ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Mice  (12)
  • American Association for the Advancement of Science (AAAS)  (12)
  • 1
    Publication Date: 1998-11-13
    Description: The ectodomains of numerous proteins are released from cells by proteolysis to yield soluble intercellular regulators. The responsible protease, tumor necrosis factor-alpha converting enzyme (TACE), has been identified only in the case when tumor necrosis factor-alpha (TNFalpha) is released. Analyses of cells lacking this metalloproteinase-disintegrin revealed an expanded role for TACE in the processing of other cell surface proteins, including a TNF receptor, the L-selectin adhesion molecule, and transforming growth factor-alpha (TGFalpha). The phenotype of mice lacking TACE suggests an essential role for soluble TGFalpha in normal development and emphasizes the importance of protein ectodomain shedding in vivo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Peschon, J J -- Slack, J L -- Reddy, P -- Stocking, K L -- Sunnarborg, S W -- Lee, D C -- Russell, W E -- Castner, B J -- Johnson, R S -- Fitzner, J N -- Boyce, R W -- Nelson, N -- Kozlosky, C J -- Wolfson, M F -- Rauch, C T -- Cerretti, D P -- Paxton, R J -- March, C J -- Black, R A -- CA43793/CA/NCI NIH HHS/ -- DK53804/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1998 Nov 13;282(5392):1281-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Immunex Corporation, Seattle, WA 98101, USA. peschon@immunex.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9812885" target="_blank"〉PubMed〈/a〉
    Keywords: ADAM Proteins ; Amino Acid Sequence ; Animals ; Catalytic Domain ; Cell Membrane/*metabolism ; Cells, Cultured ; Crosses, Genetic ; *Embryonic and Fetal Development ; L-Selectin/metabolism ; Ligands ; Membrane Proteins/*metabolism ; Metalloendopeptidases/chemistry/genetics/*metabolism ; Mice ; Mice, Inbred C57BL ; Molecular Sequence Data ; Mutation ; Phenotype ; Protein Processing, Post-Translational ; Receptors, Tumor Necrosis Factor/metabolism ; Transforming Growth Factor alpha/metabolism ; Tumor Necrosis Factor-alpha/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1989-04-07
    Description: The myb-ets-containing acute leukemia virus, E26, transforms myeloblasts and erythroblasts in culture and causes a mixed erythroid and myeloid leukemia in chicks. Genes (ets-1, ets-2, and erg) with variable relatedness to the v-ets oncogene of the E26 virus have been identified, cloned, and characterized in several species. Two new members (elk-1 and elk-2) of the ets oncogene superfamily have now been identified. Nucleotide sequence analysis of the elk-1 cDNA clone revealed that this gene encodes a 428-residue protein whose predicted amino acid sequence showed 82% similarity to the 3' region of v-ets. The elk or related sequences appear to be transcriptionally active in testis and lung. The elk cDNA probe detects two loci in the human genome, elk-1 and elk-2, which map to chromosome regions Xp11.2 and 14q32.3, respectively. These loci are near the translocation breakpoint seen in the t(X;18) (p11.2;q11.2), which is characteristic of synovial sarcoma, and the chromosome 14q32 breakpoints seen in ataxia telangiectasia and other T cell malignancies. This suggests the possibility that rearrangements of elk loci may be involved in pathogenesis of certain tumors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rao, V N -- Huebner, K -- Isobe, M -- ar-Rushdi, A -- Croce, C M -- Reddy, E S -- CA-21124/CA/NCI NIH HHS/ -- CA-25875/CA/NCI NIH HHS/ -- CA-39860/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1989 Apr 7;244(4900):66-70.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wistar Institute of Anatomy and Biology, Philadelphia, PA 19104.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2539641" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Avian Leukosis Virus/*genetics ; Base Sequence ; Chick Embryo ; Chickens ; Chromosome Mapping ; Cloning, Molecular ; DNA Probes ; *DNA-Binding Proteins ; Humans ; Mice ; Molecular Sequence Data ; *Oncogenes ; *Proto-Oncogene Proteins ; Rats ; Retroviridae Proteins/*genetics/isolation & purification ; *Transcription Factors ; *Translocation, Genetic ; *X Chromosome ; ets-Domain Protein Elk-1
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2008-02-02
    Description: In the mammalian ovary, progressive activation of primordial follicles from the dormant pool serves as the source of fertilizable ova. Menopause, or the end of female reproductive life, occurs when the primordial follicle pool is exhausted. However, the molecular mechanisms underlying follicle activation are poorly understood. We provide genetic evidence that in mice lacking PTEN (phosphatase and tensin homolog deleted on chromosome 10) in oocytes, a major negative regulator of phosphatidylinositol 3-kinase (PI3K), the entire primordial follicle pool becomes activated. Subsequently, all primordial follicles become depleted in early adulthood, causing premature ovarian failure (POF). Our results show that the mammalian oocyte serves as the headquarters of programming of follicle activation and that the oocyte PTEN-PI3K pathway governs follicle activation through control of initiation of oocyte growth.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reddy, Pradeep -- Liu, Lian -- Adhikari, Deepak -- Jagarlamudi, Krishna -- Rajareddy, Singareddy -- Shen, Yan -- Du, Chun -- Tang, Wenli -- Hamalainen, Tuula -- Peng, Stanford L -- Lan, Zi-Jian -- Cooney, Austin J -- Huhtaniemi, Ilpo -- Liu, Kui -- New York, N.Y. -- Science. 2008 Feb 1;319(5863):611-3. doi: 10.1126/science.1152257.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Biochemistry and Biophysics, Umea University, SE-901 87 Umea, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18239123" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Female ; Follicular Atresia ; Mice ; Mice, Transgenic ; Oocytes/cytology/growth & development/*physiology ; Organ Size ; Ovarian Follicle/cytology/*physiology ; Ovary/anatomy & histology/physiology ; Ovulation ; PTEN Phosphohydrolase/genetics/*physiology ; Phosphatidylinositol 3-Kinases/metabolism ; Phosphorylation ; Primary Ovarian Insufficiency/physiopathology ; Protein Kinases/metabolism ; Ribosomal Protein S6/metabolism ; Signal Transduction ; TOR Serine-Threonine Kinases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-01-10
    Description: Polyaromatic hydrocarbons (PAHs) are prevalent, potent carcinogens, and 7,12-dimethylbenz[a]anthracene (DMBA) is a model PAH widely used to study tumorigenesis. Mice lacking Langerhans cells (LCs), a signatory epidermal dendritic cell (DC), are protected from cutaneous chemical carcinogenesis, independent of T cell immunity. Investigation of the underlying mechanism revealed that LC-deficient skin was relatively resistant to DMBA-induced DNA damage. LCs efficiently metabolized DMBA to DMBA-trans-3,4-diol, an intermediate proximal to oncogenic Hras mutation, and DMBA-treated LC-deficient skin contained significantly fewer Hras mutations. Moreover, DMBA-trans-3,4-diol application bypassed tumor resistance in LC-deficient mice. Additionally, the genotoxic impact of DMBA on human keratinocytes was significantly increased by prior incubation with human-derived LC. Thus, tissue-associated DC can enhance chemical carcinogenesis via PAH metabolism, highlighting the complex relation between immune cells and carcinogenesis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3753811/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3753811/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Modi, Badri G -- Neustadter, Jason -- Binda, Elisa -- Lewis, Julia -- Filler, Renata B -- Roberts, Scott J -- Kwong, Bernice Y -- Reddy, Swapna -- Overton, John D -- Galan, Anjela -- Tigelaar, Robert -- Cai, Lining -- Fu, Peter -- Shlomchik, Mark -- Kaplan, Daniel H -- Hayday, Adrian -- Girardi, Michael -- 085780/Wellcome Trust/United Kingdom -- K08 AR002072/AR/NIAMS NIH HHS/ -- P30 CA016359/CA/NCI NIH HHS/ -- R01 AR056632/AR/NIAMS NIH HHS/ -- R01 CA102703/CA/NCI NIH HHS/ -- R01-AR044077/AR/NIAMS NIH HHS/ -- R01-AR056632/AR/NIAMS NIH HHS/ -- R01CA102703/CA/NCI NIH HHS/ -- T32 AR007016/AR/NIAMS NIH HHS/ -- Cancer Research UK/United Kingdom -- Department of Health/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2012 Jan 6;335(6064):104-8. doi: 10.1126/science.1211600.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Dermatology, Yale University School of Medicine, New Haven, CT 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22223807" target="_blank"〉PubMed〈/a〉
    Keywords: 9,10-Dimethyl-1,2-benzanthracene/*analogs & derivatives/metabolism/toxicity ; Animals ; Aryl Hydrocarbon Hydroxylases/metabolism ; Carcinogens/*metabolism/*toxicity ; Carcinoma, Squamous Cell/*chemically induced/metabolism ; Cell Transformation, Neoplastic ; Cells, Cultured ; Cytochrome P-450 CYP1A1/metabolism ; Cytochrome P-450 CYP1B1 ; *DNA Damage ; Genes, ras ; Humans ; Keratinocytes/metabolism/pathology ; Langerhans Cells/immunology/*metabolism ; Mice ; Mice, Transgenic ; Skin Neoplasms/*chemically induced/metabolism ; T-Lymphocytes/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-05-02
    Description: Werner syndrome (WS) is a premature aging disorder caused by WRN protein deficiency. Here, we report on the generation of a human WS model in human embryonic stem cells (ESCs). Differentiation of WRN-null ESCs to mesenchymal stem cells (MSCs) recapitulates features of premature cellular aging, a global loss of H3K9me3, and changes in heterochromatin architecture. We show that WRN associates with heterochromatin proteins SUV39H1 and HP1alpha and nuclear lamina-heterochromatin anchoring protein LAP2beta. Targeted knock-in of catalytically inactive SUV39H1 in wild-type MSCs recapitulates accelerated cellular senescence, resembling WRN-deficient MSCs. Moreover, decrease in WRN and heterochromatin marks are detected in MSCs from older individuals. Our observations uncover a role for WRN in maintaining heterochromatin stability and highlight heterochromatin disorganization as a potential determinant of human aging.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4494668/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4494668/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Weiqi -- Li, Jingyi -- Suzuki, Keiichiro -- Qu, Jing -- Wang, Ping -- Zhou, Junzhi -- Liu, Xiaomeng -- Ren, Ruotong -- Xu, Xiuling -- Ocampo, Alejandro -- Yuan, Tingting -- Yang, Jiping -- Li, Ying -- Shi, Liang -- Guan, Dee -- Pan, Huize -- Duan, Shunlei -- Ding, Zhichao -- Li, Mo -- Yi, Fei -- Bai, Ruijun -- Wang, Yayu -- Chen, Chang -- Yang, Fuquan -- Li, Xiaoyu -- Wang, Zimei -- Aizawa, Emi -- Goebl, April -- Soligalla, Rupa Devi -- Reddy, Pradeep -- Esteban, Concepcion Rodriguez -- Tang, Fuchou -- Liu, Guang-Hui -- Belmonte, Juan Carlos Izpisua -- F32 AG047770/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 2015 Jun 5;348(6239):1160-3. doi: 10.1126/science.aaa1356. Epub 2015 Apr 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China. ; Biodynamic Optical Imaging Center, College of Life Sciences, Peking University, Beijing 100871, China. ; Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA. ; State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China. ; Diagnosis and Treatment Center for Oral Disease, the 306th Hospital of the PLA, Beijing, China. ; Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA. ; College of Life Sciences, Peking University, Beijing 100871, China. ; The Center for Anti-aging and Regenerative Medicine, Shenzhen University, Shenzhen 518060, China. ; Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA. Universidad Catolica San Antonio de Murcia, Campus de los Jeronimos s/n, 30107 Guadalupe, Murcia, Spain. ; Biodynamic Optical Imaging Center, College of Life Sciences, Peking University, Beijing 100871, China. Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China. Center for Molecular and Translational Medicine (CMTM), Beijing 100101, China. Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China. ghliu@ibp.ac.cn tangfuchou@pku.edu.cn belmonte@salk.edu. ; National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China. The Center for Anti-aging and Regenerative Medicine, Shenzhen University, Shenzhen 518060, China. Center for Molecular and Translational Medicine (CMTM), Beijing 100101, China. Beijing Institute for Brain Disorders, Beijing 100069, China. ghliu@ibp.ac.cn tangfuchou@pku.edu.cn belmonte@salk.edu. ; Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA. ghliu@ibp.ac.cn tangfuchou@pku.edu.cn belmonte@salk.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25931448" target="_blank"〉PubMed〈/a〉
    Keywords: Aging/genetics/*metabolism ; Animals ; *Cell Aging ; Cell Differentiation ; Centromere/metabolism ; Chromosomal Proteins, Non-Histone/metabolism ; DNA-Binding Proteins/metabolism ; Epigenesis, Genetic ; Exodeoxyribonucleases/genetics/*metabolism ; Gene Knockout Techniques ; HEK293 Cells ; Heterochromatin/chemistry/*metabolism ; Humans ; Membrane Proteins/metabolism ; Mesenchymal Stromal Cells/*metabolism ; Methyltransferases/genetics/metabolism ; Mice ; Models, Biological ; RecQ Helicases/genetics/*metabolism ; Repressor Proteins/genetics/metabolism ; Werner Syndrome/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1982-12-10
    Description: Simian sarcoma virus (SSV) deletion mutants were constructed from a molecular clone containing the entire infectious provirus. Transfection analysis of these mutants localized the SSV transforming gene to a small region of the viral genome encompassing its cell-derived sequence (v-sis). Antiserum to a peptide synthesized on the basis of the predicted amino acid sequence of the SSV transforming gene detected a 28,000-dalton protein that was specifically expressed in SSV transformed cells and that corresponded in size to that predicted from the v-sis coding sequence. The v-sis gene product designated p28sis was not a phosphoprotein, nor did it possess detectable protein kinase activity. These findings distinguish p28sis from a number of other retroviral onc proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Robbins, K C -- Devare, S G -- Reddy, E P -- Aaronson, S A -- New York, N.Y. -- Science. 1982 Dec 10;218(4577):1131-3.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6293053" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Viral ; Base Sequence ; *Cell Transformation, Viral ; *Genes, Viral ; Mice ; Molecular Weight ; *Oncogenes ; Phosphoproteins/genetics ; Protein Kinases/genetics ; Retroviridae/*genetics ; Sarcoma Virus, Woolly Monkey/*genetics ; Viral Proteins/*genetics/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1978-09-08
    Description: Fibroblasts from New Zealand Black mouse fetuses manifest increased frequency of chromosomal breaks and interchanges after exposure to ultraviolet radiation when compared with cells from BABL/c fetuses. This chromosomal instability is similar to what has been reported in cells from patients with xeroderma pigmentosum and may be related to the chromosomally abnormal clones and malignancy previously reported in adult New Zealand Black mice.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reddy, A L -- Fialkow, P G -- Salo, A -- New York, N.Y. -- Science. 1978 Sep 8;201(4359):920-2.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/684417" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cells, Cultured ; *Chromosome Aberrations ; Chromosomes/*radiation effects ; Disease Models, Animal ; Dose-Response Relationship, Radiation ; Mice ; Mice, Inbred BALB C/physiology ; Mice, Inbred NZB/*physiology ; *Ultraviolet Rays ; Xeroderma Pigmentosum/physiopathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1983-05-20
    Description: Three types of tumors termed plasmacytomas (ABPC's), lymphosarcomas (ABLS's), and plasmacytoid lymphosarcomas (ABPL's) arise in BALB/c mice treated with pristane and Abelson murine leukemia virus (A-MuLV). While most ABPC's and BLS's contain integrated A-MuLV proviral genome and synthesize the v-abl RNA, most ABPL's do not. The ABPL tumors were examined for the expression of other oncogenes that may be associated with their transformed state, in the absence of transforming virus. These tumors expressed abundant c-myb RNA of unusually large size and showed DNA rearrangements of the c-myb locus.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mushinski, J F -- Potter, M -- Bauer, S R -- Reddy, E P -- New York, N.Y. -- Science. 1983 May 20;220(4599):795-8.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6687762" target="_blank"〉PubMed〈/a〉
    Keywords: Abelson murine leukemia virus/genetics ; Animals ; Cell Transformation, Neoplastic/metabolism ; Cloning, Molecular ; DNA, Neoplasm/*genetics ; *Gene Expression Regulation ; Humans ; Lymphoma, Non-Hodgkin/*genetics ; Mice ; Mice, Inbred BALB C ; *Oncogenes ; Plasmacytoma/genetics ; RNA, Neoplasm/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1983-06-03
    Description: The nucleotide sequence of the T24 human bladder carcinoma oncogene was determined, and the coding and noncoding sequences of the genome were identified. The amino acid sequence of p21, the translational product of the T24 oncogene, was predicted from the nucleotide sequence of the oncogene. Comparison of this sequence with that of the normal cellular homolog showed that a single point mutation in the coding sequences of the T24 oncogene resulted in the acquisition of transforming properties. Other differences between the T24 oncogene and its normal cellular homolog were found in the 5' noncoding and 3' noncoding sequences, but these differences appear to be due to polymorphism and do not play a significant role in the transformation process.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reddy, E P -- New York, N.Y. -- Science. 1983 Jun 3;220(4601):1061-3.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6844927" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Carcinoma/*genetics ; Cell Transformation, Neoplastic/metabolism ; Humans ; Mice ; Neoplasm Proteins/genetics ; *Oncogenes ; Oncogenic Viruses/genetics ; Rats ; Urinary Bladder Neoplasms/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1988-01-22
    Description: Overexpression of the cellular src gene in NIH 3T3 cells causes reduction of cell-to-cell transmission of molecules in the 400- to 700-dalton range. This down-regulation of gap junctional communication correlates with the activity of the gene product, the protein tyrosine kinase pp60c-src. The down-regulation was enhanced by point mutation of Tyr527 (a site that is phosphorylated in pp60c-src and that inhibits kinase activity) or by substitution of the viral-src for the cellular-src carboxyl-terminal coding region. Mutation of Tyr416 (a site phosphorylated upon Tyr527 mutation) suppresses both the down-regulation of communication by Tyr527 mutation and that by gene overexpression. The regulation of communication by src may be important in the control of embryonic development and cellular growth.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Azarnia, R -- Reddy, S -- Kmiecik, T E -- Shalloway, D -- Loewenstein, W R -- CA-14464/CA/NCI NIH HHS/ -- CA-32317/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1988 Jan 22;239(4838):398-401.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology and Biophysics, University of Miami School of Medicine, FL 33136.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2447651" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cell Communication ; Cell Line ; Cell Membrane Permeability ; Gene Expression Regulation ; *Intercellular Junctions ; Mice ; Mutation ; Phosphorylation ; Plasmids ; Protein-Tyrosine Kinases/*genetics ; Proto-Oncogene Proteins/genetics/*physiology ; Proto-Oncogene Proteins pp60(c-src) ; Structure-Activity Relationship ; Transcription, Genetic ; Transfection ; Tyrosine/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...