ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cell Line  (341)
  • Models, Molecular  (246)
  • 2005-2009  (579)
Collection
Years
Year
  • 1
    Publication Date: 2009-12-19
    Description: Inward-rectifier potassium (K+) channels conduct K+ ions most efficiently in one direction, into the cell. Kir2 channels control the resting membrane voltage in many electrically excitable cells, and heritable mutations cause periodic paralysis and cardiac arrhythmia. We present the crystal structure of Kir2.2 from chicken, which, excluding the unstructured amino and carboxyl termini, is 90% identical to human Kir2.2. Crystals containing rubidium (Rb+), strontium (Sr2+), and europium (Eu3+) reveal binding sites along the ion conduction pathway that are both conductive and inhibitory. The sites correlate with extensive electrophysiological data and provide a structural basis for understanding rectification. The channel's extracellular surface, with large structured turrets and an unusual selectivity filter entryway, might explain the relative insensitivity of eukaryotic inward rectifiers to toxins. These same surface features also suggest a possible approach to the development of inhibitory agents specific to each member of the inward-rectifier K+ channel family.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2819303/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2819303/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tao, Xiao -- Avalos, Jose L -- Chen, Jiayun -- MacKinnon, Roderick -- P30 EB009998/EB/NIBIB NIH HHS/ -- R01 GM043949/GM/NIGMS NIH HHS/ -- R01 GM043949-10/GM/NIGMS NIH HHS/ -- R01 GM043949-11/GM/NIGMS NIH HHS/ -- R01 GM043949-12/GM/NIGMS NIH HHS/ -- R01 GM043949-13/GM/NIGMS NIH HHS/ -- R01 GM043949-14/GM/NIGMS NIH HHS/ -- R01 GM043949-15/GM/NIGMS NIH HHS/ -- R01 GM043949-16/GM/NIGMS NIH HHS/ -- R01 GM043949-17/GM/NIGMS NIH HHS/ -- R01 GM043949-18/GM/NIGMS NIH HHS/ -- R01 GM043949-19/GM/NIGMS NIH HHS/ -- R01 GM043949-20/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2009 Dec 18;326(5960):1668-74. doi: 10.1126/science.1180310.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Neurobiology and Biophysics, Rockefeller University, Howard Hughes Medical Institute, 1230 York Avenue, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20019282" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Binding Sites ; Chickens ; Cloning, Molecular ; Crystallography, X-Ray ; Europium/metabolism ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Molecular Sequence Data ; Oocytes ; Patch-Clamp Techniques ; Potassium/metabolism ; Potassium Channel Blockers/pharmacology ; Potassium Channels, Inwardly Rectifying/antagonists & ; inhibitors/*chemistry/metabolism ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits/chemistry ; Rubidium/metabolism ; Sequence Alignment ; Strontium/metabolism ; Xenopus laevis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-12-17
    Description: Emerging evidence indicates that gene expression in higher organisms is regulated by RNA polymerase II stalling during early transcription elongation. To probe the mechanisms responsible for this regulation, we developed methods to isolate and characterize short RNAs derived from stalled RNA polymerase II in Drosophila cells. Significant levels of these short RNAs were generated from more than one-third of all genes, indicating that promoter-proximal stalling is a general feature of early polymerase elongation. Nucleotide composition of the initially transcribed sequence played an important role in promoting transcriptional stalling by rendering polymerase elongation complexes highly susceptible to backtracking and arrest. These results indicate that the intrinsic efficiency of early elongation can greatly affect gene expression.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3435875/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3435875/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nechaev, Sergei -- Fargo, David C -- dos Santos, Gilberto -- Liu, Liwen -- Gao, Yuan -- Adelman, Karen -- ZIA ES101987-05/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2010 Jan 15;327(5963):335-8. doi: 10.1126/science.1181421. Epub 2009 Dec 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20007866" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Composition ; Cell Line ; Drosophila melanogaster ; *Gene Expression Regulation ; *Genes, Insect ; Genome, Insect ; Oligonucleotide Array Sequence Analysis ; *Promoter Regions, Genetic ; RNA/genetics/*metabolism ; RNA Caps/genetics/metabolism ; RNA Polymerase II/*metabolism ; RNA, Messenger/genetics/metabolism ; Transcription Initiation Site ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-12-17
    Description: Metabotropic glutamate receptor 5 (mGluR5) is highly expressed in the mammalian central nervous system (CNS). It is involved in multiple physiological functions and is a target for treatment of various CNS disorders, including schizophrenia. We report that Norbin, a neuron-specific protein, physically interacts with mGluR5 in vivo, increases the cell surface localization of the receptor, and positively regulates mGluR5 signaling. Genetic deletion of Norbin attenuates mGluR5-dependent stable changes in synaptic function measured as long-term depression or long-term potentiation of synaptic transmission in the hippocampus. As with mGluR5 knockout mice or mice treated with mGluR5-selective antagonists, Norbin knockout mice showed a behavioral phenotype associated with a rodent model of schizophrenia, as indexed by alterations both in sensorimotor gating and psychotomimetic-induced locomotor activity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2796550/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2796550/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Hong -- Westin, Linda -- Nong, Yi -- Birnbaum, Shari -- Bendor, Jacob -- Brismar, Hjalmar -- Nestler, Eric -- Aperia, Anita -- Flajolet, Marc -- Greengard, Paul -- DA 10044/DA/NIDA NIH HHS/ -- MH074866/MH/NIMH NIH HHS/ -- MH66172/MH/NIMH NIH HHS/ -- P01 DA010044/DA/NIDA NIH HHS/ -- P01 DA010044-020002/DA/NIDA NIH HHS/ -- P01 DA010044-030002/DA/NIDA NIH HHS/ -- P01 DA010044-04/DA/NIDA NIH HHS/ -- P01 DA010044-040002/DA/NIDA NIH HHS/ -- P01 DA010044-05/DA/NIDA NIH HHS/ -- P01 DA010044-050002/DA/NIDA NIH HHS/ -- P01 DA010044-06/DA/NIDA NIH HHS/ -- P01 DA010044-060002/DA/NIDA NIH HHS/ -- P01 DA010044-07/DA/NIDA NIH HHS/ -- P01 DA010044-070002/DA/NIDA NIH HHS/ -- P01 DA010044-08/DA/NIDA NIH HHS/ -- P01 DA010044-080002/DA/NIDA NIH HHS/ -- P01 DA010044-09/DA/NIDA NIH HHS/ -- P01 DA010044-090002/DA/NIDA NIH HHS/ -- P01 DA010044-10/DA/NIDA NIH HHS/ -- P01 DA010044-100002/DA/NIDA NIH HHS/ -- P01 DA010044-11/DA/NIDA NIH HHS/ -- P01 DA010044-110005/DA/NIDA NIH HHS/ -- P01 DA010044-12/DA/NIDA NIH HHS/ -- P01 DA010044-120005/DA/NIDA NIH HHS/ -- P01 DA010044-129002/DA/NIDA NIH HHS/ -- P01 DA010044-13/DA/NIDA NIH HHS/ -- P01 DA010044-130005/DA/NIDA NIH HHS/ -- P01 DA010044-139002/DA/NIDA NIH HHS/ -- P01 DA010044-14/DA/NIDA NIH HHS/ -- P01 DA010044-140005/DA/NIDA NIH HHS/ -- P01 DA010044-149002/DA/NIDA NIH HHS/ -- P01 DA010044-14S1/DA/NIDA NIH HHS/ -- P01 DA010044-14S10005/DA/NIDA NIH HHS/ -- P01 DA010044-14S19002/DA/NIDA NIH HHS/ -- P50 MH074866/MH/NIMH NIH HHS/ -- P50 MH074866-010001/MH/NIMH NIH HHS/ -- P50 MH074866-020001/MH/NIMH NIH HHS/ -- P50 MH074866-030001/MH/NIMH NIH HHS/ -- P50 MH074866-039001/MH/NIMH NIH HHS/ -- P50 MH074866-040001/MH/NIMH NIH HHS/ -- P50 MH074866-050001/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2009 Dec 11;326(5959):1554-7. doi: 10.1126/science.1178496.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20007903" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/*metabolism ; Calcium/metabolism ; Calcium Signaling ; Cell Line ; Cell Membrane/metabolism ; Humans ; Mice ; Mice, Knockout ; Motor Activity ; Nerve Tissue Proteins/genetics/*metabolism ; Neuronal Plasticity ; Protein Binding ; Rats ; Receptor, Metabotropic Glutamate 5 ; Receptors, Metabotropic Glutamate/genetics/*metabolism ; Reflex, Startle ; Schizophrenia/physiopathology ; *Signal Transduction ; Synaptic Transmission ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2009-12-17
    Description: Cells have self-organizing properties that control their behavior in complex tissues. Contact between cells expressing either B-type Eph receptors or their transmembrane ephrin ligands initiates bidirectional signals that regulate cell positioning. However, simultaneously investigating how information is processed in two interacting cell types remains a challenge. We implemented a proteomic strategy to systematically determine cell-specific signaling networks underlying EphB2- and ephrin-B1-controlled cell sorting. Quantitative mass spectrometric analysis of mixed populations of EphB2- and ephrin-B1-expressing cells that were labeled with different isotopes revealed cell-specific tyrosine phosphorylation events. Functional associations between these phosphotyrosine signaling networks and cell sorting were established with small interfering RNA screening. Data-driven network modeling revealed that signaling between mixed EphB2- and ephrin-B1-expressing cells is asymmetric and that the distinct cell types use different tyrosine kinases and targets to process signals induced by cell-cell contact. We provide systems- and cell-specific network models of contact-initiated signaling between two distinct cell types.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jorgensen, Claus -- Sherman, Andrew -- Chen, Ginny I -- Pasculescu, Adrian -- Poliakov, Alexei -- Hsiung, Marilyn -- Larsen, Brett -- Wilkinson, David G -- Linding, Rune -- Pawson, Tony -- MC_U117532048/Medical Research Council/United Kingdom -- MOP-6849/Canadian Institutes of Health Research/Canada -- New York, N.Y. -- Science. 2009 Dec 11;326(5959):1502-9. doi: 10.1126/science.1176615.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Samuel Lunenfeld Research Institute (SLRI), Mount Sinai Hospital, Toronto M5G 1X5, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20007894" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/metabolism ; Algorithms ; Cell Line ; Ephrin-B1/genetics/*metabolism ; Humans ; Ligands ; Mass Spectrometry ; Models, Biological ; PDZ Domains ; Phosphorylation ; Protein Binding ; Protein Interaction Domains and Motifs ; Protein-Tyrosine Kinases/metabolism ; Proteomics ; RNA, Small Interfering ; Receptor, EphB2/genetics/*metabolism ; *Signal Transduction ; Tyrosine/metabolism ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2009-12-08
    Description: Simocyclinones are bifunctional antibiotics that inhibit bacterial DNA gyrase by preventing DNA binding to the enzyme. We report the crystal structure of the complex formed between the N-terminal domain of the Escherichia coli gyrase A subunit and simocyclinone D8, revealing two binding pockets that separately accommodate the aminocoumarin and polyketide moieties of the antibiotic. These are close to, but distinct from, the quinolone-binding site, consistent with our observations that several mutations in this region confer resistance to both agents. Biochemical studies show that the individual moieties of simocyclinone D8 are comparatively weak inhibitors of gyrase relative to the parent compound, but their combination generates a more potent inhibitor. Our results should facilitate the design of drug molecules that target these unexploited binding pockets.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Edwards, Marcus J -- Flatman, Ruth H -- Mitchenall, Lesley A -- Stevenson, Clare E M -- Le, Tung B K -- Clarke, Thomas A -- McKay, Adam R -- Fiedler, Hans-Peter -- Buttner, Mark J -- Lawson, David M -- Maxwell, Anthony -- Biotechnology and Biological Sciences Research Council/United Kingdom -- New York, N.Y. -- Science. 2009 Dec 4;326(5958):1415-8. doi: 10.1126/science.1179123.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry, John Innes Centre, Colney, Norwich NR4 7UH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19965760" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Anti-Bacterial Agents/chemistry/metabolism/pharmacology ; Binding Sites ; Coumarins/chemistry/metabolism/pharmacology ; Crystallography, X-Ray ; DNA Gyrase/*chemistry/genetics/*metabolism ; DNA, Bacterial/metabolism ; Drug Resistance, Bacterial ; Escherichia coli/drug effects/*enzymology/genetics ; Glycosides/chemistry/metabolism/pharmacology ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Molecular Weight ; Mutagenesis, Site-Directed ; Mutation ; Protein Multimerization ; Protein Structure, Tertiary ; Topoisomerase II Inhibitors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2009-12-08
    Description: Primordial organisms of the putative RNA world would have required polymerase ribozymes able to replicate RNA. Known ribozymes with polymerase activity best approximating that needed for RNA replication contain at their catalytic core the class I RNA ligase, an artificial ribozyme with a catalytic rate among the fastest of known ribozymes. Here we present the 3.0 angstrom crystal structure of this ligase. The architecture resembles a tripod, its three legs converging near the ligation junction. Interacting with this tripod scaffold through a series of 10 minor-groove interactions (including two A-minor triads) is the unpaired segment that contributes to and organizes the active site. A cytosine nucleobase and two backbone phosphates abut the ligation junction; their location suggests a model for catalysis resembling that of proteinaceous polymerases.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3978776/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3978776/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shechner, David M -- Grant, Robert A -- Bagby, Sarah C -- Koldobskaya, Yelena -- Piccirilli, Joseph A -- Bartel, David P -- GM61835/GM/NIGMS NIH HHS/ -- R01 GM061835/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2009 Nov 27;326(5957):1271-5. doi: 10.1126/science.1174676.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research and Howard Hughes Medical Institute, 9 Cambridge Center, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19965478" target="_blank"〉PubMed〈/a〉
    Keywords: Base Pairing ; Base Sequence ; Catalysis ; Catalytic Domain ; Crystallization ; Crystallography, X-Ray ; DNA-Directed RNA Polymerases/chemistry/metabolism ; Hydrogen Bonding ; Hydrogen-Ion Concentration ; Magnesium/chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Polynucleotide Ligases/chemistry/metabolism ; RNA, Catalytic/*chemistry/metabolism ; Ribonucleotides/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2009-12-08
    Description: The genome of Mycoplasma pneumoniae is among the smallest found in self-replicating organisms. To study the basic principles of bacterial proteome organization, we used tandem affinity purification-mass spectrometry (TAP-MS) in a proteome-wide screen. The analysis revealed 62 homomultimeric and 116 heteromultimeric soluble protein complexes, of which the majority are novel. About a third of the heteromultimeric complexes show higher levels of proteome organization, including assembly into larger, multiprotein complex entities, suggesting sequential steps in biological processes, and extensive sharing of components, implying protein multifunctionality. Incorporation of structural models for 484 proteins, single-particle electron microscopy, and cellular electron tomograms provided supporting structural details for this proteome organization. The data set provides a blueprint of the minimal cellular machinery required for life.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kuhner, Sebastian -- van Noort, Vera -- Betts, Matthew J -- Leo-Macias, Alejandra -- Batisse, Claire -- Rode, Michaela -- Yamada, Takuji -- Maier, Tobias -- Bader, Samuel -- Beltran-Alvarez, Pedro -- Castano-Diez, Daniel -- Chen, Wei-Hua -- Devos, Damien -- Guell, Marc -- Norambuena, Tomas -- Racke, Ines -- Rybin, Vladimir -- Schmidt, Alexander -- Yus, Eva -- Aebersold, Ruedi -- Herrmann, Richard -- Bottcher, Bettina -- Frangakis, Achilleas S -- Russell, Robert B -- Serrano, Luis -- Bork, Peer -- Gavin, Anne-Claude -- New York, N.Y. -- Science. 2009 Nov 27;326(5957):1235-40. doi: 10.1126/science.1176343.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19965468" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*analysis/isolation & purification/metabolism ; Computational Biology ; *Genome, Bacterial ; Mass Spectrometry/methods ; Metabolic Networks and Pathways ; Microscopy, Electron ; Models, Biological ; Models, Molecular ; Multiprotein Complexes/*analysis/metabolism ; Mycoplasma pneumoniae/*chemistry/*genetics/metabolism/ultrastructure ; Pattern Recognition, Automated ; Protein Interaction Mapping ; *Proteome ; Systems Biology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2009-12-08
    Description: Holometabolous insects undergo complete metamorphosis to become sexually mature adults. Metamorphosis is initiated by brain-derived prothoracicotropic hormone (PTTH), which stimulates the production of the molting hormone ecdysone via an incompletely defined signaling pathway. Here we demonstrate that Torso, a receptor tyrosine kinase that regulates embryonic terminal cell fate in Drosophila, is the PTTH receptor. Trunk, the embryonic Torso ligand, is related to PTTH, and ectopic expression of PTTH in the embryo partially rescues trunk mutants. In larvae, torso is expressed specifically in the prothoracic gland (PG), and its loss phenocopies the removal of PTTH. The activation of Torso by PTTH stimulates extracellular signal-regulated kinase (ERK) phosphorylation, and the loss of ERK in the PG phenocopies the loss of PTTH and Torso. We conclude that PTTH initiates metamorphosis by activation of the Torso/ERK pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rewitz, Kim F -- Yamanaka, Naoki -- Gilbert, Lawrence I -- O'Connor, Michael B -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2009 Dec 4;326(5958):1403-5. doi: 10.1126/science.1176450.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19965758" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Bombyx/*genetics/metabolism ; Cell Line ; Drosophila Proteins/chemistry/genetics/*metabolism ; Drosophila melanogaster/embryology/genetics/*growth & development/metabolism ; Embryo, Nonmammalian/metabolism ; Extracellular Signal-Regulated MAP Kinases/metabolism ; Insect Hormones/chemistry/*metabolism ; Larva/growth & development ; Ligands ; *Metamorphosis, Biological ; Molecular Sequence Data ; Neurons/metabolism ; Phosphorylation ; Pupa/growth & development ; RNA Interference ; Receptor Protein-Tyrosine Kinases/genetics/*metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2009-12-08
    Description: Previous x-ray crystal structures have given insight into the mechanism of transcription and the role of general transcription factors in the initiation of the process. A structure of an RNA polymerase II-general transcription factor TFIIB complex at 4.5 angstrom resolution revealed the amino-terminal region of TFIIB, including a loop termed the "B finger," reaching into the active center of the polymerase where it may interact with both DNA and RNA, but this structure showed little of the carboxyl-terminal region. A new crystal structure of the same complex at 3.8 angstrom resolution obtained under different solution conditions is complementary with the previous one, revealing the carboxyl-terminal region of TFIIB, located above the polymerase active center cleft, but showing none of the B finger. In the new structure, the linker between the amino- and carboxyl-terminal regions can also be seen, snaking down from above the cleft toward the active center. The two structures, taken together with others previously obtained, dispel long-standing mysteries of the transcription initiation process.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2813267/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2813267/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Xin -- Bushnell, David A -- Wang, Dong -- Calero, Guillermo -- Kornberg, Roger D -- AI21144/AI/NIAID NIH HHS/ -- GM049985/GM/NIGMS NIH HHS/ -- K99 GM085136/GM/NIGMS NIH HHS/ -- K99 GM085136-02/GM/NIGMS NIH HHS/ -- R00 GM085136/GM/NIGMS NIH HHS/ -- R01 AI021144/AI/NIAID NIH HHS/ -- R01 AI021144-25/AI/NIAID NIH HHS/ -- R01 GM036659/GM/NIGMS NIH HHS/ -- R01 GM049985/GM/NIGMS NIH HHS/ -- R01 GM049985-16/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Jan 8;327(5962):206-9. doi: 10.1126/science.1182015. Epub 2009 Nov 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19965383" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Catalytic Domain ; Crystallography, X-Ray ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Interaction Domains and Motifs ; Protein Structure, Secondary ; Protein Structure, Tertiary ; RNA Polymerase II/*chemistry/*metabolism ; Repetitive Sequences, Amino Acid ; Saccharomyces cerevisiae/chemistry/genetics/metabolism ; Saccharomyces cerevisiae Proteins/*chemistry/*metabolism ; Transcription Factor TFIIB/*chemistry/*metabolism ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2009-12-08
    Description: Tetrathiomolybdate (TM) is an orally active agent for treatment of disorders of copper metabolism. Here we describe how TM inhibits proteins that regulate copper physiology. Crystallographic results reveal that the surprising stability of the drug complex with the metallochaperone Atx1 arises from formation of a sulfur-bridged copper-molybdenum cluster reminiscent of those found in molybdenum and iron sulfur proteins. Spectroscopic studies indicate that this cluster is stable in solution and corresponds to physiological clusters isolated from TM-treated Wilson's disease animal models. Finally, mechanistic studies show that the drug-metallochaperone inhibits metal transfer functions between copper-trafficking proteins. The results are consistent with a model wherein TM can directly and reversibly down-regulate copper delivery to secreted metalloenzymes and suggest that proteins involved in metal regulation might be fruitful drug targets.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3658115/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3658115/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Alvarez, Hamsell M -- Xue, Yi -- Robinson, Chandler D -- Canalizo-Hernandez, Monica A -- Marvin, Rebecca G -- Kelly, Rebekah A -- Mondragon, Alfonso -- Penner-Hahn, James E -- O'Halloran, Thomas V -- GM38047/GM/NIGMS NIH HHS/ -- GM38784/GM/NIGMS NIH HHS/ -- GM54222/GM/NIGMS NIH HHS/ -- R01 GM038047/GM/NIGMS NIH HHS/ -- R01 GM038784/GM/NIGMS NIH HHS/ -- R01 GM054111/GM/NIGMS NIH HHS/ -- R37 GM038784/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Jan 15;327(5963):331-4. doi: 10.1126/science.1179907. Epub 2009 Nov 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19965379" target="_blank"〉PubMed〈/a〉
    Keywords: Carrier Proteins/*antagonists & inhibitors/chemistry/*metabolism ; Cation Transport Proteins/metabolism ; Copper/chemistry/*metabolism ; Crystallography, X-Ray ; Ligands ; Metallochaperones/*antagonists & inhibitors/chemistry/*metabolism ; Models, Chemical ; Models, Molecular ; Molecular Structure ; Molybdenum/chemistry/*metabolism/*pharmacology ; Oxidation-Reduction ; Physicochemical Processes ; Protein Conformation ; Saccharomyces cerevisiae Proteins/*antagonists & inhibitors/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...