ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-05-20
    Description: Non-human primates are valuable for modelling human disorders and for developing therapeutic strategies; however, little work has been reported in establishing transgenic non-human primate models of human diseases. Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder characterized by motor impairment, cognitive deterioration and psychiatric disturbances followed by death within 10-15 years of the onset of the symptoms. HD is caused by the expansion of cytosine-adenine-guanine (CAG, translated into glutamine) trinucleotide repeats in the first exon of the human huntingtin (HTT) gene. Mutant HTT with expanded polyglutamine (polyQ) is widely expressed in the brain and peripheral tissues, but causes selective neurodegeneration that is most prominent in the striatum and cortex of the brain. Although rodent models of HD have been developed, these models do not satisfactorily parallel the brain changes and behavioural features observed in HD patients. Because of the close physiological, neurological and genetic similarities between humans and higher primates, monkeys can serve as very useful models for understanding human physiology and diseases. Here we report our progress in developing a transgenic model of HD in a rhesus macaque that expresses polyglutamine-expanded HTT. Hallmark features of HD, including nuclear inclusions and neuropil aggregates, were observed in the brains of the HD transgenic monkeys. Additionally, the transgenic monkeys showed important clinical features of HD, including dystonia and chorea. A transgenic HD monkey model may open the way to understanding the underlying biology of HD better, and to the development of potential therapies. Moreover, our data suggest that it will be feasible to generate valuable non-human primate models of HD and possibly other human genetic diseases.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2652570/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2652570/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yang, Shang-Hsun -- Cheng, Pei-Hsun -- Banta, Heather -- Piotrowska-Nitsche, Karolina -- Yang, Jin-Jing -- Cheng, Eric C H -- Snyder, Brooke -- Larkin, Katherine -- Liu, Jun -- Orkin, Jack -- Fang, Zhi-Hui -- Smith, Yoland -- Bachevalier, Jocelyne -- Zola, Stuart M -- Li, Shi-Hua -- Li, Xiao-Jiang -- Chan, Anthony W S -- R01 AG019206/AG/NIA NIH HHS/ -- R01 AG019206-07/AG/NIA NIH HHS/ -- R01 NS036232/NS/NINDS NIH HHS/ -- R01 NS036232-09/NS/NINDS NIH HHS/ -- R01 NS041669/NS/NINDS NIH HHS/ -- R01 NS041669-07/NS/NINDS NIH HHS/ -- England -- Nature. 2008 Jun 12;453(7197):921-4. doi: 10.1038/nature06975. Epub 2008 May 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18488016" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Genetically Modified ; Animals, Newborn ; Brain/metabolism/pathology ; Chorea/genetics/physiopathology ; *Disease Models, Animal ; Dystonia/genetics/physiopathology ; Exons/genetics ; Female ; Humans ; Huntington Disease/*genetics/metabolism/pathology/*physiopathology ; Macaca mulatta/*genetics ; Male ; Nerve Tissue Proteins/*genetics/metabolism ; Nuclear Proteins/*genetics/metabolism ; Peptides/genetics/metabolism ; Pregnancy ; Survival Analysis ; Trinucleotide Repeat Expansion/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-01-22
    Description: Chromatin states are highly cell-type–specific, but the underlying mechanisms for the establishment and maintenance of their genome-wide patterns remain poorly understood. Here we present a computational approach for investigation of chromatin-state plasticity. We applied this approach to investigate an ENCODE ChIP-seq dataset profiling the genome-wide distributions of the H3K27me3 mark...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-03-04
    Description: Debate on the adaptive origins of primates has long focused on the functional ecology of the primate visual system. For example, it is hypothesized that variable expression of short- (SWS1) and middle-to-long-wavelength sensitive (M/LWS) opsins, which confer color vision, can be used to infer ancestral activity patterns and therefore selective ecological pressures. A problem with this approach is that opsin gene variation is incompletely known in the grandorder Euarchonta, that is, the orders Scandentia (treeshrews), Dermoptera (colugos), and Primates. The ancestral state of primate color vision is therefore uncertain. Here, we report on the genes ( OPN1SW and OPN1LW ) that encode SWS1 and M/LWS opsins in seven species of treeshrew, including the sole nocturnal scandentian Ptilocercus lowii . In addition, we examined the opsin genes of the Central American woolly opossum ( Caluromys derbianus ), an enduring ecological analogue in the debate on primate origins. Our results indicate: 1) retention of ultraviolet (UV) visual sensitivity in C. derbianus and a shift from UV to blue spectral sensitivities at the base of Euarchonta; 2) ancient pseudogenization of OPN1SW in the ancestors of P. lowii , but a signature of purifying selection in those of C. derbianus ; and, 3) the absence of OPN1LW polymorphism among diurnal treeshrews. These findings suggest functional variation in the color vision of nocturnal mammals and a distinctive visual ecology of early primates, perhaps one that demanded greater spatial resolution under light levels that could support cone-mediated color discrimination.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...