ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    In:  Tectonophys., Stuttgart, Pergamon, vol. 226, no. 1, pp. 187-198, pp. 2316, (ISSN: 1340-4202)
    Publication Date: 1993
    Keywords: Rock mechanics ; Rheology ; cracks and fractures (.NE. fracturing) ; Modelling
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-02-04
    Description: Sorghum, an African grass related to sugar cane and maize, is grown for food, feed, fibre and fuel. We present an initial analysis of the approximately 730-megabase Sorghum bicolor (L.) Moench genome, placing approximately 98% of genes in their chromosomal context using whole-genome shotgun sequence validated by genetic, physical and syntenic information. Genetic recombination is largely confined to about one-third of the sorghum genome with gene order and density similar to those of rice. Retrotransposon accumulation in recombinationally recalcitrant heterochromatin explains the approximately 75% larger genome size of sorghum compared with rice. Although gene and repetitive DNA distributions have been preserved since palaeopolyploidization approximately 70 million years ago, most duplicated gene sets lost one member before the sorghum-rice divergence. Concerted evolution makes one duplicated chromosomal segment appear to be only a few million years old. About 24% of genes are grass-specific and 7% are sorghum-specific. Recent gene and microRNA duplications may contribute to sorghum's drought tolerance.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Paterson, Andrew H -- Bowers, John E -- Bruggmann, Remy -- Dubchak, Inna -- Grimwood, Jane -- Gundlach, Heidrun -- Haberer, Georg -- Hellsten, Uffe -- Mitros, Therese -- Poliakov, Alexander -- Schmutz, Jeremy -- Spannagl, Manuel -- Tang, Haibao -- Wang, Xiyin -- Wicker, Thomas -- Bharti, Arvind K -- Chapman, Jarrod -- Feltus, F Alex -- Gowik, Udo -- Grigoriev, Igor V -- Lyons, Eric -- Maher, Christopher A -- Martis, Mihaela -- Narechania, Apurva -- Otillar, Robert P -- Penning, Bryan W -- Salamov, Asaf A -- Wang, Yu -- Zhang, Lifang -- Carpita, Nicholas C -- Freeling, Michael -- Gingle, Alan R -- Hash, C Thomas -- Keller, Beat -- Klein, Patricia -- Kresovich, Stephen -- McCann, Maureen C -- Ming, Ray -- Peterson, Daniel G -- Mehboob-ur-Rahman -- Ware, Doreen -- Westhoff, Peter -- Mayer, Klaus F X -- Messing, Joachim -- Rokhsar, Daniel S -- England -- Nature. 2009 Jan 29;457(7229):551-6. doi: 10.1038/nature07723.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia 30602, USA. paterson@uga.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19189423" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/genetics ; Chromosomes, Plant/genetics ; *Evolution, Molecular ; Gene Duplication ; Genes, Plant ; Genome, Plant/*genetics ; Oryza/genetics ; Poaceae/*genetics ; Populus/genetics ; Recombination, Genetic/genetics ; Sequence Alignment ; Sequence Analysis, DNA ; Sequence Deletion/genetics ; Sorghum/*genetics ; Zea mays/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2007-10-13
    Description: Chlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land plants. We sequenced the approximately 120-megabase nuclear genome of Chlamydomonas and performed comparative phylogenomic analyses, identifying genes encoding uncharacterized proteins that are likely associated with the function and biogenesis of chloroplasts or eukaryotic flagella. Analyses of the Chlamydomonas genome advance our understanding of the ancestral eukaryotic cell, reveal previously unknown genes associated with photosynthetic and flagellar functions, and establish links between ciliopathy and the composition and function of flagella.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2875087/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2875087/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Merchant, Sabeeha S -- Prochnik, Simon E -- Vallon, Olivier -- Harris, Elizabeth H -- Karpowicz, Steven J -- Witman, George B -- Terry, Astrid -- Salamov, Asaf -- Fritz-Laylin, Lillian K -- Marechal-Drouard, Laurence -- Marshall, Wallace F -- Qu, Liang-Hu -- Nelson, David R -- Sanderfoot, Anton A -- Spalding, Martin H -- Kapitonov, Vladimir V -- Ren, Qinghu -- Ferris, Patrick -- Lindquist, Erika -- Shapiro, Harris -- Lucas, Susan M -- Grimwood, Jane -- Schmutz, Jeremy -- Cardol, Pierre -- Cerutti, Heriberto -- Chanfreau, Guillaume -- Chen, Chun-Long -- Cognat, Valerie -- Croft, Martin T -- Dent, Rachel -- Dutcher, Susan -- Fernandez, Emilio -- Fukuzawa, Hideya -- Gonzalez-Ballester, David -- Gonzalez-Halphen, Diego -- Hallmann, Armin -- Hanikenne, Marc -- Hippler, Michael -- Inwood, William -- Jabbari, Kamel -- Kalanon, Ming -- Kuras, Richard -- Lefebvre, Paul A -- Lemaire, Stephane D -- Lobanov, Alexey V -- Lohr, Martin -- Manuell, Andrea -- Meier, Iris -- Mets, Laurens -- Mittag, Maria -- Mittelmeier, Telsa -- Moroney, James V -- Moseley, Jeffrey -- Napoli, Carolyn -- Nedelcu, Aurora M -- Niyogi, Krishna -- Novoselov, Sergey V -- Paulsen, Ian T -- Pazour, Greg -- Purton, Saul -- Ral, Jean-Philippe -- Riano-Pachon, Diego Mauricio -- Riekhof, Wayne -- Rymarquis, Linda -- Schroda, Michael -- Stern, David -- Umen, James -- Willows, Robert -- Wilson, Nedra -- Zimmer, Sara Lana -- Allmer, Jens -- Balk, Janneke -- Bisova, Katerina -- Chen, Chong-Jian -- Elias, Marek -- Gendler, Karla -- Hauser, Charles -- Lamb, Mary Rose -- Ledford, Heidi -- Long, Joanne C -- Minagawa, Jun -- Page, M Dudley -- Pan, Junmin -- Pootakham, Wirulda -- Roje, Sanja -- Rose, Annkatrin -- Stahlberg, Eric -- Terauchi, Aimee M -- Yang, Pinfen -- Ball, Steven -- Bowler, Chris -- Dieckmann, Carol L -- Gladyshev, Vadim N -- Green, Pamela -- Jorgensen, Richard -- Mayfield, Stephen -- Mueller-Roeber, Bernd -- Rajamani, Sathish -- Sayre, Richard T -- Brokstein, Peter -- Dubchak, Inna -- Goodstein, David -- Hornick, Leila -- Huang, Y Wayne -- Jhaveri, Jinal -- Luo, Yigong -- Martinez, Diego -- Ngau, Wing Chi Abby -- Otillar, Bobby -- Poliakov, Alexander -- Porter, Aaron -- Szajkowski, Lukasz -- Werner, Gregory -- Zhou, Kemin -- Grigoriev, Igor V -- Rokhsar, Daniel S -- Grossman, Arthur R -- GM07185/GM/NIGMS NIH HHS/ -- GM42143/GM/NIGMS NIH HHS/ -- R01 GM032843/GM/NIGMS NIH HHS/ -- R01 GM042143/GM/NIGMS NIH HHS/ -- R01 GM042143-09/GM/NIGMS NIH HHS/ -- R01 GM060992/GM/NIGMS NIH HHS/ -- R01 GM062915-06/GM/NIGMS NIH HHS/ -- R37 GM030626/GM/NIGMS NIH HHS/ -- R37 GM042143/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Oct 12;318(5848):245-50.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA 90095, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17932292" target="_blank"〉PubMed〈/a〉
    Keywords: Algal Proteins/*genetics/*physiology ; Animals ; *Biological Evolution ; Chlamydomonas reinhardtii/*genetics/physiology ; Chloroplasts/metabolism ; Computational Biology ; DNA, Algal/genetics ; Flagella/metabolism ; Genes ; *Genome ; Genomics ; Membrane Transport Proteins/genetics/physiology ; Molecular Sequence Data ; Multigene Family ; Photosynthesis/genetics ; Phylogeny ; Plants/genetics ; Proteome ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2009-04-11
    Description: Picoeukaryotes are a taxonomically diverse group of organisms less than 2 micrometers in diameter. Photosynthetic marine picoeukaryotes in the genus Micromonas thrive in ecosystems ranging from tropical to polar and could serve as sentinel organisms for biogeochemical fluxes of modern oceans during climate change. These broadly distributed primary producers belong to an anciently diverged sister clade to land plants. Although Micromonas isolates have high 18S ribosomal RNA gene identity, we found that genomes from two isolates shared only 90% of their predicted genes. Their independent evolutionary paths were emphasized by distinct riboswitch arrangements as well as the discovery of intronic repeat elements in one isolate, and in metagenomic data, but not in other genomes. Divergence appears to have been facilitated by selection and acquisition processes that actively shape the repertoire of genes that are mutually exclusive between the two isolates differently than the core genes. Analyses of the Micromonas genomes offer valuable insights into ecological differentiation and the dynamic nature of early plant evolution.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Worden, Alexandra Z -- Lee, Jae-Hyeok -- Mock, Thomas -- Rouze, Pierre -- Simmons, Melinda P -- Aerts, Andrea L -- Allen, Andrew E -- Cuvelier, Marie L -- Derelle, Evelyne -- Everett, Meredith V -- Foulon, Elodie -- Grimwood, Jane -- Gundlach, Heidrun -- Henrissat, Bernard -- Napoli, Carolyn -- McDonald, Sarah M -- Parker, Micaela S -- Rombauts, Stephane -- Salamov, Aasf -- Von Dassow, Peter -- Badger, Jonathan H -- Coutinho, Pedro M -- Demir, Elif -- Dubchak, Inna -- Gentemann, Chelle -- Eikrem, Wenche -- Gready, Jill E -- John, Uwe -- Lanier, William -- Lindquist, Erika A -- Lucas, Susan -- Mayer, Klaus F X -- Moreau, Herve -- Not, Fabrice -- Otillar, Robert -- Panaud, Olivier -- Pangilinan, Jasmyn -- Paulsen, Ian -- Piegu, Benoit -- Poliakov, Aaron -- Robbens, Steven -- Schmutz, Jeremy -- Toulza, Eve -- Wyss, Tania -- Zelensky, Alexander -- Zhou, Kemin -- Armbrust, E Virginia -- Bhattacharya, Debashish -- Goodenough, Ursula W -- Van de Peer, Yves -- Grigoriev, Igor V -- New York, N.Y. -- Science. 2009 Apr 10;324(5924):268-72. doi: 10.1126/science.1167222.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039 USA. azworden@mbari.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19359590" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; *Biological Evolution ; Chlorophyta/classification/cytology/*genetics/physiology ; DNA Transposable Elements ; Ecosystem ; Gene Expression Regulation ; Genes ; Genetic Variation ; *Genome ; Introns ; Meiosis/genetics ; Molecular Sequence Data ; Oceans and Seas ; Photosynthesis/genetics ; Phylogeny ; Phytoplankton/classification/genetics ; Plants/*genetics ; RNA, Untranslated ; Repetitive Sequences, Nucleic Acid ; Sequence Analysis, DNA ; Transcription Factors/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-06-12
    Description: Eucalypts are the world's most widely planted hardwood trees. Their outstanding diversity, adaptability and growth have made them a global renewable resource of fibre and energy. We sequenced and assembled 〉94% of the 640-megabase genome of Eucalyptus grandis. Of 36,376 predicted protein-coding genes, 34% occur in tandem duplications, the largest proportion thus far in plant genomes. Eucalyptus also shows the highest diversity of genes for specialized metabolites such as terpenes that act as chemical defence and provide unique pharmaceutical oils. Genome sequencing of the E. grandis sister species E. globulus and a set of inbred E. grandis tree genomes reveals dynamic genome evolution and hotspots of inbreeding depression. The E. grandis genome is the first reference for the eudicot order Myrtales and is placed here sister to the eurosids. This resource expands our understanding of the unique biology of large woody perennials and provides a powerful tool to accelerate comparative biology, breeding and biotechnology.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Myburg, Alexander A -- Grattapaglia, Dario -- Tuskan, Gerald A -- Hellsten, Uffe -- Hayes, Richard D -- Grimwood, Jane -- Jenkins, Jerry -- Lindquist, Erika -- Tice, Hope -- Bauer, Diane -- Goodstein, David M -- Dubchak, Inna -- Poliakov, Alexandre -- Mizrachi, Eshchar -- Kullan, Anand R K -- Hussey, Steven G -- Pinard, Desre -- van der Merwe, Karen -- Singh, Pooja -- van Jaarsveld, Ida -- Silva-Junior, Orzenil B -- Togawa, Roberto C -- Pappas, Marilia R -- Faria, Danielle A -- Sansaloni, Carolina P -- Petroli, Cesar D -- Yang, Xiaohan -- Ranjan, Priya -- Tschaplinski, Timothy J -- Ye, Chu-Yu -- Li, Ting -- Sterck, Lieven -- Vanneste, Kevin -- Murat, Florent -- Soler, Marcal -- Clemente, Helene San -- Saidi, Naijib -- Cassan-Wang, Hua -- Dunand, Christophe -- Hefer, Charles A -- Bornberg-Bauer, Erich -- Kersting, Anna R -- Vining, Kelly -- Amarasinghe, Vindhya -- Ranik, Martin -- Naithani, Sushma -- Elser, Justin -- Boyd, Alexander E -- Liston, Aaron -- Spatafora, Joseph W -- Dharmwardhana, Palitha -- Raja, Rajani -- Sullivan, Christopher -- Romanel, Elisson -- Alves-Ferreira, Marcio -- Kulheim, Carsten -- Foley, William -- Carocha, Victor -- Paiva, Jorge -- Kudrna, David -- Brommonschenkel, Sergio H -- Pasquali, Giancarlo -- Byrne, Margaret -- Rigault, Philippe -- Tibbits, Josquin -- Spokevicius, Antanas -- Jones, Rebecca C -- Steane, Dorothy A -- Vaillancourt, Rene E -- Potts, Brad M -- Joubert, Fourie -- Barry, Kerrie -- Pappas, Georgios J -- Strauss, Steven H -- Jaiswal, Pankaj -- Grima-Pettenati, Jacqueline -- Salse, Jerome -- Van de Peer, Yves -- Rokhsar, Daniel S -- Schmutz, Jeremy -- England -- Nature. 2014 Jun 19;510(7505):356-62. doi: 10.1038/nature13308. Epub 2014 Jun 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Pretoria 0028, South Africa [2] Genomics Research Institute (GRI), University of Pretoria, Private bag X20, Pretoria 0028, South Africa. ; 1] Laboratorio de Genetica Vegetal, EMBRAPA Recursos Geneticos e Biotecnologia, EPQB Final W5 Norte, 70770-917 Brasilia, Brazil [2] Programa de Ciencias Genomicas e Biotecnologia - Universidade Catolica de Brasilia SGAN 916, 70790-160 Brasilia, Brazil. ; 1] US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, California 94598, USA [2] Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA. ; US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, California 94598, USA. ; HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, Alabama 35801, USA. ; Bioinformatics and Computational Biology Unit, Department of Biochemistry, University of Pretoria, Pretoria, Private bag X20, Pretoria 0028, South Africa. ; Laboratorio de Bioinformatica, EMBRAPA Recursos Geneticos e Biotecnologia, EPQB Final W5 Norte, 70770-917 Brasilia, Brazil. ; Laboratorio de Genetica Vegetal, EMBRAPA Recursos Geneticos e Biotecnologia, EPQB Final W5 Norte, 70770-917 Brasilia, Brazil. ; Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA. ; Department of Plant Biotechnology and Bioinformatics (VIB), Ghent University, Technologiepark 927, B-9000 Ghent, Belgium. ; INRA/UBP UMR 1095, 5 Avenue de Beaulieu, 63100 Clermont Ferrand, France. ; Laboratoire de Recherche en Sciences Vegetales, UMR 5546, Universite Toulouse III, UPS, CNRS, BP 42617, 31326 Castanet Tolosan, France. ; 1] Bioinformatics and Computational Biology Unit, Department of Biochemistry, University of Pretoria, Pretoria, Private bag X20, Pretoria 0028, South Africa [2] Department of Botany, University of British Columbia, 3529-6270 University Blvd, Vancouver V6T 1Z4, Canada. ; Evolutionary Bioinformatics, Institute for Evolution and Biodiversity, University of Muenster, Huefferstrasse 1, D-48149, Muenster, Germany. ; 1] Evolutionary Bioinformatics, Institute for Evolution and Biodiversity, University of Muenster, Huefferstrasse 1, D-48149, Muenster, Germany [2] Department of Bioinformatics, Institute for Computer Science, University of Duesseldorf, Universitatsstrasse 1, 40225 Dusseldorf, Germany. ; Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon 97331, USA. ; 1] Department of Botany and Plant Pathology, Oregon State University, 2082-Cordley Hall, Corvallis, Oregon 97331, USA [2] Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon 97331, USA. ; Department of Botany and Plant Pathology, Oregon State University, 2082-Cordley Hall, Corvallis, Oregon 97331, USA. ; Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon 97331, USA. ; 1] Laboratorio de Biologia Evolutiva Teorica e Aplicada, Departamento de Genetica, Universidade Federal do Rio de Janeiro (UFRJ), Av. Prof. Rodolpho Paulo Rocco, 21949900 Rio de Janeiro, Brazil [2] Departamento de Biotecnologia, Escola de Engenharia de Lorena-Universidade de Sao Paulo (EEL-USP), CP116, 12602-810, Lorena-SP, Brazil [3] Laboratorio de Genetica Molecular Vegetal (LGMV), Departamento de Genetica, Universidade Federal do Rio de Janeiro (UFRJ), Av. Prof. Rodolpho Paulo Rocco, 21949900 Rio de Janeiro, Brazil. ; Laboratorio de Genetica Molecular Vegetal (LGMV), Departamento de Genetica, Universidade Federal do Rio de Janeiro (UFRJ), Av. Prof. Rodolpho Paulo Rocco, 21949900 Rio de Janeiro, Brazil. ; Research School of Biology, Australian National University, Canberra 0200, Australia. ; 1] Laboratoire de Recherche en Sciences Vegetales, UMR 5546, Universite Toulouse III, UPS, CNRS, BP 42617, 31326 Castanet Tolosan, France [2] IICT/MNE; Palacio Burnay - Rua da Junqueira, 30, 1349-007 Lisboa, Portugal [3] IBET/ITQB, Av. Republica, Quinta do Marques, 2781-901 Oeiras, Portugal. ; 1] IICT/MNE; Palacio Burnay - Rua da Junqueira, 30, 1349-007 Lisboa, Portugal [2] IBET/ITQB, Av. Republica, Quinta do Marques, 2781-901 Oeiras, Portugal. ; Arizona Genomics Institute, University of Arizona, Tucson, Arizona 85721, USA. ; Dep. de Fitopatologia, Universidade Federal de Vicosa, Vicosa 36570-000, Brazil. ; Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, Brazil. ; Science and Conservation Division, Department of Parks and Wildlife, Locked Bag 104, Bentley Delivery Centre, Western Australia 6983, Australia. ; GYDLE, 1363 av. Maguire, suite 301, Quebec, Quebec G1T 1Z2, Canada. ; Department of Environment and Primary Industries, Victorian Government, Melbourne, Victoria 3085, Australia. ; Melbourne School of Land and Environment, University of Melbourne, Melbourne, Victoria 3010, Australia. ; School of Biological Sciences and National Centre for Future Forest Industries, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia. ; 1] School of Biological Sciences and National Centre for Future Forest Industries, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia [2] Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Queensland 4558, Australia. ; 1] Genomics Research Institute (GRI), University of Pretoria, Private bag X20, Pretoria 0028, South Africa [2] Bioinformatics and Computational Biology Unit, Department of Biochemistry, University of Pretoria, Pretoria, Private bag X20, Pretoria 0028, South Africa. ; Departamento de Biologia Celular, Universidade de Brasilia, Brasilia 70910-900, Brazil. ; 1] Genomics Research Institute (GRI), University of Pretoria, Private bag X20, Pretoria 0028, South Africa [2] Department of Plant Biotechnology and Bioinformatics (VIB), Ghent University, Technologiepark 927, B-9000 Ghent, Belgium. ; 1] US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, California 94598, USA [2] HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, Alabama 35801, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24919147" target="_blank"〉PubMed〈/a〉
    Keywords: Eucalyptus/classification/*genetics ; Evolution, Molecular ; Genetic Variation ; *Genome, Plant ; Inbreeding ; Phylogeny
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2006-05-20
    Description: Bacteriophages, herpesviruses, and other large double-stranded DNA (dsDNA) viruses contain molecular machines that pump DNA into preassembled procapsids, generating internal capsid pressures exceeding, by 10-fold, that of bottled champagne. A 17 angstrom resolution asymmetric reconstruction of the infectious P22 virion reveals that tightly spooled DNA about the portal dodecamer forces a conformation that is significantly different from that observed in isolated portals assembled from ectopically expressed protein. We propose that the tight dsDNA spooling activates the switch that signals the headful chromosome packing density to the particle exterior.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lander, Gabriel C -- Tang, Liang -- Casjens, Sherwood R -- Gilcrease, Eddie B -- Prevelige, Peter -- Poliakov, Anton -- Potter, Clinton S -- Carragher, Bridget -- Johnson, John E -- RR17573/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2006 Jun 23;312(5781):1791-5. Epub 2006 May 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16709746" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteriophage P22/*genetics/physiology/*ultrastructure ; Capsid/chemistry/*ultrastructure ; Capsid Proteins/chemistry ; Cryoelectron Microscopy ; Crystallography, X-Ray ; *DNA Packaging ; DNA, Viral/*analysis/chemistry ; Image Processing, Computer-Assisted ; Nucleic Acid Conformation ; Pressure ; Protein Conformation ; Virion/genetics/*ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2006-09-16
    Description: We report the draft genome of the black cottonwood tree, Populus trichocarpa. Integration of shotgun sequence assembly with genetic mapping enabled chromosome-scale reconstruction of the genome. More than 45,000 putative protein-coding genes were identified. Analysis of the assembled genome revealed a whole-genome duplication event; about 8000 pairs of duplicated genes from that event survived in the Populus genome. A second, older duplication event is indistinguishably coincident with the divergence of the Populus and Arabidopsis lineages. Nucleotide substitution, tandem gene duplication, and gross chromosomal rearrangement appear to proceed substantially more slowly in Populus than in Arabidopsis. Populus has more protein-coding genes than Arabidopsis, ranging on average from 1.4 to 1.6 putative Populus homologs for each Arabidopsis gene. However, the relative frequency of protein domains in the two genomes is similar. Overrepresented exceptions in Populus include genes associated with lignocellulosic wall biosynthesis, meristem development, disease resistance, and metabolite transport.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tuskan, G A -- Difazio, S -- Jansson, S -- Bohlmann, J -- Grigoriev, I -- Hellsten, U -- Putnam, N -- Ralph, S -- Rombauts, S -- Salamov, A -- Schein, J -- Sterck, L -- Aerts, A -- Bhalerao, R R -- Bhalerao, R P -- Blaudez, D -- Boerjan, W -- Brun, A -- Brunner, A -- Busov, V -- Campbell, M -- Carlson, J -- Chalot, M -- Chapman, J -- Chen, G-L -- Cooper, D -- Coutinho, P M -- Couturier, J -- Covert, S -- Cronk, Q -- Cunningham, R -- Davis, J -- Degroeve, S -- Dejardin, A -- Depamphilis, C -- Detter, J -- Dirks, B -- Dubchak, I -- Duplessis, S -- Ehlting, J -- Ellis, B -- Gendler, K -- Goodstein, D -- Gribskov, M -- Grimwood, J -- Groover, A -- Gunter, L -- Hamberger, B -- Heinze, B -- Helariutta, Y -- Henrissat, B -- Holligan, D -- Holt, R -- Huang, W -- Islam-Faridi, N -- Jones, S -- Jones-Rhoades, M -- Jorgensen, R -- Joshi, C -- Kangasjarvi, J -- Karlsson, J -- Kelleher, C -- Kirkpatrick, R -- Kirst, M -- Kohler, A -- Kalluri, U -- Larimer, F -- Leebens-Mack, J -- Leple, J-C -- Locascio, P -- Lou, Y -- Lucas, S -- Martin, F -- Montanini, B -- Napoli, C -- Nelson, D R -- Nelson, C -- Nieminen, K -- Nilsson, O -- Pereda, V -- Peter, G -- Philippe, R -- Pilate, G -- Poliakov, A -- Razumovskaya, J -- Richardson, P -- Rinaldi, C -- Ritland, K -- Rouze, P -- Ryaboy, D -- Schmutz, J -- Schrader, J -- Segerman, B -- Shin, H -- Siddiqui, A -- Sterky, F -- Terry, A -- Tsai, C-J -- Uberbacher, E -- Unneberg, P -- Vahala, J -- Wall, K -- Wessler, S -- Yang, G -- Yin, T -- Douglas, C -- Marra, M -- Sandberg, G -- Van de Peer, Y -- Rokhsar, D -- New York, N.Y. -- Science. 2006 Sep 15;313(5793):1596-604.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA. gtk@ornl.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16973872" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/genetics ; Chromosome Mapping ; Computational Biology ; Evolution, Molecular ; Expressed Sequence Tags ; *Gene Duplication ; Gene Expression ; Genes, Plant ; *Genome, Plant ; Oligonucleotide Array Sequence Analysis ; Phylogeny ; Plant Proteins/chemistry/genetics ; Polymorphism, Single Nucleotide ; Populus/*genetics/growth & development/metabolism ; Protein Structure, Tertiary ; RNA, Plant/analysis ; RNA, Untranslated/analysis ; *Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2009-12-17
    Description: Cells have self-organizing properties that control their behavior in complex tissues. Contact between cells expressing either B-type Eph receptors or their transmembrane ephrin ligands initiates bidirectional signals that regulate cell positioning. However, simultaneously investigating how information is processed in two interacting cell types remains a challenge. We implemented a proteomic strategy to systematically determine cell-specific signaling networks underlying EphB2- and ephrin-B1-controlled cell sorting. Quantitative mass spectrometric analysis of mixed populations of EphB2- and ephrin-B1-expressing cells that were labeled with different isotopes revealed cell-specific tyrosine phosphorylation events. Functional associations between these phosphotyrosine signaling networks and cell sorting were established with small interfering RNA screening. Data-driven network modeling revealed that signaling between mixed EphB2- and ephrin-B1-expressing cells is asymmetric and that the distinct cell types use different tyrosine kinases and targets to process signals induced by cell-cell contact. We provide systems- and cell-specific network models of contact-initiated signaling between two distinct cell types.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jorgensen, Claus -- Sherman, Andrew -- Chen, Ginny I -- Pasculescu, Adrian -- Poliakov, Alexei -- Hsiung, Marilyn -- Larsen, Brett -- Wilkinson, David G -- Linding, Rune -- Pawson, Tony -- MC_U117532048/Medical Research Council/United Kingdom -- MOP-6849/Canadian Institutes of Health Research/Canada -- New York, N.Y. -- Science. 2009 Dec 11;326(5959):1502-9. doi: 10.1126/science.1176615.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Samuel Lunenfeld Research Institute (SLRI), Mount Sinai Hospital, Toronto M5G 1X5, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20007894" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/metabolism ; Algorithms ; Cell Line ; Ephrin-B1/genetics/*metabolism ; Humans ; Ligands ; Mass Spectrometry ; Models, Biological ; PDZ Domains ; Phosphorylation ; Protein Binding ; Protein Interaction Domains and Motifs ; Protein-Tyrosine Kinases/metabolism ; Proteomics ; RNA, Small Interfering ; Receptor, EphB2/genetics/*metabolism ; *Signal Transduction ; Tyrosine/metabolism ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical journal international 109 (1992), S. 0 
    ISSN: 1365-246X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: A new numerical technique using markers and a deformable Lagrangian mesh is used to study the deformation of the surface above a rising diapir. This method allows modelling of a free-surface boundary in a self-consistent way. The method makes it possible to investigate many different problems with non-regular geometry. The codes were verified through comparison with analytical solutions for the initial stages and with other numerical codes for mature stages.Our simulations led to the following conclusions. (1) The growth rate of the diapir is more strongly influenced by the viscosity contrast than the wavelengths. This is due to the strong growth rate difference during the initial stage. (2) The maximum elevation above the diapir linearly increases with increasing wavelength and is approximately the same for different viscosity contrasts. (3) The elevation will be considerably higher for a low-viscosity diapir at a given depth than for an isoviscous diapir.Comparisons for different thicknesses of the buoyant layer showed that the highest topography is produced when the two layers have equal thickness.We showed the dependence of the topographic behaviour on the parameter R (the ratio of the density difference between two layers to the density of the upper layer). It was found that topography behaves linearly up to R= 0.15. It indicates that a posteriori estimation of topography for traditional calculations using the free-slip boundary condition works well within this limit.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Oxford UK : Blackwell Science Ltd
    Terra nova 13 (2001), S. 0 
    ISSN: 1365-3121
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Below the melt lens of fast spreading ridges, a low seismic velocity zone has been identified. From the study of ophiolite gabbros, in particular in Oman, this domain has been interpreted as a large magma chamber filled by a melt-poor mush where granular flow controlled by pressure solution-crystallization predominates over plastic flow. Melt migration through the mush is difficult to study in the field because the large magmatic flow taking place in this magma chamber has erased nearly all traces of migration paths. It is, however, still possible to identify sills and former dikes, now largely transposed into the layering. Physical traces for porous flow are rare, but petrological and geochemical evidence suggests that it also contributed to melt migration. Finally, in the lower gabbro horizons large magmatic folds and brecciated zones may bear evidence for magmatic intrusions. The combination of diking, porous flow and large-scale intrusions to carry melt through the magma chamber may be explained by the granular behaviour of the medium. It is suggested that the melt film present between grains and clots of grains reduces the large cohesive forces which characterize a solid, plastic, medium. Melt migration through the mush may thus depend on the size of cohesive clots, evolving through time and space, from porous flow to diking and melt intrusions for increasing larger clots. This process is illustrated by a physical experiment on pressurized air circulation through a granular medium.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...