ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your search history is empty.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-05-10
    Description: We present a draft genome sequence of the platypus, Ornithorhynchus anatinus. This monotreme exhibits a fascinating combination of reptilian and mammalian characters. For example, platypuses have a coat of fur adapted to an aquatic lifestyle; platypus females lactate, yet lay eggs; and males are equipped with venom similar to that of reptiles. Analysis of the first monotreme genome aligned these features with genetic innovations. We find that reptile and platypus venom proteins have been co-opted independently from the same gene families; milk protein genes are conserved despite platypuses laying eggs; and immune gene family expansions are directly related to platypus biology. Expansions of protein, non-protein-coding RNA and microRNA families, as well as repeat elements, are identified. Sequencing of this genome now provides a valuable resource for deep mammalian comparative analyses, as well as for monotreme biology and conservation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2803040/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2803040/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Warren, Wesley C -- Hillier, LaDeana W -- Marshall Graves, Jennifer A -- Birney, Ewan -- Ponting, Chris P -- Grutzner, Frank -- Belov, Katherine -- Miller, Webb -- Clarke, Laura -- Chinwalla, Asif T -- Yang, Shiaw-Pyng -- Heger, Andreas -- Locke, Devin P -- Miethke, Pat -- Waters, Paul D -- Veyrunes, Frederic -- Fulton, Lucinda -- Fulton, Bob -- Graves, Tina -- Wallis, John -- Puente, Xose S -- Lopez-Otin, Carlos -- Ordonez, Gonzalo R -- Eichler, Evan E -- Chen, Lin -- Cheng, Ze -- Deakin, Janine E -- Alsop, Amber -- Thompson, Katherine -- Kirby, Patrick -- Papenfuss, Anthony T -- Wakefield, Matthew J -- Olender, Tsviya -- Lancet, Doron -- Huttley, Gavin A -- Smit, Arian F A -- Pask, Andrew -- Temple-Smith, Peter -- Batzer, Mark A -- Walker, Jerilyn A -- Konkel, Miriam K -- Harris, Robert S -- Whittington, Camilla M -- Wong, Emily S W -- Gemmell, Neil J -- Buschiazzo, Emmanuel -- Vargas Jentzsch, Iris M -- Merkel, Angelika -- Schmitz, Juergen -- Zemann, Anja -- Churakov, Gennady -- Kriegs, Jan Ole -- Brosius, Juergen -- Murchison, Elizabeth P -- Sachidanandam, Ravi -- Smith, Carly -- Hannon, Gregory J -- Tsend-Ayush, Enkhjargal -- McMillan, Daniel -- Attenborough, Rosalind -- Rens, Willem -- Ferguson-Smith, Malcolm -- Lefevre, Christophe M -- Sharp, Julie A -- Nicholas, Kevin R -- Ray, David A -- Kube, Michael -- Reinhardt, Richard -- Pringle, Thomas H -- Taylor, James -- Jones, Russell C -- Nixon, Brett -- Dacheux, Jean-Louis -- Niwa, Hitoshi -- Sekita, Yoko -- Huang, Xiaoqiu -- Stark, Alexander -- Kheradpour, Pouya -- Kellis, Manolis -- Flicek, Paul -- Chen, Yuan -- Webber, Caleb -- Hardison, Ross -- Nelson, Joanne -- Hallsworth-Pepin, Kym -- Delehaunty, Kim -- Markovic, Chris -- Minx, Pat -- Feng, Yucheng -- Kremitzki, Colin -- Mitreva, Makedonka -- Glasscock, Jarret -- Wylie, Todd -- Wohldmann, Patricia -- Thiru, Prathapan -- Nhan, Michael N -- Pohl, Craig S -- Smith, Scott M -- Hou, Shunfeng -- Nefedov, Mikhail -- de Jong, Pieter J -- Renfree, Marilyn B -- Mardis, Elaine R -- Wilson, Richard K -- 062023/Wellcome Trust/United Kingdom -- HG002238/HG/NHGRI NIH HHS/ -- MC_U137761446/Medical Research Council/United Kingdom -- P01 CA013106/CA/NCI NIH HHS/ -- P01 CA013106-37/CA/NCI NIH HHS/ -- R01 GM59290/GM/NIGMS NIH HHS/ -- R01 HG002939/HG/NHGRI NIH HHS/ -- R01 HG004037/HG/NHGRI NIH HHS/ -- R01 HG004037-02/HG/NHGRI NIH HHS/ -- R01HG02385/HG/NHGRI NIH HHS/ -- Medical Research Council/United Kingdom -- England -- Nature. 2008 May 8;453(7192):175-83. doi: 10.1038/nature06936.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Genome Sequencing Center, Washington University School of Medicine, Campus Box 8501, 4444 Forest Park Avenue, St Louis, Missouri 63108, USA. wwarren@wustl.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18464734" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Composition ; Dentition ; *Evolution, Molecular ; Female ; Genome/*genetics ; Genomic Imprinting/genetics ; Humans ; Immunity/genetics ; Male ; Mammals/genetics ; MicroRNAs/genetics ; Milk Proteins/genetics ; Phylogeny ; Platypus/*genetics/immunology/physiology ; Receptors, Odorant/genetics ; Repetitive Sequences, Nucleic Acid/genetics ; Reptiles/genetics ; Sequence Analysis, DNA ; Spermatozoa/metabolism ; Venoms/genetics ; Zona Pellucida/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-03-20
    Description: The human body is composed of diverse cell types with distinct functions. Although it is known that lineage specification depends on cell-specific gene expression, which in turn is driven by promoters, enhancers, insulators and other cis-regulatory DNA sequences for each gene, the relative roles of these regulatory elements in this process are not clear. We have previously developed a chromatin-immunoprecipitation-based microarray method (ChIP-chip) to locate promoters, enhancers and insulators in the human genome. Here we use the same approach to identify these elements in multiple cell types and investigate their roles in cell-type-specific gene expression. We observed that the chromatin state at promoters and CTCF-binding at insulators is largely invariant across diverse cell types. In contrast, enhancers are marked with highly cell-type-specific histone modification patterns, strongly correlate to cell-type-specific gene expression programs on a global scale, and are functionally active in a cell-type-specific manner. Our results define over 55,000 potential transcriptional enhancers in the human genome, significantly expanding the current catalogue of human enhancers and highlighting the role of these elements in cell-type-specific gene expression.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2910248/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2910248/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Heintzman, Nathaniel D -- Hon, Gary C -- Hawkins, R David -- Kheradpour, Pouya -- Stark, Alexander -- Harp, Lindsey F -- Ye, Zhen -- Lee, Leonard K -- Stuart, Rhona K -- Ching, Christina W -- Ching, Keith A -- Antosiewicz-Bourget, Jessica E -- Liu, Hui -- Zhang, Xinmin -- Green, Roland D -- Lobanenkov, Victor V -- Stewart, Ron -- Thomson, James A -- Crawford, Gregory E -- Kellis, Manolis -- Ren, Bing -- R01 HG004037/HG/NHGRI NIH HHS/ -- R01 HG004037-02/HG/NHGRI NIH HHS/ -- U01 HG003151/HG/NHGRI NIH HHS/ -- U01 HG003151-01/HG/NHGRI NIH HHS/ -- U01 HG003151-01S1/HG/NHGRI NIH HHS/ -- U01 HG003151-02/HG/NHGRI NIH HHS/ -- U01 HG003151-03/HG/NHGRI NIH HHS/ -- U01 HG003151-03S1/HG/NHGRI NIH HHS/ -- U01 HG003151-03S2/HG/NHGRI NIH HHS/ -- Intramural NIH HHS/ -- England -- Nature. 2009 May 7;459(7243):108-12. doi: 10.1038/nature07829. Epub 2009 Mar 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ludwig Institute for Cancer Research, UCSD School of Medicine, 9500 Gilman Drive, La Jolla, California 92093-0653, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19295514" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Cell Line ; *Cell Physiological Phenomena ; Chromatin/genetics ; *Gene Expression Regulation ; Genome, Human/genetics ; HeLa Cells ; Histones/*metabolism ; Humans ; K562 Cells ; Promoter Regions, Genetic/genetics ; Transcription Factors/*genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-10-14
    Description: The comparison of related genomes has emerged as a powerful lens for genome interpretation. Here we report the sequencing and comparative analysis of 29 eutherian genomes. We confirm that at least 5.5% of the human genome has undergone purifying selection, and locate constrained elements covering approximately 4.2% of the genome. We use evolutionary signatures and comparisons with experimental data sets to suggest candidate functions for approximately 60% of constrained bases. These elements reveal a small number of new coding exons, candidate stop codon readthrough events and over 10,000 regions of overlapping synonymous constraint within protein-coding exons. We find 220 candidate RNA structural families, and nearly a million elements overlapping potential promoter, enhancer and insulator regions. We report specific amino acid residues that have undergone positive selection, 280,000 non-coding elements exapted from mobile elements and more than 1,000 primate- and human-accelerated elements. Overlap with disease-associated variants indicates that our findings will be relevant for studies of human biology, health and disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3207357/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3207357/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lindblad-Toh, Kerstin -- Garber, Manuel -- Zuk, Or -- Lin, Michael F -- Parker, Brian J -- Washietl, Stefan -- Kheradpour, Pouya -- Ernst, Jason -- Jordan, Gregory -- Mauceli, Evan -- Ward, Lucas D -- Lowe, Craig B -- Holloway, Alisha K -- Clamp, Michele -- Gnerre, Sante -- Alfoldi, Jessica -- Beal, Kathryn -- Chang, Jean -- Clawson, Hiram -- Cuff, James -- Di Palma, Federica -- Fitzgerald, Stephen -- Flicek, Paul -- Guttman, Mitchell -- Hubisz, Melissa J -- Jaffe, David B -- Jungreis, Irwin -- Kent, W James -- Kostka, Dennis -- Lara, Marcia -- Martins, Andre L -- Massingham, Tim -- Moltke, Ida -- Raney, Brian J -- Rasmussen, Matthew D -- Robinson, Jim -- Stark, Alexander -- Vilella, Albert J -- Wen, Jiayu -- Xie, Xiaohui -- Zody, Michael C -- Broad Institute Sequencing Platform and Whole Genome Assembly Team -- Baldwin, Jen -- Bloom, Toby -- Chin, Chee Whye -- Heiman, Dave -- Nicol, Robert -- Nusbaum, Chad -- Young, Sarah -- Wilkinson, Jane -- Worley, Kim C -- Kovar, Christie L -- Muzny, Donna M -- Gibbs, Richard A -- Baylor College of Medicine Human Genome Sequencing Center Sequencing Team -- Cree, Andrew -- Dihn, Huyen H -- Fowler, Gerald -- Jhangiani, Shalili -- Joshi, Vandita -- Lee, Sandra -- Lewis, Lora R -- Nazareth, Lynne V -- Okwuonu, Geoffrey -- Santibanez, Jireh -- Warren, Wesley C -- Mardis, Elaine R -- Weinstock, George M -- Wilson, Richard K -- Genome Institute at Washington University -- Delehaunty, Kim -- Dooling, David -- Fronik, Catrina -- Fulton, Lucinda -- Fulton, Bob -- Graves, Tina -- Minx, Patrick -- Sodergren, Erica -- Birney, Ewan -- Margulies, Elliott H -- Herrero, Javier -- Green, Eric D -- Haussler, David -- Siepel, Adam -- Goldman, Nick -- Pollard, Katherine S -- Pedersen, Jakob S -- Lander, Eric S -- Kellis, Manolis -- 095908/Wellcome Trust/United Kingdom -- GM82901/GM/NIGMS NIH HHS/ -- R01 HG003474/HG/NHGRI NIH HHS/ -- R01 HG004037/HG/NHGRI NIH HHS/ -- U54 HG003067/HG/NHGRI NIH HHS/ -- U54 HG003067-09/HG/NHGRI NIH HHS/ -- U54 HG003273/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2011 Oct 12;478(7370):476-82. doi: 10.1038/nature10530.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA. kersli@broadinstitute.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21993624" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Disease ; *Evolution, Molecular ; Exons/genetics ; Genome/*genetics ; Genome, Human/*genetics ; Genomics ; Health ; Humans ; Mammals/*genetics ; Molecular Sequence Annotation ; Phylogeny ; RNA/classification/genetics ; Selection, Genetic/genetics ; Sequence Alignment ; Sequence Analysis, DNA
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-03-25
    Description: Systematic annotation of gene regulatory elements is a major challenge in genome science. Direct mapping of chromatin modification marks and transcriptional factor binding sites genome-wide has successfully identified specific subtypes of regulatory elements. In Drosophila several pioneering studies have provided genome-wide identification of Polycomb response elements, chromatin states, transcription factor binding sites, RNA polymerase II regulation and insulator elements; however, comprehensive annotation of the regulatory genome remains a significant challenge. Here we describe results from the modENCODE cis-regulatory annotation project. We produced a map of the Drosophila melanogaster regulatory genome on the basis of more than 300 chromatin immunoprecipitation data sets for eight chromatin features, five histone deacetylases and thirty-eight site-specific transcription factors at different stages of development. Using these data we inferred more than 20,000 candidate regulatory elements and validated a subset of predictions for promoters, enhancers and insulators in vivo. We identified also nearly 2,000 genomic regions of dense transcription factor binding associated with chromatin activity and accessibility. We discovered hundreds of new transcription factor co-binding relationships and defined a transcription factor network with over 800 potential regulatory relationships.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3179250/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3179250/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Negre, Nicolas -- Brown, Christopher D -- Ma, Lijia -- Bristow, Christopher Aaron -- Miller, Steven W -- Wagner, Ulrich -- Kheradpour, Pouya -- Eaton, Matthew L -- Loriaux, Paul -- Sealfon, Rachel -- Li, Zirong -- Ishii, Haruhiko -- Spokony, Rebecca F -- Chen, Jia -- Hwang, Lindsay -- Cheng, Chao -- Auburn, Richard P -- Davis, Melissa B -- Domanus, Marc -- Shah, Parantu K -- Morrison, Carolyn A -- Zieba, Jennifer -- Suchy, Sarah -- Senderowicz, Lionel -- Victorsen, Alec -- Bild, Nicholas A -- Grundstad, A Jason -- Hanley, David -- MacAlpine, David M -- Mannervik, Mattias -- Venken, Koen -- Bellen, Hugo -- White, Robert -- Gerstein, Mark -- Russell, Steven -- Grossman, Robert L -- Ren, Bing -- Posakony, James W -- Kellis, Manolis -- White, Kevin P -- F32 GM074364/GM/NIGMS NIH HHS/ -- F32 GM074364-01/GM/NIGMS NIH HHS/ -- F32 GM074364-02/GM/NIGMS NIH HHS/ -- P50 GM081892/GM/NIGMS NIH HHS/ -- R01 HG004037/HG/NHGRI NIH HHS/ -- R01 HG004037-04/HG/NHGRI NIH HHS/ -- RC2 HG005639/HG/NHGRI NIH HHS/ -- RC2 HG005639-02/HG/NHGRI NIH HHS/ -- U01 HG004264/HG/NHGRI NIH HHS/ -- U01 HG004279/HG/NHGRI NIH HHS/ -- U01HG004264/HG/NHGRI NIH HHS/ -- England -- Nature. 2011 Mar 24;471(7339):527-31. doi: 10.1038/nature09990.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Genomics and Systems Biology, Department of Human Genetics, The University of Chicago, 900 East 57th Street, Chicago, Illinois 60637, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21430782" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chromatin/metabolism ; Chromatin Assembly and Disassembly ; Chromatin Immunoprecipitation ; Drosophila melanogaster/*genetics ; Enhancer Elements, Genetic/genetics ; Genome, Insect/*genetics ; Histone Deacetylases/metabolism ; Insulator Elements/genetics ; *Molecular Sequence Annotation ; Promoter Regions, Genetic/genetics ; Regulatory Sequences, Nucleic Acid/*genetics ; Reproducibility of Results ; Silencer Elements, Transcriptional/genetics ; Transcription Factors/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-03-29
    Description: Chromatin profiling has emerged as a powerful means of genome annotation and detection of regulatory activity. The approach is especially well suited to the characterization of non-coding portions of the genome, which critically contribute to cellular phenotypes yet remain largely uncharted. Here we map nine chromatin marks across nine cell types to systematically characterize regulatory elements, their cell-type specificities and their functional interactions. Focusing on cell-type-specific patterns of promoters and enhancers, we define multicell activity profiles for chromatin state, gene expression, regulatory motif enrichment and regulator expression. We use correlations between these profiles to link enhancers to putative target genes, and predict the cell-type-specific activators and repressors that modulate them. The resulting annotations and regulatory predictions have implications for the interpretation of genome-wide association studies. Top-scoring disease single nucleotide polymorphisms are frequently positioned within enhancer elements specifically active in relevant cell types, and in some cases affect a motif instance for a predicted regulator, thus suggesting a mechanism for the association. Our study presents a general framework for deciphering cis-regulatory connections and their roles in disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3088773/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3088773/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ernst, Jason -- Kheradpour, Pouya -- Mikkelsen, Tarjei S -- Shoresh, Noam -- Ward, Lucas D -- Epstein, Charles B -- Zhang, Xiaolan -- Wang, Li -- Issner, Robbyn -- Coyne, Michael -- Ku, Manching -- Durham, Timothy -- Kellis, Manolis -- Bernstein, Bradley E -- R01 HG004037/HG/NHGRI NIH HHS/ -- R01HG004037/HG/NHGRI NIH HHS/ -- RC1HG005334/HG/NHGRI NIH HHS/ -- U54 HG004570/HG/NHGRI NIH HHS/ -- U54 HG004570-01/HG/NHGRI NIH HHS/ -- U54 HG004570-02/HG/NHGRI NIH HHS/ -- U54 HG004570-02S1/HG/NHGRI NIH HHS/ -- U54 HG004570-03/HG/NHGRI NIH HHS/ -- U54 HG004570-03S1/HG/NHGRI NIH HHS/ -- U54 HG004570-04/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2011 May 5;473(7345):43-9. doi: 10.1038/nature09906. Epub 2011 Mar 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21441907" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Cell Line ; Cell Line, Tumor ; *Cell Physiological Phenomena ; Cells, Cultured ; Chromatin/*genetics/*metabolism ; *Chromosome Mapping ; Gene Expression Regulation ; Genome, Human/genetics ; Hep G2 Cells ; Humans ; Promoter Regions, Genetic/genetics ; Reproducibility of Results ; Transcription Factors/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-08-29
    Description: Despite the large evolutionary distances between metazoan species, they can show remarkable commonalities in their biology, and this has helped to establish fly and worm as model organisms for human biology. Although studies of individual elements and factors have explored similarities in gene regulation, a large-scale comparative analysis of basic principles of transcriptional regulatory features is lacking. Here we map the genome-wide binding locations of 165 human, 93 worm and 52 fly transcription regulatory factors, generating a total of 1,019 data sets from diverse cell types, developmental stages, or conditions in the three species, of which 498 (48.9%) are presented here for the first time. We find that structural properties of regulatory networks are remarkably conserved and that orthologous regulatory factor families recognize similar binding motifs in vivo and show some similar co-associations. Our results suggest that gene-regulatory properties previously observed for individual factors are general principles of metazoan regulation that are remarkably well-preserved despite extensive functional divergence of individual network connections. The comparative maps of regulatory circuitry provided here will drive an improved understanding of the regulatory underpinnings of model organism biology and how these relate to human biology, development and disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4336544/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4336544/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Boyle, Alan P -- Araya, Carlos L -- Brdlik, Cathleen -- Cayting, Philip -- Cheng, Chao -- Cheng, Yong -- Gardner, Kathryn -- Hillier, LaDeana W -- Janette, Judith -- Jiang, Lixia -- Kasper, Dionna -- Kawli, Trupti -- Kheradpour, Pouya -- Kundaje, Anshul -- Li, Jingyi Jessica -- Ma, Lijia -- Niu, Wei -- Rehm, E Jay -- Rozowsky, Joel -- Slattery, Matthew -- Spokony, Rebecca -- Terrell, Robert -- Vafeados, Dionne -- Wang, Daifeng -- Weisdepp, Peter -- Wu, Yi-Chieh -- Xie, Dan -- Yan, Koon-Kiu -- Feingold, Elise A -- Good, Peter J -- Pazin, Michael J -- Huang, Haiyan -- Bickel, Peter J -- Brenner, Steven E -- Reinke, Valerie -- Waterston, Robert H -- Gerstein, Mark -- White, Kevin P -- Kellis, Manolis -- Snyder, Michael -- F32GM101778/GM/NIGMS NIH HHS/ -- P50GM081892/GM/NIGMS NIH HHS/ -- R01 HG004037/HG/NHGRI NIH HHS/ -- RC2HG005679/HG/NHGRI NIH HHS/ -- U01 HG004267/HG/NHGRI NIH HHS/ -- U01HG004264/HG/NHGRI NIH HHS/ -- U01HG004267/HG/NHGRI NIH HHS/ -- U54 HG004558/HG/NHGRI NIH HHS/ -- U54 HG006996/HG/NHGRI NIH HHS/ -- U54HG004558/HG/NHGRI NIH HHS/ -- U54HG006996/HG/NHGRI NIH HHS/ -- UL1 TR000430/TR/NCATS NIH HHS/ -- England -- Nature. 2014 Aug 28;512(7515):453-6. doi: 10.1038/nature13668.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA [2]. ; Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA. ; Program of Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA. ; Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06520, USA. ; Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA. ; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA. ; 1] Department of Computer Science, Stanford University, Stanford, California 94305, USA [2] Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA. ; 1] Department of Statistics, University of California, Berkeley, California 94720, USA [2] Department of Statistics, University of California, Los Angeles, California 90095, USA. ; Institute for Genomics and Systems Biology, University of Chicago, Chicago, Ilinois 60637, USA. ; National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA. ; Department of Statistics, University of California, Berkeley, California 94720, USA. ; 1] Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA [2] Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25164757" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Caenorhabditis elegans/*genetics/growth & development ; Chromatin Immunoprecipitation ; Conserved Sequence/genetics ; Drosophila melanogaster/*genetics/growth & development ; *Evolution, Molecular ; Gene Expression Regulation/*genetics ; Gene Expression Regulation, Developmental/genetics ; Gene Regulatory Networks/*genetics ; Genome/genetics ; Humans ; Molecular Sequence Annotation ; Nucleotide Motifs/genetics ; Organ Specificity/genetics ; Transcription Factors/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-02-20
    Description: The reference human genome sequence set the stage for studies of genetic variation and its association with human disease, but epigenomic studies lack a similar reference. To address this need, the NIH Roadmap Epigenomics Consortium generated the largest collection so far of human epigenomes for primary cells and tissues. Here we describe the integrative analysis of 111 reference human epigenomes generated as part of the programme, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression. We establish global maps of regulatory elements, define regulatory modules of coordinated activity, and their likely activators and repressors. We show that disease- and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease. Our results demonstrate the central role of epigenomic information for understanding gene regulation, cellular differentiation and human disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4530010/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4530010/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Roadmap Epigenomics Consortium -- Kundaje, Anshul -- Meuleman, Wouter -- Ernst, Jason -- Bilenky, Misha -- Yen, Angela -- Heravi-Moussavi, Alireza -- Kheradpour, Pouya -- Zhang, Zhizhuo -- Wang, Jianrong -- Ziller, Michael J -- Amin, Viren -- Whitaker, John W -- Schultz, Matthew D -- Ward, Lucas D -- Sarkar, Abhishek -- Quon, Gerald -- Sandstrom, Richard S -- Eaton, Matthew L -- Wu, Yi-Chieh -- Pfenning, Andreas R -- Wang, Xinchen -- Claussnitzer, Melina -- Liu, Yaping -- Coarfa, Cristian -- Harris, R Alan -- Shoresh, Noam -- Epstein, Charles B -- Gjoneska, Elizabeta -- Leung, Danny -- Xie, Wei -- Hawkins, R David -- Lister, Ryan -- Hong, Chibo -- Gascard, Philippe -- Mungall, Andrew J -- Moore, Richard -- Chuah, Eric -- Tam, Angela -- Canfield, Theresa K -- Hansen, R Scott -- Kaul, Rajinder -- Sabo, Peter J -- Bansal, Mukul S -- Carles, Annaick -- Dixon, Jesse R -- Farh, Kai-How -- Feizi, Soheil -- Karlic, Rosa -- Kim, Ah-Ram -- Kulkarni, Ashwinikumar -- Li, Daofeng -- Lowdon, Rebecca -- Elliott, GiNell -- Mercer, Tim R -- Neph, Shane J -- Onuchic, Vitor -- Polak, Paz -- Rajagopal, Nisha -- Ray, Pradipta -- Sallari, Richard C -- Siebenthall, Kyle T -- Sinnott-Armstrong, Nicholas A -- Stevens, Michael -- Thurman, Robert E -- Wu, Jie -- Zhang, Bo -- Zhou, Xin -- Beaudet, Arthur E -- Boyer, Laurie A -- De Jager, Philip L -- Farnham, Peggy J -- Fisher, Susan J -- Haussler, David -- Jones, Steven J M -- Li, Wei -- Marra, Marco A -- McManus, Michael T -- Sunyaev, Shamil -- Thomson, James A -- Tlsty, Thea D -- Tsai, Li-Huei -- Wang, Wei -- Waterland, Robert A -- Zhang, Michael Q -- Chadwick, Lisa H -- Bernstein, Bradley E -- Costello, Joseph F -- Ecker, Joseph R -- Hirst, Martin -- Meissner, Alexander -- Milosavljevic, Aleksandar -- Ren, Bing -- Stamatoyannopoulos, John A -- Wang, Ting -- Kellis, Manolis -- 5R24HD000836/HD/NICHD NIH HHS/ -- ES017166/ES/NIEHS NIH HHS/ -- F32 HL110473/HL/NHLBI NIH HHS/ -- F32HL110473/HL/NHLBI NIH HHS/ -- K99 HL119617/HL/NHLBI NIH HHS/ -- K99HL119617/HL/NHLBI NIH HHS/ -- P01 DA008227/DA/NIDA NIH HHS/ -- P30AG10161/AG/NIA NIH HHS/ -- P50 MH096890/MH/NIMH NIH HHS/ -- R01 AG015819/AG/NIA NIH HHS/ -- R01 AG017917/AG/NIA NIH HHS/ -- R01 ES024984/ES/NIEHS NIH HHS/ -- R01 ES024992/ES/NIEHS NIH HHS/ -- R01 HG004037/HG/NHGRI NIH HHS/ -- R01 HG007175/HG/NHGRI NIH HHS/ -- R01 HG007354/HG/NHGRI NIH HHS/ -- R01AG15819/AG/NIA NIH HHS/ -- R01AG17917/AG/NIA NIH HHS/ -- R01HG004037/HG/NHGRI NIH HHS/ -- R01HG004037-S1/HG/NHGRI NIH HHS/ -- R01NS078839/NS/NINDS NIH HHS/ -- RC1HG005334/HG/NHGRI NIH HHS/ -- RF1 AG015819/AG/NIA NIH HHS/ -- T32 ES007032/ES/NIEHS NIH HHS/ -- T32 GM007198/GM/NIGMS NIH HHS/ -- T32 GM007266/GM/NIGMS NIH HHS/ -- T32 GM081739/GM/NIGMS NIH HHS/ -- U01 ES017154/ES/NIEHS NIH HHS/ -- U01AG46152/AG/NIA NIH HHS/ -- U01DA025956/DA/NIDA NIH HHS/ -- U01ES017154/ES/NIEHS NIH HHS/ -- U01ES017155/ES/NIEHS NIH HHS/ -- U01ES017156/ES/NIEHS NIH HHS/ -- U01ES017166/ES/NIEHS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Feb 19;518(7539):317-30. doi: 10.1038/nature14248.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, Massachusetts 02139, USA. [2] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA. [3] Department of Genetics, Department of Computer Science, 300 Pasteur Dr., Lane Building, L301, Stanford, California 94305-5120, USA. ; 1] Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, Massachusetts 02139, USA. [2] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA. ; 1] Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, Massachusetts 02139, USA. [2] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA. [3] Department of Biological Chemistry, University of California, Los Angeles, 615 Charles E Young Dr South, Los Angeles, California 90095, USA. ; Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada. ; 1] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA. [2] Department of Stem Cell and Regenerative Biology, 7 Divinity Ave, Cambridge, Massachusetts 02138, USA. ; Epigenome Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA. ; Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, Moores Cancer Center, Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA. ; Genomic Analysis Laboratory, Howard Hughes Medical Institute &The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, California 92037, USA. ; Department of Genome Sciences, University of Washington, 3720 15th Ave. NE, Seattle, Washington 98195, USA. ; 1] Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, Massachusetts 02139, USA. [2] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA. [3] Biology Department, Massachusetts Institute of Technology, 31 Ames St, Cambridge, Massachusetts 02142, USA. ; The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA. ; 1] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA. [2] The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar St, Cambridge, Massachusetts 02139, USA. ; 1] Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, Moores Cancer Center, Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA. [2] Ludwig Institute for Cancer Research, 9500 Gilman Drive, La Jolla, California 92093, USA. ; Department of Neurosurgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 1450 3rd Street, San Francisco, California 94158, USA. ; Department of Pathology, University of California San Francisco, 513 Parnassus Avenue, San Francisco, California 94143-0511, USA. ; Department of Medicine, Division of Medical Genetics, University of Washington, 2211 Elliot Avenue, Seattle, Washington 98121, USA. ; 1] Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, Massachusetts 02139, USA. [2] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA. [3] Department of Computer Science &Engineering, University of Connecticut, 371 Fairfield Way, Storrs, Connecticut 06269, USA. ; Department of Microbiology and Immunology and Centre for High-Throughput Biology, University of British Columbia, 2125 East Mall, Vancouver, British Columbia V6T 1Z4, Canada. ; Bioinformatics Group, Department of Molecular Biology, Division of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia. ; Department of Molecular and Cell Biology, Center for Systems Biology, The University of Texas, Dallas, NSERL, RL10, 800 W Campbell Road, Richardson, Texas 75080, USA. ; Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University in St Louis, 4444 Forest Park Ave, St Louis, Missouri 63108, USA. ; Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland 4072, Australia. ; 1] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA. [2] Brigham &Women's Hospital, 75 Francis Street, Boston, Massachusetts 02115, USA. ; 1] Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University in St Louis, 4444 Forest Park Ave, St Louis, Missouri 63108, USA. [2] Department of Computer Science and Engineeering, Washington University in St. Louis, St. Louis, Missouri 63130, USA. ; 1] Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York 11794-3600, USA. [2] Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA. ; Molecular and Human Genetics Department, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA. ; Biology Department, Massachusetts Institute of Technology, 31 Ames St, Cambridge, Massachusetts 02142, USA. ; 1] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA. [2] Brigham &Women's Hospital, 75 Francis Street, Boston, Massachusetts 02115, USA. [3] Harvard Medical School, 25 Shattuck St, Boston, Massachusetts 02115, USA. ; Department of Biochemistry, Keck School of Medicine, University of Southern California, 1450 Biggy Street, Los Angeles, California 90089-9601, USA. ; ObGyn, Reproductive Sciences, University of California San Francisco, 35 Medical Center Way, San Francisco, California 94143, USA. ; Center for Biomolecular Sciences and Engineering, University of Santa Cruz, 1156 High Street, Santa Cruz, California 95064, USA. ; 1] Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada. [2] Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada. [3] Department of Medical Genetics, University of British Columbia, 2329 West Mall, Vancouver, BC, Canada, V6T 1Z4. ; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA. ; 1] Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada. [2] Department of Medical Genetics, University of British Columbia, 2329 West Mall, Vancouver, BC, Canada, V6T 1Z4. ; Department of Microbiology and Immunology, Diabetes Center, University of California, San Francisco, 513 Parnassus Ave, San Francisco, California 94143-0534, USA. ; 1] University of Wisconsin, Madison, Wisconsin 53715, USA. [2] Morgridge Institute for Research, 330 N. Orchard Street, Madison, Wisconsin 53707, USA. ; USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, 1100 Bates Street, Houston, Texas 77030, USA. ; 1] Department of Molecular and Cell Biology, Center for Systems Biology, The University of Texas, Dallas, NSERL, RL10, 800 W Campbell Road, Richardson, Texas 75080, USA. [2] Bioinformatics Division, Center for Synthetic and Systems Biology, TNLIST, Tsinghua University, Beijing 100084, China. ; National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, Research Triangle Park, North Carolina 27709, USA. ; 1] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA. [2] Massachusetts General Hospital, 55 Fruit St, Boston, Massachusetts 02114, USA. [3] Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, Maryland 20815-6789, USA. ; 1] Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada. [2] Department of Microbiology and Immunology and Centre for High-Throughput Biology, University of British Columbia, 2125 East Mall, Vancouver, British Columbia V6T 1Z4, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25693563" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Cell Lineage/genetics ; Cells, Cultured ; Chromatin/chemistry/genetics/metabolism ; Chromosomes, Human/chemistry/genetics/metabolism ; DNA/chemistry/genetics/metabolism ; DNA Methylation ; Datasets as Topic ; Enhancer Elements, Genetic/genetics ; Epigenesis, Genetic/*genetics ; *Epigenomics ; Genetic Variation/genetics ; Genome, Human/*genetics ; Genome-Wide Association Study ; Histones/metabolism ; Humans ; Organ Specificity/genetics ; RNA/genetics ; Reference Values
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2010-12-24
    Description: To gain insight into how genomic information is translated into cellular and developmental programs, the Drosophila model organism Encyclopedia of DNA Elements (modENCODE) project is comprehensively mapping transcripts, histone modifications, chromosomal proteins, transcription factors, replication proteins and intermediates, and nucleosome properties across a developmental time course and in multiple cell lines. We have generated more than 700 data sets and discovered protein-coding, noncoding, RNA regulatory, replication, and chromatin elements, more than tripling the annotated portion of the Drosophila genome. Correlated activity patterns of these elements reveal a functional regulatory network, which predicts putative new functions for genes, reveals stage- and tissue-specific regulators, and enables gene-expression prediction. Our results provide a foundation for directed experimental and computational studies in Drosophila and related species and also a model for systematic data integration toward comprehensive genomic and functional annotation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3192495/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3192495/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉modENCODE Consortium -- Roy, Sushmita -- Ernst, Jason -- Kharchenko, Peter V -- Kheradpour, Pouya -- Negre, Nicolas -- Eaton, Matthew L -- Landolin, Jane M -- Bristow, Christopher A -- Ma, Lijia -- Lin, Michael F -- Washietl, Stefan -- Arshinoff, Bradley I -- Ay, Ferhat -- Meyer, Patrick E -- Robine, Nicolas -- Washington, Nicole L -- Di Stefano, Luisa -- Berezikov, Eugene -- Brown, Christopher D -- Candeias, Rogerio -- Carlson, Joseph W -- Carr, Adrian -- Jungreis, Irwin -- Marbach, Daniel -- Sealfon, Rachel -- Tolstorukov, Michael Y -- Will, Sebastian -- Alekseyenko, Artyom A -- Artieri, Carlo -- Booth, Benjamin W -- Brooks, Angela N -- Dai, Qi -- Davis, Carrie A -- Duff, Michael O -- Feng, Xin -- Gorchakov, Andrey A -- Gu, Tingting -- Henikoff, Jorja G -- Kapranov, Philipp -- Li, Renhua -- MacAlpine, Heather K -- Malone, John -- Minoda, Aki -- Nordman, Jared -- Okamura, Katsutomo -- Perry, Marc -- Powell, Sara K -- Riddle, Nicole C -- Sakai, Akiko -- Samsonova, Anastasia -- Sandler, Jeremy E -- Schwartz, Yuri B -- Sher, Noa -- Spokony, Rebecca -- Sturgill, David -- van Baren, Marijke -- Wan, Kenneth H -- Yang, Li -- Yu, Charles -- Feingold, Elise -- Good, Peter -- Guyer, Mark -- Lowdon, Rebecca -- Ahmad, Kami -- Andrews, Justen -- Berger, Bonnie -- Brenner, Steven E -- Brent, Michael R -- Cherbas, Lucy -- Elgin, Sarah C R -- Gingeras, Thomas R -- Grossman, Robert -- Hoskins, Roger A -- Kaufman, Thomas C -- Kent, William -- Kuroda, Mitzi I -- Orr-Weaver, Terry -- Perrimon, Norbert -- Pirrotta, Vincenzo -- Posakony, James W -- Ren, Bing -- Russell, Steven -- Cherbas, Peter -- Graveley, Brenton R -- Lewis, Suzanna -- Micklem, Gos -- Oliver, Brian -- Park, Peter J -- Celniker, Susan E -- Henikoff, Steven -- Karpen, Gary H -- Lai, Eric C -- MacAlpine, David M -- Stein, Lincoln D -- White, Kevin P -- Kellis, Manolis -- R01 HG004037/HG/NHGRI NIH HHS/ -- R01HG004037/HG/NHGRI NIH HHS/ -- RC2HG005639/HG/NHGRI NIH HHS/ -- U01 HG004258/HG/NHGRI NIH HHS/ -- U01 HG004271/HG/NHGRI NIH HHS/ -- U01 HG004279/HG/NHGRI NIH HHS/ -- U01HG004258/HG/NHGRI NIH HHS/ -- U01HG004261/HG/NHGRI NIH HHS/ -- U01HG004264/HG/NHGRI NIH HHS/ -- U01HG004271/HG/NHGRI NIH HHS/ -- U01HG004274/HG/NHGRI NIH HHS/ -- U01HG004279/HG/NHGRI NIH HHS/ -- U41HG004269/HG/NHGRI NIH HHS/ -- ZIA DK015600-14/Intramural NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Dec 24;330(6012):1787-97. doi: 10.1126/science.1198374. Epub 2010 Dec 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21177974" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; *Chromatin/genetics/metabolism ; Computational Biology/methods ; Drosophila Proteins/genetics/metabolism ; Drosophila melanogaster/*genetics/growth & development/metabolism ; Epigenesis, Genetic ; Gene Expression Regulation ; *Gene Regulatory Networks ; Genes, Insect ; *Genome, Insect ; Genomics/methods ; Histones/metabolism ; *Molecular Sequence Annotation ; Nucleosomes/genetics/metabolism ; Promoter Regions, Genetic ; RNA, Small Untranslated/genetics/metabolism ; Transcription Factors/metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2010-01-02
    Description: The Tasmanian devil, a marsupial carnivore, is endangered because of the emergence of a transmissible cancer known as devil facial tumor disease (DFTD). This fatal cancer is clonally derived and is an allograft transmitted between devils by biting. We performed a large-scale genetic analysis of DFTD with microsatellite genotyping, a mitochondrial genome analysis, and deep sequencing of the DFTD transcriptome and microRNAs. These studies confirm that DFTD is a monophyletic clonally transmissible tumor and suggest that the disease is of Schwann cell origin. On the basis of these results, we have generated a diagnostic marker for DFTD and identify a suite of genes relevant to DFTD pathology and transmission. We provide a genomic data set for the Tasmanian devil that is applicable to cancer diagnosis, disease evolution, and conservation biology.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2982769/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2982769/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Murchison, Elizabeth P -- Tovar, Cesar -- Hsu, Arthur -- Bender, Hannah S -- Kheradpour, Pouya -- Rebbeck, Clare A -- Obendorf, David -- Conlan, Carly -- Bahlo, Melanie -- Blizzard, Catherine A -- Pyecroft, Stephen -- Kreiss, Alexandre -- Kellis, Manolis -- Stark, Alexander -- Harkins, Timothy T -- Marshall Graves, Jennifer A -- Woods, Gregory M -- Hannon, Gregory J -- Papenfuss, Anthony T -- P01 CA013106/CA/NCI NIH HHS/ -- P01 CA013106-38/CA/NCI NIH HHS/ -- R01 GM062534/GM/NIGMS NIH HHS/ -- R01 GM062534-10/GM/NIGMS NIH HHS/ -- R01 HG004037/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Jan 1;327(5961):84-7. doi: 10.1126/science.1180616.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA. elizabeth.murchison@sanger.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20044575" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biomarkers, Tumor/analysis ; Bites and Stings/veterinary ; Cell Differentiation ; Facial Neoplasms/diagnosis/genetics/pathology/*veterinary ; *Gene Expression Profiling ; Gene Expression Regulation, Neoplastic ; Genes, Neoplasm ; Genome, Mitochondrial ; Genotype ; *Marsupialia/genetics ; Membrane Proteins/genetics/metabolism ; MicroRNAs/genetics ; Microsatellite Repeats ; Myelin Basic Protein/genetics ; Nerve Sheath Neoplasms/diagnosis/genetics/pathology/*veterinary ; *Schwann Cells/physiology ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-03-13
    Description: Recent advances in technology have led to a dramatic increase in the number of available transcription factor ChIP-seq and ChIP-chip data sets. Understanding the motif content of these data sets is an important step in understanding the underlying mechanisms of regulation. Here we provide a systematic motif analysis for 427 human ChIP-seq data sets using motifs curated from the literature and also discovered de novo using five established motif discovery tools. We use a systematic pipeline for calculating motif enrichment in each data set, providing a principled way for choosing between motif variants found in the literature and for flagging potentially problematic data sets. Our analysis confirms the known specificity of 41 of the 56 analyzed factor groups and reveals motifs of potential cofactors. We also use cell type-specific binding to find factors active in specific conditions. The resource we provide is accessible both for browsing a small number of factors and for performing large-scale systematic analyses. We provide motif matrices, instances and enrichments in each of the ENCODE data sets. The motifs discovered here have been used in parallel studies to validate the specificity of antibodies, understand cooperativity between data sets and measure the variation of motif binding across individuals and species.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...