ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
Language
  • 1
    Call number: 9783319464251 (e-book)
    Description / Table of Contents: This book focuses in detail on all ecologically important aspects of the Kongsfjorden system such as the marine and atmospheric environment including long-term monitoring, Ecophysiology of individual species, structure and function of the ecosystem, ecological processes and biological communities. The contributed articles include review articles and research articles that have a wider approach and bring the current research up-to-date. This book will form a baseline for future work.
    Type of Medium: 12
    Pages: 1 Online-Ressource (XIII, 562 Seiten) , Illustrationen, Karten
    ISBN: 9783319464251 , 978-3-319-46425-1
    ISSN: 2468-5712 , 2468-5720
    Series Statement: Advances in polar ecology 2
    Language: English
    Note: Contents: 1 The ecosystem of Kongsfjorden, Svalbard / Haakon Hop and Christian Wiencke Part I. Atmospheric conditions 2 The atmosphere above Ny-Ålesund : climate and global warming, ozone and surface UV radiation / Marion Maturilli, Inger Hanssen-Bauer, Roland Neuber, Markus Rex, and Kåre Edvardsen Part II. Oceanography, sea ice and underwater light regime 3 The Kongsfjorden Transect : seasonal and inter-annual variability in hydrography / Vigdis Tverberg, Ragnheid Skogseth, Finlo Cottier, Arild Sundfjord, Waldemar Walczowski, Mark E. Inall, Eva Falck, Olga Pavlova, and Frank Nilsen 4 Changes in sea-ice extent and thickness in Kongsfjorden, Svalbard (2003-2016) / Olga Pavlova, Sebastian Gerland, and Haakon Hop 5 The underwater light climate in Kongsfjorden and its ecological implications / Alexey K. Pavlov, Eva Leu, Dieter Hanelt, Inka Bartsch, Ulf Karsten, Stephen R. Hudson, Jean-Charles Gallet, Finlo Cottier, Jonathan H. Cohen, Jørgen Berge, Geir Johnsen, Marion Maturilli, Piotr Kowalczuk, Sławomir Sagan, Justyna Meler, and Mats A. Granskog Part III. Pelagic production, phytoplankton and zooplankton 6 Phytoplankton seasonal dynamics in Kongsfjorden, Svalbard and the adjacent shelf / Else N. Hegseth, Philipp Assmy, Józef M. Wiktor, Józef Wiktor Jr., Svein Kristiansen, Eva Leu, Vigdis Tverberg, Tove M. Gabrielsen, Ragnheid Skogseth, and Finlo Cottier 7 Zooplankton in Kongsfjorden (1996-2016) in relation to climate change / Haakon Hop, Anette Wold, Mikko Vihtakari, Malin Daase, Slawomir Kwasniewski, Marta Gluchowska, Silke Lischka, Friedrich Buchholz and Stig Falk-Petersen Part IV. Benthic microbes, macroalgae and fauna 8 Living on cold substrata : new insights and approaches in the study of microphytobenthos ecophysiology and ecology in Kongsfjorden / Ulf Karsten, Iris Schaub, Jana Woelfel, Duygu S. Sevilgen, Carolin Schlie, Burkhard Becker, Angela Wulff, Martin Graeve, and Heiko Wagner 9 Biodiversity of benthic macro- and microalgae from Svalbard with special focus on Kongsfjorden / Stein Fredriksen, Ulf Karsten, Inka Bartsch, Jana Woelfel, Miriam Koblowsky, Rhena Schumann, Siri Røang Moy, Robert S. Steneck, Józef M. Wiktor, Haakon Hop, and Christian Wiencke 10. Kelps and environmental changes in Kongsfjorden : Stress perception and responses / Kai Bischof, Christian Buschbaum, Stein Frederiksen, Francisco J. L. Gordillo, Sandra Heinrich, Carlos Jiménez, Cornelius Lütz, Markus Molis, Michael Y. Roleda, Max Schwanitz, and Christian Wiencke 11. Ecological drivers of and responses by Arctic benthic communities, with an emphasis on Kongsfjorden, Svalbard / Markus Molis, Frank Beuchel, Jürgen Laudien, Maria Włodarska-Kowalczuk, and Christian Buschbaum Part V. Arctic fjord ecosystem model and autonomous marine observatories. 12. Outline of an Arctic fjord ecosystem model for Kongsfjorden-Krossfjorden, Svalbard / Pedro Duarte, Jan Marcin Weslawski, and Haakon Hop 13. Autonomous marine observatories in Kongsfjorden, Svalbard / Haakon Hop, Finlo Cottier, and Jørgen Berge Part VI. Kongsfjorden as harbinger of the future Arctic 14. Kongsfjorden as harbinger of the future Arctic : knowns, unknowns and research priorities / Kai Bischof, Peter Convey, Pedro Duarte, Jean-Pierre Gattuso, Maria Granberg, Haakon Hop, Clara Hoppe, Carlos Jiménez, Leonid Lisitsyn, Brezo Martinez, Michael Y. Roleda, Peter Thor, Józef M. Wiktor, and Geir Wing Gabrielsen
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Monograph available for loan
    Monograph available for loan
    Cham : Springer
    Call number: AWI P9-20-93591
    Description / Table of Contents: This book focuses in detail on all ecologically important aspects of the Kongsfjorden system such as the marine and atmospheric environment including long-term monitoring, Ecophysiology of individual species, structure and function of the ecosystem, ecological processes and biological communities. The contributed articles include review articles and research articles that have a wider approach and bring the current research up-to-date. This book will form a baseline for future work.
    Type of Medium: Monograph available for loan
    Pages: xiii, 562 Seiten , Illustrationen, Karten , 24 cm
    ISBN: 978-3-319-46423-7
    Series Statement: Advances in polar ecology 2
    Language: English
    Note: Contents: 1 The ecosystem of Kongsfjorden, Svalbard / Haakon Hop and Christian Wiencke Part I. Atmospheric conditions 2 The atmosphere above Ny-Ålesund : climate and global warming, ozone and surface UV radiation / Marion Maturilli, Inger Hanssen-Bauer, Roland Neuber, Markus Rex, and Kåre Edvardsen Part II. Oceanography, sea ice and underwater light regime 3 The Kongsfjorden Transect : seasonal and inter-annual variability in hydrography / Vigdis Tverberg, Ragnheid Skogseth, Finlo Cottier, Arild Sundfjord, Waldemar Walczowski, Mark E. Inall, Eva Falck, Olga Pavlova, and Frank Nilsen 4 Changes in sea-ice extent and thickness in Kongsfjorden, Svalbard (2003-2016) / Olga Pavlova, Sebastian Gerland, and Haakon Hop 5 The underwater light climate in Kongsfjorden and its ecological implications / Alexey K. Pavlov, Eva Leu, Dieter Hanelt, Inka Bartsch, Ulf Karsten, Stephen R. Hudson, Jean-Charles Gallet, Finlo Cottier, Jonathan H. Cohen, Jørgen Berge, Geir Johnsen, Marion Maturilli, Piotr Kowalczuk, Sławomir Sagan, Justyna Meler, and Mats A. Granskog Part III. Pelagic production, phytoplankton and zooplankton 6 Phytoplankton seasonal dynamics in Kongsfjorden, Svalbard and the adjacent shelf / Else N. Hegseth, Philipp Assmy, Józef M. Wiktor, Józef Wiktor Jr., Svein Kristiansen, Eva Leu, Vigdis Tverberg, Tove M. Gabrielsen, Ragnheid Skogseth, and Finlo Cottier 7 Zooplankton in Kongsfjorden (1996-2016) in relation to climate change / Haakon Hop, Anette Wold, Mikko Vihtakari, Malin Daase, Slawomir Kwasniewski, Marta Gluchowska, Silke Lischka, Friedrich Buchholz and Stig Falk-Petersen Part IV. Benthic microbes, macroalgae and fauna 8 Living on cold substrata : new insights and approaches in the study of microphytobenthos ecophysiology and ecology in Kongsfjorden / Ulf Karsten, Iris Schaub, Jana Woelfel, Duygu S. Sevilgen, Carolin Schlie, Burkhard Becker, Angela Wulff, Martin Graeve, and Heiko Wagner 9 Biodiversity of benthic macro- and microalgae from Svalbard with special focus on Kongsfjorden / Stein Fredriksen, Ulf Karsten, Inka Bartsch, Jana Woelfel, Miriam Koblowsky, Rhena Schumann, Siri Røang Moy, Robert S. Steneck, Józef M. Wiktor, Haakon Hop, and Christian Wiencke 10. Kelps and environmental changes in Kongsfjorden : Stress perception and responses / Kai Bischof, Christian Buschbaum, Stein Frederiksen, Francisco J. L. Gordillo, Sandra Heinrich, Carlos Jiménez, Cornelius Lütz, Markus Molis, Michael Y. Roleda, Max Schwanitz, and Christian Wiencke 11. Ecological drivers of and responses by Arctic benthic communities, with an emphasis on Kongsfjorden, Svalbard / Markus Molis, Frank Beuchel, Jürgen Laudien, Maria Włodarska-Kowalczuk, and Christian Buschbaum Part V. Arctic fjord ecosystem model and autonomous marine observatories. 12. Outline of an Arctic fjord ecosystem model for Kongsfjorden-Krossfjorden, Svalbard / Pedro Duarte, Jan Marcin Weslawski, and Haakon Hop 13. Autonomous marine observatories in Kongsfjorden, Svalbard / Haakon Hop, Finlo Cottier, and Jørgen Berge Part VI. Kongsfjorden as harbinger of the future Arctic 14. Kongsfjorden as harbinger of the future Arctic : knowns, unknowns and research priorities / Kai Bischof, Peter Convey, Pedro Duarte, Jean-Pierre Gattuso, Maria Granberg, Haakon Hop, Clara Hoppe, Carlos Jiménez, Leonid Lisitsyn, Brezo Martinez, Michael Y. Roleda, Peter Thor, Józef M. Wiktor, and Geir Wing Gabrielsen
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1751-8369
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geography , Geosciences
    Notes: Kongsfjorden is a glacial fjord in the Arctic (Svalbard) that is influenced by both Atlantic and Arctic water masses and harbours a mixture of boreal and Arctic flora and fauna. Inputs from large tidal glaciers create steep environmental gradients in sedimentation and salinity along the length of this fjord. The glacial inputs cause reduced biomass and diversity in the benthic community in the inner fjord. Zooplankton suffers direct mortality from the glacial outflow and primary production is reduced because of limited light levels in the turbid, mixed inner waters. The magnitude of the glacial effects diminishes towards the outer fjord. Kongsfjorden is an important feeding ground for marine mammals and seabirds. Even though the fjord contains some boreal fauna, the prey consumed by upper trophic levels is mainly Arctic organisms. Marine mammals constitute the largest top-predator biomass, but seabirds have the largest energy intake and also export nutrients and energy out of the marine environment. Kongsfjorden has received a lot of research attention in the recent past. The current interest in the fjord is primarily based on the fact that Kongsfjorden is particularly suitable as a site for exploring the impacts of possible climate changes, with Atlantic water influx and melting of tidal glaciers both being linked to climate variability. The pelagic ecosystem is likely to be most sensitive to the Atlantic versus Arctic influence, whereas the benthic ecosystem is more affected by long-term changes in hydrography as well as changes in glacial runoff and sedimentation. Kongsfjorden will be an important Arctic monitoring site over the coming decades and a review of the current knowledge, and a gap analysis, are therefore warranted. Important knowledge gaps include a lack of quantitative data on production, abundance of key prey species, and the role of advection on the biological communities in the fjord.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-2056
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Gammarus wilkitzkii, Apherusa glacialis, Onismus nanseni, Onismus glacialis, Boreogadus saida, Parathemisto libellula and Calanus hyperboreus, collected in late June in the Barents Sea marginal ice zone, contained substantial levels (28–51% of the dry mass) of total lipid, the highest levels (51% and 41% respectively) being in  A. glacialis and  C. hyperboreus. Neutral lipids were present in greater amounts than polar lipids in all species. Triacylglycerols were major neutral lipids in A. glacialis, G. wilkitzkii and O. nanseni; triacylglycerols and wax esters were present in similar amounts in O. glacialis; higher levels of wax esters than triacylglycerols occurred in P. libellula; wax esters greatly exceeded triacylglycerols in C. hyperboreus, the opposite being true for B. saida. Diatom fatty acid markers were prominent in the triacylglycerols of G. wilkitzkii, O. nanseni, O. glacialis and, particularly, of  A. glacialis; 20:1(n-9) and 22:1(n-11) moieties were abundant in wax esters of G. wilkitzkii, O. nanseni, O. glacialis, P. libellula and  C. hyperboreus, and in triacylglycerols of B. saida. We deduce that  A. glacialis feeds mainly on ice algae and phytodetritus, G. wilkitzkii and the Onismus spp. feed on calanoid copepods as well as ice algae, whereas P. libellula and especially B. saida feed extensively on calanoid copepods.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-2056
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Arctic ice amphipods are part of the sympagic macrofauna in the Marginal Ice Zone of the northern Barents Sea and represent an important link from lower to higher trophic levels in some Arctic marine food chains. The species diversity in this area (1995/1996) consisted of four species: Gammarus wilkitzkii, Apherusa glacialis, Onisimus nanseni and Onisimus glacialis. The larger ice amphipod, G. wilkitzkii, was the most abundant with the highest biomass (〉90%), whereas A. glacialis was abundant, but contributed little to the total biomass (〈4%). The other two species were found only in small numbers. Both abundance and biomass of ice amphipods decreased along a latitudinal gradient from north to south across the Marginal Ice Zone. Their distribution was also related to the under-ice topography with regard to mesoscale structures (edge, flat area, dome and ridge). Overall, the abundance and biomass on ridges were much higher in comparison to other mesoscale structures, although edges also showed high abundance, but low biomass. The large G. wilkitzkii was consistently abundant on ridges. The small A. glacialis was predominately associated with edges, but also showed high numbers in dome-shaped areas. The Onisimus species were present in low numbers at all structures, and their biomass contributed 〈10% on any one structure. The reasons for different distribution patterns of the dominant amphipod species under Arctic sea ice are probably related to different requirements of the species, especially for food, shelter and physiological conditions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Polar biology 15 (1995), S. 359-367 
    ISSN: 1432-2056
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Oxygen consumption (VO2) of juvenile Arctic cod (Boreogadus saida) was investigated at low tempera tures (six temperatures; range -0.5 to 2.7°C). Small (mean wt. 6–8 g) and large (mean wt. 14 g) fish were acclimated, or adjusted to a constant temperature (0.4°C), for 5 months and then tested for metabolic cold adaptation (elevated metabolic rates in polar fishes). Short-term (2 weeks) acclimated fish showed elevated VO2 similar to previously established values for polar fishes, but there was no such evidence after longterm acclimation. Long-term acclimation caused VO2 values to drop significantly (from 86.0 to 46.5 mg O2·kg−1·h−1, at 0.4°C), which showed that metabolic cold adaptation was a phenomenon caused by insufficien: acclimation time for fish in respiration experiments. We also measured the effects of temperature and feeding on VO2. A temperature increase of 2.3°C resulted in relatively large increases in VO2 for both longand short-term acclimated fish (Q10 = 6.7 and 7.1, respectively), which suggests that metabolic processes are strongly influenced by temperature when it is close to zero. Feeding individuals to satiation caused significant increases in VO2 above pre-fed values (34–60% within 1–2 days after feeding). Respiration budgets of starved and fed Arctic cod at ambient temperatures in Resolute Bay N.W.T., Canada, were used to model annual respiration costs and potential weight loss. Low respiration costs for Arctic cod at ambient temperatures result in high growth efficiency during periods of feeding and low weight loss during periods of starvation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Polar biology 19 (1998), S. 293-301 
    ISSN: 1432-2056
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Gastric evacuation rates were determined for different sizes of Arctic cod (Boreogadus saida) at sub-zero temperatures (−1.4 and −0.5°C). These temperatures represent ambient conditions for Arctic cod in the Canadian high Arctic. Evacuation half-times, the time required for half of the content of the stomach to be evacuated, were longer (36–70 h; mean=51 h) than those reported in studies carried out on other fish species. Gastric evacuation rates at low temperatures were equal to, or below, those predicted by extrapolation from experiments conducted at higher temperatures. There were no significant differences in evacuation rates among fish size-groups or diets, but evacuation rates were slower for fish that had been starved prior to experiments. Estimated daily rations for Arctic cod in Resolute Bay, N.W.T., were 0.51% body weight for small fish (4.5 g) and 1.13% body weight for large fish (51 g). Slow stomach evacuation rates at low temperatures may limit daily food intake when food is seasonally abundant. This may contribute to slow growth rates and limited maximum size of Arctic cod in Canadian high Arctic waters.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2002-06-01
    Print ISSN: 0013-936X
    Electronic ISSN: 1520-5851
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...