ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (132)
  • Latest Papers from Table of Contents or Articles in Press  (132)
  • Protein Conformation  (132)
  • 2000-2004  (132)
  • 1985-1989
  • 1935-1939
  • 2003  (65)
  • 2001  (67)
Collection
  • Articles  (132)
Source
  • Latest Papers from Table of Contents or Articles in Press  (132)
Years
  • 2000-2004  (132)
  • 1985-1989
  • 1935-1939
Year
  • 1
    Publication Date: 2003-04-26
    Description: Tubular nanostructures are suggested to have a wide range of applications in nanotechnology. We report our observation of the self-assembly of a very short peptide, the Alzheimer's beta-amyloid diphenylalanine structural motif, into discrete and stiff nanotubes. Reduction of ionic silver within the nanotubes, followed by enzymatic degradation of the peptide backbone, resulted in the production of discrete nanowires with a long persistence length. The same dipeptide building block, made of D-phenylalanine, resulted in the production of enzymatically stable nanotubes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reches, Meital -- Gazit, Ehud -- New York, N.Y. -- Science. 2003 Apr 25;300(5619):625-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12714741" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Amyloid beta-Peptides/chemistry ; Biosensing Techniques ; Birefringence ; Dipeptides/*chemistry ; Microscopy, Electron ; Microscopy, Electron, Scanning ; Molecular Sequence Data ; *Nanotechnology ; Oxidation-Reduction ; Protein Conformation ; Silver ; Solubility ; Spectroscopy, Fourier Transform Infrared
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2003-04-19
    Description: Soluble oligomers are common to most amyloids and may represent the primary toxic species of amyloids, like the Abeta peptide in Alzheimer's disease (AD). Here we show that all of the soluble oligomers tested display a common conformation-dependent structure that is unique to soluble oligomers regardless of sequence. The in vitro toxicity of soluble oligomers is inhibited by oligomer-specific antibody. Soluble oligomers have a unique distribution in human AD brain that is distinct from fibrillar amyloid. These results indicate that different types of soluble amyloid oligomers have a common structure and suggest they share a common mechanism of toxicity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kayed, Rakez -- Head, Elizabeth -- Thompson, Jennifer L -- McIntire, Theresa M -- Milton, Saskia C -- Cotman, Carl W -- Glabe, Charles G -- AG00538/AG/NIA NIH HHS/ -- AG16573/AG/NIA NIH HHS/ -- NS31230/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2003 Apr 18;300(5618):486-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12702875" target="_blank"〉PubMed〈/a〉
    Keywords: Aged ; Aged, 80 and over ; Alzheimer Disease/metabolism/pathology ; Amyloid/chemistry/toxicity ; Amyloid beta-Peptides/analysis/*chemistry/immunology/toxicity ; Animals ; Antibodies/immunology ; Antibody Specificity ; Biopolymers/analysis/chemistry/toxicity ; Brain/pathology ; Brain Chemistry ; Cell Survival ; Humans ; Microscopy, Confocal ; Microscopy, Electron ; Molecular Mimicry ; Neurofibrillary Tangles/chemistry ; Peptide Fragments/chemistry/immunology ; Protein Conformation ; Rabbits ; Solubility ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2003-07-12
    Description: Direct interaction between platelet receptor glycoprotein Ibalpha (GpIbalpha) and thrombin is required for platelet aggregation and activation at sites of vascular injury. Abnormal GpIbalpha-thrombin binding is associated with many pathological conditions,including occlusive arterial thrombosis and bleeding disorders. The crystal structure of the GpIbalpha-thrombin complex at 2.6 angstrom resolution reveals simultaneous interactions of GpIbalpha with exosite I of one thrombin molecule,and with exosite II of a second thrombin molecule. In the crystal lattice,the periodic arrangement of GpIbalpha-thrombin complexes mirrors a scaffold that could serve as a driving force for tight platelet adhesion. The details of these interactions reconcile GpIbalpha-thrombin binding modes that are presently controversial,highlighting two distinct interfaces that are potential targets for development of novel antithrombotic drugs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dumas, John J -- Kumar, Ravindra -- Seehra, Jasbir -- Somers, William S -- Mosyak, Lidia -- New York, N.Y. -- Science. 2003 Jul 11;301(5630):222-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemical and Screening Sciences, Wyeth, 200 Cambridge Park Drive, Cambridge, MA 02140, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12855811" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Blood Platelets/chemistry/physiology ; Crystallization ; Crystallography, X-Ray ; Humans ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Platelet Adhesiveness ; *Platelet Aggregation ; Platelet Glycoprotein GPIb-IX Complex/*chemistry/*metabolism ; Protein Binding ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Thrombin/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-02-04
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Calladine, C R -- Pratap, V -- Chandran, V -- Mizuguchi, K -- Luisi, B F -- New York, N.Y. -- Science. 2003 Jan 31;299(5607):661-2.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12561825" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Crystallography, X-Ray ; Escherichia coli Proteins/*chemistry ; Glycine/chemistry ; Ion Channels/*chemistry ; *Models, Molecular ; Protein Conformation ; Protein Structure, Secondary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2003-05-06
    Description: We have used adenosine diphosphate analogs containing electron paramagnetic resonance (EPR) spin moieties and EPR spectroscopy to show that the nucleotide-binding site of kinesin-family motors closes when the motor.diphosphate complex binds to microtubules. Structural analyses demonstrate that a domain movement in the switch 1 region at the nucleotide site, homologous to domain movements in the switch 1 region in the G proteins [heterotrimeric guanine nucleotide-binding proteins], explains the EPR data. The switch movement primes the motor both for the free energy-yielding nucleotide hydrolysis reaction and for subsequent conformational changes that are crucial for the generation of force and directed motion along the microtubule.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Naber, Nariman -- Minehardt, Todd J -- Rice, Sarah -- Chen, Xiaoru -- Grammer, Jean -- Matuska, Marija -- Vale, Ronald D -- Kollman, Peter A -- Car, Roberto -- Yount, Ralph G -- Cooke, Roger -- Pate, Edward -- AR39643/AR/NIAMS NIH HHS/ -- AR42895/AR/NIAMS NIH HHS/ -- DK05915/DK/NIDDK NIH HHS/ -- GM29072/GM/NIGMS NIH HHS/ -- RR1081/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2003 May 2;300(5620):798-801.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of California, San Francisco, CA 94143, USA. naber@itsa.ucsf.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12730601" target="_blank"〉PubMed〈/a〉
    Keywords: Adenine Nucleotides/*metabolism ; Adenosine Diphosphate/analogs & derivatives/metabolism ; Adenosine Triphosphate/analogs & derivatives/metabolism ; Animals ; Binding Sites ; Computer Simulation ; Crystallography, X-Ray ; *Drosophila Proteins ; Drosophila melanogaster ; Electron Spin Resonance Spectroscopy ; Humans ; Hydrogen Bonding ; Hydrolysis ; Kinesin/*chemistry/*metabolism ; Microtubules/*metabolism ; Models, Molecular ; Molecular Motor Proteins/*chemistry/*metabolism ; Molecular Probes/metabolism ; Protein Conformation ; Spin Labels
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-02-01
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hederstedt, Lars -- New York, N.Y. -- Science. 2003 Jan 31;299(5607):671-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell and Organism Biology, Lund University, SE-22362 Lund, Sweden. lars.hederstedt@cob.lu.se〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12560540" target="_blank"〉PubMed〈/a〉
    Keywords: Aerobiosis ; Anaerobiosis ; Binding Sites ; Crystallography, X-Ray ; Electron Transport ; Electron Transport Complex II ; Escherichia coli/*enzymology ; Flavin-Adenine Dinucleotide/metabolism ; Heme/chemistry/metabolism ; Models, Molecular ; Multienzyme Complexes/antagonists & inhibitors/*chemistry/*metabolism ; Oxidation-Reduction ; Oxidoreductases/antagonists & inhibitors/*chemistry/*metabolism ; Protein Conformation ; Protein Structure, Tertiary ; Protein Subunits/chemistry ; Reactive Oxygen Species/metabolism ; Succinate Dehydrogenase/antagonists & inhibitors/*chemistry/*metabolism ; Succinic Acid/metabolism ; Ubiquinone/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-02-22
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bray, Dennis -- New York, N.Y. -- Science. 2003 Feb 21;299(5610):1189-90.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK. d.bray@zoo.cam.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12595679" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Animals ; Antibody Diversity ; Escherichia coli Proteins/chemistry/genetics/metabolism ; Evolution, Molecular ; Genetic Variation ; Genomics ; Histones/chemistry/genetics/metabolism ; Humans ; Methylation ; Phenotype ; Potassium Channels/chemistry/genetics/metabolism ; Protein Conformation ; Protein Isoforms/chemistry/metabolism ; Protein Processing, Post-Translational ; Proteins/*chemistry/genetics/*metabolism ; Proteomics ; RNA Splicing ; Receptors, Cell Surface/chemistry/genetics/metabolism ; Selection, Genetic ; Troponin T/chemistry/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2003-05-10
    Description: Multidrug efflux pumps cause serious problems in cancer chemotherapy and treatment of bacterial infections. Yet high-resolution structures of ligand transporter complexes have previously been unavailable. We obtained x-ray crystallographic structures of the trimeric AcrB pump from Escherichia coli with four structurally diverse ligands. The structures show that three molecules of ligands bind simultaneously to the extremely large central cavity of 5000 cubic angstroms, primarily by hydrophobic, aromatic stacking and van der Waals interactions. Each ligand uses a slightly different subset of AcrB residues for binding. The bound ligand molecules often interact with each other, stabilizing the binding.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yu, Edward W -- McDermott, Gerry -- Zgurskaya, Helen I -- Nikaido, Hiroshi -- Koshland, Daniel E Jr -- AI 09644/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2003 May 9;300(5621):976-80.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12738864" target="_blank"〉PubMed〈/a〉
    Keywords: Anti-Infective Agents/chemistry/metabolism ; Anti-Infective Agents, Local/chemistry/metabolism ; Binding Sites ; Carrier Proteins/*chemistry/isolation & purification/*metabolism ; Cell Membrane/chemistry ; Chemistry, Physical ; Ciprofloxacin/chemistry/metabolism ; Crystallization ; Crystallography, X-Ray ; Dequalinium/chemistry/metabolism ; Escherichia coli Proteins/*chemistry/isolation & purification/*metabolism ; Ethidium/chemistry/metabolism ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Ligands ; Membrane Proteins/*chemistry/isolation & purification/*metabolism ; Models, Molecular ; Multidrug Resistance-Associated Proteins ; Physicochemical Phenomena ; Protein Binding ; Protein Conformation ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Rhodamines/chemistry/metabolism ; Static Electricity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2003-09-23
    Description: Although critical for development, immunity, wound healing, and metastasis, integrins represent one of the few classes of plasma membrane receptors for which the basic signaling mechanism remains a mystery. We investigated cytoplasmic conformational changes in the integrin LFA-1 (alphaLbeta2) in living cells by measuring fluorescence resonance energy transfer between cyan fluorescent protein-fused and yellow fluorescent protein-fused alphaL and beta2 cytoplasmic domains. In the resting state these domains were close to each other, but underwent significant spatial separation upon either intracellular activation of integrin adhesiveness (inside-out signaling) or ligand binding (outside-in signaling). Thus, bidirectional integrin signaling is accomplished by coupling extracellular conformational changes to an unclasping and separation of the alpha and beta cytoplasmic domains, a distinctive mechanism for transmitting information across the plasma membrane.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Minsoo -- Carman, Christopher V -- Springer, Timothy A -- CA31798/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2003 Sep 19;301(5640):1720-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉CBR Institute for Biomedical Research, Department of Pathology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14500982" target="_blank"〉PubMed〈/a〉
    Keywords: Antibodies, Monoclonal ; Antigens, CD11a/*chemistry ; Antigens, CD18/*chemistry ; Bacterial Proteins ; Cell Adhesion ; Cell Membrane/*metabolism ; Chemokine CXCL12 ; Chemokines, CXC/metabolism ; Cytoplasm/*chemistry ; Dimerization ; Fluorescence Resonance Energy Transfer ; Green Fluorescent Proteins ; Humans ; Intercellular Adhesion Molecule-1/metabolism ; Ligands ; Luminescent Proteins ; Lymphocyte Function-Associated Antigen-1/chemistry/*metabolism ; Protein Conformation ; Protein Structure, Tertiary ; Receptors, CXCR4/metabolism ; Recombinant Fusion Proteins/chemistry ; *Signal Transduction ; Talin/chemistry/metabolism ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2003-03-01
    Description: The mechanisms that determine how folding attempts are interrupted to target folding-incompetent proteins for endoplasmic reticulum-associated degradation (ERAD) are poorly defined. Here the alpha-mannosidase I-like protein EDEM was shown to extract misfolded glycoproteins, but not glycoproteins undergoing productive folding, from the calnexin cycle. EDEM overexpression resulted in faster release of folding-incompetent proteins from the calnexin cycle and earlier onset of degradation, whereas EDEM down-regulation prolonged folding attempts and delayed ERAD. Up-regulation of EDEM during ER stress may promote cell recovery by clearing the calnexin cycle and by accelerating ERAD of terminally misfolded polypeptides.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Molinari, Maurizio -- Calanca, Verena -- Galli, Carmela -- Lucca, Paola -- Paganetti, Paolo -- New York, N.Y. -- Science. 2003 Feb 28;299(5611):1397-400.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Research in Biomedicine, CH-6500 Bellinzona, Switzerland. Maurizio.molinari@irb.unisi.ch〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12610306" target="_blank"〉PubMed〈/a〉
    Keywords: Aspartic Acid Endopeptidases/chemistry/*metabolism ; Calnexin/*metabolism ; Cell Line ; Down-Regulation ; Electrophoresis, Polyacrylamide Gel ; Endoplasmic Reticulum/*metabolism ; Glycoproteins/chemistry/*metabolism ; Glycosylation ; Humans ; Kinetics ; Membrane Proteins/*metabolism ; Molecular Weight ; Polysaccharides/metabolism ; Protein Conformation ; Protein Folding ; RNA Interference ; Transfection ; Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-10-04
    Description: A C4-symmetric tetrameric aldolase was used to produce a quadratic network consisting of the enzyme as a rigid four-way connector and stiff streptavidin rods as spacers. Each aldolase subunit was furnished with a His6 tag for oriented binding to a planar surface and two tethered biotins for binding streptavidin in an oriented manner. The networks were improved by starting with composite units and also by binding to nickel-nitrilotriacetic acid-lipid monolayers. The mesh was adjustable in 5-nanometer increments. The production of a net with switchable mesh was initiated with the use of a calcium ion-containing beta-helix spacer that denatured on calcium ion depletion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ringler, Philippe -- Schulz, Georg E -- New York, N.Y. -- Science. 2003 Oct 3;302(5642):106-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut fur Organische Chemie und Biochemie, Albert-Ludwigs-Universitat Freiburg, Albertstrasse 21, D-79104 Freiburg im Breisgau, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14526081" target="_blank"〉PubMed〈/a〉
    Keywords: Aldehyde-Lyases/*chemistry/genetics/metabolism ; Binding Sites ; Biotin/chemistry/metabolism ; Calcium/metabolism ; Edetic Acid ; *Glycoside Hydrolases ; Lipids/chemistry ; Macromolecular Substances ; Metalloendopeptidases/chemistry/metabolism ; Microscopy, Electron ; Models, Molecular ; Mutation ; Nitrilotriacetic Acid ; Protein Conformation ; Protein Denaturation ; *Protein Engineering ; Protein Structure, Secondary ; Recombinant Fusion Proteins/chemistry ; Streptavidin/*chemistry ; beta-Galactosidase/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2003-06-28
    Description: Human antibody 2G12 neutralizes a broad range of human immunodeficiency virus type 1 (HIV-1) isolates by binding an unusually dense cluster of carbohydrate moieties on the "silent" face of the gp120 envelope glycoprotein. Crystal structures of Fab 2G12 and its complexes with the disaccharide Manalpha1-2Man and with the oligosaccharide Man9GlcNAc2 revealed that two Fabs assemble into an interlocked VH domain-swapped dimer. Further biochemical, biophysical, and mutagenesis data strongly support a Fab-dimerized antibody as the prevalent form that recognizes gp120. The extraordinary configuration of this antibody provides an extended surface, with newly described binding sites, for multivalent interaction with a conserved cluster of oligomannose type sugars on the surface of gp120. The unique interdigitation of Fab domains within an antibody uncovers a previously unappreciated mechanism for high-affinity recognition of carbohydrate or other repeating epitopes on cell or microbial surfaces.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Calarese, Daniel A -- Scanlan, Christopher N -- Zwick, Michael B -- Deechongkit, Songpon -- Mimura, Yusuke -- Kunert, Renate -- Zhu, Ping -- Wormald, Mark R -- Stanfield, Robyn L -- Roux, Kenneth H -- Kelly, Jeffery W -- Rudd, Pauline M -- Dwek, Raymond A -- Katinger, Hermann -- Burton, Dennis R -- Wilson, Ian A -- AI33292/AI/NIAID NIH HHS/ -- GM46192/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Jun 27;300(5628):2065-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12829775" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antibodies, Monoclonal/chemistry/immunology/metabolism ; Antibody Affinity ; Antibody Specificity ; Binding Sites, Antibody ; Cell Adhesion Molecules/metabolism ; Centrifugation, Density Gradient ; Crystallization ; Crystallography, X-Ray ; Dimerization ; Disaccharides/chemistry/metabolism ; Epitopes ; HIV Antibodies/*chemistry/genetics/*immunology/metabolism ; HIV Envelope Protein gp120/*immunology ; HIV-1/*immunology ; Humans ; Hydrogen Bonding ; Immunoglobulin Fab Fragments/*chemistry/genetics/*immunology/metabolism ; Immunoglobulin Heavy Chains/chemistry/immunology ; Immunoglobulin Light Chains/chemistry/immunology ; Immunoglobulin Variable Region/chemistry/immunology ; Lectins/chemistry/immunology/metabolism ; Lectins, C-Type/metabolism ; Ligands ; Mannans/chemistry/metabolism ; Mannosides/chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis ; Oligosaccharides/chemistry/*immunology/metabolism ; Protein Conformation ; Protein Structure, Tertiary ; Receptors, Cell Surface/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2003-04-26
    Description: Eukaryotic 2-Cys peroxiredoxins (2-Cys Prxs) not only act as antioxidants, but also appear to regulate hydrogen peroxide-mediated signal transduction. We show that bacterial 2-Cys Prxs are much less sensitive to oxidative inactivation than are eukaryotic 2-Cys Prxs. By identifying two sequence motifs unique to the sensitive 2-Cys Prxs and comparing the crystal structure of a bacterial 2-Cys Prx at 2.2 angstrom resolution with other Prx structures, we define the structural origins of sensitivity. We suggest this adaptation allows 2-Cys Prxs to act as floodgates, keeping resting levels of hydrogen peroxide low, while permitting higher levels during signal transduction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wood, Zachary A -- Poole, Leslie B -- Karplus, P Andrew -- ES00210/ES/NIEHS NIH HHS/ -- GM50389/GM/NIGMS NIH HHS/ -- R01 GM050389/GM/NIGMS NIH HHS/ -- R01 GM050389-10/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Apr 25;300(5619):650-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97333, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12714747" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Bacteria/enzymology ; Binding Sites ; Catalysis ; Crystallography, X-Ray ; Cysteine/metabolism ; Disulfides/chemistry/metabolism ; Evolution, Molecular ; Humans ; Hydrogen Peroxide/*metabolism ; Models, Chemical ; Models, Molecular ; Molecular Sequence Data ; Oxidation-Reduction ; Peroxidases/*chemistry/*metabolism ; Peroxiredoxins ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Salmonella typhimurium/*enzymology ; Sequence Alignment ; *Signal Transduction ; Sulfenic Acids/metabolism ; Sulfinic Acids/metabolism ; Yeasts/enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-06-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miller, Greg -- New York, N.Y. -- Science. 2003 Jun 27;300(5628):2020-2.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12829759" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Membrane/chemistry ; Crystallization ; Crystallography, X-Ray ; Desulfurococcaceae/chemistry ; Glycosylation ; Hot Temperature ; *Ion Channel Gating ; *Models, Molecular ; Models, Neurological ; Neurons/chemistry/physiology ; Potassium Channels, Voltage-Gated/*chemistry/*physiology ; Protein Conformation ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Static Electricity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2003-12-13
    Description: The crystal structure at 4.8 angstrom resolution of the reaction center-light harvesting 1 (RC-LH1) core complex from Rhodopseudomonas palustris shows the reaction center surrounded by an oval LH1 complex that consists of 15 pairs of transmembrane helical alpha- and beta-apoproteins and their coordinated bacteriochlorophylls. Complete closure of the RC by the LH1 is prevented by a single transmembrane helix, out of register with the array of inner LH1 alpha-apoproteins. This break, located next to the binding site in the reaction center for the secondary electron acceptor ubiquinone (UQB), may provide a portal through which UQB can transfer electrons to cytochrome b/c1.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Roszak, Aleksander W -- Howard, Tina D -- Southall, June -- Gardiner, Alastair T -- Law, Christopher J -- Isaacs, Neil W -- Cogdell, Richard J -- New York, N.Y. -- Science. 2003 Dec 12;302(5652):1969-72.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14671305" target="_blank"〉PubMed〈/a〉
    Keywords: Apoproteins/chemistry ; Bacterial Proteins/*chemistry ; Bacteriochlorophyll A/chemistry ; Binding Sites ; Crystallization ; Crystallography, X-Ray ; Light-Harvesting Protein Complexes/*chemistry ; Macromolecular Substances ; Models, Molecular ; Photosynthetic Reaction Center Complex Proteins/*chemistry ; Protein Conformation ; Protein Structure, Secondary ; Rhodopseudomonas/*chemistry ; Ubiquinone/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2003-08-02
    Description: Membrane transport proteins that transduce free energy stored in electrochemical ion gradients into a concentration gradient are a major class of membrane proteins. We report the crystal structure at 3.5 angstroms of the Escherichia coli lactose permease, an intensively studied member of the major facilitator superfamily of transporters. The molecule is composed of N- and C-terminal domains, each with six transmembrane helices, symmetrically positioned within the permease. A large internal hydrophilic cavity open to the cytoplasmic side represents the inward-facing conformation of the transporter. The structure with a bound lactose homolog, beta-D-galactopyranosyl-1-thio-beta-D-galactopyranoside, reveals the sugar-binding site in the cavity, and residues that play major roles in substrate recognition and proton translocation are identified. We propose a possible mechanism for lactose/proton symport (co-transport) consistent with both the structure and a large body of experimental data.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Abramson, Jeff -- Smirnova, Irina -- Kasho, Vladimir -- Verner, Gillian -- Kaback, H Ronald -- Iwata, So -- DK51131: 08/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2003 Aug 1;301(5633):610-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Imperial College London, London SW7 2AZ, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12893935" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Binding Sites ; Biological Transport ; Cell Membrane/enzymology ; Crystallization ; Crystallography, X-Ray ; Escherichia coli/*chemistry/enzymology ; Escherichia coli Proteins/chemistry/genetics/metabolism ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Ion Transport ; Lactose/*metabolism ; Membrane Transport Proteins/*chemistry/genetics/*metabolism ; Models, Molecular ; *Monosaccharide Transport Proteins ; Mutation ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protons ; Substrate Specificity ; *Symporters ; Thiogalactosides/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2003-02-01
    Description: The structure of Escherichia coli succinate dehydrogenase (SQR), analogous to the mitochondrial respiratory complex II, has been determined, revealing the electron transport pathway from the electron donor, succinate, to the terminal electron acceptor, ubiquinone. It was found that the SQR redox centers are arranged in a manner that aids the prevention of reactive oxygen species (ROS) formation at the flavin adenine dinucleotide. This is likely to be the main reason SQR is expressed during aerobic respiration rather than the related enzyme fumarate reductase, which produces high levels of ROS. Furthermore, symptoms of genetic disorders associated with mitochondrial SQR mutations may be a result of ROS formation resulting from impaired electron transport in the enzyme.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yankovskaya, Victoria -- Horsefield, Rob -- Tornroth, Susanna -- Luna-Chavez, Cesar -- Miyoshi, Hideto -- Leger, Christophe -- Byrne, Bernadette -- Cecchini, Gary -- Iwata, So -- GM61606/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Jan 31;299(5607):700-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Biology Division, VA Medical Center, San Francisco, CA 94121, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12560550" target="_blank"〉PubMed〈/a〉
    Keywords: Aerobiosis ; Anaerobiosis ; Binding Sites ; Crystallography, X-Ray ; Dinitrophenols/chemistry/pharmacology ; Electron Transport ; Electron Transport Complex II ; Escherichia coli/*enzymology ; Flavin-Adenine Dinucleotide/metabolism ; Heme/chemistry ; Models, Molecular ; Multienzyme Complexes/antagonists & inhibitors/*chemistry/genetics/*metabolism ; Mutation ; Oxidation-Reduction ; Oxidoreductases/antagonists & inhibitors/*chemistry/genetics/*metabolism ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits/chemistry ; Reactive Oxygen Species/*metabolism ; Succinate Dehydrogenase/antagonists & inhibitors/*chemistry/genetics/*metabolism ; Succinic Acid/metabolism ; Superoxides/metabolism ; Ubiquinone/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2003-09-06
    Description: The earliest of a series of copper efflux genes in Escherichia coli are controlled by CueR, a member of the MerR family of transcriptional activators. Thermodynamic calibration of CueR reveals a zeptomolar (10(-21) molar) sensitivity to free Cu+, which is far less than one atom per cell. Atomic details of this extraordinary sensitivity and selectivity for +1transition-metal ions are revealed by comparing the crystal structures of CueR and a Zn2+-sensing homolog, ZntR. An unusual buried metal-receptor site in CueR restricts the metal to a linear, two-coordinate geometry and uses helix-dipole and hydrogen-bonding interactions to enhance metal binding. This binding mode is rare among metalloproteins but well suited for an ultrasensitive genetic switch.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Changela, Anita -- Chen, Kui -- Xue, Yi -- Holschen, Jackie -- Outten, Caryn E -- O'Halloran, Thomas V -- Mondragon, Alfonso -- F32 DK61868/DK/NIDDK NIH HHS/ -- GM08382/GM/NIGMS NIH HHS/ -- GM38784/GM/NIGMS NIH HHS/ -- GM51350/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Sep 5;301(5638):1383-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, 2205Tech Drive, Evanston, IL 60208, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12958362" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Proteins/*chemistry/genetics/*metabolism ; Binding Sites ; Copper/*metabolism ; Crystallization ; Crystallography, X-Ray ; DNA-Binding Proteins/*chemistry/genetics/*metabolism ; Dimerization ; Escherichia coli/*chemistry/genetics/metabolism ; Escherichia coli Proteins/*chemistry/genetics/*metabolism ; Helix-Turn-Helix Motifs ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Ligands ; Metals/*metabolism ; Models, Molecular ; Molecular Sequence Data ; Oxidation-Reduction ; Promoter Regions, Genetic ; Protein Conformation ; Protein Structure, Secondary ; Sequence Alignment ; Thermodynamics ; Transcription Factors/chemistry/genetics/metabolism ; Transcriptional Activation ; Zinc/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2003-07-26
    Description: The multidomain proapoptotic molecules BAK or BAX are required to initiate the mitochondrial pathway of apoptosis. How cells maintain the potentially lethal proapoptotic effector BAK in a monomeric inactive conformation at mitochondria is unknown. In viable cells, we found BAK complexed with mitochondrial outer-membrane protein VDAC2, a VDAC isoform present in low abundance that interacts specifically with the inactive conformer of BAK. Cells deficient in VDAC2, but not cells lacking the more abundant VDAC1, exhibited enhanced BAK oligomerization and were more susceptible to apoptotic death. Conversely, overexpression of VDAC2 selectively prevented BAK activation and inhibited the mitochondrial apoptotic pathway. Death signals activate "BH3-only" molecules such as tBID, BIM, or BAD, which displace VDAC2 from BAK, enabling homo-oligomerization of BAK and apoptosis. Thus, VDAC2, an isoform restricted to mammals, regulates the activity of BAK and provides a connection between mitochondrial physiology and the core apoptotic pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cheng, Emily H Y -- Sheiko, Tatiana V -- Fisher, Jill K -- Craigen, William J -- Korsmeyer, Stanley J -- NS42319/NS/NINDS NIH HHS/ -- R37CA50239/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2003 Jul 25;301(5632):513-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12881569" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; BH3 Interacting Domain Death Agonist Protein ; Biopolymers ; Carrier Proteins/metabolism/pharmacology ; Cell Line ; Cells, Cultured ; Etoposide/pharmacology ; Humans ; Intracellular Membranes/metabolism ; Jurkat Cells ; Membrane Proteins/chemistry/genetics/*metabolism ; Mice ; Mice, Inbred C57BL ; Mitochondria/*metabolism ; Mitochondria, Liver/metabolism ; Porins/genetics/isolation & purification/*metabolism ; Protein Binding ; Protein Conformation ; Protein Structure, Tertiary ; Proto-Oncogene Proteins/metabolism ; *Proto-Oncogene Proteins c-bcl-2 ; Recombinant Proteins/pharmacology ; Staurosporine/pharmacology ; Voltage-Dependent Anion Channel 1 ; Voltage-Dependent Anion Channel 2 ; Voltage-Dependent Anion Channels ; bcl-2 Homologous Antagonist-Killer Protein ; bcl-2-Associated X Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-08-02
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Locher, Kaspar P -- Bass, Randal B -- Rees, Douglas C -- New York, N.Y. -- Science. 2003 Aug 1;301(5633):603-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut fur Molekularbiologie und Biophysik, Eidgenossische Technische Hochschule Zurich, Zurich CH-8093, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12893929" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Biological Transport ; Cell Membrane/enzymology ; Crystallography, X-Ray ; Escherichia coli/chemistry/enzymology ; Escherichia coli Proteins/*chemistry/metabolism ; Glycerophosphates/metabolism ; Lactose/metabolism ; Membrane Transport Proteins/*chemistry/metabolism ; Models, Molecular ; *Monosaccharide Transport Proteins ; Phosphates/metabolism ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; *Symporters
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2003-06-28
    Description: Interleukin-6 (IL-6) is an immunoregulatory cytokine that activates a cell-surface signaling assembly composed of IL-6, the IL-6 alpha-receptor (IL-6Ralpha), and the shared signaling receptor gp130. The 3.65 angstrom-resolution structure of the extracellular signaling complex reveals a hexameric, interlocking assembly mediated by a total of 10 symmetry-related, thermodynamically coupled interfaces. Assembly of the hexameric complex occurs sequentially: IL-6 is first engaged by IL-6Ralpha and then presented to gp130in the proper geometry to facilitate a cooperative transition into the high-affinity, signaling-competent hexamer. The quaternary structures of other IL-6/IL-12 family signaling complexes are likely constructed by means of a similar topological blueprint.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Boulanger, Martin J -- Chow, Dar-chone -- Brevnova, Elena E -- Garcia, K Christopher -- AI51321/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2003 Jun 27;300(5628):2101-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology and Department of Structural Biology, Stanford University School of Medicine, Fairchild D319, 299 Campus Drive, Stanford, CA 94305-5124, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12829785" target="_blank"〉PubMed〈/a〉
    Keywords: Antigens, CD/*chemistry/*metabolism ; Binding Sites ; Crystallography, X-Ray ; Cytokine Receptor gp130 ; Humans ; Interleukin-6/*chemistry/*metabolism ; Macromolecular Substances ; Membrane Glycoproteins/*chemistry/*metabolism ; Models, Molecular ; Protein Binding ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Receptors, Interleukin-6/*chemistry/*metabolism ; Signal Transduction ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-10-04
    Description: Cell adhesion by adherens junctions and desmosomes relies on interactions between cadherin molecules. However, the molecular interfaces that define molecular specificity and that mediate adhesion remain controversial. We used electron tomography of plastic sections from neonatal mouse skin to visualize the organization of desmosomes in situ. The resulting three-dimensional maps reveal individual cadherin molecules forming discrete groups and interacting through their tips. Fitting of an x-ray crystal structure for C-cadherin to these maps is consistent with a flexible intermolecular interface mediated by an exchange of amino-terminal tryptophans. This flexibility suggests a novel mechanism for generating both cis and trans interactions and for propagating these adhesive interactions along the junction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉He, Wanzhong -- Cowin, Pamela -- Stokes, David L -- R01 GM47429/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Oct 3;302(5642):109-13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA..〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14526082" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Newborn ; Cadherins/*chemistry/*ultrastructure ; Cell Adhesion ; Crystallography, X-Ray ; Cytoskeletal Proteins/chemistry/ultrastructure ; Desmoplakins ; Desmosomes/*chemistry/*ultrastructure ; Dimerization ; Epidermis/chemistry/ultrastructure ; Freeze Substitution ; Hydrophobic and Hydrophilic Interactions ; *Image Processing, Computer-Assisted ; Mice ; Microscopy, Electron/methods ; Protein Binding ; Protein Conformation ; Protein Structure, Tertiary ; *Tomography ; Tryptophan/chemistry ; Xenopus Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2003-10-25
    Description: Rab/Ypt guanosine triphosphatases (GTPases) represent a family of key membrane traffic regulators in eukaryotic cells whose function is governed by the guanosine diphosphate (GDP) dissociation inhibitor (RabGDI). Using a combination of chemical synthesis and protein engineering, we generated and crystallized the monoprenylated Ypt1:RabGDI complex. The structure of the complex was solved to 1.5 angstrom resolution and provides a structural basis for the ability of RabGDI to inhibit the release of nucleotide by Rab proteins. Isoprenoid binding requires a conformational change that opens a cavity in the hydrophobic core of its domain II. Analysis of the structure provides a molecular basis for understanding a RabGDI mutant that causes mental retardation in humans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rak, Alexey -- Pylypenko, Olena -- Durek, Thomas -- Watzke, Anja -- Kushnir, Susanna -- Brunsveld, Lucas -- Waldmann, Herbert -- Goody, Roger S -- Alexandrov, Kirill -- New York, N.Y. -- Science. 2003 Oct 24;302(5645):646-50.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physical Biochemistry, Max-Planck-Institute for Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14576435" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Crystallization ; Crystallography, X-Ray ; Guanine Nucleotide Dissociation Inhibitors/*chemistry/genetics/metabolism ; Guanosine Diphosphate/chemistry/metabolism ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Lipid Metabolism ; Magnesium/chemistry/metabolism ; Models, Molecular ; Mutation ; Protein Binding ; Protein Conformation ; Protein Prenylation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Recombinant Proteins/chemistry/metabolism ; Saccharomyces cerevisiae Proteins/chemistry/metabolism ; rab GTP-Binding Proteins/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2003-09-27
    Description: Like many bacterial pathogens, Salmonella spp. use a type III secretion system to inject virulence proteins into host cells. The Salmonella invasion protein A (SipA) binds host actin, enhances its polymerization near adherent extracellular bacteria, and contributes to cytoskeletal rearrangements that internalize the pathogen. By combining x-ray crystallography of SipA with electron microscopy and image analysis of SipA-actin filaments, we show that SipA functions as a "molecular staple," in which a globular domain and two nonglobular "arms" mechanically stabilize the filament by tethering actin subunits in opposing strands. Deletion analysis of the tethering arms provides strong support for this model.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lilic, Mirjana -- Galkin, Vitold E -- Orlova, Albina -- VanLoock, Margaret S -- Egelman, Edward H -- Stebbins, C Erec -- New York, N.Y. -- Science. 2003 Sep 26;301(5641):1918-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Structural Microbiology, Rockefeller University, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14512630" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Cytoskeleton/metabolism ; Actins/*metabolism ; Bacterial Proteins/*chemistry/genetics/*metabolism ; Binding Sites ; Crystallography, X-Ray ; Image Processing, Computer-Assisted ; Microfilament Proteins/*chemistry/genetics/*metabolism ; Microscopy, Electron ; Models, Molecular ; Protein Binding ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Recombinant Proteins/chemistry/metabolism ; Salmonella typhimurium/chemistry/*metabolism ; Sequence Deletion ; Subtilisin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2003-10-11
    Description: Electron transfer is used as a probe for angstrom-scale structural changes in single protein molecules. In a flavin reductase, the fluorescence of flavin is quenched by a nearby tyrosine residue by means of photo-induced electron transfer. By probing the fluorescence lifetime of the single flavin on a photon-by-photon basis, we were able to observe the variation of flavin-tyrosine distance over time. We could then determine the potential of mean force between the flavin and the tyrosine, and a correlation analysis revealed conformational fluctuation at multiple time scales spanning from hundreds of microseconds to seconds. This phenomenon suggests the existence of multiple interconverting conformers related to the fluctuating catalytic reactivity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yang, Haw -- Luo, Guobin -- Karnchanaphanurach, Pallop -- Louie, Tai-Man -- Rech, Ivan -- Cova, Sergio -- Xun, Luying -- Xie, X Sunney -- R01GM61577-01/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Oct 10;302(5643):262-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14551431" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Catalysis ; Chemistry, Physical ; Computer Simulation ; Electrons ; Escherichia coli/enzymology ; FMN Reductase/*chemistry/genetics/metabolism ; Flavin Mononucleotide/*chemistry/metabolism ; Flavin-Adenine Dinucleotide/*chemistry/metabolism ; Flavins ; Fluorescence ; Hydrogen Bonding ; Likelihood Functions ; Mathematics ; Models, Molecular ; Mutagenesis, Site-Directed ; Photons ; Physicochemical Phenomena ; Protein Conformation ; Serine ; Spectrometry, Fluorescence ; Temperature ; Thermodynamics ; Tyrosine
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2003-03-29
    Description: Acetyl-coenzyme A carboxylases (ACCs) are required for the biosynthesis and oxidation of long-chain fatty acids. They are targets for therapeutics against obesity and diabetes, and several herbicides function by inhibiting their carboxyltransferase (CT) domain. We determined the crystal structure of the free enzyme and the coenzyme A complex of yeast CT at 2.7 angstrom resolution and found that it comprises two domains, both belonging to the crotonase/ClpP superfamily. The active site is at the interface of a dimer. Mutagenesis and kinetic studies reveal the functional roles of conserved residues here. The herbicides target the active site of CT, providing a lead for inhibitor development against human ACCs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Hailong -- Yang, Zhiru -- Shen, Yang -- Tong, Liang -- New York, N.Y. -- Science. 2003 Mar 28;299(5615):2064-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Columbia University, New York, NY 10027, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12663926" target="_blank"〉PubMed〈/a〉
    Keywords: Acetyl-CoA Carboxylase/antagonists & inhibitors/*chemistry/genetics/metabolism ; Amino Acid Sequence ; Binding Sites ; Biotin/chemistry/metabolism ; Catalysis ; Coenzyme A/chemistry/metabolism ; Crystallography, X-Ray ; Dimerization ; Enzyme Inhibitors/metabolism/pharmacology ; Hydrogen Bonding ; Kinetics ; Molecular Sequence Data ; Mutagenesis ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Pyridines/metabolism/pharmacology ; Saccharomyces cerevisiae/*enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2003-10-04
    Description: Control of integrin affinity for ligands (integrin activation) is essential for normal cell adhesion, migration, and assembly of an extracellular matrix. Integrin activation is usually mediated through the integrin beta subunit cytoplasmic tail and can be regulated by many different biochemical signaling pathways. We report that specific binding of the cytoskeletal protein talin to integrin beta subunit cytoplasmic tails leads to the conformational rearrangements of integrin extracellular domains that increase their affinity. Thus, regulated binding of talin to integrin beta tails is a final common element of cellular signaling cascades that control integrin activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tadokoro, Seiji -- Shattil, Sanford J -- Eto, Koji -- Tai, Vera -- Liddington, Robert C -- de Pereda, Jose M -- Ginsberg, Mark H -- Calderwood, David A -- New York, N.Y. -- Science. 2003 Oct 3;302(5642):103-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, The Scripps Research Institute, The Burnham Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14526080" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Antibodies, Monoclonal/immunology ; Antigens, CD29/chemistry/metabolism ; Cell Line ; Fibronectins/metabolism ; Humans ; Integrin beta Chains/chemistry/*metabolism ; Integrin beta3/chemistry/metabolism ; Molecular Sequence Data ; Mutation ; Platelet Glycoprotein GPIIb-IIIa Complex/chemistry/immunology/metabolism ; Protein Binding ; Protein Conformation ; Protein Structure, Tertiary ; RNA, Small Interfering ; Recombinant Proteins/metabolism ; *Signal Transduction ; Talin/*metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2003-05-15
    Description: A novel coronavirus has been identified as the causative agent of severe acute respiratory syndrome (SARS). The viral main proteinase (Mpro, also called 3CLpro), which controls the activities of the coronavirus replication complex, is an attractive target for therapy. We determined crystal structures for human coronavirus (strain 229E) Mpro and for an inhibitor complex of porcine coronavirus [transmissible gastroenteritis virus (TGEV)] Mpro, and we constructed a homology model for SARS coronavirus (SARS-CoV) Mpro. The structures reveal a remarkable degree of conservation of the substrate-binding sites, which is further supported by recombinant SARS-CoV Mpro-mediated cleavage of a TGEV Mpro substrate. Molecular modeling suggests that available rhinovirus 3Cpro inhibitors may be modified to make them useful for treating SARS.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Anand, Kanchan -- Ziebuhr, John -- Wadhwani, Parvesh -- Mesters, Jeroen R -- Hilgenfeld, Rolf -- New York, N.Y. -- Science. 2003 Jun 13;300(5626):1763-7. Epub 2003 May 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Biochemistry, University of Lubeck, D-23538 Lubeck, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12746549" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Chloromethyl Ketones/chemistry/metabolism ; Amino Acid Sequence ; *Antiviral Agents ; Binding Sites ; Catalytic Domain ; Coronavirus 229E, Human/*enzymology ; Crystallization ; Crystallography, X-Ray ; Cysteine Endopeptidases/*chemistry/metabolism ; Cysteine Proteinase Inhibitors/chemistry/metabolism ; Dimerization ; *Drug Design ; Humans ; Isoxazoles/chemistry/metabolism/pharmacology ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Pyrrolidinones/chemistry/metabolism/pharmacology ; Recombinant Proteins/chemistry/metabolism ; SARS Virus/*drug effects/*enzymology ; Sequence Alignment ; Sequence Homology, Amino Acid ; Severe Acute Respiratory Syndrome/drug therapy ; Transmissible gastroenteritis virus/enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2003-10-18
    Description: Unfolded proteins in the endoplasmic reticulum cause trans-autophosphorylation of the bifunctional transmembrane kinase Ire1, which induces its endoribonuclease activity. The endoribonuclease initiates nonconventional splicing of HAC1 messenger RNA to trigger the unfolded-protein response (UPR). We explored the role of Ire1's kinase domain by sensitizing it through site-directed mutagenesis to the ATP-competitive inhibitor 1NM-PP1. Paradoxically, rather than being inhibited by 1NM-PP1, drug-sensitized Ire1 mutants required 1NM-PP1 as a cofactor for activation. In the presence of 1NM-PP1, drug-sensitized Ire1 bypassed mutations that inactivate its kinase activity and induced a full UPR. Thus, rather than through phosphorylation per se, a conformational change in the kinase domain triggered by occupancy of the active site with a ligand leads to activation of all known downstream functions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Papa, Feroz R -- Zhang, Chao -- Shokat, Kevan -- Walter, Peter -- AI44009/AI/NIAID NIH HHS/ -- GM32384/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Nov 28;302(5650):1533-7. Epub 2003 Oct 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, University of California, San Francisco, CA 94143-2200, USA. frpapa@medicine.ucsf.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14564015" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Diphosphate/pharmacology ; Adenosine Triphosphate/analogs & derivatives/chemistry/*metabolism/pharmacology ; Basic-Leucine Zipper Transcription Factors ; Binding Sites ; Binding, Competitive ; Cytosol/metabolism ; Dithiothreitol/pharmacology ; Endoplasmic Reticulum/*metabolism ; Endoribonucleases/metabolism ; Enzyme Activation ; Ligands ; Membrane Glycoproteins/antagonists & inhibitors/*chemistry/genetics/*metabolism ; Models, Biological ; Mutagenesis, Site-Directed ; Phosphorylation ; Protein Conformation ; *Protein Folding ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/antagonists & ; inhibitors/*chemistry/genetics/*metabolism ; Pyrazoles/chemistry/*metabolism/*pharmacology ; Pyrimidines/chemistry/*metabolism/*pharmacology ; RNA Splicing ; RNA, Messenger/genetics/metabolism ; Repressor Proteins/genetics/metabolism ; Saccharomyces cerevisiae Proteins/antagonists & ; inhibitors/*chemistry/genetics/*metabolism ; Signal Transduction ; Structure-Activity Relationship ; Substrate Specificity ; Transcription Factors/genetics/metabolism ; Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2003-01-04
    Description: How scaffold proteins control information flow in signaling pathways is poorly understood: Do they simply tether components, or do they precisely orient and activate them? We found that the yeast mitogen-activated protein (MAP) kinase scaffold Ste5 is tolerant to major stereochemical perturbations; heterologous protein interactions could functionally replace native kinase recruitment interactions, indicating that simple tethering is largely sufficient for scaffold-mediated signaling. Moreover, by engineering a scaffold that tethers a unique kinase set, we could create a synthetic MAP kinase pathway with non-natural input-output properties. These findings demonstrate that scaffolds are highly flexible organizing factors that can facilitate pathway evolution and engineering.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Park, Sang-Hyun -- Zarrinpar, Ali -- Lim, Wendell A -- New York, N.Y. -- Science. 2003 Feb 14;299(5609):1061-4. Epub 2003 Jan 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular and Molecular Pharmacology and Department of Biochemistry and Biophysics, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12511654" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptor Proteins, Signal Transducing ; Binding Sites ; Carrier Proteins/chemistry/genetics/*metabolism ; Evolution, Molecular ; MAP Kinase Kinase Kinases/genetics/*metabolism ; *MAP Kinase Signaling System ; Membrane Proteins/metabolism ; Mitogen-Activated Protein Kinase Kinases/metabolism ; Mitogen-Activated Protein Kinases/metabolism ; Mutation ; Osmolar Concentration ; Phosphorylation ; Protein Binding ; Protein Conformation ; Protein Kinases/genetics/*metabolism ; Protein Precursors/metabolism ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/metabolism ; Saccharomyces cerevisiae/enzymology/*metabolism/physiology ; Saccharomyces cerevisiae Proteins/chemistry/genetics/*metabolism ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2003-05-10
    Description: The splicing factor SF3b is a multiprotein complex essential for the accurate excision of introns from pre-messenger RNA. As an integral component of the U2 small nuclear ribonucleoprotein (snRNP) and the U11/U12 di-snRNP, SF3b is involved in the recognition of the pre-messenger RNA's branch site within the major and minor spliceosomes. We have determined the three-dimensional structure of the human SF3b complex by single-particle electron cryomicroscopy at a resolution of less than 10 angstroms, allowing identification of protein domains with known structural folds. The best fit of a modeled RNA-recognition motif indicates that the protein p14 is located in the central cavity of the complex. The 22 tandem helical repeats of the protein SF3b155 are located in the outer shell of the complex enclosing p14.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Golas, Monika M -- Sander, Bjoern -- Will, Cindy L -- Luhrmann, Reinhard -- Stark, Holger -- New York, N.Y. -- Science. 2003 May 9;300(5621):980-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Gottingen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12738865" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Cryoelectron Microscopy ; HeLa Cells ; Humans ; Image Processing, Computer-Assisted ; Macromolecular Substances ; Models, Molecular ; Multiprotein Complexes ; Phosphoproteins/*chemistry ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; RNA Precursors/chemistry/metabolism ; RNA Splicing ; *RNA-Binding Proteins ; Repetitive Sequences, Amino Acid ; Ribonucleoprotein, U2 Small Nuclear/*chemistry ; Spliceosomes/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2003-12-03
    Description: The early genetic pathway(s) triggering the pathogenesis of coronary artery disease (CAD) and myocardial infarction (MI) remain largely unknown. Here, we describe an autosomal dominant form of CAD/MI (adCAD1) that is caused by the deletion of seven amino acids in transcription factor MEF2A. The deletion disrupts nuclear localization of MEF2A, reduces MEF2A-mediated transcription activation, and abolishes synergistic activation by MEF2A and by the transcription factor GATA-1 through a dominant-negative mechanism. The MEF2A protein demonstrates strong expression in the endothelium of coronary arteries. These results identify a pathogenic gene for a familial vascular disease with features of CAD and implicate the MEF2A signaling pathway in the pathogenesis of CAD/MI.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1618876/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1618876/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Lejin -- Fan, Chun -- Topol, Sarah E -- Topol, Eric J -- Wang, Qing -- R01 HL065630/HL/NHLBI NIH HHS/ -- R01 HL066251/HL/NHLBI NIH HHS/ -- R01 HL65630/HL/NHLBI NIH HHS/ -- R01 HL66251/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2003 Nov 28;302(5650):1578-81.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Cardiovascular Genetics, Department of Cardiovascular Medicine, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14645853" target="_blank"〉PubMed〈/a〉
    Keywords: Aged ; Amino Acid Sequence ; Animals ; Arteries/metabolism ; Base Sequence ; Cell Nucleus/metabolism ; Chromosomes, Human, Pair 15/genetics ; Coronary Artery Disease/*genetics/metabolism ; Coronary Vessels/metabolism ; DNA-Binding Proteins/chemistry/*genetics/metabolism ; Dimerization ; Endothelium, Vascular/metabolism ; Erythroid-Specific DNA-Binding Factors ; Female ; Fluorescent Antibody Technique ; GATA1 Transcription Factor ; Gene Expression ; Genes, Dominant ; Genetic Linkage ; Genetic Markers ; Genetic Predisposition to Disease ; Humans ; MADS Domain Proteins ; MEF2 Transcription Factors ; Male ; Middle Aged ; Molecular Sequence Data ; Muscle, Smooth/cytology/metabolism ; Myocardial Infarction/*genetics/metabolism ; Myogenic Regulatory Factors ; Pedigree ; Protein Binding ; Protein Conformation ; Protein Structure, Tertiary ; Protein Transport ; Rats ; Risk Factors ; *Sequence Deletion ; Signal Transduction ; Transcription Factors/chemistry/*genetics/metabolism ; Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-03-01
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sifers, Richard N -- New York, N.Y. -- Science. 2003 Feb 28;299(5611):1330-1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Pathology, and Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA. rsifers@bcm.tmc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12610289" target="_blank"〉PubMed〈/a〉
    Keywords: Aspartic Acid Endopeptidases/chemistry/metabolism ; Calnexin/*metabolism ; Endoplasmic Reticulum/enzymology/*metabolism ; Glycoproteins/chemistry/*metabolism ; Mannosidases/metabolism ; Membrane Proteins/*metabolism ; Polysaccharides/metabolism ; Protein Conformation ; Protein Folding ; alpha 1-Antitrypsin/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-02-22
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sillje, Herman H W -- Nigg, Erich A -- New York, N.Y. -- Science. 2003 Feb 21;299(5610):1190-1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18a, D-82152 Martinsried, Germany. sillje@biochem.mpg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12595680" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Binding Sites ; CDC2 Protein Kinase/metabolism ; Catalytic Domain ; Cell Cycle Proteins ; Centrosome/metabolism ; Humans ; Mitosis ; Peptide Library ; Phosphoproteins/*metabolism ; Phosphorylation ; Phosphotransferases/metabolism ; Protein Conformation ; Protein Kinases/*chemistry/*metabolism ; *Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases ; Proteomics ; Proto-Oncogene Proteins ; Signal Transduction ; cdc25 Phosphatases/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-12-20
    Description: Kinesin is a processive motor that takes 8.3-nm center-of-mass steps along microtubules for each adenosine triphosphate hydrolyzed. Whether kinesin moves by a "hand-over-hand" or an "inchworm" model has been controversial. We have labeled a single head of the kinesin dimer with a Cy3 fluorophore and localized the position of the dye to within 2 nm before and after a step. We observed that single kinesin heads take steps of 17.3 +/- 3.3 nm. A kinetic analysis of the dwell times between steps shows that the 17-nm steps alternate with 0-nm steps. These results strongly support a hand-over-hand mechanism, and not an inchworm mechanism. In addition, our results suggest that kinesin is bound by both heads to the microtubule while it waits for adenosine triphosphate in between steps.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yildiz, Ahmet -- Tomishige, Michio -- Vale, Ronald D -- Selvin, Paul R -- AR42895/AR/NIAMS NIH HHS/ -- AR44420/AR/NIAMS NIH HHS/ -- New York, N.Y. -- Science. 2004 Jan 30;303(5658):676-8. Epub 2003 Dec 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Biophysics and Computational Biology, University of Illinois, Urbana-Champaign, IL 61801, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14684828" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate ; Carbocyanines ; Dimerization ; Fluorescence ; Fluorescent Dyes ; Humans ; Kinesin/chemistry/genetics/*metabolism ; Kinetics ; Microtubules/*metabolism ; *Models, Biological ; Models, Molecular ; Molecular Motor Proteins/chemistry/genetics/*metabolism ; Mutation ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2003-10-04
    Description: The cytochrome b6f complex provides the electronic connection between the photosystem I and photosystem II reaction centers of oxygenic photosynthesis and generates a transmembrane electrochemical proton gradient for adenosine triphosphate synthesis. A 3.0 angstrom crystal structure of the dimeric b6f complex from the thermophilic cyanobacterium Mastigocladus laminosus reveals a large quinone exchange cavity, stabilized by lipid, in which plastoquinone, a quinone-analog inhibitor, and a novel heme are bound. The core of the b6f complex is similar to the analogous respiratory cytochrome bc1 complex, but the domain arrangement outside the core and the complement of prosthetic groups are strikingly different. The motion of the Rieske iron-sulfur protein extrinsic domain, essential for electron transfer, must also be different in the b6f complex.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kurisu, Genji -- Zhang, Huamin -- Smith, Janet L -- Cramer, William A -- GM-38323/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Nov 7;302(5647):1009-14. Epub 2003 Oct 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, 915 West State Street, Purdue University, West Lafayette, IN 47907-2054, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14526088" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Membrane/chemistry ; Crystallization ; Crystallography, X-Ray ; Cyanobacteria/*chemistry/metabolism ; Cytochrome b6f Complex/*chemistry/metabolism ; Cytochromes f/chemistry/metabolism ; Dimerization ; Electron Transport ; Electron Transport Complex III/chemistry/metabolism ; Heme/chemistry ; Hydrophobic and Hydrophilic Interactions ; Iron-Sulfur Proteins/chemistry/metabolism ; Lipid Bilayers ; Models, Molecular ; *Photosynthesis ; Plastoquinone/chemistry/metabolism ; Polyenes/chemistry/metabolism ; Protein Conformation ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits/chemistry ; Protons
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2003-03-15
    Description: Enzymes provide enormous rate enhancements, unmatched by any other type of catalyst. The stabilization of high-energy states along the reaction coordinate is the crux of the catalytic power of enzymes. We report the atomic-resolution structure of a high-energy reaction intermediate stabilized in the active site of an enzyme. Crystallization of phosphorylated beta-phosphoglucomutase in the presence of the Mg(II) cofactor and either of the substrates glucose 1-phosphate or glucose 6-phosphate produced crystals of the enzyme-Mg(II)-glucose 1,6-(bis)phosphate complex, which diffracted x-rays to 1.2 and 1.4 angstroms, respectively. The structure reveals a stabilized pentacovalent phosphorane formed in the phosphoryl transfer from the C(1)O of glucose 1,6-(bis)phosphate to the nucleophilic Asp8 carboxylate.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lahiri, Sushmita D -- Zhang, Guofeng -- Dunaway-Mariano, Debra -- Allen, Karen N -- GM16099/GM/NIGMS NIH HHS/ -- RR07707/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2003 Mar 28;299(5615):2067-71. Epub 2003 Mar 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118-2394, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12637673" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Catalysis ; Chemistry, Physical ; Crystallization ; Crystallography, X-Ray ; Glucose-6-Phosphate/metabolism ; Glucosephosphates/chemistry/metabolism ; Lactococcus lactis/enzymology ; Ligands ; Magnesium/chemistry ; Phosphates/chemistry ; Phosphoglucomutase/*chemistry/*metabolism ; Phosphoranes/chemistry ; Phosphorus/*chemistry ; Phosphorylation ; Physicochemical Phenomena ; Protein Conformation ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2003-03-01
    Description: A single antibody was shown to adopt different binding-site conformations and thereby bind unrelated antigens. Analysis by both x-ray crystallography and pre-steady-state kinetics revealed an equilibrium between different preexisting isomers, one of which possessed a promiscuous, low-affinity binding site for aromatic ligands, including the immunizing hapten. A subsequent induced-fit isomerization led to high-affinity complexes with a deep and narrow binding site. A protein antigen identified by repertoire selection made use of an unrelated antibody isomer with a wide, shallow binding site. Conformational diversity, whereby one sequence adopts multiple structures and multiple functions, can increase the effective size of the antibody repertoire but may also lead to autoimmunity and allergy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉James, Leo C -- Roversi, Pietro -- Tawfik, Dan S -- New York, N.Y. -- Science. 2003 Feb 28;299(5611):1362-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Protein Engineering, Medical Research Council Centre, Hills Road, Cambridge CB2 2HQ, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12610298" target="_blank"〉PubMed〈/a〉
    Keywords: 2,4-Dinitrophenol/immunology ; Amino Acid Sequence ; Antibodies, Monoclonal/chemistry/immunology ; Antibody Diversity ; *Antibody Specificity ; Antigen-Antibody Complex ; Antigen-Antibody Reactions ; Antigens/*immunology ; Binding Sites, Antibody ; Cross Reactions ; Crystallization ; Crystallography, X-Ray ; Dimerization ; Haptens/immunology ; Hydrogen Bonding ; Immunoglobulin E/*chemistry/*immunology ; Immunoglobulin Fragments/chemistry/immunology ; Isomerism ; Kinetics ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Peptide Library ; Protein Conformation ; Recombinant Proteins/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-09-27
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mattson, Mark P -- Chan, Sic L -- New York, N.Y. -- Science. 2003 Sep 26;301(5641):1847-9.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14512605" target="_blank"〉PubMed〈/a〉
    Keywords: Alzheimer Disease/therapy ; Alzheimer Vaccines/immunology/therapeutic use ; Amyloid beta-Peptides/chemistry/*immunology ; Animals ; *Antibodies/immunology/physiology ; Humans ; Immunization, Passive ; Peptide Fragments/chemistry/*immunology ; Protein Conformation ; Reactive Oxygen Species ; Vaccines/adverse effects/immunology/toxicity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2003-08-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Blackburn, G Michael -- Williams, Nicholas H -- Gamblin, Steven J -- Smerdon, Stephen J -- New York, N.Y. -- Science. 2003 Aug 29;301(5637):1184; author reply 1184.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Krebs Institute, University of Sheffield, Sheffield, S3 7HF, UK. g.m.blackburn@shef.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12947182" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Catalysis ; Chemistry, Physical ; Crystallization ; Crystallography, X-Ray ; Fluorine Compounds/chemistry ; Kinetics ; Magnesium Compounds/chemistry ; Phosphates/chemistry ; Phosphoglucomutase/*chemistry/*metabolism ; Phosphoranes/chemistry ; Phosphorus/*chemistry ; Physicochemical Phenomena ; Protein Conformation ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2003-05-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Priola, Suzette A -- Chesebro, Bruce -- Caughey, Byron -- New York, N.Y. -- Science. 2003 May 9;300(5621):917-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Persistent Viral Diseases, National Institute of Allergy and Infectious Diseases, Rocky Mountain Laboratories, Hamilton, MT 59840, USA. spriola@nih.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12738843" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/metabolism/pathology ; Cell Membrane/metabolism ; Cytosol/metabolism ; Humans ; Membrane Microdomains/metabolism ; Mice ; Mice, Transgenic ; Phenotype ; PrPC Proteins/*chemistry/*metabolism ; PrPSc Proteins/*chemistry/*pathogenicity ; Prion Diseases/diagnosis/*etiology/metabolism/pathology ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Transport ; Tongue/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2003-03-01
    Description: Terminally misfolded proteins in the endoplasmic reticulum (ER) are retrotranslocated to the cytoplasm and degraded by proteasomes through a mechanism known as ER-associated degradation (ERAD). EDEM, a postulated Man8B-binding protein, accelerates the degradation of misfolded proteins in the ER. Here, EDEM was shown to interact with calnexin, but not with calreticulin, through its transmembrane region. Both binding of substrates to calnexin and their release from calnexin were required for ERAD to occur. Overexpression of EDEM accelerated ERAD by promoting the release of terminally misfolded proteins from calnexin. Thus, EDEM appeared to function in the ERAD pathway by accepting substrates from calnexin.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Oda, Yukako -- Hosokawa, Nobuko -- Wada, Ikuo -- Nagata, Kazuhiro -- New York, N.Y. -- Science. 2003 Feb 28;299(5611):1394-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8397, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12610305" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylcysteine/*analogs & derivatives/pharmacology ; Calnexin/*metabolism ; Calreticulin/metabolism ; Cell Line ; Endoplasmic Reticulum/*metabolism ; Glycoproteins/chemistry/*metabolism ; Humans ; Indolizines/pharmacology ; Membrane Proteins/*metabolism ; Precipitin Tests ; Protein Binding ; Protein Conformation ; Protein Folding ; Protein Transport ; Recombinant Fusion Proteins/metabolism ; Transfection ; alpha 1-Antitrypsin/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2003-08-02
    Description: The major facilitator superfamily represents the largest group of secondary membrane transporters in the cell. Here we report the 3.3 angstrom resolution structure of a member of this superfamily, GlpT, which transports glycerol-3-phosphate into the cytoplasm and inorganic phosphate into the periplasm. The amino- and carboxyl-terminal halves of the protein exhibit a pseudo two-fold symmetry. Closed off to the periplasm, a centrally located substrate-translocation pore contains two arginines at its closed end, which comprise the substrate-binding site. Upon substrate binding, the protein adopts a more compact conformation. We propose that GlpT operates by a single-binding site, alternating-access mechanism through a rocker-switch type of movement.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, Yafei -- Lemieux, M Joanne -- Song, Jinmei -- Auer, Manfred -- Wang, Da-Neng -- New York, N.Y. -- Science. 2003 Aug 1;301(5633):616-20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12893936" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Biological Transport ; Cell Membrane/chemistry ; Crystallization ; Crystallography, X-Ray ; Escherichia coli/*chemistry/enzymology ; Escherichia coli Proteins/chemistry/metabolism ; Glycerophosphates/*metabolism ; Helix-Turn-Helix Motifs ; Mass Spectrometry ; Membrane Transport Proteins/*chemistry/*metabolism ; Models, Molecular ; Molecular Sequence Data ; Periplasm/metabolism ; Phosphates/metabolism ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2003-06-21
    Description: We report picosecond time-resolved x-ray diffraction from the myoglobin (Mb) mutant in which Leu29 is replaced by Phe (L29Fmutant). The frame-by-frame structural evolution, resolved to 1.8 angstroms, allows one to literally "watch" the protein as it executes its function. Time-resolved mid-infrared spectroscopy of flash-photolyzed L29F MbCO revealed a short-lived CO intermediate whose 140-ps lifetime is shorter than that found in wild-type protein by a factor of 1000. The electron density maps of the protein unveil transient conformational changes far more dramatic than the structural differences between the carboxy and deoxy states and depict the correlated side-chain motion responsible for rapidly sweeping CO away from its primary docking site.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schotte, Friedrich -- Lim, Manho -- Jackson, Timothy A -- Smirnov, Aleksandr V -- Soman, Jayashree -- Olson, John S -- Phillips, George N Jr -- Wulff, Michael -- Anfinrud, Philip A -- AR40252/AR/NIAMS NIH HHS/ -- GM35649/GM/NIGMS NIH HHS/ -- HL47020/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2003 Jun 20;300(5627):1944-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12817148" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Animals ; Binding Sites ; Carbon Monoxide/chemistry/metabolism ; Crystallography, X-Ray/*methods ; Fourier Analysis ; Heme/chemistry ; Ligands ; Models, Molecular ; Mutagenesis, Site-Directed ; Myoglobin/*chemistry/genetics/*metabolism ; Photolysis ; Protein Conformation ; Spectrophotometry, Infrared ; Time Factors ; Whales
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2003-10-25
    Description: RNA polymerase (RNAP) is the central enzyme of gene expression. Despite availability of crystal structures, details of its nucleotide addition cycle remain obscure. We describe bacterial RNAP inhibitors (the CBR703 series) whose properties illuminate this mechanism. These compounds inhibit known catalytic activities of RNAP (nucleotide addition, pyrophosphorolysis, and Gre-stimulated transcript cleavage) but not translocation of RNA or DNA when translocation is uncoupled from catalysis. CBR703-resistance substitutions occur on an outside surface of RNAP opposite its internal active site. We propose that CBR703 compounds inhibit nucleotide addition allosterically by hindering movements of active site structures that are linked to the CBR703 binding site through a bridge helix.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Artsimovitch, Irina -- Chu, Clement -- Lynch, A Simon -- Landick, Robert -- GM38660/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Oct 24;302(5645):650-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14576436" target="_blank"〉PubMed〈/a〉
    Keywords: Amidines/chemistry/isolation & purification/metabolism/*pharmacology ; Binding Sites ; Catalysis ; DNA, Bacterial/metabolism ; DNA-Directed RNA Polymerases/*antagonists & ; inhibitors/chemistry/genetics/*metabolism ; Drug Resistance, Bacterial ; Enzyme Inhibitors/chemistry/isolation & purification/metabolism/pharmacology ; Escherichia coli/*drug effects/genetics ; Exodeoxyribonucleases/metabolism ; Hydroxylamines/chemistry/isolation & purification/metabolism/*pharmacology ; Models, Molecular ; Mutation ; Nucleotides/*metabolism ; Phenylurea Compounds/chemistry/isolation & purification/metabolism/pharmacology ; Piperazines/chemistry/isolation & purification/pharmacology ; Promoter Regions, Genetic/drug effects ; Protein Conformation ; Protein Structure, Secondary ; Pyrazoles/chemistry/isolation & purification/pharmacology ; RNA, Bacterial/*biosynthesis ; Templates, Genetic ; Transcription, Genetic/*drug effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-03-01
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Foote, Jefferson -- New York, N.Y. -- Science. 2003 Feb 28;299(5611):1327-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA. jfoote@fhcrc.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12610286" target="_blank"〉PubMed〈/a〉
    Keywords: 2,4-Dinitrophenol/immunology ; Antibodies, Monoclonal/chemistry/immunology ; Antibody Diversity ; *Antibody Specificity ; Antigen-Antibody Complex ; Antigen-Antibody Reactions ; Antigens/*immunology ; Binding Sites, Antibody ; Cross Reactions ; Crystallography, X-Ray ; Haptens/immunology ; Immunoglobulin E/*chemistry/*immunology ; Isomerism ; Neutralization Tests ; Peptide Library ; Protein Conformation ; Recombinant Proteins/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2003-08-30
    Description: We used a multiplexed approach based on flow-stretched DNA to monitor the enzymatic digestion of lambda-phage DNA by individual bacteriophage lambda exonuclease molecules. Statistical analyses of multiple single-molecule trajectories observed simultaneously reveal that the catalytic rate is dependent on the local base content of the substrate DNA. By relating single-molecule kinetics to the free energies of hydrogen bonding and base stacking, we establish that the melting of a base from the DNA is the rate-limiting step in the catalytic cycle. The catalytic rate also exhibits large fluctuations independent of the sequence, which we attribute to conformational changes of the enzyme-DNA complex.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉van Oijen, Antoine M -- Blainey, Paul C -- Crampton, Donald J -- Richardson, Charles C -- Ellenberger, Tom -- Xie, X Sunney -- 5R01GM61577-03/GM/NIGMS NIH HHS/ -- R01GM55390-07/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Aug 29;301(5637):1235-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12947199" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteriophage lambda/*enzymology ; Base Composition ; Base Sequence ; Binding Sites ; Catalysis ; DNA, Single-Stranded/chemistry/*metabolism ; DNA, Viral/chemistry/*metabolism ; Exodeoxyribonucleases/chemistry/*metabolism ; Hydrogen Bonding ; Hydrolysis ; Kinetics ; Nucleic Acid Conformation ; Protein Conformation ; Thermodynamics ; Viral Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-03-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cohen, Jon -- New York, N.Y. -- Science. 2003 Mar 7;299(5612):1505-8.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12624245" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS Vaccines/immunology ; Animals ; Antiviral Agents/metabolism ; *Biological Evolution ; Capsid/metabolism ; Chemokines/chemistry ; HIV/genetics/*immunology/*pathogenicity/physiology ; HIV Antibodies/*immunology ; HIV Envelope Protein gp120/chemistry/immunology ; HIV Infections/immunology/*virology ; Humans ; *Immunity, Innate ; Molecular Mimicry ; Mutation ; Neutralization Tests ; Peptide Fragments/chemistry ; Protein Conformation ; Receptors, Chemokine/metabolism ; Receptors, HIV/metabolism ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-04-12
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Frommer, Wolf B -- Schulze, Waltraud X -- Lalonde, Sylvie -- New York, N.Y. -- Science. 2003 Apr 11;300(5617):261-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Physiology, Zentrum fur Molekularbiologie der Pflanzen, Universitat Tubingen, D-72076 Tubingen, Germany. frommer@zmbp.uni-tubingen.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12690178" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Animals ; Arabidopsis/*enzymology/genetics/growth & development ; Biological Evolution ; Catalysis ; Cell Nucleus/metabolism ; Cytosol/enzymology ; Gene Expression Regulation ; Glucose/*metabolism ; Hexokinase/chemistry/genetics/*metabolism ; Humans ; Isoenzymes/metabolism ; Mutation ; Organelles/enzymology ; Phosphorylation ; Potassium Channels/metabolism ; Protein Conformation ; *Signal Transduction ; Yeasts/enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-08-30
    Description: The seminal hypotheses proposed over the years for enzymatic catalysis are scrutinized. The historical record is explored from both biochemical and theoretical perspectives. Particular attention is given to the impact of molecular motions within the protein on the enzyme's catalytic properties. A case study for the enzyme dihydrofolate reductase provides evidence for coupled networks of predominantly conserved residues that influence the protein structure and motion. Such coupled networks have important implications for the origin and evolution of enzymes, as well as for protein engineering.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Benkovic, Stephen J -- Hammes-Schiffer, Sharon -- GM13306/GM/NIGMS NIH HHS/ -- GM24129/GM/NIGMS NIH HHS/ -- GM56207/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Aug 29;301(5637):1196-202.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, 152 Davey Laboratory, Pennsylvania State University, University Park, PA 16802, USA. sjb1@psu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12947189" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Catalysis ; Computer Simulation ; Crystallography, X-Ray ; Enzymes/*chemistry/*metabolism ; Kinetics ; Models, Chemical ; Nuclear Magnetic Resonance, Biomolecular ; Protein Conformation ; Tetrahydrofolate Dehydrogenase/*chemistry/*metabolism ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-04-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Georgiou, George -- Masip, Lluis -- New York, N.Y. -- Science. 2003 Apr 25;300(5619):592-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemical Engineering, Biomedical Engineering and Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA. gg@che.utexas.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12714731" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Animals ; Antioxidants/*metabolism ; Bacteria/enzymology ; Catalysis ; Cell Line ; Cysteine/*analogs & derivatives/metabolism ; Erythrocytes/enzymology ; Evolution, Molecular ; Humans ; Hydrogen Peroxide/*metabolism ; Models, Biological ; Neurotransmitter Agents ; Oxidation-Reduction ; Peroxidases/*chemistry/*metabolism ; Peroxiredoxins ; Protein Conformation ; Protein Structure, Secondary ; *Signal Transduction ; Sulfenic Acids/metabolism ; Sulfinic Acids/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2003-04-26
    Description: Alpha-synuclein (alpha-syn) and tau polymerize into amyloid fibrils and form intraneuronal filamentous inclusions characteristic of neurodegenerative diseases. We demonstrate that alpha-syn induces fibrillization of tau and that coincubation of tau and alpha-syn synergistically promotes fibrillization of both proteins. The in vivo relevance of these findings is grounded in the co-occurrence of alpha-syn and tau filamentous amyloid inclusions in humans, in single transgenic mice that express A53T human alpha-syn in neurons, and in oligodendrocytes of bigenic mice that express wild-type human alpha-syn plus P301L mutant tau. This suggests that interactions between alpha-syn and tau can promote their fibrillization and drive the formation of pathological inclusions in human neurodegenerative diseases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Giasson, Benoit I -- Forman, Mark S -- Higuchi, Makoto -- Golbe, Lawrence I -- Graves, Charles L -- Kotzbauer, Paul T -- Trojanowski, John Q -- Lee, Virginia M-Y -- New York, N.Y. -- Science. 2003 Apr 25;300(5619):636-40.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12714745" target="_blank"〉PubMed〈/a〉
    Keywords: Amyloid/chemistry/metabolism ; Animals ; Biopolymers ; *Brain Chemistry ; Humans ; Mice ; Mice, Inbred C3H ; Mice, Inbred C57BL ; Mice, Transgenic ; Microscopy, Electron ; Microscopy, Fluorescence ; Microscopy, Immunoelectron ; Nerve Tissue Proteins/analysis/*chemistry/metabolism ; Neurodegenerative Diseases/metabolism ; Neurons/chemistry ; Oligodendroglia/chemistry ; Protein Conformation ; Protein Isoforms/chemistry/metabolism ; Synucleins ; Tauopathies/metabolism ; alpha-Synuclein ; tau Proteins/analysis/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2003-12-06
    Description: Kinesin is a double-headed motor protein that moves along microtubules in 8-nanometer steps. Two broad classes of model have been invoked to explain kinesin movement: hand-over-hand and inchworm. In hand-over-hand models, the heads exchange leading and trailing roles with every step, whereas no such exchange is postulated for inchworm models, where one head always leads. By measuring the stepwise motion of individual enzymes, we find that some kinesin molecules exhibit a marked alternation in the dwell times between sequential steps, causing these motors to "limp" along the microtubule. Limping implies that kinesin molecules strictly alternate between two different conformations as they step, indicative of an asymmetric, hand-over-hand mechanism.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1523256/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1523256/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Asbury, Charles L -- Fehr, Adrian N -- Block, Steven M -- R01 GM051453/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Dec 19;302(5653):2130-4. Epub 2003 Dec 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Stanford University, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14657506" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Animals ; Computer Simulation ; Decapodiformes/enzymology ; Dimerization ; Drosophila Proteins/chemistry/physiology ; Drosophila melanogaster/*enzymology ; Humans ; Kinesin/*chemistry/*physiology ; Kinetics ; Microspheres ; Microtubules/metabolism ; Models, Molecular ; Molecular Motor Proteins/*chemistry/*physiology ; Movement ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Recombinant Proteins/chemistry ; Rotation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-05-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hynes, Richard O -- New York, N.Y. -- Science. 2003 May 2;300(5620):755-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. rohynes@mit.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12730590" target="_blank"〉PubMed〈/a〉
    Keywords: Biopolymers ; *Cell Adhesion ; Cell Membrane/*chemistry ; Cytoplasm/chemistry ; Dimerization ; Fibrinogen/metabolism ; Focal Adhesion Protein-Tyrosine Kinases ; Integrins/*chemistry/*metabolism ; Ligands ; Lipid Bilayers ; Models, Biological ; Mutation ; Platelet Glycoprotein GPIIb-IIIa Complex/*chemistry/genetics/*metabolism ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein-Tyrosine Kinases/metabolism ; Receptor Aggregation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2003-05-10
    Description: The KirBac1.1 channel belongs to the inward-rectifier family of potassium channels. Here we report the structure of the entire prokaryotic Kir channel assembly, in the closed state, refined to a resolution of 3.65 angstroms. We identify the main activation gate and structural elements involved in gating. On the basis of structural evidence presented here, we suggest that gating involves coupling between the intracellular and membrane domains. This further suggests that initiation of gating by membrane or intracellular signals represents different entry points to a common mechanistic pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kuo, Anling -- Gulbis, Jacqueline M -- Antcliff, Jennifer F -- Rahman, Tahmina -- Lowe, Edward D -- Zimmer, Jochen -- Cuthbertson, Jonathan -- Ashcroft, Frances M -- Ezaki, Takayuki -- Doyle, Declan A -- New York, N.Y. -- Science. 2003 Jun 20;300(5627):1922-6. Epub 2003 May 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University of Oxford, Department of Biochemistry, Laboratory of Molecular Biophysics, South Parks Road, Oxford OX1 3QU, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12738871" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Proteins/*chemistry/metabolism ; Binding Sites ; Burkholderia pseudomallei/*chemistry ; Crystallization ; Crystallography, X-Ray ; Dimerization ; Hydrophobic and Hydrophilic Interactions ; *Ion Channel Gating ; Ion Transport ; Models, Molecular ; Molecular Sequence Data ; Potassium/metabolism ; Potassium Channels, Inwardly Rectifying/*chemistry/metabolism ; Protein Conformation ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2003-08-30
    Description: In order to investigate the behavior of single molecules under conditions far from equilibrium, we have coupled a microfabricated laminar-flow mixer to a confocal optical system. This combination enables time-resolved measurement of Forster resonance energy transfer after an abrupt change in solution conditions. Observations of a small protein show the evolution of the intramolecular distance distribution as folding progresses. This technique can expose subpopulations, such as unfolded protein under conditions favoring the native structure, that would be obscured in equilibrium experiments.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lipman, Everett A -- Schuler, Benjamin -- Bakajin, Olgica -- Eaton, William A -- New York, N.Y. -- Science. 2003 Aug 29;301(5637):1233-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, Building 5, Room 104, National Institutes of Health, Bethesda, MD 20892-0520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12947198" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry ; Cold Temperature ; Diffusion ; Energy Transfer ; Fluorescence ; Fluorescence Resonance Energy Transfer ; Kinetics ; Models, Molecular ; Protein Conformation ; Protein Denaturation ; *Protein Folding ; Thermodynamics ; Thermotoga maritima/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2003-05-24
    Description: The phosphorylation of heptahelical receptors by heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptor kinases (GRKs) is a universal regulatory mechanism that leads to desensitization of G protein signaling and to the activation of alternative signaling pathways. We determined the crystallographic structure of bovine GRK2 in complex with G protein beta1gamma2 subunits. Our results show how the three domains of GRK2-the RGS (regulator of G protein signaling) homology, protein kinase, and pleckstrin homology domains-integrate their respective activities and recruit the enzyme to the cell membrane in an orientation that not only facilitates receptor phosphorylation, but also allows for the simultaneous inhibition of signaling by Galpha and Gbetagamma subunits.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lodowski, David T -- Pitcher, Julie A -- Capel, W Darrell -- Lefkowitz, Robert J -- Tesmer, John J G -- HL16037/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2003 May 23;300(5623):1256-62.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Cellular and Molecular Biology, Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12764189" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Cattle ; Cell Membrane/metabolism ; Crystallography, X-Ray ; Cyclic AMP-Dependent Protein Kinases/*chemistry/*metabolism ; *GTP-Binding Protein beta Subunits ; *GTP-Binding Protein gamma Subunits ; Heterotrimeric GTP-Binding Proteins/*chemistry/*metabolism ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Molecular Sequence Data ; Phosphorylation ; Protein Binding ; Protein Conformation ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Signal Transduction ; beta-Adrenergic Receptor Kinases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2003-05-06
    Description: Transmembrane helices of integrin alpha and beta subunits have been implicated in the regulation of integrin activity. Two mutations, glycine-708 to asparagine-708 (G708N)and methionine-701 to asparagine-701, in the transmembrane helix of the beta3 subunit enabled integrin alphaIIbbeta3 to constitutively bind soluble fibrinogen. Further characterization of the G708N mutant revealed that it induced alphaIIbbeta3 clustering and constitutive phosphorylation of focal adhesion kinase. This mutation also enhanced the tendency of the transmembrane helix to form homotrimers. These results suggest that homomeric associations involving transmembrane domains provide a driving force for integrin activation. They also suggest a structural basis for the coincidence of integrin activation and clustering.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Renhao -- Mitra, Neal -- Gratkowski, Holly -- Vilaire, Gaston -- Litvinov, Rustem -- Nagasami, Chandrasekaran -- Weisel, John W -- Lear, James D -- DeGrado, William F -- Bennett, Joel S -- HL40387/HL/NHLBI NIH HHS/ -- HL54500/HL/NHLBI NIH HHS/ -- K01 CA096706/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2003 May 2;300(5620):795-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12730600" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Antibodies, Monoclonal/metabolism ; Biopolymers ; CHO Cells ; Cell Adhesion ; Cell Membrane/*chemistry ; Cricetinae ; Cricetulus ; Dimerization ; Fibrinogen/metabolism ; Fluorescein-5-isothiocyanate ; Focal Adhesion Protein-Tyrosine Kinases ; Ligands ; Microscopy, Fluorescence ; Molecular Sequence Data ; Mutation ; Phosphorylation ; Platelet Glycoprotein GPIIb-IIIa Complex/*chemistry/genetics/*metabolism ; Protein Conformation ; *Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein-Tyrosine Kinases/metabolism ; Receptor Aggregation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2003-03-22
    Description: ClC channels conduct chloride (Cl-) ions across cell membranes and thereby govern the electrical activity of muscle cells and certain neurons, the transport of fluid and electrolytes across epithelia, and the acidification of intracellular vesicles. The structural basis of ClC channel gating was studied. Crystal structures of wild-type and mutant Escherichia coli ClC channels bound to a monoclonal Fab fragment reveal three Cl- binding sites within the 15-angstrom neck of an hourglass-shaped pore. The Cl- binding site nearest the extracellular solution can be occupied either by a Cl- ion or by a glutamate carboxyl group. Mutations of this glutamate residue in Torpedo ray ClC channels alter gating in electrophysiological assays. These findings reveal a form of gating in which the glutamate carboxyl group closes the pore by mimicking a Cl- ion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dutzler, Raimund -- Campbell, Ernest B -- MacKinnon, Roderick -- New York, N.Y. -- Science. 2003 Apr 4;300(5616):108-12. Epub 2003 Mar 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Laboratory of Molecular Neurobiology and Biophysics, Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12649487" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Animals ; Antibodies, Monoclonal/immunology ; Binding Sites ; Chloride Channels/*chemistry/genetics/immunology/*physiology ; Chlorides/*metabolism ; Crystallography, X-Ray ; Dimerization ; Escherichia coli/chemistry/metabolism ; Escherichia coli Proteins/chemistry/genetics/immunology/metabolism ; Glutamates/chemistry/metabolism ; Hydrogen Bonding ; Hydrogen-Ion Concentration ; Immunoglobulin Fab Fragments/immunology ; *Ion Channel Gating ; Models, Molecular ; Oocytes ; Patch-Clamp Techniques ; Point Mutation ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Torpedo ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-07-12
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sadler, J Evan -- New York, N.Y. -- Science. 2003 Jul 11;301(5630):177-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Medicine, Washington University, St. Louis, MO 63110, USA. esadler@im.wustl.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12855796" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Blood Coagulation ; Blood Platelets/chemistry/metabolism ; Crystallography, X-Ray ; Humans ; Hydrogen Bonding ; Models, Molecular ; Platelet Aggregation ; Platelet Glycoprotein GPIb-IX Complex/chemistry/*metabolism ; Protein Binding ; Protein Conformation ; Thrombin/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2003-07-12
    Description: Thrombin bound to platelets contributes to stop bleeding and, in pathological conditions, may cause vascular thrombosis. We have determined the structure of platelet glycoprotein Ibalpha (GpIbalpha) bound to thrombin at 2.3 angstrom resolution and defined two sites in GpIbalpha that bind to exosite II and exosite I of two distinct alpha-thrombin molecules, respectively. GpIbalpha occupancy may be sequential, as the site binding to alpha-thrombin exosite I appears to be cryptic in the unoccupied receptor but exposed when a first thrombin molecule is bound through exosite II. These interactions may modulate alpha-thrombin function by mediating GpIbalpha clustering and cleavage of protease-activated receptors, which promote platelet activation, while limiting fibrinogen clotting through blockade of exosite I.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Celikel, Reha -- McClintock, Richard A -- Roberts, James R -- Mendolicchio, G Loredana -- Ware, Jerry -- Varughese, Kottayil I -- Ruggeri, Zaverio M -- HL-31950/HL/NHLBI NIH HHS/ -- HL-42846/HL/NHLBI NIH HHS/ -- HL-48728/HL/NHLBI NIH HHS/ -- HL-55375/HL/NHLBI NIH HHS/ -- R01 HL042846/HL/NHLBI NIH HHS/ -- RR0833/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2003 Jul 11;301(5630):218-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Roon Research Center for Arteriosclerosis and Thrombosis, Division of Experimental Thrombosis and Hemostasis, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12855810" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Blood Coagulation ; Blood Platelets/chemistry/metabolism ; Crystallization ; Crystallography, X-Ray ; Fibrinogen/metabolism ; Humans ; Hydrogen Bonding ; Ligands ; Models, Molecular ; Mutation ; Platelet Aggregation ; Platelet Glycoprotein GPIb-IX Complex/*chemistry/genetics/*metabolism ; Protein Binding ; Protein Conformation ; Protein Structure, Tertiary ; Recombinant Proteins/chemistry/metabolism ; Thrombin/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2003-02-15
    Description: Binding of oxygen to iron is exploited in several biological and chemical processes. Although computational and spectroscopic results have suggested side-on binding, only end-on binding of oxygen to iron has been observed in crystal structures. We have determined structures of naphthalene dioxygenase that show a molecular oxygen species bound to the mononuclear iron in a side-on fashion. In a complex with substrate and dioxygen, the dioxygen molecule is lined up for an attack on the double bond of the aromatic substrate. The structures reported here provide the basis for a reaction mechanism and for the high stereospecificity of the reaction catalyzed by naphthalene dioxygenase.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Karlsson, Andreas -- Parales, Juanito V -- Parales, Rebecca E -- Gibson, David T -- Eklund, Hans -- Ramaswamy, S -- GM29909/GM/NIGMS NIH HHS/ -- GM62904/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Feb 14;299(5609):1039-42.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Swedish University of Agricultural Sciences, Box 590, Biomedical Center, 75124 Uppsala, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12586937" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Catalysis ; Chemistry, Physical ; Crystallization ; Crystallography, X-Ray ; Dioxygenases ; Hydroxylation ; Indoles/metabolism ; Iron/chemistry/*metabolism ; Models, Chemical ; Models, Molecular ; Molecular Structure ; Multienzyme Complexes/*chemistry/*metabolism ; Naphthalenes ; Oxidation-Reduction ; Oxygen/chemistry/*metabolism ; Oxygenases/*chemistry/*metabolism ; Physicochemical Phenomena ; Protein Conformation ; Protons ; Pseudomonas/enzymology ; Stereoisomerism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2003-05-10
    Description: Here we report an approach, based on antibody phage display, to generate molecular conformation sensors. Recombinant antibodies specific to the guanosine triphosphate (GTP)-bound conformation of the small guanosine triphosphatase (GTPase) Rab6, a regulator of membrane traffic, were generated and used to locate Rab6.GTP in fixed cells, and, after green fluorescent protein (GFP) tagging and intracellular expression, to follow Rab6.GTP in vivo. Rab6 was in its GTP-bound conformation on the Golgi apparatus and transport intermediates, and the geometry of transport intermediates was modulated by Rab6 activity. More generally, the same approach could be applied to other molecules that can be locked in a particular conformation in vitro.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nizak, Clement -- Monier, Solange -- del Nery, Elaine -- Moutel, Sandrine -- Goud, Bruno -- Perez, Franck -- New York, N.Y. -- Science. 2003 May 9;300(5621):984-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉CNRS UMR144, Institut Curie, 26 rue d'Ulm, F75248 Paris Cedex 05, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12738866" target="_blank"〉PubMed〈/a〉
    Keywords: *Antibodies/chemistry/immunology/metabolism ; Bacterial Proteins ; Endoplasmic Reticulum/chemistry ; Fluorescent Antibody Technique ; Golgi Apparatus/*chemistry ; Green Fluorescent Proteins ; Guanosine 5'-O-(3-Thiotriphosphate)/metabolism ; Guanosine Diphosphate/metabolism ; Guanosine Triphosphate/*metabolism ; HeLa Cells ; Humans ; Immunoglobulin Variable Region ; Luminescent Proteins ; Mutation ; Peptide Library ; Protein Conformation ; Recombinant Fusion Proteins/analysis/chemistry/metabolism ; Recombinant Proteins/chemistry/immunology/metabolism ; Transfection ; Transport Vesicles/chemistry ; rab GTP-Binding Proteins/*analysis/chemistry/*immunology/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2003-09-23
    Description: The T cell coreceptors CD4 and CD8 both associate via their cytoplasmic tails with the N-terminus of the Src-family tyrosine kinase Lck. These interactions require zinc and are critical for T cell development and activation. We examined the folding and solution structures of ternary CD4-Lck-Zn2+ and CD8alpha-Lck-Zn2+ complexes. The coreceptor tails and the Lck N-terminus are unstructured in isolation but assemble in the presence of zinc to form compactly folded heterodimeric domains. The cofolded complexes have similar "zinc clasp" cores that are augmented by distinct structural elements. A dileucine motif required for clathrin-mediated endocytosis of CD4 is masked by Lck.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Peter W -- Sun, Zhen-Yu J -- Blacklow, Stephen C -- Wagner, Gerhard -- Eck, Michael J -- CA080942/CA/NCI NIH HHS/ -- HL61001/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2003 Sep 19;301(5640):1725-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14500983" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Antigens, CD4/*chemistry/metabolism ; Antigens, CD8/*chemistry/metabolism ; Calorimetry ; Cytoplasm/chemistry ; Dimerization ; Dipeptides/chemistry ; Humans ; Hydrophobic and Hydrophilic Interactions ; Lymphocyte Activation ; Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/*chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Nuclear Magnetic Resonance, Biomolecular ; Phosphorylation ; Phosphoserine/metabolism ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Sequence Alignment ; T-Lymphocytes/immunology/physiology ; Zinc/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-11-08
    Description: Twenty years ago the first scanning probe instrument, the scanning tunneling microscope, opened up new realms for our perception of the world. Atoms that had been abstract entities were now real objects, clearly seen as distinguishable individuals at particular positions in space. A whole family of scanning probe instruments has been developed, extending our sense of touching to the scale of atoms and molecules. Such instruments are especially useful for imaging of biomolecular structures because they can produce topographic images with submolecular resolution in aqueous environments. Instruments with increased imaging rates, lower probe-specimen force interactions, and probe configurations not constrained to planar surfaces are being developed, with the goal of imaging processes at the single-molecule level-not only at surfaces but also within three-dimensional volumes-in real time.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Horber, J K H -- Miles, M J -- New York, N.Y. -- Science. 2003 Nov 7;302(5647):1002-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, Wayne State University School of Medicine, 5229 Scott Hall, 540 East Canfield Avenue, Detroit, MI 48201, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14605360" target="_blank"〉PubMed〈/a〉
    Keywords: Biology/instrumentation/*methods ; Cellular Structures/physiology/*ultrasonography ; Crystallization ; Electrochemistry ; *Microscopy, Atomic Force/instrumentation/methods ; *Microscopy, Scanning Probe/instrumentation/methods ; Nanotechnology ; Optics and Photonics ; Protein Conformation ; Proteins/*chemistry/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2001-02-07
    Description: Atomic force microscopy and single-molecule force spectroscopy were combined to image and manipulate purple membrane patches from Halobacterium salinarum. Individual bacteriorhodopsin molecules were first localized and then extracted from the membrane; the remaining vacancies were imaged again. Anchoring forces between 100 and 200 piconewtons for the different helices were found. Upon extraction, the helices were found to unfold. The force spectra revealed the individuality of the unfolding pathways. Helices G and F as well as helices E and D always unfolded pairwise, whereas helices B and C occasionally unfolded one after the other. Experiments with cleaved loops revealed the origin of the individuality: stabilization of helix B by neighboring helices.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Oesterhelt, F -- Oesterhelt, D -- Pfeiffer, M -- Engel, A -- Gaub, H E -- Muller, D J -- New York, N.Y. -- Science. 2000 Apr 7;288(5463):143-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉CeNS and Lehrstuhl fur angewandte Physik, Ludwig Maximilians-Universitat Munchen, Amalienstrasse 54, 80799 Munchen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10753119" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacteriorhodopsins/*chemistry/genetics ; Cysteine/chemistry ; Halobacterium salinarum/*chemistry ; Membrane Proteins/*chemistry/genetics ; *Microscopy, Atomic Force ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Protein Conformation ; Protein Denaturation ; *Protein Folding ; Protein Structure, Secondary ; Purple Membrane/*chemistry ; Serine Endopeptidases/metabolism ; Spectrum Analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2001-01-06
    Description: All aspects of cellular RNA metabolism and the replication of many viruses require DExH/D proteins that manipulate RNA in a manner that requires nucleoside triphosphates. Although DExH/D proteins have been shown to unwind purified RNA duplexes, most RNA molecules in the cellular environment are complexed with proteins. It has therefore been speculated that DExH/D proteins may also affect RNA-protein interactions. We demonstrate that the DExH protein NPH-II from vaccinia virus can displace the protein U1A from RNA in an active adenosine triphosphate-dependent fashion. NPH-II increases the rate of U1A dissociation by more than three orders of magnitude while retaining helicase processivity. This indicates that DExH/D proteins can effectively catalyze protein displacement from RNA and thereby participate in the structural reorganization of ribonucleoprotein assemblies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jankowsky, E -- Gross, C H -- Shuman, S -- Pyle, A M -- New York, N.Y. -- Science. 2001 Jan 5;291(5501):121-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA. 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11141562" target="_blank"〉PubMed〈/a〉
    Keywords: 3' Untranslated Regions/metabolism ; Acid Anhydride Hydrolases/chemistry/*metabolism ; Adenosine Triphosphate/metabolism ; Base Sequence ; Binding Sites ; Kinetics ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Nucleoside-Triphosphatase ; Protein Binding ; Protein Conformation ; RNA/chemistry/*metabolism ; RNA Helicases/chemistry/*metabolism ; *RNA-Binding Proteins ; Ribonucleoprotein, U1 Small Nuclear/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2001-04-21
    Description: Structures of a 10-subunit yeast RNA polymerase II have been derived from two crystal forms at 2.8 and 3.1 angstrom resolution. Comparison of the structures reveals a division of the polymerase into four mobile modules, including a clamp, shown previously to swing over the active center. In the 2.8 angstrom structure, the clamp is in an open state, allowing entry of straight promoter DNA for the initiation of transcription. Three loops extending from the clamp may play roles in RNA unwinding and DNA rewinding during transcription. A 2.8 angstrom difference Fourier map reveals two metal ions at the active site, one persistently bound and the other possibly exchangeable during RNA synthesis. The results also provide evidence for RNA exit in the vicinity of the carboxyl-terminal repeat domain, coupling synthesis to RNA processing by enzymes bound to this domain.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cramer, P -- Bushnell, D A -- Kornberg, R D -- GM49985/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2001 Jun 8;292(5523):1863-76. Epub 2001 Apr 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11313498" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Conserved Sequence ; Crystallography, X-Ray ; DNA, Fungal/chemistry/metabolism ; Fourier Analysis ; Hydrogen Bonding ; Magnesium/metabolism ; Metals/metabolism ; Models, Molecular ; Molecular Sequence Data ; Promoter Regions, Genetic ; Protein Conformation ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits ; RNA Polymerase II/*chemistry/*metabolism ; RNA Processing, Post-Transcriptional ; RNA, Fungal/biosynthesis/chemistry/metabolism ; RNA, Messenger/biosynthesis/chemistry/metabolism ; Saccharomyces cerevisiae/*enzymology/genetics ; Transcription Factors/metabolism ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2001-07-21
    Description: The promoters of cell adhesion are ligands, which are often attached to flexible tethers that bind to surface receptors on adjacent cells. Using a combination of Monte Carlo simulations, diffusion reaction theory, and direct experiments (surface force measurements) of the biotin-streptavidin system, we have quantified polymer chain dynamics and the kinetics and spatial range of tethered ligand-receptor binding. The results show that the efficiency of strong binding does not depend solely on the molecular architecture or binding energy of the receptor-ligand pair, nor on the equilibrium configuration of the polymer tether, but rather on its "rare" extended conformations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jeppesen, C -- Wong, J Y -- Kuhl, T L -- Israelachvili, J N -- Mullah, N -- Zalipsky, S -- Marques, C M -- GM-17876/GM/NIGMS NIH HHS/ -- GM-47334/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2001 Jul 20;293(5529):465-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Materials Research Laboratory, Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11463908" target="_blank"〉PubMed〈/a〉
    Keywords: Biotin/*chemistry/metabolism ; Chemistry, Physical ; Diffusion ; Kinetics ; Ligands ; Mathematics ; Monte Carlo Method ; Physicochemical Phenomena ; Polyethylene Glycols ; Polymers/*chemistry ; Protein Conformation ; Streptavidin/*chemistry/metabolism ; Surface Properties ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2001-11-03
    Description: The Arabidopsis thaliana response regulator 4, expressed in response to phytochrome B action, specifically interacts with the extreme amino-terminus of the photoreceptor. The response regulator 4 stabilizes the active Pfr form of phytochrome B in yeast and in planta, thus elevates the level of the active photoreceptor in vivo. Accordingly, transgenic Arabidopsis plants overexpressing the response regulator 4 display hypersensitivity to red light but not to light of other wavelengths. We propose that the response regulator 4 acts as an output element of a two-component system that modulates red light signaling on the level of the phytochrome B photoreceptor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sweere, U -- Eichenberg, K -- Lohrmann, J -- Mira-Rodado, V -- Baurle, I -- Kudla, J -- Nagy, F -- Schafer, E -- Harter, K -- New York, N.Y. -- Science. 2001 Nov 2;294(5544):1108-11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut fur Biologie II / Botanik, Universitat Freiburg, Schanzlestrasse 1, 79104 Freiburg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11691995" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/genetics/*metabolism/radiation effects ; Arabidopsis Proteins/genetics/*metabolism ; Cell Nucleus/metabolism ; Cytoplasm/metabolism ; Darkness ; Genes, Plant ; *Light ; Phenotype ; Phosphorylation ; *Photoreceptor Cells ; Phytochrome/chemistry/*metabolism ; Phytochrome B ; Plants, Genetically Modified ; Protein Conformation ; Recombinant Fusion Proteins/metabolism ; *Signal Transduction ; *Transcription Factors ; Two-Hybrid System Techniques ; Yeasts/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-05-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dahlberg, A E -- New York, N.Y. -- Science. 2001 May 4;292(5518):868-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biology and Medicine, Brown University, Providence, RI 02912, USA. albert_dahlberg@brown.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11341282" target="_blank"〉PubMed〈/a〉
    Keywords: Anti-Bacterial Agents/pharmacology ; Anticodon ; Base Pairing ; Binding Sites ; Codon ; Crystallography, X-Ray ; *Protein Biosynthesis ; Protein Conformation ; RNA, Bacterial/chemistry/metabolism ; RNA, Messenger/chemistry/*metabolism ; RNA, Ribosomal/chemistry/metabolism ; RNA, Transfer/chemistry/*metabolism ; RNA, Transfer, Amino Acid-Specific/chemistry/*metabolism ; Ribosomal Proteins/chemistry/metabolism ; Ribosomes/chemistry/*metabolism/*ultrastructure ; Thermus thermophilus/genetics/metabolism/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-09-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Laver, G -- Garman, E -- New York, N.Y. -- Science. 2001 Sep 7;293(5536):1776-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Australian National University, Canberra 2601, ACT, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11546857" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antiviral Agents/therapeutic use ; Chickens/*virology ; Drug Industry/methods ; Drug Resistance, Microbial ; Enzyme Inhibitors/therapeutic use ; Guanidines ; HN Protein/chemistry/genetics/metabolism ; Hong Kong/epidemiology ; Humans ; Influenza A virus/*enzymology/genetics/immunology/*pathogenicity ; Influenza Vaccines/biosynthesis/economics/immunology ; Influenza, Human/diagnosis/drug therapy/*epidemiology/*prevention & control ; Models, Molecular ; Mutation/genetics ; Neuraminidase/antagonists & inhibitors/chemistry/genetics/metabolism ; Protein Conformation ; Pyrans ; RNA, Viral/analysis/genetics ; Reassortant Viruses/enzymology/genetics/immunology/pathogenicity ; Sialic Acids/therapeutic use ; Zanamivir
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2001-08-25
    Description: beta-Amyloid plaques and neurofibrillary tangles (NFTs) are the defining neuropathological hallmarks of Alzheimer's disease, but their pathophysiological relation is unclear. Injection of beta-amyloid Abeta42 fibrils into the brains of P301L mutant tau transgenic mice caused fivefold increases in the numbers of NFTs in cell bodies within the amygdala from where neurons project to the injection sites. Gallyas silver impregnation identified NFTs that contained tau phosphorylated at serine 212/threonine 214 and serine 422. NFTs were composed of twisted filaments and occurred in 6-month-old mice as early as 18 days after Abeta42 injections. Our data support the hypothesis that Abeta42 fibrils can accelerate NFT formation in vivo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gotz, J -- Chen, F -- van Dorpe, J -- Nitsch, R M -- New York, N.Y. -- Science. 2001 Aug 24;293(5534):1491-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Psychiatry Research, University of Zurich, August Forel Strasse 1, 8008 Zurich, Switzerland. goetz@bli.unizh.ch〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11520988" target="_blank"〉PubMed〈/a〉
    Keywords: Aged ; Aged, 80 and over ; Alzheimer Disease/metabolism/*pathology ; Amygdala/*pathology ; Amyloid beta-Peptides/administration & dosage/*metabolism ; Animals ; Brain/*pathology ; Epitopes ; Female ; Fluorescent Antibody Technique ; Humans ; Male ; Mice ; Mice, Transgenic ; Microscopy, Immunoelectron ; Mutation ; Neurofibrillary Tangles/*metabolism/pathology ; Peptide Fragments/administration & dosage/*metabolism ; Phosphorylation ; Plaque, Amyloid/*metabolism/pathology ; Protein Conformation ; Protein Isoforms ; Sex Characteristics ; tau Proteins/chemistry/genetics/immunology/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-05-02
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marx, J -- New York, N.Y. -- Science. 2001 Apr 20;292(5516):411-4.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11330276" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Crystallography, X-Ray ; DNA/chemistry/metabolism ; Humans ; Models, Molecular ; Molecular Weight ; Protein Conformation ; RNA/biosynthesis/genetics ; RNA Polymerase II/*chemistry/metabolism ; *Transcription, Genetic ; Yeasts/*enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-07-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉De La Cruz, E M -- Pollard, T D -- New York, N.Y. -- Science. 2001 Jul 27;293(5530):616-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11474090" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Depolymerizing Factors ; Actins/*chemistry/*metabolism ; Adenosine Diphosphate/chemistry/*metabolism ; Adenosine Triphosphate/chemistry/metabolism ; Biopolymers/chemistry/metabolism ; *Contractile Proteins ; Crystallography, X-Ray ; Hydrolysis ; Microfilament Proteins/metabolism ; Phosphates/metabolism ; Profilins ; Protein Binding ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits ; Rhodamines/metabolism ; Thymosin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-03-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Helmuth, L -- New York, N.Y. -- Science. 2001 Jan 12;291(5502):229.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11253826" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS Vaccines ; Anti-HIV Agents/chemistry/*metabolism ; Antigens, CD4/metabolism ; CD4-Positive T-Lymphocytes/metabolism/virology ; Carrier Proteins/chemistry/*metabolism ; Drug Design ; HIV/*metabolism ; HIV Envelope Protein gp41/chemistry/*metabolism ; Humans ; *Membrane Fusion ; *Peptides ; Protein Conformation ; Protein Engineering ; Protein Folding
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2001-12-12
    Description: Dendritic cell specific intracellular adhesion molecule-3 (ICAM-3) grabbing nonintegrin (DC-SIGN), a C-type lectin present on the surface of dendritic cells, mediates the initial interaction of dendritic cells with T cells by binding to ICAM-3. DC-SIGN and DC-SIGNR, a related receptor found on the endothelium of liver sinusoids, placental capillaries, and lymph nodes, bind to oligosaccharides that are present on the envelope of human immunodeficiency virus (HIV), an interaction that strongly promotes viral infection of T cells. Crystal structures of carbohydrate-recognition domains of DC-SIGN and of DC-SIGNR bound to oligosaccharide, in combination with binding studies, reveal that these receptors selectively recognize endogenous high-mannose oligosaccharides and may represent a new avenue for developing HIV prophylactics.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Feinberg, H -- Mitchell, D A -- Drickamer, K -- Weis, W I -- GM50565/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2001 Dec 7;294(5549):2163-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Structural Biology, University School of Medicine, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11739956" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylglucosamine/chemistry/metabolism ; Calcium/metabolism ; Carbohydrate Conformation ; Carbohydrate Sequence ; Carrier Proteins/chemistry/metabolism ; *Cell Adhesion Molecules ; Collectins ; Crystallization ; Crystallography, X-Ray ; Glycoproteins/chemistry/metabolism ; HIV Envelope Protein gp120/chemistry/metabolism ; Humans ; Hydrogen Bonding ; Lectins/*chemistry/*metabolism ; *Lectins, C-Type ; Ligands ; Mannose/chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Oligosaccharides/chemistry/*metabolism ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Receptors, Cell Surface/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-11-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Smith, O -- New York, N.Y. -- Science. 2001 Nov 9;294(5545):1298.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11701920" target="_blank"〉PubMed〈/a〉
    Keywords: *Antigens, Bacterial ; *Bacillus anthracis ; Bacterial Toxins/chemistry/*metabolism ; Crystallography, X-Ray ; Endocytosis ; Hydrogen-Ion Concentration ; Macrophages/metabolism/microbiology ; Mitogen-Activated Protein Kinase Kinases/metabolism ; Phagocytosis ; Protein Conformation ; Protein Structure, Tertiary ; Receptors, Cell Surface/chemistry/*metabolism ; Receptors, Peptide/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2001-03-03
    Description: Initiation of translation at the correct position on messenger RNA is essential for accurate protein synthesis. In prokaryotes, this process requires three initiation factors: IF1, IF2, and IF3. Here we report the crystal structure of a complex of IF1 and the 30S ribosomal subunit. Binding of IF1 occludes the ribosomal A site and flips out the functionally important bases A1492 and A1493 from helix 44 of 16S RNA, burying them in pockets in IF1. The binding of IF1 causes long-range changes in the conformation of H44 and leads to movement of the domains of 30S with respect to each other. The structure explains how localized changes at the ribosomal A site lead to global alterations in the conformation of the 30S subunit.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carter, A P -- Clemons, W M Jr -- Brodersen, D E -- Morgan-Warren, R J -- Hartsch, T -- Wimberly, B T -- Ramakrishnan, V -- GM 44973/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2001 Jan 19;291(5503):498-501.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11228145" target="_blank"〉PubMed〈/a〉
    Keywords: Base Pairing ; Binding Sites ; Crystallography, X-Ray ; Eukaryotic Initiation Factor-1/*chemistry/metabolism ; Hydrogen Bonding ; Models, Molecular ; Nucleic Acid Conformation ; Protein Conformation ; Protein Structure, Secondary ; RNA, Ribosomal, 16S/*chemistry/metabolism ; RNA, Transfer/metabolism ; Ribosomal Proteins/*chemistry/metabolism ; Ribosomes/*chemistry/metabolism ; Thermus thermophilus/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2001-02-27
    Description: Bag (Bcl2-associated athanogene) domains occur in a class of cofactors of the eukaryotic chaperone 70-kilodalton heat shock protein (Hsp70) family. Binding of the Bag domain to the Hsp70 adenosine triphosphatase (ATPase) domain promotes adenosine 5'-triphosphate-dependent release of substrate from Hsp70 in vitro. In a 1.9 angstrom crystal structure of a complex with the ATPase of the 70-kilodalton heat shock cognate protein (Hsc70), the Bag domain forms a three-helix bundle, inducing a conformational switch in the ATPase that is incompatible with nucleotide binding. The same switch is observed in the bacterial Hsp70 homolog DnaK upon binding of the structurally unrelated nucleotide exchange factor GrpE. Thus, functional convergence has allowed proteins with different architectures to trigger a conserved conformational shift in Hsp70 that leads to nucleotide exchange.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sondermann, H -- Scheufler, C -- Schneider, C -- Hohfeld, J -- Hartl, F U -- Moarefi, I -- New York, N.Y. -- Science. 2001 Feb 23;291(5508):1553-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular Biochemistry, Max-Planck-Institut fur Biochemie, D-82152 Martinsried, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11222862" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Diphosphate/metabolism ; Adenosine Triphosphatases/*chemistry/*metabolism ; Adenosine Triphosphate/metabolism ; Amino Acid Sequence ; Animals ; Bacterial Proteins/chemistry/metabolism ; Carrier Proteins/*chemistry/*metabolism ; Cattle ; Crystallography, X-Ray ; DNA-Binding Proteins ; *Escherichia coli Proteins ; Evolution, Molecular ; HSC70 Heat-Shock Proteins ; HSP70 Heat-Shock Proteins/*chemistry/*metabolism ; Heat-Shock Proteins/chemistry/metabolism ; Humans ; Hydrolysis ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Isoforms ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Transcription Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-06-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Klug, A -- New York, N.Y. -- Science. 2001 Jun 8;292(5523):1844-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Laboratory of Molecular Biology, Cambridge CB2 2QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11397933" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Crystallization ; Crystallography, X-Ray ; DNA, Fungal/chemistry/metabolism ; Gene Expression Regulation, Fungal ; Promoter Regions, Genetic ; Protein Conformation ; Protein Folding ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits ; RNA Polymerase II/*chemistry/*metabolism ; RNA, Fungal/biosynthesis/chemistry/metabolism ; RNA, Messenger/biosynthesis/chemistry/metabolism ; Saccharomyces cerevisiae/*enzymology/genetics ; Transcription Factors/isolation & purification/metabolism ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-12-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Catterall, W A -- New York, N.Y. -- Science. 2001 Dec 14;294(5550):2306-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of Washington, Seattle, WA 98195, USA. wcatt@u.washington.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11743190" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Bacillus/*chemistry/metabolism ; Bacterial Proteins/antagonists & inhibitors/chemistry/*metabolism ; Calcium Channels/chemistry/metabolism ; Ion Channel Gating ; Ion Transport ; Membrane Potentials ; Potassium Channel Blockers ; Potassium Channels/chemistry/metabolism ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Sodium/*metabolism ; Sodium Channel Blockers ; Sodium Channels/*chemistry/*metabolism ; Static Electricity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2001-12-26
    Description: In anaerobic organisms, the decarboxylation of pyruvate, a crucial component of intermediary metabolism, is catalyzed by the metalloenzyme pyruvate: ferredoxin oxidoreductase (PFOR) resulting in the generation of low potential electrons and the subsequent acetylation of coenzyme A (CoA). PFOR is the only enzyme for which a stable acetyl thiamine diphosphate (ThDP)-based free radical reaction intermediate has been identified. The 1.87 A-resolution structure of the radical form of PFOR from Desulfovibrio africanus shows that, despite currently accepted ideas, the thiazole ring of the ThDP cofactor is markedly bent, indicating a drastic reduction of its aromaticity. In addition, the bond connecting the acetyl group to ThDP is unusually long, probably of the one-electron type already described for several cation radicals but not yet found in a biological system. Taken together, our data, along with evidence from the literature, suggest that acetyl-CoA synthesis by PFOR proceeds via a condensation mechanism involving acetyl (PFOR-based) and thiyl (CoA-based) radicals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chabriere, E -- Vernede, X -- Guigliarelli, B -- Charon, M H -- Hatchikian, E C -- Fontecilla-Camps, J C -- New York, N.Y. -- Science. 2001 Dec 21;294(5551):2559-63.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratoire de Cristallographie et Cristallogenese des Proteines, Institut de Biologie Structurale Jean-Pierre Ebel, Commissariat a l'Energie Atomique, Universite Joseph Fourier, CNRS, 41, rue Jules Horowitz, 38027 Grenoble Cedex 1, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11752578" target="_blank"〉PubMed〈/a〉
    Keywords: Acetyl Coenzyme A/metabolism ; Anaerobiosis ; Binding Sites ; Carbon Dioxide/metabolism ; Catalysis ; Chemistry, Physical ; Coenzymes/*chemistry/metabolism ; Crystallization ; Crystallography, X-Ray ; Desulfovibrio/*enzymology ; Dimerization ; Electron Spin Resonance Spectroscopy ; *Free Radicals/chemistry/metabolism ; Ketone Oxidoreductases/*chemistry/metabolism ; Molecular Conformation ; Molecular Structure ; Oxidation-Reduction ; Physicochemical Phenomena ; Protein Conformation ; Pyruvate Synthase ; Pyruvic Acid/metabolism ; Thiamine Pyrophosphate/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-08-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wand, A J -- New York, N.Y. -- Science. 2001 Aug 24;293(5534):1395.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Johnson Research Foundation and Department of Biochemistry & Biophysics, University of Pennsylvania, Philadelphia, PA 19104-6059, USA. wand@mail.med.upenn.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11520951" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; *Bacterial Proteins ; Calcium/metabolism ; Calmodulin/chemistry/metabolism ; DNA-Binding Proteins/*chemistry/genetics/*metabolism ; Motion ; Mutation ; Nuclear Magnetic Resonance, Biomolecular ; PII Nitrogen Regulatory Proteins ; Phosphorylation ; Protein Conformation ; Thermodynamics ; *Trans-Activators ; *Transcription Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-03-07
    Description: Human immunodeficiency virus type-1 (HIV-1) membrane fusion is promoted by the formation of a trimer-of-hairpins structure that brings the amino- and carboxyl-terminal regions of the gp41 envelope glycoprotein ectodomain into close proximity. Peptides derived from the carboxyl-terminal region (called C-peptides) potently inhibit HIV-1 entry by binding to the gp41 amino-terminal region. To test the converse of this inhibitory strategy, we designed a small protein, denoted 5-Helix, that binds the C-peptide region of gp41. The 5-Helix protein displays potent (nanomolar) inhibitory activity against diverse HIV-1 variants and may serve as the basis for a new class of antiviral agents. The inhibitory activity of 5-Helix also suggests a strategy for generating an HIV-1 neutralizing antibody response that targets the carboxyl-terminal region of the gp41 ectodomain.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Root, M J -- Kay, M S -- Kim, P S -- P01 GM56552/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2001 Feb 2;291(5505):884-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA. kimadmin@wi.mit.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11229405" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; *Anti-HIV Agents/chemistry/immunology/metabolism/pharmacology ; Carrier Proteins/*chemistry/metabolism/*pharmacology ; Cell Line ; *Drug Design ; Giant Cells/drug effects ; HIV Antibodies/immunology ; HIV Envelope Protein gp41/chemistry/*metabolism ; HIV-1/*drug effects/physiology ; Humans ; Membrane Fusion/*drug effects ; Molecular Sequence Data ; Neutralization Tests ; Peptide Fragments/chemistry/immunology/metabolism ; *Peptides ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2001-09-08
    Description: Recently we reported that antibodies can generate hydrogen peroxide (H2O2) from singlet molecular oxygen (1O2*). We now show that this process is catalytic, and we identify the electron source for a quasi-unlimited generation of H2O2. Antibodies produce up to 500 mole equivalents of H2O2 from 1O2*, without a reduction in rate, and we have excluded metals or Cl- as the electron source. On the basis of isotope incorporation experiments and kinetic data, we propose that antibodies use H2O as an electron source, facilitating its addition to 1O2* to form H2O3 as the first intermediate in a reaction cascade that eventually leads to H2O2. X-ray crystallographic studies with xenon point to putative conserved oxygen binding sites within the antibody fold where this chemistry could be initiated. Our findings suggest a protective function of immunoglobulins against 1O2* and raise the question of whether the need to detoxify 1O2* has played a decisive role in the evolution of the immunoglobulin fold.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wentworth , P Jr -- Jones, L H -- Wentworth, A D -- Zhu, X -- Larsen, N A -- Wilson, I A -- Xu, X -- Goddard , W A 3rd -- Janda, K D -- Eschenmoser, A -- Lerner, R A -- CA27489/CA/NCI NIH HHS/ -- GM43858/GM/NIGMS NIH HHS/ -- HD 36385/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2001 Sep 7;293(5536):1806-11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11546867" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Catalytic/chemistry/*metabolism ; Binding Sites ; Catalysis ; Conserved Sequence ; Crystallography, X-Ray ; Humans ; Hydrogen Peroxide/*metabolism ; Kinetics ; Models, Molecular ; Oxidants/chemistry/*metabolism ; Oxidation-Reduction ; Oxygen/*metabolism ; Protein Conformation ; Singlet Oxygen ; Spectrometry, Mass, Electrospray Ionization ; Thermodynamics ; Tryptophan/metabolism ; Ultraviolet Rays ; Water/*chemistry/*metabolism ; Xenon/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-10-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Humphries, M J -- Mould, A P -- New York, N.Y. -- Science. 2001 Oct 12;294(5541):316-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, University of Manchester, M13 9PT, UK. martin.humphries@man.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11598288" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Calcium/metabolism ; Crystallization ; Crystallography, X-Ray ; Dimerization ; Drug Design ; Humans ; Ligands ; Metals/metabolism ; Models, Molecular ; Protein Binding ; Protein Conformation ; Protein Folding ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits ; Receptors, Vitronectin/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2001-03-17
    Description: The activation of gp130, a shared signal-transducing receptor for a family of cytokines, is initiated by recognition of ligand followed by oligomerization into a higher order signaling complex. Kaposi's sarcoma-associated herpesvirus encodes a functional homolog of human interleukin-6 (IL-6) that activates human gp130. In the 2.4 angstrom crystal structure of the extracellular signaling assembly between viral IL-6 and human gp130, two complexes are cross-linked into a tetramer through direct interactions between the immunoglobulin domain of gp130 and site III of viral IL-6, which is necessary for receptor activation. Unlike human IL-6 (which uses many hydrophilic residues), the viral cytokine largely uses hydrophobic amino acids to contact gp130, which enhances the complementarity of the viral IL-6-gp130 binding interfaces. The cross-reactivity of gp130 is apparently due to a chemical plasticity evident in the amphipathic gp130 cytokine-binding sites.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chow , D -- He , X -- Snow, A L -- Rose-John, S -- Garcia, K C -- R01-AI-48540-01/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2001 Mar 16;291(5511):2150-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, Stanford University School of Medicine, Fairchild D319, 299 Campus Drive, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11251120" target="_blank"〉PubMed〈/a〉
    Keywords: Antigens, CD/*chemistry/*metabolism ; Binding Sites ; Crystallization ; Crystallography, X-Ray ; Cytokine Receptor gp130 ; Epitopes ; Humans ; Hydrogen Bonding ; Interleukin-6/*chemistry/immunology/*metabolism ; Membrane Glycoproteins/*chemistry/*metabolism ; Models, Molecular ; Molecular Mimicry ; Protein Conformation ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Signal Transduction ; Viral Proteins/*chemistry/immunology/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-02-24
    Description: The rotating motion of a helical flagellum enables a bacterium to swim toward positive stimuli and away from danger. But how is the flagellum, composed of many different proteins, assembled? In a Perspective, Macnab explains how subunits of the protein flagellin flow down a channel inside the flagellum and are then added to its tip through the action of a rotating pentameric cap complex (Yonekura et al.).〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Macnab, R M -- New York, N.Y. -- Science. 2000 Dec 15;290(5499):2086-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA. robert.macnab@yale.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11187835" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteria/*ultrastructure ; Bacterial Proteins/*chemistry/*metabolism ; Cryoelectron Microscopy ; Diffusion ; Flagella/*metabolism/ultrastructure ; Flagellin/*chemistry/*metabolism ; Protein Conformation ; Protein Folding ; Protein Structure, Quaternary ; Protein Structure, Secondary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-02-07
    Description: Not all biological movements are caused by molecular motors sliding along filaments or tubules. Just as springs and ratchets can store or release energy and rectify motion in physical systems, their analogs can perform similar functions in biological systems. The energy of biological springs is derived from hydrolysis of a nucleotide or the binding of a ligand, whereas biological ratchets are powered by Brownian movements of polymerizing filaments. However, the viscous and fluctuating cellular environment and the mechanochemistry of soft biological systems constrain the modes of motion generated and the mechanisms for energy storage, control, and release.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mahadevan, L -- Matsudaira, P -- GM52703/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2000 Apr 7;288(5463):95-100.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Mechanical Engineering, Massachusetts Institute of Technology, Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10753126" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/metabolism ; Animals ; Biopolymers ; Calcium/metabolism ; Contractile Proteins/chemistry/*physiology ; Cytoskeleton/*physiology ; Energy Metabolism ; Fertilization ; Ligands ; Movement/*physiology ; Organelles/*physiology ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-02-07
    Description: The microtubule-based kinesin motors and actin-based myosin motors generate motions associated with intracellular trafficking, cell division, and muscle contraction. Early studies suggested that these molecular motors work by very different mechanisms. Recently, however, it has become clear that kinesin and myosin share a common core structure and convert energy from adenosine triphosphate into protein motion using a similar conformational change strategy. Many different types of mechanical amplifiers have evolved that operate in conjunction with the conserved core. This modular design has given rise to a remarkable diversity of kinesin and myosin motors whose motile properties are optimized for performing distinct biological functions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vale, R D -- Milligan, R A -- New York, N.Y. -- Science. 2000 Apr 7;288(5463):88-95.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA. vale@phy.ucsf.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10753125" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/metabolism ; Adenosine Triphosphate/metabolism ; Animals ; Binding Sites ; Cytoskeleton/metabolism ; Evolution, Molecular ; Kinesin/chemistry/*physiology ; Microtubules/metabolism ; Models, Biological ; Models, Molecular ; Molecular Motor Proteins/chemistry/*physiology ; Myosins/chemistry/*physiology ; Protein Conformation ; Protein Structure, Secondary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2001-10-20
    Description: The signal recognition particle (SRP) is a universally conserved ribonucleoprotein complex that mediates the cotranslational targeting of secretory and membrane proteins to cellular membranes. A crucial early step in SRP assembly in archaea and eukarya is the binding of protein SRP19 to specific sites on SRP RNA. Here we report the 1.8 angstrom resolution crystal structure of human SRP19 in complex with its primary binding site on helix 6 of SRP RNA, which consists of a stem-loop structure closed by an unusual GGAG tetraloop. Protein-RNA interactions are mediated by the specific recognition of a widened major groove and the tetraloop without any direct protein-base contacts and include a complex network of highly ordered water molecules. A model of the assembly of the SRP core comprising SRP19, SRP54, and SRP RNA based on crystallographic and biochemical data is proposed.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wild, K -- Sinning, I -- Cusack, S -- New York, N.Y. -- Science. 2001 Oct 19;294(5542):598-601.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biochemie-Zentrum (BZH), University of Heidelberg, Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany. klemens.wild@bzh.uni-heidelberg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11641499" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Pairing ; Base Sequence ; Binding Sites ; Crystallography, X-Ray ; Humans ; Hydrogen Bonding ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Protein Binding ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; RNA/*chemistry/metabolism ; Signal Recognition Particle/*chemistry/metabolism ; Water/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2001-07-28
    Description: The dynamics and polarity of actin filaments are controlled by a conformational change coupled to the hydrolysis of adenosine 5'-triphosphate (ATP) by a mechanism that remains to be elucidated. Actin modified to block polymerization was crystallized in the adenosine 5'-diphosphate (ADP) state, and the structure was solved to 1.54 angstrom resolution. Compared with previous ATP-actin structures from complexes with deoxyribonuclease I, profilin, and gelsolin, monomeric ADP-actin is characterized by a marked conformational change in subdomain 2. The successful crystallization of monomeric actin opens the way to future structure determinations of actin complexes with actin-binding proteins such as myosin.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Otterbein, L R -- Graceffa, P -- Dominguez, R -- P01 AR41637/AR/NIAMS NIH HHS/ -- R01 AR046524/AR/NIAMS NIH HHS/ -- R01 AR46524/AR/NIAMS NIH HHS/ -- RR07707/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2001 Jul 27;293(5530):708-11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Boston Biomedical Research Institute, 64 Grove Street, Watertown, MA 02472, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11474115" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/*chemistry/*metabolism ; Adenosine Diphosphate/chemistry/*metabolism ; Adenosine Triphosphate/chemistry/metabolism ; Binding Sites ; Biopolymers/chemistry/metabolism ; Calcium/metabolism ; Crystallization ; Crystallography, X-Ray ; Deoxyribonuclease I/metabolism ; Hydrogen Bonding ; Models, Molecular ; Phosphates/metabolism ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Rhodamines/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2001-02-13
    Description: Endocytic proteins such as epsin, AP180, and Hip1R (Sla2p) share a conserved modular region termed the epsin NH2-terminal homology (ENTH) domain, which plays a crucial role in clathrin-mediated endocytosis through an unknown target. Here, we demonstrate a strong affinity of the ENTH domain for phosphatidylinositol-4,5-bisphosphate [PtdIns(4,5)P2]. With nuclear magnetic resonance analysis of the epsin ENTH domain, we determined that a cleft formed with positively charged residues contributed to phosphoinositide binding. Overexpression of a mutant, epsin Lys76 --〉 Ala76, with an ENTH domain defective in phosphoinositide binding, blocked epidermal growth factor internalization in COS-7 cells. Thus, interaction between the ENTH domain and PtdIns(4,5)P2 is essential for endocytosis mediated by clathrin-coated pits.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Itoh, T -- Koshiba, S -- Kigawa, T -- Kikuchi, A -- Yokoyama, S -- Takenawa, T -- New York, N.Y. -- Science. 2001 Feb 9;291(5506):1047-51.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11161217" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Vesicular Transport ; Amino Acid Motifs ; Amino Acid Substitution ; Animals ; COS Cells ; Carrier Proteins/*chemistry/*metabolism ; Cercopithecus aethiops ; Clathrin/metabolism ; Coated Pits, Cell-Membrane/metabolism ; DNA-Binding Proteins/metabolism ; *Endocytosis ; Epidermal Growth Factor/metabolism ; Inositol Phosphates/metabolism ; Liposomes/metabolism ; Models, Molecular ; Neuropeptides/*chemistry/*metabolism ; Nuclear Magnetic Resonance, Biomolecular ; Phosphatidylinositol 4,5-Diphosphate/*metabolism ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/chemistry/metabolism ; Transcription Factors/metabolism ; *Vesicular Transport Proteins ; Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-05-22
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Balter, M -- New York, N.Y. -- Science. 2001 May 18;292(5520):1275.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11360968" target="_blank"〉PubMed〈/a〉
    Keywords: Computational Biology/*economics ; Databases as Topic/*economics ; Europe ; European Union ; *Financing, Organized ; *Genome ; Oligonucleotide Array Sequence Analysis ; Protein Binding ; Protein Conformation ; Proteome/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2001-03-07
    Description: The recruitment of trafficking and signaling proteins to membranes containing phosphatidylinositol 3-phosphate [PtdIns(3)P] is mediated by FYVE domains. Here, the solution structure of the FYVE domain of the early endosome antigen 1 protein (EEA1) in the free state was compared with the structures of the domain complexed with PtdIns(3)P and mixed micelles. The multistep binding mechanism involved nonspecific insertion of a hydrophobic loop into the lipid bilayer, positioning and activating the binding pocket. Ligation of PtdIns(3)P then induced a global structural change, drawing the protein termini over the bound phosphoinositide by extension of a hinge. Specific recognition of the 3-phosphate was determined indirectly and directly by two clusters of conserved arginines.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kutateladze, T -- Overduin, M -- CA85716/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2001 Mar 2;291(5509):1793-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of Colorado Health Sciences Center, Denver, CO 80262, USA. tatiana.kutateladze@uchsc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11230696" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Crystallography, X-Ray ; Endosomes/*metabolism ; Humans ; Hydrogen Bonding ; Lipid Bilayers ; Membrane Proteins/*chemistry/*metabolism ; Micelles ; Models, Molecular ; Phosphatidylinositol Phosphates/*metabolism ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Transport ; Vesicular Transport Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2001-06-02
    Description: Complement receptor 2 (CR2/CD21) is an important receptor that amplifies B lymphocyte activation by bridging the innate and adaptive immune systems. CR2 ligands include complement C3d and Epstein-Barr virus glycoprotein 350/220. We describe the x-ray structure of this CR2 domain in complex with C3d at 2.0 angstroms. The structure reveals extensive main chain interactions between C3d and only one short consensus repeat (SCR) of CR2 and substantial SCR side-side packing. These results provide a detailed understanding of receptor-ligand interactions in this protein family and reveal potential target sites for molecular drug design.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Szakonyi, G -- Guthridge, J M -- Li, D -- Young, K -- Holers, V M -- Chen, X S -- R0-1 CA53615/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2001 Jun 1;292(5522):1725-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Genetics, University of Colorado Health Science Center, School of Medicine, Denver, CO 80262, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11387479" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antibodies, Monoclonal ; Complement C3d/chemistry/genetics/*metabolism ; Consensus Sequence ; Crystallography, X-Ray ; Humans ; Hydrogen Bonding ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis ; Protein Conformation ; Protein Folding ; Protein Sorting Signals ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Receptors, Complement 3d/*chemistry/immunology/*metabolism ; Recombinant Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2001-04-28
    Description: DNA, RNA, and regulatory molecules control gene expression through interactions with RNA polymerase (RNAP). We show that a short alpha helix at the tip of the flaplike domain that covers the RNA exit channel of RNAP contacts a nascent RNA stem-loop structure (hairpin) that inhibits transcription, and that this flap-tip helix is required for activity of the regulatory protein NusA. Protein-RNA cross-linking, molecular modeling, and effects of alterations in RNAP and RNA all suggest that a tripartite interaction of RNAP, NusA, and the hairpin inhibits nucleotide addition in the active site, which is located 65 angstroms away. These findings favor an allosteric model for regulation of transcript elongation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Toulokhonov, I -- Artsimovitch, I -- Landick, R -- GM38660/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2001 Apr 27;292(5517):730-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11326100" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Amino Acid Sequence ; Bacterial Proteins/metabolism ; Base Sequence ; Binding Sites ; Catalysis ; DNA-Directed RNA Polymerases/*chemistry/genetics/*metabolism ; Escherichia coli/genetics ; Escherichia coli Proteins ; Models, Molecular ; Molecular Sequence Data ; Mutation ; *Nucleic Acid Conformation ; Oligonucleotides, Antisense ; *Peptide Elongation Factors ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; RNA/*chemistry/metabolism ; Transcription Factors/metabolism ; Transcription, Genetic ; Transcriptional Elongation Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-05-02
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dismukes, G C -- New York, N.Y. -- Science. 2001 Apr 20;292(5516):447-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and the Princeton Environmental Institute, Princeton University, Princeton, NJ 08544, USA. dismukes@princeton.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11330297" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere ; Catalysis ; Chlorophyll/chemistry/metabolism ; Crystallography, X-Ray ; Cyanobacteria/*chemistry/metabolism ; Electrons ; Macromolecular Substances ; Manganese/chemistry ; Oxidation-Reduction ; Oxygen/metabolism ; *Photosynthesis ; Photosynthetic Reaction Center Complex Proteins/*chemistry/metabolism ; Protein Conformation ; Protein Subunits ; Tyrosine/chemistry ; Water/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2001-07-14
    Description: We report an atomic-resolution structure for a sensory member of the microbial rhodopsin family, the phototaxis receptor sensory rhodopsin II (NpSRII), which mediates blue-light avoidance by the haloarchaeon Natronobacterium pharaonis. The 2.4 angstrom structure reveals features responsible for the 70- to 80-nanometer blue shift of its absorption maximum relative to those of haloarchaeal transport rhodopsins, as well as structural differences due to its sensory, as opposed to transport, function. Multiple factors appear to account for the spectral tuning difference with respect to bacteriorhodopsin: (i) repositioning of the guanidinium group of arginine 72, a residue that interacts with the counterion to the retinylidene protonated Schiff base; (ii) rearrangement of the protein near the retinal ring; and (iii) changes in tilt and slant of the retinal polyene chain. Inspection of the surface topography reveals an exposed polar residue, tyrosine 199, not present in bacteriorhodopsin, in the middle of the membrane bilayer. We propose that this residue interacts with the adjacent helices of the cognate NpSRII transducer NpHtrII.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Luecke, H -- Schobert, B -- Lanyi, J K -- Spudich, E N -- Spudich, J L -- R01-GM27750/GM/NIGMS NIH HHS/ -- R01-GM29498/GM/NIGMS NIH HHS/ -- R01-GM59970/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2001 Aug 24;293(5534):1499-503. Epub 2001 Jul 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA. hudel@uci.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11452084" target="_blank"〉PubMed〈/a〉
    Keywords: Archaeal Proteins/chemistry/metabolism ; Arginine/chemistry ; Bacteriorhodopsins/*chemistry/metabolism ; Binding Sites ; *Carotenoids ; Color ; Crystallography, X-Ray ; Electron Spin Resonance Spectroscopy ; Hydrogen Bonding ; Ion Transport ; Light ; Models, Molecular ; Natronobacterium/*chemistry/metabolism ; Protein Conformation ; Protein Structure, Secondary ; Protons ; Retinaldehyde/chemistry/metabolism ; Schiff Bases ; Signal Transduction ; Tyrosine/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...