothermal vents are of pivotal relevance for ocean biogeochemical cycles, including seawater dissolved heavy metals and trace elements as well as the carbonate system balance. The Kueishan Tao (KST) stratovolcano off Taiwan is associated with numerous hydrothermal vents emitting warm sulfur-rich fluids at so-called White Vents (WV) and Yellow Vent (YV) that impact the surrounding seawater masses and habitats. The morphological and biogeochemical consequences caused by a M5.8 earthquake and a C5 typhoon (“Nepartak”) hitting KST (12th May, and 2nd–10th July, 2016) were studied within a 10-year time series (2009–2018) combining aerial drone imagery, technical diving, and hydrographic surveys. The catastrophic disturbances triggered landslides that reshaped the shoreline, burying the seabed and, as a consequence, native sulfur accretions that were abundant on the seafloor disappeared. A significant reduction in venting activity and fluid flow was observed at the high-temperature YV. Dissolved Inorganic Carbon (DIC) maxima in surrounding seawater reached 3000–5000 µmol kg−1, and Total Alkalinity (TA) drawdowns were below 1500–1000 µmol kg−1 lasting for one year. A strong decrease and, in some cases, depletion of dissolved elements (Cd, Ba, Tl, Pb, Fe, Cu, As) including Mg and Cl in seawater from shallow depths to the open ocean followed the disturbance, with a recovery of Mg and Cl to pre-disturbance concentrations in 2018. The WV and YV benthic megafauna exhibited mixed responses in their skeleton Mg:Ca and Sr:Ca ratios, not always following directions of seawater chemical changes. Over 70% of the organisms increased skeleton Mg:Ca ratio during rising DIC (higher CO2) despite decreasing seawater Mg:Ca ratios showing a high level of resilience. KST benthic organisms have historically co-existed with such events providing them ecological advantages under extreme conditions. The sudden and catastrophic changes observed at the KST site profoundly reshaped biogeochemical processes in shallow and offshore waters for one year, but they remained transient in nature, with a possible recovery of the system within two years.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Format: other
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2022-01-31
    Description: Clonal behavior has been hypothesized to provide an escape from allometric metabolic scaling that limits the maximum mass achieved by a single individual. Here, we demonstrate the capacity of a wide-spread, non-native sea anemone to buffer its colony biomass accumulation rate across environments by modulating ramet body size through environmentally dependent growth, fission, and catabolism. In 2015, thermal reaction norms for growth and fission behavior were constructed using clonal lines of the sea anemone Diadumene lineata. In 2018, variation in growth patterns under a factorial cross of temperature level and oxygen availability was examined to test the hypothesis that individual ramet size is regulated by oxygen limitation in accordance with optimal size theory. Across a wide range of temperatures, colonies accumulated a similar amount of biomass despite a radical shift from unitary to clonal growth, supporting fission as a mechanism to buffer growth rates over a range of conditions. Individual body size appears to be regulated by the environment with increased temperature and reduced oxygen modifying fission and mass-specific growth patterns, leading to the production of smaller-bodied ramets in warm conditions. However, whether anemones in common garden conditions reduce individual body size through catabolism or fission depends on the region of origin and may relate to differences in seasonal temperature patterns among coastlines, which influence the energetic benefits of fission rate plasticity.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2022-01-31
    Description: Shelf seas play an important role in the global carbon cycle, absorbing atmospheric carbon dioxide (CO2) and exporting carbon (C) to the open ocean and sediments. The magnitude of these processes is poorly constrained, because observations are typically interpolated over multiple years. Here, we used 298500 observations of CO2 fugacity (fCO2) from a single year (2015), to estimate the net influx of atmospheric CO2 as 26.2 ± 4.7 Tg C yr−1 over the open NW European shelf. CO2 influx from the atmosphere was dominated by influx during winter as a consequence of high winds, despite a smaller, thermally-driven, air-sea fCO2 gradient compared to the larger, biologically-driven summer gradient. In order to understand this climate regulation service, we constructed a carbon-budget supplemented by data from the literature, where the NW European shelf is treated as a box with carbon entering and leaving the box. This budget showed that net C-burial was a small sink of 1.3 ± 3.1 Tg C yr−1, while CO2 efflux from estuaries to the atmosphere, removed the majority of river C-inputs. In contrast, the input from the Baltic Sea likely contributes to net export via the continental shelf pump and advection (34.4 ± 6.0 Tg C yr−1).
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    facet.materialart.
    Unknown
    Springer
    In:  Doklady Earth Sciences, 489 (Part 2). pp. 1469-1473.
    Publication Date: 2022-01-31
    Description: The Osborn Plateau is a large intraplate rise in the eastern part of the Indian Ocean, which has been poorly studied by the geological and geophysical methods. In cruise SO258/1 on the R/V Sonne, new data were collected using Parasound seismic profiling and a multibeam echo-sounder survey. Faults in the sedimentary cover, which extend to the bottom surface, indicate high neotectonic activity in the Osborn Plateau area. It may continue up to the present, as well as in the adjacent segment of the Ninetyeast Ridge, where strong earthquakes have been recorded. Two reflectors in the upper part of the sedimentary cover mark the global lowering of the World Ocean level at the Miocene/Pliocene and Pliocene/Pleistocene boundaries. The reflector in the sediments at the Lower/Upper Pliocene boundary is associated with a change in the regional hydrodynamic regime that occurred at that time in the eastern Indian Ocean. The rocks dredged on Osborn Plateau are identical to some volcanic rocks of the Ninetyeast Ridge, confirming their assumed genetic link, but they are more similar to the basalts of the Kerguelen Plateau. Extremely altered vitroclastic tuffs appear to have been formed as a result of explosive volcanic eruptions of alkali basalts or foidites under subaeral or relatively shallow water conditions and represent the most recent eruptions in the region.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2022-01-31
    Description: The ocean is the main source of thermal inertia in the climate system. Ocean heat uptake during recent decades has been quantified using ocean temperature measurements. However, these estimates all use the same imperfect ocean dataset and share additional uncertainty due to sparse coverage, especially before 2007. Here, we provide an independent estimate by using measurements of atmospheric oxygen (O2) and carbon dioxide (CO2) – levels of which increase as the ocean warms and releases gases – as a whole ocean thermometer. We show that the ocean gained 1.29 ± 0.79 × 1022 Joules of heat per year between 1991 and 2016, equivalent to a planetary energy imbalance of 0.80 ± 0.49 W watts per square metre of Earth’s surface. We also find that the ocean-warming effect that led to the outgassing of O2 and CO2 can be isolated from the direct effects of anthropogenic emissions and CO2 sinks. Our result – which relies on high-precision O2 atmospheric measurements dating back to 1991 – leverages an integrative Earth system approach and provides much needed independent confirmation of heat uptake estimated from ocean data.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...