ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-09-11
    Description: We present the results from the first ensemble prediction model for major solar flares (M and X classes). The primary aim of this investigation is to explore the construction of an ensemble for an initial prototyping of this new concept. Using the probabilistic forecasts from three models hosted at the Community Coordinated Modeling Center (NASA-GSFC) and the NOAA forecasts, we developed an ensemble forecast by linearly combining the flaring probabilities from all four methods. Performance-based combination weights were calculated using a Monte-Carlo-type algorithm that applies a decision threshold P t h to the combined probabilities and maximizing the Heidke Skill Score (HSS). Using the data for 13 recent solar active regions between years 2012 - 2014, we found that linear combination methods can improve the overall probabilistic prediction and improve the categorical prediction for certain values of decision thresholds. Combination weights vary with the applied threshold and none of the tested individual forecasting models seem to provide more accurate predictions than the others for all values of P t h . According to the maximum values of HSS, a performance-based weights calculated by averaging over the sample, performed similarly to a equally weighted model. The values P t h for which the ensemble forecast performs the best are 25 % for M-class flares and 15 % for X-class flares. When the human-adjusted probabilities from NOAA are excluded from the ensemble, the ensemble performance in terms of the Heidke score, is reduced.
    Print ISSN: 1539-4964
    Electronic ISSN: 1542-7390
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-02-04
    Description: Protein modification by the ubiquitin-like protein ISG15 is an interferon (IFN) effector system, which plays a major role in antiviral defense. ISG15 modification is counteracted by the isopeptidase USP18, a major negative regulator of IFN signaling, which was also shown to exert its regulatory function in an isopeptidase-independent manner. To...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-12-02
    Description: Between 2010 and 2013, the Pollino Mountains region (south Italy), already proposed as a seismic gap, was affected by a seismic crisis of more than 5000 small-to-moderate earthquakes (maximum magnitude M L  5.0). Preliminary analyses performed in a previous work highlighted that this activity can be ascribed to normal faulting on north-northwest-trending west-dipping dislocation surfaces consistent with the general seismotectonic frame of the southern Apennines. This work contributes additional data and a more sophisticated analyses that highlight new features of the seismic swarm and support a new interpretation for the study area. We obtained high-precision locations and focal mechanisms using the double-difference method and the cut-and-paste waveform inversion method, respectively. The 3D patterns of hypocenters and focal mechanisms consistently image an ~10-km-long north-northwest-striking and west-dipping fault zone between 5 and 10 km depth, with predominantly extensional kinematics. The high-resolution data show that this zone broadens from north to south as a result of secondary faulting. The depicted geometry, with preliminary geological observation, leads to the hypothesis of multiple seismogenic normal faults rooted into more regional shallow-dipping detachments inherited from the pre-existing Apennine thrust tectonics. Online Material: Table of estimated focal mechanism parameters.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-07-18
    Description: Discordant timing between antennae disrupts sun compass orientation in migratory monarch butterflies Nature Communications 3, 958 (2012). doi:10.1038/ncomms1965 Authors: Patrick A. Guerra, Christine Merlin, Robert J. Gegear & Steven M. Reppert
    Electronic ISSN: 2041-1723
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2001-12-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vecchione, M -- Young, R E -- Guerra, A -- Lindsay, D J -- Clague, D A -- Bernhard, J M -- Sager, W W -- Gonzalez, A F -- Rocha, F J -- Segonzac, M -- New York, N.Y. -- Science. 2001 Dec 21;294(5551):2505.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Marine Fisheries Service, Systematics Laboratory, National Museum of Natural History, Washington, DC 20560, USA. vecchione.michael@nmnh.si.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11752567" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Decapodiformes/*anatomy & histology/classification/*physiology ; *Ecosystem ; Escape Reaction ; Locomotion ; Movement ; Oceans and Seas ; Seawater ; Videotape Recording
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-11-26
    Description: Ancient DNA makes it possible to observe natural selection directly by analysing samples from populations before, during and after adaptation events. Here we report a genome-wide scan for selection using ancient DNA, capitalizing on the largest ancient DNA data set yet assembled: 230 West Eurasians who lived between 6500 and 300 bc, including 163 with newly reported data. The new samples include, to our knowledge, the first genome-wide ancient DNA from Anatolian Neolithic farmers, whose genetic material we obtained by extracting from petrous bones, and who we show were members of the population that was the source of Europe's first farmers. We also report a transect of the steppe region in Samara between 5600 and 300 bc, which allows us to identify admixture into the steppe from at least two external sources. We detect selection at loci associated with diet, pigmentation and immunity, and two independent episodes of selection on height.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mathieson, Iain -- Lazaridis, Iosif -- Rohland, Nadin -- Mallick, Swapan -- Patterson, Nick -- Roodenberg, Songul Alpaslan -- Harney, Eadaoin -- Stewardson, Kristin -- Fernandes, Daniel -- Novak, Mario -- Sirak, Kendra -- Gamba, Cristina -- Jones, Eppie R -- Llamas, Bastien -- Dryomov, Stanislav -- Pickrell, Joseph -- Arsuaga, Juan Luis -- de Castro, Jose Maria Bermudez -- Carbonell, Eudald -- Gerritsen, Fokke -- Khokhlov, Aleksandr -- Kuznetsov, Pavel -- Lozano, Marina -- Meller, Harald -- Mochalov, Oleg -- Moiseyev, Vyacheslav -- Guerra, Manuel A Rojo -- Roodenberg, Jacob -- Verges, Josep Maria -- Krause, Johannes -- Cooper, Alan -- Alt, Kurt W -- Brown, Dorcas -- Anthony, David -- Lalueza-Fox, Carles -- Haak, Wolfgang -- Pinhasi, Ron -- Reich, David -- GM100233/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Dec 24;528(7583):499-503. doi: 10.1038/nature16152. Epub 2015 Nov 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA. ; Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Independent researcher, Santpoort-Noord, The Netherlands. ; School of Archaeology and Earth Institute, Belfield, University College Dublin, Dublin 4, Ireland. ; Institute for Anthropological Research, Zagreb 10000, Croatia. ; Department of Anthropology, Emory University, Atlanta, Georgia 30322, USA. ; Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland. ; Australian Centre for Ancient DNA, School of Biological Sciences &Environment Institute, University of Adelaide, Adelaide, South Australia 5005, Australia. ; Laboratory of Human Molecular Genetics, Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia. ; Department of Paleolithic Archaeology, Institute of Archaeology and Ethnography, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia. ; Centro Mixto UCM-ISCIII de Evolucion y Comportamiento Humanos, 28040 Madrid, Spain. ; Departamento de Paleontologia, Facultad Ciencias Geologicas, Universidad Complutense de Madrid, 28040 Madrid, Spain. ; Centro Nacional de Investigacion sobre Evolucion Humana (CENIEH), 09002 Burgos, Spain. ; IPHES. Institut Catala de Paleoecologia Humana i Evolucio Social, Campus Sescelades-URV, 43007 Tarragona, Spain. ; Area de Prehistoria, Universitat Rovira i Virgili (URV), 43002 Tarragona, Spain. ; Netherlands Institute in Turkey, Istiklal Caddesi, Nur-i Ziya Sokak 5, Beyog lu 34433, Istanbul, Turkey. ; Volga State Academy of Social Sciences and Humanities, Samara 443099, Russia. ; State Office for Heritage Management and Archaeology Saxony-Anhalt and State Museum of Prehistory, D-06114 Halle, Germany. ; Peter the Great Museum of Anthropology and Ethnography (Kunstkamera) RAS, St Petersburg 199034, Russia. ; Department of Prehistory and Archaeology, University of Valladolid, 47002 Valladolid, Spain. ; The Netherlands Institute for the Near East, Leiden RA-2300, the Netherlands. ; Max Planck Institute for the Science of Human History, D-07745 Jena, Germany. ; Institute for Archaeological Sciences, University of Tubingen, D-72070 Tubingen, Germany. ; Danube Private University, A-3500 Krems, Austria. ; Institute for Prehistory and Archaeological Science, University of Basel, CH-4003 Basel, Switzerland. ; Anthropology Department, Hartwick College, Oneonta, New York 13820, USA. ; Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), 08003 Barcelona, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26595274" target="_blank"〉PubMed〈/a〉
    Keywords: Agriculture/history ; Asia/ethnology ; Body Height/genetics ; Bone and Bones ; DNA/genetics/isolation & purification ; Diet/history ; Europe/ethnology ; Genetics, Population ; Genome, Human/*genetics ; Haplotypes/genetics ; History, Ancient ; Humans ; Immunity/genetics ; Male ; Multifactorial Inheritance/genetics ; Pigmentation/genetics ; Selection, Genetic/*genetics ; Sequence Analysis, DNA
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-09-17
    Description: We report genome sequences of 17 inbred strains of laboratory mice and identify almost ten times more variants than previously known. We use these genomes to explore the phylogenetic history of the laboratory mouse and to examine the functional consequences of allele-specific variation on transcript abundance, revealing that at least 12% of transcripts show a significant tissue-specific expression bias. By identifying candidate functional variants at 718 quantitative trait loci we show that the molecular nature of functional variants and their position relative to genes vary according to the effect size of the locus. These sequences provide a starting point for a new era in the functional analysis of a key model organism.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3276836/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3276836/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Keane, Thomas M -- Goodstadt, Leo -- Danecek, Petr -- White, Michael A -- Wong, Kim -- Yalcin, Binnaz -- Heger, Andreas -- Agam, Avigail -- Slater, Guy -- Goodson, Martin -- Furlotte, Nicholas A -- Eskin, Eleazar -- Nellaker, Christoffer -- Whitley, Helen -- Cleak, James -- Janowitz, Deborah -- Hernandez-Pliego, Polinka -- Edwards, Andrew -- Belgard, T Grant -- Oliver, Peter L -- McIntyre, Rebecca E -- Bhomra, Amarjit -- Nicod, Jerome -- Gan, Xiangchao -- Yuan, Wei -- van der Weyden, Louise -- Steward, Charles A -- Bala, Sendu -- Stalker, Jim -- Mott, Richard -- Durbin, Richard -- Jackson, Ian J -- Czechanski, Anne -- Guerra-Assuncao, Jose Afonso -- Donahue, Leah Rae -- Reinholdt, Laura G -- Payseur, Bret A -- Ponting, Chris P -- Birney, Ewan -- Flint, Jonathan -- Adams, David J -- 077192/Wellcome Trust/United Kingdom -- 079912/Wellcome Trust/United Kingdom -- 082356/Wellcome Trust/United Kingdom -- 083573/Wellcome Trust/United Kingdom -- 083573/Z/07/Z/Wellcome Trust/United Kingdom -- 085906/Wellcome Trust/United Kingdom -- 085906/Z/08/Z/Wellcome Trust/United Kingdom -- 090532/Wellcome Trust/United Kingdom -- 2T15LM007359/LM/NLM NIH HHS/ -- A6997/Cancer Research UK/United Kingdom -- BB/F022697/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- G0800024/Medical Research Council/United Kingdom -- K25 HL080079/HL/NHLBI NIH HHS/ -- MC_U127561112/Medical Research Council/United Kingdom -- MC_U137761446/Medical Research Council/United Kingdom -- Cancer Research UK/United Kingdom -- Medical Research Council/United Kingdom -- England -- Nature. 2011 Sep 14;477(7364):289-94. doi: 10.1038/nature10413.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21921910" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Animals, Laboratory/genetics ; Gene Expression Regulation/*genetics ; Genetic Variation/*genetics ; Genome/*genetics ; Genomics ; Mice/classification/*genetics ; Mice, Inbred C57BL/genetics ; Mice, Inbred Strains/*genetics ; *Phenotype ; Phylogeny ; Quantitative Trait Loci/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-04-19
    Description: Zebrafish have become a popular organism for the study of vertebrate gene function. The virtually transparent embryos of this species, and the ability to accelerate genetic studies by gene knockdown or overexpression, have led to the widespread use of zebrafish in the detailed investigation of vertebrate gene function and increasingly, the study of human genetic disease. However, for effective modelling of human genetic disease it is important to understand the extent to which zebrafish genes and gene structures are related to orthologous human genes. To examine this, we generated a high-quality sequence assembly of the zebrafish genome, made up of an overlapping set of completely sequenced large-insert clones that were ordered and oriented using a high-resolution high-density meiotic map. Detailed automatic and manual annotation provides evidence of more than 26,000 protein-coding genes, the largest gene set of any vertebrate so far sequenced. Comparison to the human reference genome shows that approximately 70% of human genes have at least one obvious zebrafish orthologue. In addition, the high quality of this genome assembly provides a clearer understanding of key genomic features such as a unique repeat content, a scarcity of pseudogenes, an enrichment of zebrafish-specific genes on chromosome 4 and chromosomal regions that influence sex determination.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3703927/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3703927/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Howe, Kerstin -- Clark, Matthew D -- Torroja, Carlos F -- Torrance, James -- Berthelot, Camille -- Muffato, Matthieu -- Collins, John E -- Humphray, Sean -- McLaren, Karen -- Matthews, Lucy -- McLaren, Stuart -- Sealy, Ian -- Caccamo, Mario -- Churcher, Carol -- Scott, Carol -- Barrett, Jeffrey C -- Koch, Romke -- Rauch, Gerd-Jorg -- White, Simon -- Chow, William -- Kilian, Britt -- Quintais, Leonor T -- Guerra-Assuncao, Jose A -- Zhou, Yi -- Gu, Yong -- Yen, Jennifer -- Vogel, Jan-Hinnerk -- Eyre, Tina -- Redmond, Seth -- Banerjee, Ruby -- Chi, Jianxiang -- Fu, Beiyuan -- Langley, Elizabeth -- Maguire, Sean F -- Laird, Gavin K -- Lloyd, David -- Kenyon, Emma -- Donaldson, Sarah -- Sehra, Harminder -- Almeida-King, Jeff -- Loveland, Jane -- Trevanion, Stephen -- Jones, Matt -- Quail, Mike -- Willey, Dave -- Hunt, Adrienne -- Burton, John -- Sims, Sarah -- McLay, Kirsten -- Plumb, Bob -- Davis, Joy -- Clee, Chris -- Oliver, Karen -- Clark, Richard -- Riddle, Clare -- Elliot, David -- Threadgold, Glen -- Harden, Glenn -- Ware, Darren -- Begum, Sharmin -- Mortimore, Beverley -- Kerry, Giselle -- Heath, Paul -- Phillimore, Benjamin -- Tracey, Alan -- Corby, Nicole -- Dunn, Matthew -- Johnson, Christopher -- Wood, Jonathan -- Clark, Susan -- Pelan, Sarah -- Griffiths, Guy -- Smith, Michelle -- Glithero, Rebecca -- Howden, Philip -- Barker, Nicholas -- Lloyd, Christine -- Stevens, Christopher -- Harley, Joanna -- Holt, Karen -- Panagiotidis, Georgios -- Lovell, Jamieson -- Beasley, Helen -- Henderson, Carl -- Gordon, Daria -- Auger, Katherine -- Wright, Deborah -- Collins, Joanna -- Raisen, Claire -- Dyer, Lauren -- Leung, Kenric -- Robertson, Lauren -- Ambridge, Kirsty -- Leongamornlert, Daniel -- McGuire, Sarah -- Gilderthorp, Ruth -- Griffiths, Coline -- Manthravadi, Deepa -- Nichol, Sarah -- Barker, Gary -- Whitehead, Siobhan -- Kay, Michael -- Brown, Jacqueline -- Murnane, Clare -- Gray, Emma -- Humphries, Matthew -- Sycamore, Neil -- Barker, Darren -- Saunders, David -- Wallis, Justene -- Babbage, Anne -- Hammond, Sian -- Mashreghi-Mohammadi, Maryam -- Barr, Lucy -- Martin, Sancha -- Wray, Paul -- Ellington, Andrew -- Matthews, Nicholas -- Ellwood, Matthew -- Woodmansey, Rebecca -- Clark, Graham -- Cooper, James D -- Tromans, Anthony -- Grafham, Darren -- Skuce, Carl -- Pandian, Richard -- Andrews, Robert -- Harrison, Elliot -- Kimberley, Andrew -- Garnett, Jane -- Fosker, Nigel -- Hall, Rebekah -- Garner, Patrick -- Kelly, Daniel -- Bird, Christine -- Palmer, Sophie -- Gehring, Ines -- Berger, Andrea -- Dooley, Christopher M -- Ersan-Urun, Zubeyde -- Eser, Cigdem -- Geiger, Horst -- Geisler, Maria -- Karotki, Lena -- Kirn, Anette -- Konantz, Judith -- Konantz, Martina -- Oberlander, Martina -- Rudolph-Geiger, Silke -- Teucke, Mathias -- Lanz, Christa -- Raddatz, Gunter -- Osoegawa, Kazutoyo -- Zhu, Baoli -- Rapp, Amanda -- Widaa, Sara -- Langford, Cordelia -- Yang, Fengtang -- Schuster, Stephan C -- Carter, Nigel P -- Harrow, Jennifer -- Ning, Zemin -- Herrero, Javier -- Searle, Steve M J -- Enright, Anton -- Geisler, Robert -- Plasterk, Ronald H A -- Lee, Charles -- Westerfield, Monte -- de Jong, Pieter J -- Zon, Leonard I -- Postlethwait, John H -- Nusslein-Volhard, Christiane -- Hubbard, Tim J P -- Roest Crollius, Hugues -- Rogers, Jane -- Stemple, Derek L -- 095908/Wellcome Trust/United Kingdom -- 098051/Wellcome Trust/United Kingdom -- 1 R01 DK55377-01A1/DK/NIDDK NIH HHS/ -- P01 HD022486/HD/NICHD NIH HHS/ -- P01 HD22486/HD/NICHD NIH HHS/ -- R01 GM085318/GM/NIGMS NIH HHS/ -- R01 OD011116/OD/NIH HHS/ -- R01 RR010715/RR/NCRR NIH HHS/ -- R01 RR020833/RR/NCRR NIH HHS/ -- England -- Nature. 2013 Apr 25;496(7446):498-503. doi: 10.1038/nature12111. Epub 2013 Apr 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23594743" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chromosomes/genetics ; Conserved Sequence/*genetics ; Evolution, Molecular ; Female ; Genes/genetics ; Genome/*genetics ; Genome, Human/genetics ; Genomics ; Humans ; Male ; Meiosis/genetics ; Molecular Sequence Annotation ; Pseudogenes/genetics ; Reference Standards ; Sex Determination Processes/genetics ; Zebrafish/*genetics ; Zebrafish Proteins/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-04-24
    Description: Remote Sensing, Vol. 10, Pages 653: Global MODIS Fraction of Green Vegetation Cover for Monitoring Abrupt and Gradual Vegetation Changes Remote Sensing doi: 10.3390/rs10040653 Authors: Federico Filipponi Emiliana Valentini Alessandra Nguyen Xuan Carlos A. Guerra Florian Wolf Martin Andrzejak Andrea Taramelli The presence and distribution of green vegetation cover in the biosphere are of paramount importance in investigating cause-effect phenomena at the land/atmosphere interface, estimating primary production rates as part of global carbon and water cycle assessments and evaluating soil protection and land use change over time. The fraction of green vegetation cover (FCover) as estimated from satellite observations has already been demonstrated to be an extraordinarily useful product for understanding vegetation cover changes, for supporting ecosystem service assessments over areas with variable extents and for processes spanning a variable period of time (abrupt events or long-term processes). This study describes a methodology implemented to estimate global FCover (from 2001 to 2015) by applying a linear spectral mixture analysis with global endmembers to an entire temporal series of MODIS satellite observations and gap-filling missing FCover observations in temporal series using the DINEOF algorithm. The resulting global MODV1 FCover product was validated with two global validation datasets and showed an overall good thematic absolute accuracy (RMSE = 0.146) consistent with the validation performance of other FCover global products. Basic statistics performed on the product show changes in average and trend values and allow for the quantification of gross vegetation loss and gain over different temporal scales. To demonstrate the capacity of this global product to monitor specific dynamics, a multitemporal analysis was performed on selected sites and vegetation responses (i.e., cover changes), and specific dynamics resulting from cause-effect phenomena are briefly discussed. The product is intended to be used for monitoring vegetation dynamics, but it also has the potential to be integrated in other modeling frameworks (e.g., the carbon cycle, primary production, and soil erosion) in conjunction with other spatial datasets such as those on climate and soil type.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-06-26
    Description: Article Monarch butterflies ( Danaus plexippus ) migrate from North America to central Mexico during the fall. Here, Guerra et al . show that, in addition to a sun compass orientation, monarch butterflies use a magnetic compass to help direct their flight towards the equator. Nature Communications doi: 10.1038/ncomms5164 Authors: Patrick A Guerra, Robert J Gegear, Steven M Reppert
    Electronic ISSN: 2041-1723
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...