ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-05-20
    Description: Non-human primates are valuable for modelling human disorders and for developing therapeutic strategies; however, little work has been reported in establishing transgenic non-human primate models of human diseases. Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder characterized by motor impairment, cognitive deterioration and psychiatric disturbances followed by death within 10-15 years of the onset of the symptoms. HD is caused by the expansion of cytosine-adenine-guanine (CAG, translated into glutamine) trinucleotide repeats in the first exon of the human huntingtin (HTT) gene. Mutant HTT with expanded polyglutamine (polyQ) is widely expressed in the brain and peripheral tissues, but causes selective neurodegeneration that is most prominent in the striatum and cortex of the brain. Although rodent models of HD have been developed, these models do not satisfactorily parallel the brain changes and behavioural features observed in HD patients. Because of the close physiological, neurological and genetic similarities between humans and higher primates, monkeys can serve as very useful models for understanding human physiology and diseases. Here we report our progress in developing a transgenic model of HD in a rhesus macaque that expresses polyglutamine-expanded HTT. Hallmark features of HD, including nuclear inclusions and neuropil aggregates, were observed in the brains of the HD transgenic monkeys. Additionally, the transgenic monkeys showed important clinical features of HD, including dystonia and chorea. A transgenic HD monkey model may open the way to understanding the underlying biology of HD better, and to the development of potential therapies. Moreover, our data suggest that it will be feasible to generate valuable non-human primate models of HD and possibly other human genetic diseases.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2652570/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2652570/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yang, Shang-Hsun -- Cheng, Pei-Hsun -- Banta, Heather -- Piotrowska-Nitsche, Karolina -- Yang, Jin-Jing -- Cheng, Eric C H -- Snyder, Brooke -- Larkin, Katherine -- Liu, Jun -- Orkin, Jack -- Fang, Zhi-Hui -- Smith, Yoland -- Bachevalier, Jocelyne -- Zola, Stuart M -- Li, Shi-Hua -- Li, Xiao-Jiang -- Chan, Anthony W S -- R01 AG019206/AG/NIA NIH HHS/ -- R01 AG019206-07/AG/NIA NIH HHS/ -- R01 NS036232/NS/NINDS NIH HHS/ -- R01 NS036232-09/NS/NINDS NIH HHS/ -- R01 NS041669/NS/NINDS NIH HHS/ -- R01 NS041669-07/NS/NINDS NIH HHS/ -- England -- Nature. 2008 Jun 12;453(7197):921-4. doi: 10.1038/nature06975. Epub 2008 May 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18488016" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Genetically Modified ; Animals, Newborn ; Brain/metabolism/pathology ; Chorea/genetics/physiopathology ; *Disease Models, Animal ; Dystonia/genetics/physiopathology ; Exons/genetics ; Female ; Humans ; Huntington Disease/*genetics/metabolism/pathology/*physiopathology ; Macaca mulatta/*genetics ; Male ; Nerve Tissue Proteins/*genetics/metabolism ; Nuclear Proteins/*genetics/metabolism ; Peptides/genetics/metabolism ; Pregnancy ; Survival Analysis ; Trinucleotide Repeat Expansion/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-05-23
    Description: Dengue haemorrhagic fever and dengue shock syndrome, the most severe responses to dengue virus (DV) infection, are characterized by plasma leakage (due to increased vascular permeability) and low platelet counts. CLEC5A (C-type lectin domain family 5, member A; also known as myeloid DAP12-associating lectin (MDL-1)) contains a C-type lectin-like fold similar to the natural-killer T-cell C-type lectin domains and associates with a 12-kDa DNAX-activating protein (DAP12) on myeloid cells. Here we show that CLEC5A interacts with the dengue virion directly and thereby brings about DAP12 phosphorylation. The CLEC5A-DV interaction does not result in viral entry but stimulates the release of proinflammatory cytokines. Blockade of CLEC5A-DV interaction suppresses the secretion of proinflammatory cytokines without affecting the release of interferon-alpha, supporting the notion that CLEC5A acts as a signalling receptor for proinflammatory cytokine release. Moreover, anti-CLEC5A monoclonal antibodies inhibit DV-induced plasma leakage, as well as subcutaneous and vital-organ haemorrhaging, and reduce the mortality of DV infection by about 50% in STAT1-deficient mice. Our observation that blockade of CLEC5A-mediated signalling attenuates the production of proinflammatory cytokines by macrophages infected with DV (either alone or complexed with an enhancing antibody) offers a promising strategy for alleviating tissue damage and increasing the survival of patients suffering from dengue haemorrhagic fever and dengue shock syndrome, and possibly even other virus-induced inflammatory diseases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Szu-Ting -- Lin, Yi-Ling -- Huang, Ming-Ting -- Wu, Ming-Fang -- Cheng, Shih-Chin -- Lei, Huan-Yao -- Lee, Chien-Kuo -- Chiou, Tzyy-Wen -- Wong, Chi-Huey -- Hsieh, Shie-Liang -- GM62116/GM/NIGMS NIH HHS/ -- England -- Nature. 2008 May 29;453(7195):672-6. doi: 10.1038/nature07013. Epub 2008 May 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department and Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 112, Taiwan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18496526" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/metabolism ; Animals ; Cell Adhesion Molecules/genetics/metabolism ; Cell Line ; Dengue Virus/*metabolism/*pathogenicity ; Host-Pathogen Interactions ; Humans ; Interferon-alpha ; Lectins, C-Type/antagonists & inhibitors/genetics/immunology/*metabolism ; Macrophages/virology ; Membrane Proteins/metabolism ; Mice ; Phosphorylation ; Protein Binding ; Receptors, Cell Surface/antagonists & inhibitors/genetics/immunology/*metabolism ; STAT1 Transcription Factor/deficiency/genetics ; Tumor Necrosis Factor-alpha/secretion ; Virus Replication
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2005-12-17
    Description: Lighter variations of pigmentation in humans are associated with diminished number, size, and density of melanosomes, the pigmented organelles of melanocytes. Here we show that zebrafish golden mutants share these melanosomal changes and that golden encodes a putative cation exchanger slc24a5 (nckx5) that localizes to an intracellular membrane, likely the melanosome or its precursor. The human ortholog is highly similar in sequence and functional in zebrafish. The evolutionarily conserved ancestral allele of a human coding polymorphism predominates in African and East Asian populations. In contrast, the variant allele is nearly fixed in European populations, is associated with a substantial reduction in regional heterozygosity, and correlates with lighter skin pigmentation in admixed populations, suggesting a key role for the SLC24A5 gene in human pigmentation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lamason, Rebecca L -- Mohideen, Manzoor-Ali P K -- Mest, Jason R -- Wong, Andrew C -- Norton, Heather L -- Aros, Michele C -- Jurynec, Michael J -- Mao, Xianyun -- Humphreville, Vanessa R -- Humbert, Jasper E -- Sinha, Soniya -- Moore, Jessica L -- Jagadeeswaran, Pudur -- Zhao, Wei -- Ning, Gang -- Makalowska, Izabela -- McKeigue, Paul M -- O'donnell, David -- Kittles, Rick -- Parra, Esteban J -- Mangini, Nancy J -- Grunwald, David J -- Shriver, Mark D -- Canfield, Victor A -- Cheng, Keith C -- CA73935/CA/NCI NIH HHS/ -- EY11308/EY/NEI NIH HHS/ -- HD37572/HD/NICHD NIH HHS/ -- HD40179/HD/NICHD NIH HHS/ -- HG002154/HG/NHGRI NIH HHS/ -- HL077910/HL/NHLBI NIH HHS/ -- RR017441/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2005 Dec 16;310(5755):1782-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Jake Gittlen Cancer Research Foundation, Department of Pathology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16357253" target="_blank"〉PubMed〈/a〉
    Keywords: African Americans/genetics ; African Continental Ancestry Group/genetics ; Alanine/genetics ; Alleles ; Amino Acid Sequence ; Animals ; Antiporters/chemistry/*genetics/physiology ; Asian Continental Ancestry Group/genetics ; Biological Evolution ; Calcium/metabolism ; European Continental Ancestry Group/genetics ; Gene Frequency ; Genes ; Genetic Variation ; Haplotypes ; Heterozygote ; Humans ; Ion Transport ; Melanins/analysis ; Melanosomes/chemistry/ultrastructure ; Mice ; Molecular Sequence Data ; Multifactorial Inheritance ; Mutation ; Pigment Epithelium of Eye/chemistry/ultrastructure ; Polymorphism, Single Nucleotide ; Selection, Genetic ; Skin Pigmentation/*genetics ; Threonine/genetics ; Zebrafish/embryology/*genetics/metabolism ; Zebrafish Proteins/chemistry/*genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2003-12-04
    Description: During apoptosis, phosphatidylserine, which is normally restricted to the inner leaflet of the plasma membrane, is exposed on the surface of apoptotic cells and has been suggested to act as an "eat-me" signal to trigger phagocytosis. It is unclear how phagocytes recognize phosphatidylserine. Recently, a putative phosphatidylserine receptor (PSR) was identified and proposed to mediate recognition of phosphatidylserine and phagocytosis. We report that psr-1, the Caenorhabditis elegans homolog of PSR, is important for cell corpse engulfment. In vitro PSR-1 binds preferentially phosphatidylserine or cells with exposed phosphatidylserine. In C. elegans, PSR-1 acts in the same cell corpse engulfment pathway mediated by intracellular signaling molecules CED-2 (homologous to the human CrkII protein), CED-5 (DOCK180), CED-10 (Rac GTPase), and CED-12 (ELMO), possibly through direct interaction with CED-5 and CED-12. Our findings suggest that PSR-1 is likely an upstream receptor for the signaling pathway containing CED-2, CED-5, CED-10, and CED-12 proteins and plays an important role in recognizing phosphatidylserine during phagocytosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Xiaochen -- Wu, Yi-Chun -- Fadok, Valerie A -- Lee, Ming-Chia -- Gengyo-Ando, Keiko -- Cheng, Li-Chun -- Ledwich, Duncan -- Hsu, Pei-Ken -- Chen, Jia-Yun -- Chou, Bin-Kuan -- Henson, Peter -- Mitani, Shohei -- Xue, Ding -- New York, N.Y. -- Science. 2003 Nov 28;302(5650):1563-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14645848" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptor Proteins, Signal Transducing ; Amino Acid Sequence ; Animals ; *Apoptosis ; Caenorhabditis elegans/cytology/embryology/metabolism/*physiology ; Caenorhabditis elegans Proteins/genetics/*metabolism ; Carrier Proteins/genetics/*metabolism ; *Cytoskeletal Proteins ; Embryo, Nonmammalian/cytology/metabolism ; Embryonic Development ; Humans ; Jumonji Domain-Containing Histone Demethylases ; Membrane Proteins/genetics/*metabolism ; Molecular Sequence Data ; Mutation ; *Phagocytosis ; Phosphatidylserines/metabolism ; Protein Binding ; Receptors, Cell Surface/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Recombinant Proteins/metabolism ; Signal Transduction ; rac GTP-Binding Proteins/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-03-09
    Description: Cells are organized on length scales ranging from angstrom to micrometres. However, the mechanisms by which angstrom-scale molecular properties are translated to micrometre-scale macroscopic properties are not well understood. Here we show that interactions between diverse synthetic, multivalent macromolecules (including multi-domain proteins and RNA) produce sharp liquid-liquid-demixing phase separations, generating micrometre-sized liquid droplets in aqueous solution. This macroscopic transition corresponds to a molecular transition between small complexes and large, dynamic supramolecular polymers. The concentrations needed for phase transition are directly related to the valency of the interacting species. In the case of the actin-regulatory protein called neural Wiskott-Aldrich syndrome protein (N-WASP) interacting with its established biological partners NCK and phosphorylated nephrin, the phase transition corresponds to a sharp increase in activity towards an actin nucleation factor, the Arp2/3 complex. The transition is governed by the degree of phosphorylation of nephrin, explaining how this property of the system can be controlled to regulatory effect by kinases. The widespread occurrence of multivalent systems suggests that phase transitions may be used to spatially organize and biochemically regulate information throughout biology.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3343696/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3343696/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Pilong -- Banjade, Sudeep -- Cheng, Hui-Chun -- Kim, Soyeon -- Chen, Baoyu -- Guo, Liang -- Llaguno, Marc -- Hollingsworth, Javoris V -- King, David S -- Banani, Salman F -- Russo, Paul S -- Jiang, Qiu-Xing -- Nixon, B Tracy -- Rosen, Michael K -- P30 CA142543/CA/NCI NIH HHS/ -- P41 GM103622/GM/NIGMS NIH HHS/ -- R01 GM056322/GM/NIGMS NIH HHS/ -- R01 GM056322-13/GM/NIGMS NIH HHS/ -- R01-GM088745/GM/NIGMS NIH HHS/ -- R01-GM56322/GM/NIGMS NIH HHS/ -- RR-08630/RR/NCRR NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Mar 7;483(7389):336-40. doi: 10.1038/nature10879.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8812, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22398450" target="_blank"〉PubMed〈/a〉
    Keywords: Actin-Related Protein 2-3 Complex/metabolism ; Adaptor Proteins, Signal Transducing/chemistry/metabolism ; Binding Sites ; Biopolymers/chemistry/metabolism ; Fluorescence Recovery After Photobleaching ; HeLa Cells ; Humans ; Ligands ; Membrane Proteins/chemistry/metabolism ; Multiprotein Complexes/*chemistry/*metabolism ; Oncogene Proteins/chemistry/metabolism ; *Phase Transition ; Phosphorylation ; Proline-Rich Protein Domains ; Protein Structure, Quaternary ; Proteins/*chemistry/*metabolism ; *Signal Transduction ; Wiskott-Aldrich Syndrome Protein, Neuronal/chemistry/metabolism ; src Homology Domains
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-08-29
    Description: Despite the large evolutionary distances between metazoan species, they can show remarkable commonalities in their biology, and this has helped to establish fly and worm as model organisms for human biology. Although studies of individual elements and factors have explored similarities in gene regulation, a large-scale comparative analysis of basic principles of transcriptional regulatory features is lacking. Here we map the genome-wide binding locations of 165 human, 93 worm and 52 fly transcription regulatory factors, generating a total of 1,019 data sets from diverse cell types, developmental stages, or conditions in the three species, of which 498 (48.9%) are presented here for the first time. We find that structural properties of regulatory networks are remarkably conserved and that orthologous regulatory factor families recognize similar binding motifs in vivo and show some similar co-associations. Our results suggest that gene-regulatory properties previously observed for individual factors are general principles of metazoan regulation that are remarkably well-preserved despite extensive functional divergence of individual network connections. The comparative maps of regulatory circuitry provided here will drive an improved understanding of the regulatory underpinnings of model organism biology and how these relate to human biology, development and disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4336544/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4336544/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Boyle, Alan P -- Araya, Carlos L -- Brdlik, Cathleen -- Cayting, Philip -- Cheng, Chao -- Cheng, Yong -- Gardner, Kathryn -- Hillier, LaDeana W -- Janette, Judith -- Jiang, Lixia -- Kasper, Dionna -- Kawli, Trupti -- Kheradpour, Pouya -- Kundaje, Anshul -- Li, Jingyi Jessica -- Ma, Lijia -- Niu, Wei -- Rehm, E Jay -- Rozowsky, Joel -- Slattery, Matthew -- Spokony, Rebecca -- Terrell, Robert -- Vafeados, Dionne -- Wang, Daifeng -- Weisdepp, Peter -- Wu, Yi-Chieh -- Xie, Dan -- Yan, Koon-Kiu -- Feingold, Elise A -- Good, Peter J -- Pazin, Michael J -- Huang, Haiyan -- Bickel, Peter J -- Brenner, Steven E -- Reinke, Valerie -- Waterston, Robert H -- Gerstein, Mark -- White, Kevin P -- Kellis, Manolis -- Snyder, Michael -- F32GM101778/GM/NIGMS NIH HHS/ -- P50GM081892/GM/NIGMS NIH HHS/ -- R01 HG004037/HG/NHGRI NIH HHS/ -- RC2HG005679/HG/NHGRI NIH HHS/ -- U01 HG004267/HG/NHGRI NIH HHS/ -- U01HG004264/HG/NHGRI NIH HHS/ -- U01HG004267/HG/NHGRI NIH HHS/ -- U54 HG004558/HG/NHGRI NIH HHS/ -- U54 HG006996/HG/NHGRI NIH HHS/ -- U54HG004558/HG/NHGRI NIH HHS/ -- U54HG006996/HG/NHGRI NIH HHS/ -- UL1 TR000430/TR/NCATS NIH HHS/ -- England -- Nature. 2014 Aug 28;512(7515):453-6. doi: 10.1038/nature13668.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA [2]. ; Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA. ; Program of Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA. ; Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06520, USA. ; Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA. ; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA. ; 1] Department of Computer Science, Stanford University, Stanford, California 94305, USA [2] Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA. ; 1] Department of Statistics, University of California, Berkeley, California 94720, USA [2] Department of Statistics, University of California, Los Angeles, California 90095, USA. ; Institute for Genomics and Systems Biology, University of Chicago, Chicago, Ilinois 60637, USA. ; National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA. ; Department of Statistics, University of California, Berkeley, California 94720, USA. ; 1] Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA [2] Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25164757" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Caenorhabditis elegans/*genetics/growth & development ; Chromatin Immunoprecipitation ; Conserved Sequence/genetics ; Drosophila melanogaster/*genetics/growth & development ; *Evolution, Molecular ; Gene Expression Regulation/*genetics ; Gene Expression Regulation, Developmental/genetics ; Gene Regulatory Networks/*genetics ; Genome/genetics ; Humans ; Molecular Sequence Annotation ; Nucleotide Motifs/genetics ; Organ Specificity/genetics ; Transcription Factors/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-09-08
    Description: Transcription factors bind in a combinatorial fashion to specify the on-and-off states of genes; the ensemble of these binding events forms a regulatory network, constituting the wiring diagram for a cell. To examine the principles of the human transcriptional regulatory network, we determined the genomic binding information of 119 transcription-related factors in over 450 distinct experiments. We found the combinatorial, co-association of transcription factors to be highly context specific: distinct combinations of factors bind at specific genomic locations. In particular, there are significant differences in the binding proximal and distal to genes. We organized all the transcription factor binding into a hierarchy and integrated it with other genomic information (for example, microRNA regulation), forming a dense meta-network. Factors at different levels have different properties; for instance, top-level transcription factors more strongly influence expression and middle-level ones co-regulate targets to mitigate information-flow bottlenecks. Moreover, these co-regulations give rise to many enriched network motifs (for example, noise-buffering feed-forward loops). Finally, more connected network components are under stronger selection and exhibit a greater degree of allele-specific activity (that is, differential binding to the two parental alleles). The regulatory information obtained in this study will be crucial for interpreting personal genome sequences and understanding basic principles of human biology and disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4154057/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4154057/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gerstein, Mark B -- Kundaje, Anshul -- Hariharan, Manoj -- Landt, Stephen G -- Yan, Koon-Kiu -- Cheng, Chao -- Mu, Xinmeng Jasmine -- Khurana, Ekta -- Rozowsky, Joel -- Alexander, Roger -- Min, Renqiang -- Alves, Pedro -- Abyzov, Alexej -- Addleman, Nick -- Bhardwaj, Nitin -- Boyle, Alan P -- Cayting, Philip -- Charos, Alexandra -- Chen, David Z -- Cheng, Yong -- Clarke, Declan -- Eastman, Catharine -- Euskirchen, Ghia -- Frietze, Seth -- Fu, Yao -- Gertz, Jason -- Grubert, Fabian -- Harmanci, Arif -- Jain, Preti -- Kasowski, Maya -- Lacroute, Phil -- Leng, Jing -- Lian, Jin -- Monahan, Hannah -- O'Geen, Henriette -- Ouyang, Zhengqing -- Partridge, E Christopher -- Patacsil, Dorrelyn -- Pauli, Florencia -- Raha, Debasish -- Ramirez, Lucia -- Reddy, Timothy E -- Reed, Brian -- Shi, Minyi -- Slifer, Teri -- Wang, Jing -- Wu, Linfeng -- Yang, Xinqiong -- Yip, Kevin Y -- Zilberman-Schapira, Gili -- Batzoglou, Serafim -- Sidow, Arend -- Farnham, Peggy J -- Myers, Richard M -- Weissman, Sherman M -- Snyder, Michael -- T32 GM007205/GM/NIGMS NIH HHS/ -- T32GM008283-24/GM/NIGMS NIH HHS/ -- U01 HG004695/HG/NHGRI NIH HHS/ -- U54 HG004558/HG/NHGRI NIH HHS/ -- England -- Nature. 2012 Sep 6;489(7414):91-100. doi: 10.1038/nature11245.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA. mark.gerstein@yale.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22955619" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Cell Line ; DNA/*genetics ; *Encyclopedias as Topic ; GATA1 Transcription Factor/metabolism ; Gene Expression Profiling ; Gene Regulatory Networks/*genetics ; Genome, Human/*genetics ; Genomics ; Humans ; K562 Cells ; *Molecular Sequence Annotation ; Organ Specificity ; Phosphorylation/genetics ; Polymorphism, Single Nucleotide/genetics ; Protein Interaction Maps ; RNA, Untranslated/genetics/metabolism ; Regulatory Sequences, Nucleic Acid/*genetics ; Selection, Genetic/genetics ; Transcription Factors/*metabolism ; Transcription Initiation Site
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-01-13
    Description: Early T-cell precursor acute lymphoblastic leukaemia (ETP ALL) is an aggressive malignancy of unknown genetic basis. We performed whole-genome sequencing of 12 ETP ALL cases and assessed the frequency of the identified somatic mutations in 94 T-cell acute lymphoblastic leukaemia cases. ETP ALL was characterized by activating mutations in genes regulating cytokine receptor and RAS signalling (67% of cases; NRAS, KRAS, FLT3, IL7R, JAK3, JAK1, SH2B3 and BRAF), inactivating lesions disrupting haematopoietic development (58%; GATA3, ETV6, RUNX1, IKZF1 and EP300) and histone-modifying genes (48%; EZH2, EED, SUZ12, SETD2 and EP300). We also identified new targets of recurrent mutation including DNM2, ECT2L and RELN. The mutational spectrum is similar to myeloid tumours, and moreover, the global transcriptional profile of ETP ALL was similar to that of normal and myeloid leukaemia haematopoietic stem cells. These findings suggest that addition of myeloid-directed therapies might improve the poor outcome of ETP ALL.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3267575/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3267575/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Jinghui -- Ding, Li -- Holmfeldt, Linda -- Wu, Gang -- Heatley, Sue L -- Payne-Turner, Debbie -- Easton, John -- Chen, Xiang -- Wang, Jianmin -- Rusch, Michael -- Lu, Charles -- Chen, Shann-Ching -- Wei, Lei -- Collins-Underwood, J Racquel -- Ma, Jing -- Roberts, Kathryn G -- Pounds, Stanley B -- Ulyanov, Anatoly -- Becksfort, Jared -- Gupta, Pankaj -- Huether, Robert -- Kriwacki, Richard W -- Parker, Matthew -- McGoldrick, Daniel J -- Zhao, David -- Alford, Daniel -- Espy, Stephen -- Bobba, Kiran Chand -- Song, Guangchun -- Pei, Deqing -- Cheng, Cheng -- Roberts, Stefan -- Barbato, Michael I -- Campana, Dario -- Coustan-Smith, Elaine -- Shurtleff, Sheila A -- Raimondi, Susana C -- Kleppe, Maria -- Cools, Jan -- Shimano, Kristin A -- Hermiston, Michelle L -- Doulatov, Sergei -- Eppert, Kolja -- Laurenti, Elisa -- Notta, Faiyaz -- Dick, John E -- Basso, Giuseppe -- Hunger, Stephen P -- Loh, Mignon L -- Devidas, Meenakshi -- Wood, Brent -- Winter, Stuart -- Dunsmore, Kimberley P -- Fulton, Robert S -- Fulton, Lucinda L -- Hong, Xin -- Harris, Christopher C -- Dooling, David J -- Ochoa, Kerri -- Johnson, Kimberly J -- Obenauer, John C -- Evans, William E -- Pui, Ching-Hon -- Naeve, Clayton W -- Ley, Timothy J -- Mardis, Elaine R -- Wilson, Richard K -- Downing, James R -- Mullighan, Charles G -- CA114766/CA/NCI NIH HHS/ -- CA98413/CA/NCI NIH HHS/ -- CA98543/CA/NCI NIH HHS/ -- P30 CA021765/CA/NCI NIH HHS/ -- P30 CA021765-33/CA/NCI NIH HHS/ -- P30CA021765/CA/NCI NIH HHS/ -- U01GM92666/GM/NIGMS NIH HHS/ -- U54 HG003079/HG/NHGRI NIH HHS/ -- England -- Nature. 2012 Jan 11;481(7380):157-63. doi: 10.1038/nature10725.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Computational Biology and Bioinformatics, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22237106" target="_blank"〉PubMed〈/a〉
    Keywords: Age of Onset ; Child ; DNA Copy Number Variations/genetics ; Genes, ras/genetics ; Genetic Predisposition to Disease/*genetics ; Genome, Human/genetics ; Genomics ; Hematopoiesis/genetics ; Histones/metabolism ; Humans ; Janus Kinases/genetics/metabolism ; Leukemia, Myeloid, Acute/drug therapy/genetics/pathology ; Molecular Sequence Data ; Mutation/*genetics ; Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy/*genetics/pathology ; Receptors, Interleukin-7/genetics ; Sequence Analysis, DNA ; Signal Transduction/genetics ; Stem Cells/metabolism/pathology ; T-Lymphocytes/metabolism/pathology ; Translocation, Genetic/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-09-27
    Description: Monocyte differentiation into macrophages represents a cornerstone process for host defense. Concomitantly, immunological imprinting of either tolerance or trained immunity determines the functional fate of macrophages and susceptibility to secondary infections. We characterized the transcriptomes and epigenomes in four primary cell types: monocytes and in vitro-differentiated naive, tolerized, and trained macrophages. Inflammatory and metabolic pathways were modulated in macrophages, including decreased inflammasome activation, and we identified pathways functionally implicated in trained immunity. beta-glucan training elicits an exclusive epigenetic signature, revealing a complex network of enhancers and promoters. Analysis of transcription factor motifs in deoxyribonuclease I hypersensitive sites at cell-type-specific epigenetic loci unveiled differentiation and treatment-specific repertoires. Altogether, we provide a resource to understand the epigenetic changes that underlie innate immunity in humans.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4242194/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4242194/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Saeed, Sadia -- Quintin, Jessica -- Kerstens, Hindrik H D -- Rao, Nagesha A -- Aghajanirefah, Ali -- Matarese, Filomena -- Cheng, Shih-Chin -- Ratter, Jacqueline -- Berentsen, Kim -- van der Ent, Martijn A -- Sharifi, Nilofar -- Janssen-Megens, Eva M -- Ter Huurne, Menno -- Mandoli, Amit -- van Schaik, Tom -- Ng, Aylwin -- Burden, Frances -- Downes, Kate -- Frontini, Mattia -- Kumar, Vinod -- Giamarellos-Bourboulis, Evangelos J -- Ouwehand, Willem H -- van der Meer, Jos W M -- Joosten, Leo A B -- Wijmenga, Cisca -- Martens, Joost H A -- Xavier, Ramnik J -- Logie, Colin -- Netea, Mihai G -- Stunnenberg, Hendrik G -- P30 DK043351/DK/NIDDK NIH HHS/ -- RG/09/012/28096/British Heart Foundation/United Kingdom -- New York, N.Y. -- Science. 2014 Sep 26;345(6204):1251086. doi: 10.1126/science.1251086.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Faculties of Science and Medicine, Radboud Institute for Molecular Life Sciences, Radboud University, 6500 HB Nijmegen, Netherlands. ; Department of Internal Medicine, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands. ; Center for Computational and Integrative Biology and Gastrointestinal Unit, Massachusetts General Hospital, Harvard School of Medicine, Boston, MA 02114, USA. Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA. ; Department of Haematology, University of Cambridge, Cambridge, UK. National Health Service, Blood and Transplant Cambridge Centre, Cambridge Biomedical Campus, Cambridge CB0 2PT, UK. ; University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, Netherlands. ; Fourth Department of Internal Medicine, University of Athens, Medical School, 1 Rimini Street, 12462 Athens, Greece. ; Department of Molecular Biology, Faculties of Science and Medicine, Radboud Institute for Molecular Life Sciences, Radboud University, 6500 HB Nijmegen, Netherlands. h.stunnenberg@ncmls.ru.nl mihai.netea@radboudumc.nl c.logie@ncmls.ru.nl. ; Department of Internal Medicine, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands. h.stunnenberg@ncmls.ru.nl mihai.netea@radboudumc.nl c.logie@ncmls.ru.nl.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25258085" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites/genetics ; Cell Differentiation/*genetics ; Deoxyribonuclease I/chemistry ; *Epigenesis, Genetic ; Genomic Imprinting ; Humans ; Immunity, Innate/*genetics ; Immunologic Memory ; Inflammasomes/genetics/immunology ; Macrophages/*cytology/immunology ; Mice ; Monocytes/*cytology/immunology ; Transcription Factors/metabolism ; beta-Glucans/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1989-12-22
    Description: Stable lymphoid cell lines expressing the human immunodeficiency virus type 1 (HIV-1) nef gene product, p27, were established. The presence of p27 in the lymphoid cells suppressed replication of some strains of both HIV-1 and HIV-2. This observation indicates that nef could be important in the establishment of HIV latency. In contrast, fast replicating and highly cytopathic HIV-1 isolates recovered from patients with advanced disease states were not affected by the negative effect of nef present in these lymphoid cell lines. This lack of response to nef appears to constitute another viral feature that correlates with disease progression. Thus, manipulating expression of the nef gene in vivo might influence pathogenesis in the host.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cheng-Mayer, C -- Iannello, P -- Shaw, K -- Luciw, P A -- Levy, J A -- R01 AI-24499/AI/NIAID NIH HHS/ -- R01 AI-25284/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1989 Dec 22;246(4937):1629-32.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, University of California, San Francisco 94143.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2531920" target="_blank"〉PubMed〈/a〉
    Keywords: Antigens, CD3 ; Antigens, CD4/analysis/genetics ; Antigens, Differentiation, T-Lymphocyte/analysis/genetics ; Cell Line/immunology ; Gene Expression ; Gene Products, nef/*physiology ; Genes, nef ; HIV/genetics/pathogenicity/*physiology ; Humans ; Receptors, Antigen, T-Cell/analysis/genetics ; Viral Regulatory and Accessory Proteins/*physiology ; *Virus Replication ; nef Gene Products, Human Immunodeficiency Virus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...