ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-09-28
    Description: A dense mucus layer in the large intestine prevents inflammation by shielding the underlying epithelium from luminal bacteria and food antigens. This mucus barrier is organized around the hyperglycosylated mucin MUC2. Here we show that the small intestine has a porous mucus layer, which permitted the uptake of MUC2 by antigen-sampling dendritic cells (DCs). Glycans associated with MUC2 imprinted DCs with anti-inflammatory properties by assembling a galectin-3-Dectin-1-FcgammaRIIB receptor complex that activated beta-catenin. This transcription factor interfered with DC expression of inflammatory but not tolerogenic cytokines by inhibiting gene transcription through nuclear factor kappaB. MUC2 induced additional conditioning signals in intestinal epithelial cells. Thus, mucus does not merely form a nonspecific physical barrier, but also constrains the immunogenicity of gut antigens by delivering tolerogenic signals.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4005805/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4005805/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shan, Meimei -- Gentile, Maurizio -- Yeiser, John R -- Walland, A Cooper -- Bornstein, Victor U -- Chen, Kang -- He, Bing -- Cassis, Linda -- Bigas, Anna -- Cols, Montserrat -- Comerma, Laura -- Huang, Bihui -- Blander, J Magarian -- Xiong, Huabao -- Mayer, Lloyd -- Berin, Cecilia -- Augenlicht, Leonard H -- Velcich, Anna -- Cerutti, Andrea -- AI073899/AI/NIAID NIH HHS/ -- AI095245/AI/NIAID NIH HHS/ -- AI57653/AI/NIAID NIH HHS/ -- AI61093/AI/NIAID NIH HHS/ -- AI74378/AI/NIAID NIH HHS/ -- AI95613/AI/NIAID NIH HHS/ -- AI96187/AI/NIAID NIH HHS/ -- DK072201/DK/NIDDK NIH HHS/ -- P01 AI061093/AI/NIAID NIH HHS/ -- P01 DK072201/DK/NIDDK NIH HHS/ -- P60 DK020541/DK/NIDDK NIH HHS/ -- R01 AI057653/AI/NIAID NIH HHS/ -- R01 AI093577/AI/NIAID NIH HHS/ -- U01 AI095613/AI/NIAID NIH HHS/ -- U19 AI096187/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2013 Oct 25;342(6157):447-53. doi: 10.1126/science.1237910. Epub 2013 Sep 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24072822" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cells, Cultured ; Dendritic Cells/immunology ; Galectin 3/genetics/metabolism ; Glycosylation ; *Homeostasis ; Humans ; Immune Tolerance/genetics/*immunology ; Inflammation/immunology ; Intestinal Mucosa/immunology ; Intestine, Small/*immunology ; Lectins, C-Type/genetics/metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Mutant Strains ; Mouth/*immunology ; Mucin-2/genetics/physiology ; Mucus/*immunology ; NF-kappa B/metabolism ; Receptors, IgG/genetics/metabolism ; Transcription, Genetic ; beta Catenin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-03-15
    Description: To maintain lifelong production of blood cells, haematopoietic stem cells (HSCs) are tightly regulated by inherent programs and extrinsic regulatory signals received from their microenvironmental niche. Long-term repopulating HSCs reside in several, perhaps overlapping, niches that produce regulatory molecules and signals necessary for homeostasis and for increased output after stress or injury. Despite considerable advances in the specific cellular or molecular mechanisms governing HSC-niche interactions, little is known about the regulatory function in the intact mammalian haematopoietic niche. Recently, we and others described a positive regulatory role for prostaglandin E2 (PGE2) on HSC function ex vivo. Here we show that inhibition of endogenous PGE2 by non-steroidal anti-inflammatory drug (NSAID) treatment in mice results in modest HSC egress from the bone marrow. Surprisingly, this was independent of the SDF-1-CXCR4 axis implicated in stem-cell migration. Stem and progenitor cells were found to have differing mechanisms of egress, with HSC transit to the periphery dependent on niche attenuation and reduction in the retentive molecule osteopontin. Haematopoietic grafts mobilized with NSAIDs had superior repopulating ability and long-term engraftment. Treatment of non-human primates and healthy human volunteers confirmed NSAID-mediated egress in other species. PGE2 receptor knockout mice demonstrated that progenitor expansion and stem/progenitor egress resulted from reduced E-prostanoid 4 (EP4) receptor signalling. These results not only uncover unique regulatory roles for EP4 signalling in HSC retention in the niche, but also define a rapidly translatable strategy to enhance transplantation therapeutically.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3606692/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3606692/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hoggatt, Jonathan -- Mohammad, Khalid S -- Singh, Pratibha -- Hoggatt, Amber F -- Chitteti, Brahmananda R -- Speth, Jennifer M -- Hu, Peirong -- Poteat, Bradley A -- Stilger, Kayla N -- Ferraro, Francesca -- Silberstein, Lev -- Wong, Frankie K -- Farag, Sherif S -- Czader, Magdalena -- Milne, Ginger L -- Breyer, Richard M -- Serezani, Carlos H -- Scadden, David T -- Guise, Theresa A -- Srour, Edward F -- Pelus, Louis M -- CA069158/CA/NCI NIH HHS/ -- CA143057/CA/NCI NIH HHS/ -- DK07519/DK/NIDDK NIH HHS/ -- DK37097/DK/NIDDK NIH HHS/ -- HL07910/HL/NHLBI NIH HHS/ -- HL087735/HL/NHLBI NIH HHS/ -- HL096305/HL/NHLBI NIH HHS/ -- HL100402/HL/NHLBI NIH HHS/ -- P01 DK090948/DK/NIDDK NIH HHS/ -- P30 CA082709/CA/NCI NIH HHS/ -- R01 HL044851/HL/NHLBI NIH HHS/ -- R01 HL096305/HL/NHLBI NIH HHS/ -- England -- Nature. 2013 Mar 21;495(7441):365-9. doi: 10.1038/nature11929. Epub 2013 Mar 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23485965" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anti-Inflammatory Agents, Non-Steroidal/pharmacology ; Cell Count ; Cell Movement/physiology ; Cells, Cultured ; Dinoprostone/*metabolism ; Hematopoietic Stem Cell Mobilization ; Hematopoietic Stem Cells/*cytology/drug effects ; Heterocyclic Compounds/pharmacology ; Humans ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Osteopontin/genetics ; Papio ; Receptors, Prostaglandin E, EP4 Subtype/genetics/metabolism ; Stem Cells/*cytology/drug effects ; Thiazines/pharmacology ; Thiazoles/pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-08-21
    Description: The tumour necrosis factor (TNF) family is crucial for immune homeostasis, cell death and inflammation. These cytokines are recognized by members of the TNF receptor (TNFR) family of death receptors, including TNFR1 and TNFR2, and FAS and TNF-related apoptosis-inducing ligand (TRAIL) receptors. Death receptor signalling requires death-domain-mediated homotypic/heterotypic interactions between the receptor and its downstream adaptors, including TNFR1-associated death domain protein (TRADD) and FAS-associated death domain protein (FADD). Here we discover that death domains in several proteins, including TRADD, FADD, RIPK1 and TNFR1, were directly inactivated by NleB, an enteropathogenic Escherichia coli (EPEC) type III secretion system effector known to inhibit host nuclear factor-kappaB (NF-kappaB) signalling. NleB contained an unprecedented N-acetylglucosamine (GlcNAc) transferase activity that specifically modified a conserved arginine in these death domains (Arg 235 in the TRADD death domain). NleB GlcNAcylation (the addition of GlcNAc onto a protein side chain) of death domains blocked homotypic/heterotypic death domain interactions and assembly of the oligomeric TNFR1 complex, thereby disrupting TNF signalling in EPEC-infected cells, including NF-kappaB signalling, apoptosis and necroptosis. Type-III-delivered NleB also blocked FAS ligand and TRAIL-induced cell death by preventing formation of a FADD-mediated death-inducing signalling complex (DISC). The arginine GlcNAc transferase activity of NleB was required for bacterial colonization in the mouse model of EPEC infection. The mechanism of action of NleB represents a new model by which bacteria counteract host defences, and also a previously unappreciated post-translational modification.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Shan -- Zhang, Li -- Yao, Qing -- Li, Lin -- Dong, Na -- Rong, Jie -- Gao, Wenqing -- Ding, Xiaojun -- Sun, Liming -- Chen, Xing -- Chen, She -- Shao, Feng -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Sep 12;501(7466):242-6. doi: 10.1038/nature12436. Epub 2013 Aug 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉College of Biological Sciences, China Agricultural University, Beijing 100094, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23955153" target="_blank"〉PubMed〈/a〉
    Keywords: Acylation ; Animals ; Antigens, CD95/metabolism ; Apoptosis ; Arginine/*metabolism ; Death Domain Receptor Signaling Adaptor Proteins/metabolism ; Disease Models, Animal ; Enteropathogenic Escherichia coli/*metabolism/pathogenicity ; Escherichia coli Infections/metabolism/microbiology/pathology ; Escherichia coli Proteins/*metabolism ; Fas-Associated Death Domain Protein/chemistry/metabolism ; HeLa Cells ; Humans ; Male ; Mice ; Mice, Inbred C57BL ; Multiprotein Complexes/chemistry/metabolism ; N-Acetylglucosaminyltransferases/*metabolism ; NF-kappa B/metabolism ; Protein Biosynthesis ; Protein Structure, Tertiary ; Receptor-Interacting Protein Serine-Threonine Kinases/chemistry/metabolism ; Receptors, Tumor Necrosis Factor, Type I/chemistry/metabolism ; *Signal Transduction ; TNF Receptor-Associated Death Domain Protein/*chemistry/*metabolism ; TNF-Related Apoptosis-Inducing Ligand/metabolism ; Tumor Necrosis Factor-alpha/metabolism ; Virulence ; Virulence Factors/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-05-03
    Description: There is a pressing need to develop alternatives to annual influenza vaccines and antiviral agents licensed for mitigating influenza infection. Previous studies reported that acute lung injury caused by chemical or microbial insults is secondary to the generation of host-derived, oxidized phospholipid that potently stimulates Toll-like receptor 4 (TLR4)-dependent inflammation. Subsequently, we reported that Tlr4(-/-) mice are highly refractory to influenza-induced lethality, and proposed that therapeutic antagonism of TLR4 signalling would protect against influenza-induced acute lung injury. Here we report that therapeutic administration of Eritoran (also known as E5564)-a potent, well-tolerated, synthetic TLR4 antagonist-blocks influenza-induced lethality in mice, as well as lung pathology, clinical symptoms, cytokine and oxidized phospholipid expression, and decreases viral titres. CD14 and TLR2 are also required for Eritoran-mediated protection, and CD14 directly binds Eritoran and inhibits ligand binding to MD2. Thus, Eritoran blockade of TLR signalling represents a novel therapeutic approach for inflammation associated with influenza, and possibly other infections.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3725830/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3725830/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shirey, Kari Ann -- Lai, Wendy -- Scott, Alison J -- Lipsky, Michael -- Mistry, Pragnesh -- Pletneva, Lioubov M -- Karp, Christopher L -- McAlees, Jaclyn -- Gioannini, Theresa L -- Weiss, Jerrold -- Chen, Wilbur H -- Ernst, Robert K -- Rossignol, Daniel P -- Gusovsky, Fabian -- Blanco, Jorge C G -- Vogel, Stefanie N -- AI018797/AI/NIAID NIH HHS/ -- AI057575/AI/NIAID NIH HHS/ -- AI059372/AI/NIAID NIH HHS/ -- NCRR K12-RR-023250/PHS HHS/ -- R01 AI018797/AI/NIAID NIH HHS/ -- R01 AI057575/AI/NIAID NIH HHS/ -- R01 AI059372/AI/NIAID NIH HHS/ -- T32 AI007540/AI/NIAID NIH HHS/ -- England -- Nature. 2013 May 23;497(7450):498-502. doi: 10.1038/nature12118. Epub 2013 May 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, University of Maryland, Baltimore, Baltimore, Maryland 21201, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23636320" target="_blank"〉PubMed〈/a〉
    Keywords: Acute Lung Injury/complications/drug therapy/pathology/prevention & control ; Animals ; Antigens, CD14/metabolism ; Antiviral Agents/*pharmacology/therapeutic use ; Cytokines/genetics/immunology ; Disaccharides/metabolism/*pharmacology/*therapeutic use ; Female ; Influenza A Virus, H1N1 Subtype/*drug effects/*pathogenicity ; Ligands ; Lymphocyte Antigen 96/metabolism ; Mice ; Mice, Inbred C57BL ; Orthomyxoviridae Infections/*drug therapy/immunology/pathology/virology ; Sugar Phosphates/metabolism/*pharmacology/*therapeutic use ; Survival Analysis ; Time Factors ; Toll-Like Receptor 2/immunology/metabolism ; Toll-Like Receptor 4/*antagonists & inhibitors/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-02-01
    Description: Kwashiorkor, an enigmatic form of severe acute malnutrition, is the consequence of inadequate nutrient intake plus additional environmental insults. To investigate the role of the gut microbiome, we studied 317 Malawian twin pairs during the first 3 years of life. During this time, half of the twin pairs remained well nourished, whereas 43% became discordant, and 7% manifested concordance for acute malnutrition. Both children in twin pairs discordant for kwashiorkor were treated with a peanut-based, ready-to-use therapeutic food (RUTF). Time-series metagenomic studies revealed that RUTF produced a transient maturation of metabolic functions in kwashiorkor gut microbiomes that regressed when administration of RUTF was stopped. Previously frozen fecal communities from several discordant pairs were each transplanted into gnotobiotic mice. The combination of Malawian diet and kwashiorkor microbiome produced marked weight loss in recipient mice, accompanied by perturbations in amino acid, carbohydrate, and intermediary metabolism that were only transiently ameliorated with RUTF. These findings implicate the gut microbiome as a causal factor in kwashiorkor.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3667500/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3667500/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Smith, Michelle I -- Yatsunenko, Tanya -- Manary, Mark J -- Trehan, Indi -- Mkakosya, Rajhab -- Cheng, Jiye -- Kau, Andrew L -- Rich, Stephen S -- Concannon, Patrick -- Mychaleckyj, Josyf C -- Liu, Jie -- Houpt, Eric -- Li, Jia V -- Holmes, Elaine -- Nicholson, Jeremy -- Knights, Dan -- Ursell, Luke K -- Knight, Rob -- Gordon, Jeffrey I -- DK078669/DK/NIDDK NIH HHS/ -- DK30292/DK/NIDDK NIH HHS/ -- F32 DK091044/DK/NIDDK NIH HHS/ -- P01 DK078669/DK/NIDDK NIH HHS/ -- P30 DK056341/DK/NIDDK NIH HHS/ -- R37 DK030292/DK/NIDDK NIH HHS/ -- T32 HD049338/HD/NICHD NIH HHS/ -- T32-HD049338/HD/NICHD NIH HHS/ -- T35 DK074375/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2013 Feb 1;339(6119):548-54. doi: 10.1126/science.1229000. Epub 2013 Jan 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Genome Sciences and Systems Biology, Washington University in St. Louis, St. Louis, MO 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23363771" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acids/metabolism ; Animals ; Arachis ; Carbohydrate Metabolism ; Child, Preschool ; Diseases in Twins/*microbiology ; Feces/microbiology ; Female ; Gastrointestinal Tract/*microbiology ; Germ-Free Life ; Humans ; Infant ; Kwashiorkor/diet therapy/epidemiology/*microbiology ; Longitudinal Studies ; Malawi/epidemiology ; Male ; *Metagenome ; Mice ; Mice, Inbred C57BL
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-08-21
    Description: Proteinases and the innate immune receptor Toll-like receptor 4 (TLR4) are essential for expression of allergic inflammation and diseases such as asthma. A mechanism that links these inflammatory mediators is essential for explaining the fundamental basis of allergic disease but has been elusive. Here, we demonstrate that TLR4 is activated by airway proteinase activity to initiate both allergic airway disease and antifungal immunity. These outcomes were induced by proteinase cleavage of the clotting protein fibrinogen, yielding fibrinogen cleavage products that acted as TLR4 ligands on airway epithelial cells and macrophages. Thus, allergic airway inflammation represents an antifungal defensive strategy that is driven by fibrinogen cleavage and TLR4 activation. These findings clarify the molecular basis of allergic disease and suggest new therapeutic strategies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3898200/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3898200/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Millien, Valentine Ongeri -- Lu, Wen -- Shaw, Joanne -- Yuan, Xiaoyi -- Mak, Garbo -- Roberts, Luz -- Song, Li-Zhen -- Knight, J Morgan -- Creighton, Chad J -- Luong, Amber -- Kheradmand, Farrah -- Corry, David B -- AI057696/AI/NIAID NIH HHS/ -- AI070973/AI/NIAID NIH HHS/ -- CA125123/CA/NCI NIH HHS/ -- HL75243/HL/NHLBI NIH HHS/ -- K02 HL075243/HL/NHLBI NIH HHS/ -- R01 AI057696/AI/NIAID NIH HHS/ -- R01 HL095382/HL/NHLBI NIH HHS/ -- R01 HL117181/HL/NHLBI NIH HHS/ -- R25GM56929/GM/NIGMS NIH HHS/ -- T32 GM088129/GM/NIGMS NIH HHS/ -- T32GM088129/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Aug 16;341(6147):792-6. doi: 10.1126/science.1240342.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Translational Biology and Molecular Medicine Program, Baylor College of Medicine, Houston, TX, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23950537" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aspergillus niger/growth & development/*immunology ; Aspergillus oryzae/enzymology ; Bronchoalveolar Lavage Fluid/cytology ; Epithelial Cells/immunology/metabolism ; Fibrinogen/*metabolism ; Immunity, Innate ; Ligands ; Macrophage Activation ; Macrophages/immunology/metabolism/microbiology ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Peptide Hydrolases/immunology/*metabolism ; Respiratory Hypersensitivity/*immunology/*metabolism ; Respiratory Mucosa/cytology/immunology/metabolism ; Th2 Cells/immunology ; Toll-Like Receptor 4/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-09-03
    Description: Circulating lymphocytes continuously enter lymph nodes for immune surveillance through specialized blood vessels named high endothelial venules, a process that increases markedly during immune responses. How high endothelial venules (HEVs) permit lymphocyte transmigration while maintaining vascular integrity is unknown. Here we report a role for the transmembrane O-glycoprotein podoplanin (PDPN, also known as gp38 and T1alpha) in maintaining HEV barrier function. Mice with postnatal deletion of Pdpn lost HEV integrity and exhibited spontaneous bleeding in mucosal lymph nodes, and bleeding in the draining peripheral lymph nodes after immunization. Blocking lymphocyte homing rescued bleeding, indicating that PDPN is required to protect the barrier function of HEVs during lymphocyte trafficking. Further analyses demonstrated that PDPN expressed on fibroblastic reticular cells, which surround HEVs, functions as an activating ligand for platelet C-type lectin-like receptor 2 (CLEC-2, also known as CLEC1B). Mice lacking fibroblastic reticular cell PDPN or platelet CLEC-2 exhibited significantly reduced levels of VE-cadherin (also known as CDH5), which is essential for overall vascular integrity, on HEVs. Infusion of wild-type platelets restored HEV integrity in Clec-2-deficient mice. Activation of CLEC-2 induced release of sphingosine-1-phosphate from platelets, which promoted expression of VE-cadherin on HEVs ex vivo. Furthermore, draining peripheral lymph nodes of immunized mice lacking sphingosine-1-phosphate had impaired HEV integrity similar to Pdpn- and Clec-2-deficient mice. These data demonstrate that local sphingosine-1-phosphate release after PDPN-CLEC-2-mediated platelet activation is critical for HEV integrity during immune responses.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3791160/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3791160/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Herzog, Brett H -- Fu, Jianxin -- Wilson, Stephen J -- Hess, Paul R -- Sen, Aslihan -- McDaniel, J Michael -- Pan, Yanfang -- Sheng, Minjia -- Yago, Tadayuki -- Silasi-Mansat, Robert -- McGee, Samuel -- May, Frauke -- Nieswandt, Bernhard -- Morris, Andrew J -- Lupu, Florea -- Coughlin, Shaun R -- McEver, Rodger P -- Chen, Hong -- Kahn, Mark L -- Xia, Lijun -- GM097747/GM/NIGMS NIH HHS/ -- GM103441/GM/NIGMS NIH HHS/ -- HL065590/HL/NHLBI NIH HHS/ -- HL085607/HL/NHLBI NIH HHS/ -- HL093242/HL/NHLBI NIH HHS/ -- HL103432/HL/NHLBI NIH HHS/ -- HL112788/HL/NHLBI NIH HHS/ -- P01 HL085607/HL/NHLBI NIH HHS/ -- P20 GM103527/GM/NIGMS NIH HHS/ -- P20 RR018758/RR/NCRR NIH HHS/ -- R01 GM097747/GM/NIGMS NIH HHS/ -- R01 HL103432/HL/NHLBI NIH HHS/ -- R01 HL112788/HL/NHLBI NIH HHS/ -- S10 RR024598/RR/NCRR NIH HHS/ -- England -- Nature. 2013 Oct 3;502(7469):105-9. doi: 10.1038/nature12501. Epub 2013 Sep 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23995678" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD/metabolism ; Cadherins/metabolism ; Endothelium, Lymphatic/immunology/*metabolism ; Female ; Gene Expression Regulation ; Intercellular Junctions/genetics/immunology ; Lectins, C-Type/*metabolism ; Lymph Nodes/metabolism/pathology ; Lysophospholipids/metabolism ; Male ; Membrane Glycoproteins/genetics/*metabolism ; Mice ; Mice, Inbred C57BL ; Sphingosine/analogs & derivatives/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-11-05
    Description: The development and severity of inflammatory bowel diseases and other chronic inflammatory conditions can be influenced by host genetic and environmental factors, including signals derived from commensal bacteria. However, the mechanisms that integrate these diverse cues remain undefined. Here we demonstrate that mice with an intestinal epithelial cell (IEC)-specific deletion of the epigenome-modifying enzyme histone deacetylase 3 (HDAC3(DeltaIEC) mice) exhibited extensive dysregulation of IEC-intrinsic gene expression, including decreased basal expression of genes associated with antimicrobial defence. Critically, conventionally housed HDAC3(DeltaIEC) mice demonstrated loss of Paneth cells, impaired IEC function and alterations in the composition of intestinal commensal bacteria. In addition, HDAC3(DeltaIEC) mice showed significantly increased susceptibility to intestinal damage and inflammation, indicating that epithelial expression of HDAC3 has a central role in maintaining intestinal homeostasis. Re-derivation of HDAC3(DeltaIEC) mice into germ-free conditions revealed that dysregulated IEC gene expression, Paneth cell homeostasis and intestinal barrier function were largely restored in the absence of commensal bacteria. Although the specific mechanisms through which IEC-intrinsic HDAC3 expression regulates these complex phenotypes remain to be determined, these data indicate that HDAC3 is a critical factor that integrates commensal-bacteria-derived signals to calibrate epithelial cell responses required to establish normal host-commensal relationships and maintain intestinal homeostasis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3949438/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3949438/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Alenghat, Theresa -- Osborne, Lisa C -- Saenz, Steven A -- Kobuley, Dmytro -- Ziegler, Carly G K -- Mullican, Shannon E -- Choi, Inchan -- Grunberg, Stephanie -- Sinha, Rohini -- Wynosky-Dolfi, Meghan -- Snyder, Annelise -- Giacomin, Paul R -- Joyce, Karen L -- Hoang, Tram B -- Bewtra, Meenakshi -- Brodsky, Igor E -- Sonnenberg, Gregory F -- Bushman, Frederic D -- Won, Kyoung-Jae -- Lazar, Mitchell A -- Artis, David -- 2-P30 CA016520/CA/NCI NIH HHS/ -- AI061570/AI/NIAID NIH HHS/ -- AI074878/AI/NIAID NIH HHS/ -- AI087990/AI/NIAID NIH HHS/ -- AI095466/AI/NIAID NIH HHS/ -- AI095608/AI/NIAID NIH HHS/ -- AI097333/AI/NIAID NIH HHS/ -- AI102942/AI/NIAID NIH HHS/ -- AI106697/AI/NIAID NIH HHS/ -- DK043806/DK/NIDDK NIH HHS/ -- DP5 OD012116/OD/NIH HHS/ -- DP5OD012116/OD/NIH HHS/ -- F31-GM082187/GM/NIGMS NIH HHS/ -- K08 DK084347/DK/NIDDK NIH HHS/ -- K08 DK093784/DK/NIDDK NIH HHS/ -- K08-DK084347/DK/NIDDK NIH HHS/ -- K08-DK093784/DK/NIDDK NIH HHS/ -- P01 AI106697/AI/NIAID NIH HHS/ -- P30 CA016520/CA/NCI NIH HHS/ -- P30 DK019525/DK/NIDDK NIH HHS/ -- P30-DK050306/DK/NIDDK NIH HHS/ -- P30-DK19525/DK/NIDDK NIH HHS/ -- R01 AI061570/AI/NIAID NIH HHS/ -- R01 AI074878/AI/NIAID NIH HHS/ -- R01 AI095466/AI/NIAID NIH HHS/ -- R01 AI097333/AI/NIAID NIH HHS/ -- R01 AI102942/AI/NIAID NIH HHS/ -- R21 AI083480/AI/NIAID NIH HHS/ -- R21 AI087990/AI/NIAID NIH HHS/ -- R21 AI105346/AI/NIAID NIH HHS/ -- R21-AI105346/AI/NIAID NIH HHS/ -- R37 DK043806/DK/NIDDK NIH HHS/ -- T32-RR007063/RR/NCRR NIH HHS/ -- U01 AI095608/AI/NIAID NIH HHS/ -- England -- Nature. 2013 Dec 5;504(7478):153-7. doi: 10.1038/nature12687. Epub 2013 Nov 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA [2] Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA [3] Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24185009" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Animals ; Bacteria/genetics ; Colitis, Ulcerative/enzymology/genetics/microbiology ; Crohn Disease/enzymology/genetics/microbiology ; Female ; Gene Deletion ; Gene Expression Profiling ; *Gene Expression Regulation ; Histone Deacetylases/genetics/*metabolism ; *Homeostasis ; Humans ; Intestinal Mucosa/*enzymology/pathology ; Intestines/*microbiology ; Male ; Mice ; Mice, Inbred C57BL ; Paneth Cells/cytology/metabolism ; RNA, Ribosomal, 16S/genetics ; Signal Transduction ; *Symbiosis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-12-10
    Description: Respiratory surfaces are exposed to billions of particulates and pathogens daily. A protective mucus barrier traps and eliminates them through mucociliary clearance (MCC). However, excessive mucus contributes to transient respiratory infections and to the pathogenesis of numerous respiratory diseases. MUC5AC and MUC5B are evolutionarily conserved genes that encode structurally related mucin glycoproteins, the principal macromolecules in airway mucus. Genetic variants are linked to diverse lung diseases, but specific roles for MUC5AC and MUC5B in MCC, and the lasting effects of their inhibition, are unknown. Here we show that mouse Muc5b (but not Muc5ac) is required for MCC, for controlling infections in the airways and middle ear, and for maintaining immune homeostasis in mouse lungs, whereas Muc5ac is dispensable. Muc5b deficiency caused materials to accumulate in upper and lower airways. This defect led to chronic infection by multiple bacterial species, including Staphylococcus aureus, and to inflammation that failed to resolve normally. Apoptotic macrophages accumulated, phagocytosis was impaired, and interleukin-23 (IL-23) production was reduced in Muc5b(-/-) mice. By contrast, in mice that transgenically overexpress Muc5b, macrophage functions improved. Existing dogma defines mucous phenotypes in asthma and chronic obstructive pulmonary disease (COPD) as driven by increased MUC5AC, with MUC5B levels either unaffected or increased in expectorated sputum. However, in many patients, MUC5B production at airway surfaces decreases by as much as 90%. By distinguishing a specific role for Muc5b in MCC, and by determining its impact on bacterial infections and inflammation in mice, our results provide a refined framework for designing targeted therapies to control mucin secretion and restore MCC.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4001806/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4001806/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Roy, Michelle G -- Livraghi-Butrico, Alessandra -- Fletcher, Ashley A -- McElwee, Melissa M -- Evans, Scott E -- Boerner, Ryan M -- Alexander, Samantha N -- Bellinghausen, Lindsey K -- Song, Alfred S -- Petrova, Youlia M -- Tuvim, Michael J -- Adachi, Roberto -- Romo, Irlanda -- Bordt, Andrea S -- Bowden, M Gabriela -- Sisson, Joseph H -- Woodruff, Prescott G -- Thornton, David J -- Rousseau, Karine -- De la Garza, Maria M -- Moghaddam, Seyed J -- Karmouty-Quintana, Harry -- Blackburn, Michael R -- Drouin, Scott M -- Davis, C William -- Terrell, Kristy A -- Grubb, Barbara R -- O'Neal, Wanda K -- Flores, Sonia C -- Cota-Gomez, Adela -- Lozupone, Catherine A -- Donnelly, Jody M -- Watson, Alan M -- Hennessy, Corinne E -- Keith, Rebecca C -- Yang, Ivana V -- Barthel, Lea -- Henson, Peter M -- Janssen, William J -- Schwartz, David A -- Boucher, Richard C -- Dickey, Burton F -- Evans, Christopher M -- CA016086/CA/NCI NIH HHS/ -- CA016672/CA/NCI NIH HHS/ -- CA046934/CA/NCI NIH HHS/ -- G1000450/Medical Research Council/United Kingdom -- K01 DK090285/DK/NIDDK NIH HHS/ -- P01 HL108808/HL/NHLBI NIH HHS/ -- P01 HL110873/HL/NHLBI NIH HHS/ -- P30 CA016086/CA/NCI NIH HHS/ -- P30 CA016672/CA/NCI NIH HHS/ -- P30 CA046934/CA/NCI NIH HHS/ -- P30 DK065988/DK/NIDDK NIH HHS/ -- P30DK065988/DK/NIDDK NIH HHS/ -- P50 HL107168/HL/NHLBI NIH HHS/ -- R01 AA008769/AA/NIAAA NIH HHS/ -- R01 HL080396/HL/NHLBI NIH HHS/ -- R01 HL097000/HL/NHLBI NIH HHS/ -- R01 HL109517/HL/NHLBI NIH HHS/ -- R01 HL114381/HL/NHLBI NIH HHS/ -- England -- Nature. 2014 Jan 16;505(7483):412-6. doi: 10.1038/nature12807. Epub 2013 Dec 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] University of Texas, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA [2]. ; 1] University of North Carolina-Chapel Hill, 7011 Thurston-Bowles Building, Chapel Hill, North Carolina 27599, USA [2]. ; 1] University of Colorado School of Medicine, 12700 East 19th Avenue, Aurora, Colorado 80045, USA [2]. ; University of Texas, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA. ; University of Texas Health Science Center-Houston Medical School, 6431 Fannin Street, Houston, Texas 77030, USA. ; 1] University of Texas, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA [2] Instituto Tecnologico y de Estudios Superiores de Monterrey, Avenida Eugenio Garza Sada 2501 Sur Colonia Tecnologico, Monterrey, Nuevo Leon 64849, Mexico. ; Texas A&M Health Science Center, 2121 W. Holcombe Boulevard, Houston, Texas 77030, USA. ; 1] Texas A&M Health Science Center, 2121 W. Holcombe Boulevard, Houston, Texas 77030, USA [2] University of Houston-Downtown, 1 Main Street, Houston, Texas 77002, USA. ; University of Nebraska Medical Center, 985910 Nebraska Medical Center, Omaha, Nebraska 68198, USA. ; University of California San Francisco, 505 Parnassus Avenue, San Francisco, California 27599, USA. ; University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK. ; University of North Carolina-Chapel Hill, 7011 Thurston-Bowles Building, Chapel Hill, North Carolina 27599, USA. ; University of Colorado School of Medicine, 12700 East 19th Avenue, Aurora, Colorado 80045, USA. ; 1] University of Colorado School of Medicine, 12700 East 19th Avenue, Aurora, Colorado 80045, USA [2] National Jewish Health, Denver, Colorado 80206, USA. ; 1] University of Texas, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA [2] University of Colorado School of Medicine, 12700 East 19th Avenue, Aurora, Colorado 80045, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24317696" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Asthma/immunology/metabolism ; Bacterial Infections/immunology/microbiology ; Cilia/physiology ; Ear, Middle/immunology/microbiology ; Female ; Inflammation/pathology ; Lung/*immunology/metabolism/microbiology ; Macrophages/immunology/pathology ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Models, Biological ; Mucin 5AC/deficiency/metabolism ; Mucin-5B/deficiency/genetics/*metabolism/secretion ; Phagocytosis ; Pulmonary Disease, Chronic Obstructive/immunology/microbiology ; Respiratory Mucosa/*immunology/*metabolism ; Staphylococcus aureus/immunology ; Survival Analysis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-05-24
    Description: Innate lymphoid cells (ILCs) are a recently characterized family of immune cells that have critical roles in cytokine-mediated regulation of intestinal epithelial cell barrier integrity. Alterations in ILC responses are associated with multiple chronic human diseases, including inflammatory bowel disease, implicating a role for ILCs in disease pathogenesis. Owing to an inability to target ILCs selectively, experimental studies assessing ILC function have predominantly used mice lacking adaptive immune cells. However, in lymphocyte-sufficient hosts ILCs are vastly outnumbered by CD4(+) T cells, which express similar profiles of effector cytokines. Therefore, the function of ILCs in the presence of adaptive immunity and their potential to influence adaptive immune cell responses remain unknown. To test this, we used genetic or antibody-mediated depletion strategies to target murine ILCs in the presence of an adaptive immune system. We show that loss of retinoic-acid-receptor-related orphan receptor-gammat-positive (RORgammat(+)) ILCs was associated with dysregulated adaptive immune cell responses against commensal bacteria and low-grade systemic inflammation. Remarkably, ILC-mediated regulation of adaptive immune cells occurred independently of interleukin (IL)-17A, IL-22 or IL-23. Genome-wide transcriptional profiling and functional analyses revealed that RORgammat(+) ILCs express major histocompatibility complex class II (MHCII) and can process and present antigen. However, rather than inducing T-cell proliferation, ILCs acted to limit commensal bacteria-specific CD4(+) T-cell responses. Consistent with this, selective deletion of MHCII in murine RORgammat(+) ILCs resulted in dysregulated commensal bacteria-dependent CD4(+) T-cell responses that promoted spontaneous intestinal inflammation. These data identify that ILCs maintain intestinal homeostasis through MHCII-dependent interactions with CD4(+) T cells that limit pathological adaptive immune cell responses to commensal bacteria.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3699860/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3699860/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hepworth, Matthew R -- Monticelli, Laurel A -- Fung, Thomas C -- Ziegler, Carly G K -- Grunberg, Stephanie -- Sinha, Rohini -- Mantegazza, Adriana R -- Ma, Hak-Ling -- Crawford, Alison -- Angelosanto, Jill M -- Wherry, E John -- Koni, Pandelakis A -- Bushman, Frederic D -- Elson, Charles O -- Eberl, Gerard -- Artis, David -- Sonnenberg, Gregory F -- 2-P30 CA016520/CA/NCI NIH HHS/ -- AI061570/AI/NIAID NIH HHS/ -- AI074878/AI/NIAID NIH HHS/ -- AI087990/AI/NIAID NIH HHS/ -- AI095466/AI/NIAID NIH HHS/ -- AI095608/AI/NIAID NIH HHS/ -- AI095776/AI/NIAID NIH HHS/ -- AI097333/AI/NIAID NIH HHS/ -- AI102942/AI/NIAID NIH HHS/ -- DK071176/DK/NIDDK NIH HHS/ -- DP5 OD012116/OD/NIH HHS/ -- DP5OD012116/OD/NIH HHS/ -- P01 DK071176/DK/NIDDK NIH HHS/ -- P30 DK050306/DK/NIDDK NIH HHS/ -- P30DK50306/DK/NIDDK NIH HHS/ -- R01 AI061570/AI/NIAID NIH HHS/ -- R01 AI074878/AI/NIAID NIH HHS/ -- R01 AI095466/AI/NIAID NIH HHS/ -- R01 AI097333/AI/NIAID NIH HHS/ -- R01 AI102942/AI/NIAID NIH HHS/ -- R21 AI083480/AI/NIAID NIH HHS/ -- R21 AI087990/AI/NIAID NIH HHS/ -- T32 AI007532/AI/NIAID NIH HHS/ -- T32 AI055428/AI/NIAID NIH HHS/ -- T32-AI055428/AI/NIAID NIH HHS/ -- U01 AI095608/AI/NIAID NIH HHS/ -- England -- Nature. 2013 Jun 6;498(7452):113-7. doi: 10.1038/nature12240. Epub 2013 May 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23698371" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigen Presentation/immunology ; Bacteria/*immunology ; CD4-Positive T-Lymphocytes/cytology/*immunology/pathology ; Cell Proliferation ; Histocompatibility Antigens Class II/immunology/metabolism ; Humans ; Immunity, Innate/*immunology ; Inflammation/pathology ; Interleukin-17/metabolism ; Interleukin-23/metabolism ; Interleukins/metabolism ; Intestines/*immunology/*microbiology/pathology ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism ; *Symbiosis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...