ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cell Line  (105)
  • American Association for the Advancement of Science (AAAS)  (105)
  • American Physical Society
  • 2010-2014  (56)
  • 1980-1984  (49)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2012-04-21
    Description: Salicylate, a plant product, has been in medicinal use since ancient times. More recently, it has been replaced by synthetic derivatives such as aspirin and salsalate, both of which are rapidly broken down to salicylate in vivo. At concentrations reached in plasma after administration of salsalate or of aspirin at high doses, salicylate activates adenosine monophosphate-activated protein kinase (AMPK), a central regulator of cell growth and metabolism. Salicylate binds at the same site as the synthetic activator A-769662 to cause allosteric activation and inhibition of dephosphorylation of the activating phosphorylation site, threonine-172. In AMPK knockout mice, effects of salicylate to increase fat utilization and to lower plasma fatty acids in vivo were lost. Our results suggest that AMPK activation could explain some beneficial effects of salsalate and aspirin in humans.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3399766/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3399766/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hawley, Simon A -- Fullerton, Morgan D -- Ross, Fiona A -- Schertzer, Jonathan D -- Chevtzoff, Cyrille -- Walker, Katherine J -- Peggie, Mark W -- Zibrova, Darya -- Green, Kevin A -- Mustard, Kirsty J -- Kemp, Bruce E -- Sakamoto, Kei -- Steinberg, Gregory R -- Hardie, D Grahame -- 080982/Wellcome Trust/United Kingdom -- 097726/Wellcome Trust/United Kingdom -- MC_U127088492/Medical Research Council/United Kingdom -- Canadian Institutes of Health Research/Canada -- Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2012 May 18;336(6083):918-22. doi: 10.1126/science.1215327. Epub 2012 Apr 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Cell Signalling and Immunology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22517326" target="_blank"〉PubMed〈/a〉
    Keywords: AMP-Activated Protein Kinases/genetics/*metabolism ; Amino Acid Substitution ; Animals ; Aspirin/pharmacology ; Binding Sites ; Carbohydrate Metabolism/drug effects ; Cell Line ; Enzyme Activation ; Enzyme Activators/pharmacology ; HEK293 Cells ; Humans ; Lipid Metabolism/drug effects ; Liver/drug effects/metabolism ; Mice ; Mice, Knockout ; Mutation ; Oxygen Consumption/drug effects ; Phosphorylation ; Pyrones/pharmacology ; Rats ; Salicylates/blood/*metabolism/*pharmacology ; Thiophenes/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-01-06
    Description: Adenosine monophosphate-activated protein kinase (AMPK) is a conserved sensor of intracellular energy activated in response to low nutrient availability and environmental stress. In a screen for conserved substrates of AMPK, we identified ULK1 and ULK2, mammalian orthologs of the yeast protein kinase Atg1, which is required for autophagy. Genetic analysis of AMPK or ULK1 in mammalian liver and Caenorhabditis elegans revealed a requirement for these kinases in autophagy. In mammals, loss of AMPK or ULK1 resulted in aberrant accumulation of the autophagy adaptor p62 and defective mitophagy. Reconstitution of ULK1-deficient cells with a mutant ULK1 that cannot be phosphorylated by AMPK revealed that such phosphorylation is required for mitochondrial homeostasis and cell survival during starvation. These findings uncover a conserved biochemical mechanism coupling nutrient status with autophagy and cell survival.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3030664/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3030664/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Egan, Daniel F -- Shackelford, David B -- Mihaylova, Maria M -- Gelino, Sara -- Kohnz, Rebecca A -- Mair, William -- Vasquez, Debbie S -- Joshi, Aashish -- Gwinn, Dana M -- Taylor, Rebecca -- Asara, John M -- Fitzpatrick, James -- Dillin, Andrew -- Viollet, Benoit -- Kundu, Mondira -- Hansen, Malene -- Shaw, Reuben J -- 1P01CA120964/CA/NCI NIH HHS/ -- 1P01CA120964-01A/CA/NCI NIH HHS/ -- 5P30CA006516-43/CA/NCI NIH HHS/ -- P01 CA120964/CA/NCI NIH HHS/ -- P01 CA120964-05/CA/NCI NIH HHS/ -- P30 CA006516/CA/NCI NIH HHS/ -- P30 CA006516-43/CA/NCI NIH HHS/ -- P30CA014195/CA/NCI NIH HHS/ -- R01 DK080425/DK/NIDDK NIH HHS/ -- R01 DK080425-04/DK/NIDDK NIH HHS/ -- R01 DK080425-05/DK/NIDDK NIH HHS/ -- T32 CA009370/CA/NCI NIH HHS/ -- T32 CA009370-29/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Jan 28;331(6016):456-61. doi: 10.1126/science.1196371. Epub 2010 Dec 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular and Cell Biology Laboratory, Dulbecco Center for Cancer Research, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21205641" target="_blank"〉PubMed〈/a〉
    Keywords: AMP-Activated Protein Kinases/*metabolism ; Adaptor Proteins, Signal Transducing/metabolism ; Animals ; *Autophagy ; Caenorhabditis elegans/metabolism ; Caenorhabditis elegans Proteins/genetics/metabolism ; Cell Line ; Cell Line, Tumor ; Cell Survival ; Energy Metabolism ; Hepatocytes/metabolism ; Humans ; Insulin/metabolism ; Intracellular Signaling Peptides and Proteins/chemistry/genetics/*metabolism ; Liver/metabolism ; Metformin/pharmacology ; Mice ; Mitochondria, Liver/metabolism/ultrastructure ; Phenformin/pharmacology ; Phosphorylation ; Protein-Serine-Threonine Kinases/chemistry/genetics/*metabolism ; Signal Transduction ; Transcription Factors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-09-18
    Description: Proliferating cells, including cancer cells, require altered metabolism to efficiently incorporate nutrients such as glucose into biomass. The M2 isoform of pyruvate kinase (PKM2) promotes the metabolism of glucose by aerobic glycolysis and contributes to anabolic metabolism. Paradoxically, decreased pyruvate kinase enzyme activity accompanies the expression of PKM2 in rapidly dividing cancer cells and tissues. We demonstrate that phosphoenolpyruvate (PEP), the substrate for pyruvate kinase in cells, can act as a phosphate donor in mammalian cells because PEP participates in the phosphorylation of the glycolytic enzyme phosphoglycerate mutase (PGAM1) in PKM2-expressing cells. We used mass spectrometry to show that the phosphate from PEP is transferred to the catalytic histidine (His11) on human PGAM1. This reaction occurred at physiological concentrations of PEP and produced pyruvate in the absence of PKM2 activity. The presence of histidine-phosphorylated PGAM1 correlated with the expression of PKM2 in cancer cell lines and tumor tissues. Thus, decreased pyruvate kinase activity in PKM2-expressing cells allows PEP-dependent histidine phosphorylation of PGAM1 and may provide an alternate glycolytic pathway that decouples adenosine triphosphate production from PEP-mediated phosphotransfer, allowing for the high rate of glycolysis to support the anabolic metabolism observed in many proliferating cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3030121/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3030121/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vander Heiden, Matthew G -- Locasale, Jason W -- Swanson, Kenneth D -- Sharfi, Hadar -- Heffron, Greg J -- Amador-Noguez, Daniel -- Christofk, Heather R -- Wagner, Gerhard -- Rabinowitz, Joshua D -- Asara, John M -- Cantley, Lewis C -- 1K08CA136983/CA/NCI NIH HHS/ -- 1P01CA120964-01A/CA/NCI NIH HHS/ -- 5 T32 CA009361-28/CA/NCI NIH HHS/ -- 5P30CA006516-43/CA/NCI NIH HHS/ -- K08 CA136983/CA/NCI NIH HHS/ -- K08 CA136983-02/CA/NCI NIH HHS/ -- P01 CA089021/CA/NCI NIH HHS/ -- P01 CA089021-10/CA/NCI NIH HHS/ -- P01 CA120964/CA/NCI NIH HHS/ -- P01 CA120964-01A1/CA/NCI NIH HHS/ -- P01 GM047467/GM/NIGMS NIH HHS/ -- P01 GM047467-20/GM/NIGMS NIH HHS/ -- P01CA089021/CA/NCI NIH HHS/ -- P01GM047467/GM/NIGMS NIH HHS/ -- P30 CA006516/CA/NCI NIH HHS/ -- P30 CA006516-43S1/CA/NCI NIH HHS/ -- R01 AI078063/AI/NIAID NIH HHS/ -- R01 GM056203/GM/NIGMS NIH HHS/ -- R01-GM56302/GM/NIGMS NIH HHS/ -- R21 CA128620/CA/NCI NIH HHS/ -- R21/R33 DK070299/DK/NIDDK NIH HHS/ -- R33 DK070299/DK/NIDDK NIH HHS/ -- R33 DK070299-03/DK/NIDDK NIH HHS/ -- T32 CA009172/CA/NCI NIH HHS/ -- T32 CA009361/CA/NCI NIH HHS/ -- T32 CA009361-28/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2010 Sep 17;329(5998):1492-9. doi: 10.1126/science.1188015.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20847263" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Animals ; Cell Line ; Cell Line, Tumor ; *Cell Proliferation ; Female ; Glucose/*metabolism ; Glyceric Acids/metabolism ; *Glycolysis ; Histidine/metabolism ; Humans ; Isoenzymes/metabolism ; Kinetics ; Male ; Mammary Neoplasms, Animal/metabolism ; Mice ; Neoplasms/*metabolism/pathology ; Phosphoenolpyruvate/metabolism ; Phosphoglycerate Mutase/*metabolism ; Phosphopyruvate Hydratase/metabolism ; Phosphorylation ; Prostatic Neoplasms/metabolism ; Pyruvate Kinase/*metabolism ; Pyruvic Acid/metabolism ; Recombinant Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-04-02
    Description: The carboxy-terminal domain (CTD) of RNA polymerase II (RNAPII) in mammals undergoes extensive posttranslational modification, which is essential for transcriptional initiation and elongation. Here, we show that the CTD of RNAPII is methylated at a single arginine (R1810) by the coactivator-associated arginine methyltransferase 1 (CARM1). Although methylation at R1810 is present on the hyperphosphorylated form of RNAPII in vivo, Ser2 or Ser5 phosphorylation inhibits CARM1 activity toward this site in vitro, suggesting that methylation occurs before transcription initiation. Mutation of R1810 results in the misexpression of a variety of small nuclear RNAs and small nucleolar RNAs, an effect that is also observed in Carm1(-/-) mouse embryo fibroblasts. These results demonstrate that CTD methylation facilitates the expression of select RNAs, perhaps serving to discriminate the RNAPII-associated machinery recruited to distinct gene types.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3773223/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3773223/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sims, Robert J 3rd -- Rojas, Luis Alejandro -- Beck, David -- Bonasio, Roberto -- Schuller, Roland -- Drury, William J 3rd -- Eick, Dirk -- Reinberg, Danny -- F32 GM071166/GM/NIGMS NIH HHS/ -- GM-37120/GM/NIGMS NIH HHS/ -- GM-71166/GM/NIGMS NIH HHS/ -- R01 GM037120/GM/NIGMS NIH HHS/ -- R37 GM037120/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Apr 1;332(6025):99-103. doi: 10.1126/science.1202663.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute (HHMI), Department of Biochemistry, New York University School of Medicine, 522 First Avenue, Smilow 211, New York, NY 10016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21454787" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arginine/metabolism ; Cell Line ; HeLa Cells ; Humans ; Methylation ; Mice ; Mutation ; Protein Interaction Domains and Motifs ; Protein Structure, Tertiary ; Protein-Arginine N-Methyltransferases/metabolism ; RNA Polymerase II/genetics/*metabolism ; RNA, Small Nuclear/metabolism ; RNA, Small Nucleolar/metabolism ; Recombinant Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-12-07
    Description: The yellow fever vaccine YF-17D is one of the most successful vaccines ever developed in humans. Despite its efficacy and widespread use in more than 600 million people, the mechanisms by which it stimulates protective immunity remain poorly understood. Recent studies using systems biology approaches in humans have revealed that YF-17D-induced early expression of general control nonderepressible 2 kinase (GCN2) in the blood strongly correlates with the magnitude of the later CD8(+) T cell response. We demonstrate a key role for virus-induced GCN2 activation in programming dendritic cells to initiate autophagy and enhanced antigen presentation to both CD4(+) and CD8(+) T cells. These results reveal an unappreciated link between virus-induced integrated stress response in dendritic cells and the adaptive immune response.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4048998/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4048998/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ravindran, Rajesh -- Khan, Nooruddin -- Nakaya, Helder I -- Li, Shuzhao -- Loebbermann, Jens -- Maddur, Mohan S -- Park, Youngja -- Jones, Dean P -- Chappert, Pascal -- Davoust, Jean -- Weiss, David S -- Virgin, Herbert W -- Ron, David -- Pulendran, Bali -- 084812/Wellcome Trust/United Kingdom -- 084812/Z/08/Z/Wellcome Trust/United Kingdom -- N01 AI50019/AI/NIAID NIH HHS/ -- N01 AI50025/AI/NIAID NIH HHS/ -- P51 OD011132/OD/NIH HHS/ -- R37 AI048638/AI/NIAID NIH HHS/ -- R37 DK057665/DK/NIDDK NIH HHS/ -- R56 AI048638/AI/NIAID NIH HHS/ -- U19 AI057266/AI/NIAID NIH HHS/ -- U19 AI090023/AI/NIAID NIH HHS/ -- U54 AI057157/AI/NIAID NIH HHS/ -- U54 AI057160/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2014 Jan 17;343(6168):313-7. doi: 10.1126/science.1246829. Epub 2013 Dec 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24310610" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Antigen Presentation ; CD4-Positive T-Lymphocytes/immunology ; CD8-Positive T-Lymphocytes/immunology ; Cell Line ; Cricetinae ; Dendritic Cells/enzymology/*immunology ; Enzyme Activation ; Humans ; Mice ; Mice, Inbred C57BL ; Mice, Mutant Strains ; Microtubule-Associated Proteins/genetics ; Protein-Serine-Threonine Kinases/*biosynthesis/genetics ; Yellow Fever Vaccine/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2010-06-05
    Description: The His274--〉Tyr274 (H274Y) mutation confers oseltamivir resistance on N1 influenza neuraminidase but had long been thought to compromise viral fitness. However, beginning in 2007-2008, viruses containing H274Y rapidly became predominant among human seasonal H1N1 isolates. We show that H274Y decreases the amount of neuraminidase that reaches the cell surface and that this defect can be counteracted by secondary mutations that also restore viral fitness. Two such mutations occurred in seasonal H1N1 shortly before the widespread appearance of H274Y. The evolution of oseltamivir resistance was therefore enabled by "permissive" mutations that allowed the virus to tolerate subsequent occurrences of H274Y. An understanding of this process may provide a basis for predicting the evolution of oseltamivir resistance in other influenza strains.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2913718/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2913718/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bloom, Jesse D -- Gong, Lizhi Ian -- Baltimore, David -- P01 CA132681/CA/NCI NIH HHS/ -- P01 CA132681-01A27259/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2010 Jun 4;328(5983):1272-5. doi: 10.1126/science.1187816.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20522774" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Animals ; Antiviral Agents/*pharmacology ; Cell Line ; Cell Line, Tumor ; Cell Membrane/metabolism ; Drug Resistance, Viral/*genetics ; *Evolution, Molecular ; Genes, Viral ; Genetic Fitness ; Humans ; Influenza A Virus, H1N1 Subtype/*drug effects/*genetics/growth & development ; Influenza, Human/drug therapy/*virology ; Mutation ; Neuraminidase/antagonists & inhibitors/chemistry/genetics/metabolism ; Oseltamivir/*pharmacology ; Phylogeny ; Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2010-07-22
    Description: The mammalian adenosine monophosphate-activated protein kinase (AMPK) is a serine-threonine kinase protein complex that is a central regulator of cellular energy homeostasis. However, the mechanisms by which AMPK mediates cellular responses to metabolic stress remain unclear. We found that AMPK activates transcription through direct association with chromatin and phosphorylation of histone H2B at serine 36. AMPK recruitment and H2B Ser36 phosphorylation colocalized within genes activated by AMPK-dependent pathways, both in promoters and in transcribed regions. Ectopic expression of H2B in which Ser36 was substituted by alanine reduced transcription and RNA polymerase II association to AMPK-dependent genes, and lowered cell survival in response to stress. Our results place AMPK-dependent H2B Ser36 phosphorylation in a direct transcriptional and chromatin regulatory pathway leading to cellular adaptation to stress.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3922052/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3922052/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bungard, David -- Fuerth, Benjamin J -- Zeng, Ping-Yao -- Faubert, Brandon -- Maas, Nancy L -- Viollet, Benoit -- Carling, David -- Thompson, Craig B -- Jones, Russell G -- Berger, Shelley L -- CA078831/CA/NCI NIH HHS/ -- CA09171/CA/NCI NIH HHS/ -- CA105463/CA/NCI NIH HHS/ -- MC_U120027537/Medical Research Council/United Kingdom -- MOP-93799/Canadian Institutes of Health Research/Canada -- P01 AG031862/AG/NIA NIH HHS/ -- P01 CA104838/CA/NCI NIH HHS/ -- R01 CA078831/CA/NCI NIH HHS/ -- R01 CA105463/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2010 Sep 3;329(5996):1201-5. doi: 10.1126/science.1191241. Epub 2010 Jul 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular and Developmental Biology, University of Pennsylvania Medical School, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20647423" target="_blank"〉PubMed〈/a〉
    Keywords: AMP-Activated Protein Kinases/chemistry/*metabolism ; Adaptation, Physiological ; Amino Acid Motifs ; Amino Acid Substitution ; Animals ; Cell Line ; Cell Line, Tumor ; Cell Survival ; Cells, Cultured ; Chromatin/*metabolism ; Chromatin Immunoprecipitation ; Enzyme Activation ; Gene Expression Regulation ; Histones/chemistry/*metabolism ; Humans ; Mice ; Phosphorylation ; Promoter Regions, Genetic ; Protein-Serine-Threonine Kinases/genetics/metabolism ; Serine/metabolism ; Signal Transduction ; *Stress, Physiological ; *Transcription, Genetic ; Tumor Suppressor Protein p53/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2010-06-19
    Description: In Drosophila, microRNAs (miRNAs) typically guide Argonaute1 to repress messenger RNA (mRNA), whereas small interfering RNAs (siRNAs) guide Argonaute2 to destroy viral and transposon RNA. Unlike siRNAs, miRNAs rarely form extensive numbers of base pairs to the mRNAs they regulate. We find that extensive complementarity between a target RNA and an Argonaute1-bound miRNA triggers miRNA tailing and 3'-to-5' trimming. In flies, Argonaute2-bound small RNAs--but not those bound to Argonaute1--bear a 2'-O-methyl group at their 3' ends. This modification blocks target-directed small RNA remodeling: In flies lacking Hen1, the enzyme that adds the 2'-O-methyl group, Argonaute2-associated siRNAs are tailed and trimmed. Target complementarity also affects small RNA stability in human cells. These results provide an explanation for the partial complementarity between animal miRNAs and their targets.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2902985/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2902985/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ameres, Stefan L -- Horwich, Michael D -- Hung, Jui-Hung -- Xu, Jia -- Ghildiyal, Megha -- Weng, Zhiping -- Zamore, Phillip D -- F30AG030283/AG/NIA NIH HHS/ -- GM62862/GM/NIGMS NIH HHS/ -- GM65236/GM/NIGMS NIH HHS/ -- J 2832/Austrian Science Fund FWF/Austria -- R01 GM065236/GM/NIGMS NIH HHS/ -- R01 GM065236-08/GM/NIGMS NIH HHS/ -- R37 GM062862/GM/NIGMS NIH HHS/ -- R37 GM062862-10/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Jun 18;328(5985):1534-9. doi: 10.1126/science.1187058.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20558712" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Argonaute Proteins ; *Base Pairing ; Cell Line ; Drosophila Proteins/genetics/metabolism ; Drosophila melanogaster/embryology/genetics ; Eukaryotic Initiation Factors/metabolism ; Green Fluorescent Proteins/genetics ; Humans ; Methylation ; Methyltransferases/genetics/metabolism ; MicroRNAs/chemistry/genetics/*metabolism ; Models, Biological ; RNA Caps ; *RNA Stability ; RNA, Complementary ; RNA, Messenger/chemistry/genetics/*metabolism ; RNA, Small Interfering/chemistry/genetics/*metabolism ; RNA-Induced Silencing Complex/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2010-10-12
    Description: Chemokine receptors are critical regulators of cell migration in the context of immune surveillance, inflammation, and development. The G protein-coupled chemokine receptor CXCR4 is specifically implicated in cancer metastasis and HIV-1 infection. Here we report five independent crystal structures of CXCR4 bound to an antagonist small molecule IT1t and a cyclic peptide CVX15 at 2.5 to 3.2 angstrom resolution. All structures reveal a consistent homodimer with an interface including helices V and VI that may be involved in regulating signaling. The location and shape of the ligand-binding sites differ from other G protein-coupled receptors and are closer to the extracellular surface. These structures provide new clues about the interactions between CXCR4 and its natural ligand CXCL12, and with the HIV-1 glycoprotein gp120.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3074590/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3074590/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, Beili -- Chien, Ellen Y T -- Mol, Clifford D -- Fenalti, Gustavo -- Liu, Wei -- Katritch, Vsevolod -- Abagyan, Ruben -- Brooun, Alexei -- Wells, Peter -- Bi, F Christopher -- Hamel, Damon J -- Kuhn, Peter -- Handel, Tracy M -- Cherezov, Vadim -- Stevens, Raymond C -- F32 GM083463/GM/NIGMS NIH HHS/ -- F32 GM083463-03/GM/NIGMS NIH HHS/ -- GM075915/GM/NIGMS NIH HHS/ -- P50 GM073197/GM/NIGMS NIH HHS/ -- P50 GM073197-07/GM/NIGMS NIH HHS/ -- R01 AI037113/AI/NIAID NIH HHS/ -- R01 AI037113-13/AI/NIAID NIH HHS/ -- R01 GM071872/GM/NIGMS NIH HHS/ -- R01 GM081763/GM/NIGMS NIH HHS/ -- R01 GM081763-03/GM/NIGMS NIH HHS/ -- R01 GM089857/GM/NIGMS NIH HHS/ -- R21 AI087189/AI/NIAID NIH HHS/ -- R21 AI087189-02/AI/NIAID NIH HHS/ -- R21 RR025336/RR/NCRR NIH HHS/ -- R21 RR025336-01A1/RR/NCRR NIH HHS/ -- U54 GM074961/GM/NIGMS NIH HHS/ -- U54 GM074961-050001/GM/NIGMS NIH HHS/ -- U54 GM094618/GM/NIGMS NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Nov 19;330(6007):1066-71. doi: 10.1126/science.1194396. Epub 2010 Oct 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20929726" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Chemokine CXCL12 ; Crystallography, X-Ray ; HIV Envelope Protein gp120/metabolism ; Humans ; Membrane Proteins ; Models, Molecular ; Protein Binding ; Protein Conformation ; Protein Multimerization ; Receptors, CXCR4/antagonists & inhibitors/*chemistry/metabolism ; Recombinant Proteins/chemistry ; Spodoptera ; Thiourea/analogs & derivatives/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2010-11-27
    Description: The brain's circuitry is established by directed migration and synaptogenesis of neurons during development. Although neurons mature and migrate in specific patterns, little is known about how neurons exit their germinal zone niche. We found that cerebellar granule neuron germinal zone exit is regulated by proteasomal degradation of Pard3A by the Seven in Absentia homolog (Siah) E3 ubiquitin ligase. Pard3A gain of function and Siah loss of function induce precocious radial migration. Time-lapse imaging using a probe to measure neuronal cell contact reveals that Pard3A promotes adhesive interactions needed for germinal zone exit by recruiting the epithelial tight junction adhesion molecule C to the neuronal cell surface. Our findings define a Siah-Pard3A signaling pathway that controls adhesion-dependent exit of neuronal progenitors or immature neurons from a germinal zone niche.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3065828/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3065828/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Famulski, Jakub K -- Trivedi, Niraj -- Howell, Danielle -- Yang, Yuan -- Tong, Yiai -- Gilbertson, Richard -- Solecki, David J -- P01 CA096832/CA/NCI NIH HHS/ -- P01 CA096832-07/CA/NCI NIH HHS/ -- P30 CA021765/CA/NCI NIH HHS/ -- P30 CA021765-33/CA/NCI NIH HHS/ -- R01 CA129541/CA/NCI NIH HHS/ -- R01 CA129541-04/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2010 Dec 24;330(6012):1834-8. doi: 10.1126/science.1198480. Epub 2010 Nov 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21109632" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cell Adhesion ; Cell Adhesion Molecules/chemistry/*metabolism ; Cell Line ; *Cell Movement ; Cell Polarity ; Cerebellum/*cytology/embryology/*metabolism ; Dogs ; Humans ; Immunoglobulins/chemistry/metabolism ; Mice ; Morphogenesis ; Neurons/cytology/*physiology ; Protein Binding ; Protein Interaction Domains and Motifs ; Protein Structure, Tertiary ; RNA Interference ; Signal Transduction ; Stem Cells/physiology ; Transfection ; Ubiquitin-Protein Ligases/genetics/*metabolism ; Ubiquitination
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...