ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2001-06-02
    Description: Glucose homeostasis depends on insulin responsiveness in target tissues, most importantly, muscle and liver. The critical initial steps in insulin action include phosphorylation of scaffolding proteins and activation of phosphatidylinositol 3-kinase. These early events lead to activation of the serine-threonine protein kinase Akt, also known as protein kinase B. We show that mice deficient in Akt2 are impaired in the ability of insulin to lower blood glucose because of defects in the action of the hormone on liver and skeletal muscle. These data establish Akt2 as an essential gene in the maintenance of normal glucose homeostasis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cho, H -- Mu, J -- Kim, J K -- Thorvaldsen, J L -- Chu, Q -- Crenshaw, E B 3rd -- Kaestner, K H -- Bartolomei, M S -- Shulman, G I -- Birnbaum, M J -- GM07229/GM/NIGMS NIH HHS/ -- P30 19525/PHS HHS/ -- P30 DK50306/DK/NIDDK NIH HHS/ -- R01 DK040936/DK/NIDDK NIH HHS/ -- R01 DK56886/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2001 Jun 1;292(5522):1728-31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11387480" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blood Glucose/metabolism ; Deoxyglucose/metabolism ; Diabetes Mellitus, Type 2/*metabolism ; Female ; Gene Targeting ; Glucose/*metabolism ; Glucose Clamp Technique ; Glucose Tolerance Test ; Homeostasis ; Insulin/administration & dosage/blood/*metabolism ; *Insulin Resistance/genetics/physiology ; Islets of Langerhans/cytology/physiology ; Liver/metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Muscle, Skeletal/enzymology/metabolism ; *Protein-Serine-Threonine Kinases ; Proto-Oncogene Proteins/*genetics/*metabolism ; Proto-Oncogene Proteins c-akt ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-08-01
    Description: The gut-derived hormone ghrelin exerts its effect on the brain by regulating neuronal activity. Ghrelin-induced feeding behaviour is controlled by arcuate nucleus neurons that co-express neuropeptide Y and agouti-related protein (NPY/AgRP neurons). However, the intracellular mechanisms triggered by ghrelin to alter NPY/AgRP neuronal activity are poorly understood. Here we show that ghrelin initiates robust changes in hypothalamic mitochondrial respiration in mice that are dependent on uncoupling protein 2 (UCP2). Activation of this mitochondrial mechanism is critical for ghrelin-induced mitochondrial proliferation and electric activation of NPY/AgRP neurons, for ghrelin-triggered synaptic plasticity of pro-opiomelanocortin-expressing neurons, and for ghrelin-induced food intake. The UCP2-dependent action of ghrelin on NPY/AgRP neurons is driven by a hypothalamic fatty acid oxidation pathway involving AMPK, CPT1 and free radicals that are scavenged by UCP2. These results reveal a signalling modality connecting mitochondria-mediated effects of G-protein-coupled receptors on neuronal function and associated behaviour.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4101536/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4101536/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Andrews, Zane B -- Liu, Zhong-Wu -- Walllingford, Nicholas -- Erion, Derek M -- Borok, Erzsebet -- Friedman, Jeffery M -- Tschop, Matthias H -- Shanabrough, Marya -- Cline, Gary -- Shulman, Gerald I -- Coppola, Anna -- Gao, Xiao-Bing -- Horvath, Tamas L -- Diano, Sabrina -- R01 AG022880/AG/NIA NIH HHS/ -- R01 DK040936/DK/NIDDK NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2008 Aug 14;454(7206):846-51. doi: 10.1038/nature07181. Epub 2008 Jul 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Comparative Medicine, Department of Obstetrics, Gynecology & Reproductive Sciences, Howard Hughes Medical Institute, New York, New York 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18668043" target="_blank"〉PubMed〈/a〉
    Keywords: Agouti-Related Protein/genetics/*metabolism ; Animals ; Carnitine O-Palmitoyltransferase/metabolism ; Fatty Acids/metabolism ; Feeding Behavior/drug effects ; Gene Expression Regulation/drug effects ; Ghrelin/*metabolism/pharmacology ; Hypothalamus/drug effects/metabolism ; Ion Channels/genetics/*metabolism ; Membrane Potential, Mitochondrial/drug effects/physiology ; Mice ; Mitochondria/drug effects/physiology ; Mitochondrial Proteins/genetics/*metabolism ; Neurons/drug effects/*metabolism ; Neuropeptide Y/genetics/*metabolism ; Phosphorylation/drug effects ; Reactive Oxygen Species/*metabolism ; Synapses/drug effects/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1991-10-25
    Description: The rate of net hepatic glycogenolysis was assessed in humans by serially measuring hepatic glycogen concentration at 3- to 12-hour intervals during a 68-hour fast with 13C nuclear magnetic resonance spectroscopy. The net rate of gluconeogenesis was calculated by subtracting the rate of net hepatic glycogenolysis from the rate of glucose production in the whole body measured with tritiated glucose. Gluconeogenesis accounted for 64 +/- 5% (mean +/- standard error of the mean) of total glucose production during the first 22 hours of fasting. In the subsequent 14-hour and 18-hour periods of the fast, gluconeogenesis accounted for 82 +/- 5% and 96 +/- 1% of total glucose production, respectively. These data show that gluconeogenesis accounts for a substantial fraction of total glucose production even during the first 22 hours of a fast in humans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rothman, D L -- Magnusson, I -- Katz, L D -- Shulman, R G -- Shulman, G I -- DK-34576/DK/NIDDK NIH HHS/ -- DK-40936/DK/NIDDK NIH HHS/ -- MO1-RR-00125-26/RR/NCRR NIH HHS/ -- R01 DK040936/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1991 Oct 25;254(5031):573-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06510.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1948033" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Blood Glucose/metabolism ; Carbon Isotopes ; Fasting ; Female ; Glucagon/blood ; *Gluconeogenesis ; Humans ; Hydrocortisone/blood ; Insulin/blood ; Kinetics ; Liver/*metabolism ; Liver Glycogen/*metabolism ; Magnetic Resonance Spectroscopy/methods ; Male ; Nitrogen/*urine
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2005-01-22
    Description: Maintenance of normal blood glucose levels depends on a complex interplay between the insulin responsiveness of skeletal muscle and liver and glucose-stimulated insulin secretion by pancreatic beta cells. Defects in the former are responsible for insulin resistance, and defects in the latter are responsible for progression to hyperglycemia. Emerging evidence supports the potentially unifying hypothesis that both of these prominent features of type 2 diabetes are caused by mitochondrial dysfunction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lowell, Bradford B -- Shulman, Gerald I -- R01 DK040936/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2005 Jan 21;307(5708):384-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Beth Israel Deaconess Medical Center, 99 Brookline Avenue, Harvard Medical School, Boston, MA 02215, USA. blowell@bidmc.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15662004" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate ; Animals ; Diabetes Mellitus, Type 2/*physiopathology ; Fatty Acids/metabolism ; Gene Expression Regulation ; Glucose/metabolism ; Humans ; Hyperglycemia/physiopathology ; Insulin/secretion ; Insulin Resistance ; Ion Channels ; Islets of Langerhans/cytology/*physiology/secretion ; Liver/metabolism ; Membrane Transport Proteins/genetics/metabolism ; Mitochondria/*physiology ; Mitochondrial Proteins/genetics/metabolism ; Models, Biological ; Muscle, Skeletal/metabolism ; Obesity/physiopathology ; Oxidation-Reduction ; Oxidative Phosphorylation ; Superoxides/metabolism ; Transcription Factors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-09-06
    Description: PPARgamma is the functioning receptor for the thiazolidinedione (TZD) class of antidiabetes drugs including rosiglitazone and pioglitazone. These drugs are full classical agonists for this nuclear receptor, but recent data have shown that many PPARgamma-based drugs have a separate biochemical activity, blocking the obesity-linked phosphorylation of PPARgamma by Cdk5. Here we describe novel synthetic compounds that have a unique mode of binding to PPARgamma, completely lack classical transcriptional agonism and block the Cdk5-mediated phosphorylation in cultured adipocytes and in insulin-resistant mice. Moreover, one such compound, SR1664, has potent antidiabetic activity while not causing the fluid retention and weight gain that are serious side effects of many of the PPARgamma drugs. Unlike TZDs, SR1664 also does not interfere with bone formation in culture. These data illustrate that new classes of antidiabetes drugs can be developed by specifically targeting the Cdk5-mediated phosphorylation of PPARgamma.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3179551/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3179551/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Choi, Jang Hyun -- Banks, Alexander S -- Kamenecka, Theodore M -- Busby, Scott A -- Chalmers, Michael J -- Kumar, Naresh -- Kuruvilla, Dana S -- Shin, Youseung -- He, Yuanjun -- Bruning, John B -- Marciano, David P -- Cameron, Michael D -- Laznik, Dina -- Jurczak, Michael J -- Schurer, Stephan C -- Vidovic, Dusica -- Shulman, Gerald I -- Spiegelman, Bruce M -- Griffin, Patrick R -- 1RC4DK090861/DK/NIDDK NIH HHS/ -- DK31405/DK/NIDDK NIH HHS/ -- R01 DK040936/DK/NIDDK NIH HHS/ -- R01 GM084041/GM/NIGMS NIH HHS/ -- R01 GM084041-03/GM/NIGMS NIH HHS/ -- R01-GM084041/GM/NIGMS NIH HHS/ -- R37 DK031405/DK/NIDDK NIH HHS/ -- R37 DK031405-30/DK/NIDDK NIH HHS/ -- R37 DK031405-31/DK/NIDDK NIH HHS/ -- RC4 DK090861/DK/NIDDK NIH HHS/ -- RC4 DK090861-01/DK/NIDDK NIH HHS/ -- S10 RR027270/RR/NCRR NIH HHS/ -- U24 DK059635/DK/NIDDK NIH HHS/ -- U54 MH074404/MH/NIMH NIH HHS/ -- U54 MH074404-01/MH/NIMH NIH HHS/ -- U54-MH074404/MH/NIMH NIH HHS/ -- Howard Hughes Medical Institute/ -- Intramural NIH HHS/ -- England -- Nature. 2011 Sep 4;477(7365):477-81. doi: 10.1038/nature10383.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cancer Biology and Division of Metabolism and Chronic Disease, Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21892191" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3-L1 Cells ; Adipocytes/drug effects/metabolism ; Adipose Tissue, White/drug effects/metabolism ; Animals ; Biphenyl Compounds/chemistry/pharmacology ; Body Fluids/drug effects ; COS Cells ; Cercopithecus aethiops ; Cyclin-Dependent Kinase 5/*antagonists & inhibitors ; Dietary Fats/pharmacology ; Disease Models, Animal ; Dose-Response Relationship, Drug ; HEK293 Cells ; Humans ; Hypoglycemic Agents/adverse effects/chemistry/*pharmacology ; Ligands ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Obese ; Models, Molecular ; Obesity/chemically induced/metabolism ; Osteogenesis/drug effects ; PPAR gamma/agonists/chemistry/*metabolism ; Phosphorylation/drug effects ; Phosphoserine/metabolism ; Thiazolidinediones/adverse effects/pharmacology ; Transcription, Genetic/drug effects ; Tumor Necrosis Factor-alpha/pharmacology ; Weight Gain/drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-05-30
    Description: Insulin constitutes a principal evolutionarily conserved hormonal axis for maintaining glucose homeostasis; dysregulation of this axis causes diabetes. PGC-1alpha (peroxisome-proliferator-activated receptor-gamma coactivator-1alpha) links insulin signalling to the expression of glucose and lipid metabolic genes. The histone acetyltransferase GCN5 (general control non-repressed protein 5) acetylates PGC-1alpha and suppresses its transcriptional activity, whereas sirtuin 1 deacetylates and activates PGC-1alpha. Although insulin is a mitogenic signal in proliferative cells, whether components of the cell cycle machinery contribute to its metabolic action is poorly understood. Here we report that in mice insulin activates cyclin D1-cyclin-dependent kinase 4 (Cdk4), which, in turn, increases GCN5 acetyltransferase activity and suppresses hepatic glucose production independently of cell cycle progression. Through a cell-based high-throughput chemical screen, we identify a Cdk4 inhibitor that potently decreases PGC-1alpha acetylation. Insulin/GSK-3beta (glycogen synthase kinase 3-beta) signalling induces cyclin D1 protein stability by sequestering cyclin D1 in the nucleus. In parallel, dietary amino acids increase hepatic cyclin D1 messenger RNA transcripts. Activated cyclin D1-Cdk4 kinase phosphorylates and activates GCN5, which then acetylates and inhibits PGC-1alpha activity on gluconeogenic genes. Loss of hepatic cyclin D1 results in increased gluconeogenesis and hyperglycaemia. In diabetic models, cyclin D1-Cdk4 is chronically elevated and refractory to fasting/feeding transitions; nevertheless further activation of this kinase normalizes glycaemia. Our findings show that insulin uses components of the cell cycle machinery in post-mitotic cells to control glucose homeostasis independently of cell division.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4076706/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4076706/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Yoonjin -- Dominy, John E -- Choi, Yoon Jong -- Jurczak, Michael -- Tolliday, Nicola -- Camporez, Joao Paulo -- Chim, Helen -- Lim, Ji-Hong -- Ruan, Hai-Bin -- Yang, Xiaoyong -- Vazquez, Francisca -- Sicinski, Piotr -- Shulman, Gerald I -- Puigserver, Pere -- DK059635/DK/NIDDK NIH HHS/ -- F32 DK083871/DK/NIDDK NIH HHS/ -- P30 DK034989/DK/NIDDK NIH HHS/ -- R01 CA083688/CA/NCI NIH HHS/ -- R01 CA108420/CA/NCI NIH HHS/ -- R01 DK069966/DK/NIDDK NIH HHS/ -- R01 DK089098/DK/NIDDK NIH HHS/ -- R01069966/PHS HHS/ -- R03 DA032468/DA/NIDA NIH HHS/ -- R03 MH092174/MH/NIMH NIH HHS/ -- R24 DK080261/DK/NIDDK NIH HHS/ -- R24DK080261-06/DK/NIDDK NIH HHS/ -- U24 DK059635/DK/NIDDK NIH HHS/ -- England -- Nature. 2014 Jun 26;510(7506):547-51. doi: 10.1038/nature13267. Epub 2014 May 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA [2] Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA [3] Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA. ; 1] Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA [2] Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA. ; 1] Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA [2] Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Yale's Mouse Metabolic Phenotyping Center and Departments of Internal Medicine and Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA. ; Chemical Biology Platform, Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, Massachusetts 02141, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24870244" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Amino Acids/pharmacology ; Animals ; *Cell Cycle ; Cell Line, Tumor ; Cell Nucleus/metabolism ; Cells, Cultured ; Cyclin D1/deficiency/genetics/*metabolism ; Cyclin-Dependent Kinase 4/antagonists & inhibitors/*metabolism ; Diabetes Mellitus/metabolism ; Enzyme Activation ; Fasting ; Gene Deletion ; Gluconeogenesis/genetics ; Glucose/*metabolism ; Glycogen Synthase Kinase 3/metabolism ; Hepatocytes/cytology/drug effects/metabolism ; Histone Acetyltransferases/metabolism ; Homeostasis ; Humans ; Hyperglycemia/metabolism ; Hyperinsulinism/metabolism ; Insulin/*metabolism ; Male ; Mice ; Phosphorylation ; RNA, Messenger/analysis/genetics ; *Signal Transduction ; Transcription Factors/metabolism ; Transcription, Genetic/drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-02-03
    Description: Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of metabolic syndrome and the leading cause of chronic liver disease in the Western world. Twenty per cent of NAFLD individuals develop chronic hepatic inflammation (non-alcoholic steatohepatitis, NASH) associated with cirrhosis, portal hypertension and hepatocellular carcinoma, yet the causes of progression from NAFLD to NASH remain obscure. Here, we show that the NLRP6 and NLRP3 inflammasomes and the effector protein IL-18 negatively regulate NAFLD/NASH progression, as well as multiple aspects of metabolic syndrome via modulation of the gut microbiota. Different mouse models reveal that inflammasome-deficiency-associated changes in the configuration of the gut microbiota are associated with exacerbated hepatic steatosis and inflammation through influx of TLR4 and TLR9 agonists into the portal circulation, leading to enhanced hepatic tumour-necrosis factor (TNF)-alpha expression that drives NASH progression. Furthermore, co-housing of inflammasome-deficient mice with wild-type mice results in exacerbation of hepatic steatosis and obesity. Thus, altered interactions between the gut microbiota and the host, produced by defective NLRP3 and NLRP6 inflammasome sensing, may govern the rate of progression of multiple metabolic syndrome-associated abnormalities, highlighting the central role of the microbiota in the pathogenesis of heretofore seemingly unrelated systemic auto-inflammatory and metabolic disorders.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3276682/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3276682/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Henao-Mejia, Jorge -- Elinav, Eran -- Jin, Chengcheng -- Hao, Liming -- Mehal, Wajahat Z -- Strowig, Till -- Thaiss, Christoph A -- Kau, Andrew L -- Eisenbarth, Stephanie C -- Jurczak, Michael J -- Camporez, Joao-Paulo -- Shulman, Gerald I -- Gordon, Jeffrey I -- Hoffman, Hal M -- Flavell, Richard A -- K08A1085038/PHS HHS/ -- P30 DK-45735/DK/NIDDK NIH HHS/ -- P30 DK045735/DK/NIDDK NIH HHS/ -- P30 DK045735-14/DK/NIDDK NIH HHS/ -- R01 DK-40936/DK/NIDDK NIH HHS/ -- R01 DK040936/DK/NIDDK NIH HHS/ -- R01DK076674-01/DK/NIDDK NIH HHS/ -- R24 DK-085638/DK/NIDDK NIH HHS/ -- T32HL007974/HL/NHLBI NIH HHS/ -- U24 DK-059635/DK/NIDDK NIH HHS/ -- U24 DK059635/DK/NIDDK NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Feb 1;482(7384):179-85. doi: 10.1038/nature10809.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22297845" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis Regulatory Proteins ; Carrier Proteins/metabolism ; Choline ; Colon/microbiology ; Cytoskeletal Proteins/deficiency ; Disease Models, Animal ; *Disease Progression ; Fatty Liver/genetics/*metabolism/*pathology ; Inflammasomes/*metabolism ; Inflammation/metabolism/pathology ; Interleukin-18/deficiency ; Male ; Metagenome ; Methionine/deficiency ; Mice ; Mice, Inbred C57BL ; Non-alcoholic Fatty Liver Disease ; Obesity/*metabolism/*pathology ; RNA, Ribosomal, 16S/genetics ; Receptors, Cell Surface/metabolism ; Toll-Like Receptor 4/deficiency/metabolism ; Toll-Like Receptor 9/deficiency/metabolism ; Tumor Necrosis Factor-alpha/deficiency/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-06-06
    Description: Non-alcoholic fatty liver disease and its downstream sequelae, hepatic insulin resistance and type 2 diabetes, are rapidly growing epidemics, which lead to increased morbidity and mortality rates, and soaring health-care costs. Developing interventions requires a comprehensive understanding of the mechanisms by which excess hepatic lipid develops and causes hepatic insulin resistance and type 2 diabetes. Proposed mechanisms implicate various lipid species, inflammatory signalling and other cellular modifications. Studies in mice and humans have elucidated a key role for hepatic diacylglycerol activation of protein kinase Cepsilon in triggering hepatic insulin resistance. Therapeutic approaches based on this mechanism could alleviate the related epidemics of non-alcoholic fatty liver disease and type 2 diabetes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4489847/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4489847/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Perry, Rachel J -- Samuel, Varman T -- Petersen, Kitt F -- Shulman, Gerald I -- I01 BX000901/BX/BLRD VA/ -- P30 DK-45735/DK/NIDDK NIH HHS/ -- P30 DK034989/DK/NIDDK NIH HHS/ -- R01 AG-23686/AG/NIA NIH HHS/ -- R01 DK-40936/DK/NIDDK NIH HHS/ -- R01 DK-49230/DK/NIDDK NIH HHS/ -- R01 DK040936/DK/NIDDK NIH HHS/ -- R24 DK-085836/DK/NIDDK NIH HHS/ -- T32-DK101019/DK/NIDDK NIH HHS/ -- U24 DK-059635/DK/NIDDK NIH HHS/ -- UL1 RR-024139/RR/NCRR NIH HHS/ -- England -- Nature. 2014 Jun 5;510(7503):84-91. doi: 10.1038/nature13478.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA. ; 1] Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA. [2] VA Connecticut Healthcare System West Haven, Connecticut 06516, USA. ; 1] Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA. [2] Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen DK-2200, Denmark. ; 1] Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA. [2] Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen DK-2200, Denmark. [3] Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA. [4] Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06535-8012, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24899308" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Diabetes Mellitus, Type 2/drug therapy/*metabolism ; Diglycerides/metabolism ; Fatty Liver/drug therapy/metabolism ; Humans ; Hyperglycemia/metabolism ; *Insulin Resistance ; *Lipid Metabolism ; *Lipids/biosynthesis ; Lipodystrophy/metabolism ; Lipogenesis ; Liver/*metabolism ; Muscle, Skeletal/metabolism ; Non-alcoholic Fatty Liver Disease ; Triglycerides/biosynthesis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-11-20
    Description: Obesity-linked insulin resistance is a major precursor to the development of type 2 diabetes. Previous work has shown that phosphorylation of PPARgamma (peroxisome proliferator-activated receptor gamma) at serine 273 by cyclin-dependent kinase 5 (Cdk5) stimulates diabetogenic gene expression in adipose tissues. Inhibition of this modification is a key therapeutic mechanism for anti-diabetic drugs that bind PPARgamma, such as the thiazolidinediones and PPARgamma partial agonists or non-agonists. For a better understanding of the importance of this obesity-linked PPARgamma phosphorylation, we created mice that ablated Cdk5 specifically in adipose tissues. These mice have both a paradoxical increase in PPARgamma phosphorylation at serine 273 and worsened insulin resistance. Unbiased proteomic studies show that extracellular signal-regulated kinase (ERK) kinases are activated in these knockout animals. Here we show that ERK directly phosphorylates serine 273 of PPARgamma in a robust manner and that Cdk5 suppresses ERKs through direct action on a novel site in MAP kinase/ERK kinase (MEK). Importantly, pharmacological inhibition of MEK and ERK markedly improves insulin resistance in both obese wild-type and ob/ob mice, and also completely reverses the deleterious effects of the Cdk5 ablation. These data show that an ERK/Cdk5 axis controls PPARgamma function and suggest that MEK/ERK inhibitors may hold promise for the treatment of type 2 diabetes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4297557/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4297557/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Banks, Alexander S -- McAllister, Fiona E -- Camporez, Joao Paulo G -- Zushin, Peter-James H -- Jurczak, Michael J -- Laznik-Bogoslavski, Dina -- Shulman, Gerald I -- Gygi, Steven P -- Spiegelman, Bruce M -- DK31405/DK/NIDDK NIH HHS/ -- DK93638/DK/NIDDK NIH HHS/ -- K01 DK093638/DK/NIDDK NIH HHS/ -- R01 DK031405/DK/NIDDK NIH HHS/ -- England -- Nature. 2015 Jan 15;517(7534):391-5. doi: 10.1038/nature13887. Epub 2014 Nov 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA. ; Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Yale Mouse Metabolic Phenotyping Center and Departments of Internal Medicine and Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA. ; Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA. ; 1] Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25409143" target="_blank"〉PubMed〈/a〉
    Keywords: Adipocytes/enzymology/metabolism ; Adipose Tissue/cytology/enzymology/metabolism ; Animals ; Cell Proliferation ; Cells, Cultured ; Cyclin-Dependent Kinase 5/deficiency/*metabolism ; Diabetes Mellitus/*metabolism ; Diet, High-Fat ; Extracellular Signal-Regulated MAP Kinases/*metabolism ; Humans ; Insulin Resistance ; MAP Kinase Kinase 2/antagonists & inhibitors/metabolism ; MAP Kinase Signaling System ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Obese ; PPAR gamma/chemistry/*metabolism ; Phosphorylation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-05-23
    Description: Metformin is considered to be one of the most effective therapeutics for treating type 2 diabetes because it specifically reduces hepatic gluconeogenesis without increasing insulin secretion, inducing weight gain or posing a risk of hypoglycaemia. For over half a century, this agent has been prescribed to patients with type 2 diabetes worldwide, yet the underlying mechanism by which metformin inhibits hepatic gluconeogenesis remains unknown. Here we show that metformin non-competitively inhibits the redox shuttle enzyme mitochondrial glycerophosphate dehydrogenase, resulting in an altered hepatocellular redox state, reduced conversion of lactate and glycerol to glucose, and decreased hepatic gluconeogenesis. Acute and chronic low-dose metformin treatment effectively reduced endogenous glucose production, while increasing cytosolic redox and decreasing mitochondrial redox states. Antisense oligonucleotide knockdown of hepatic mitochondrial glycerophosphate dehydrogenase in rats resulted in a phenotype akin to chronic metformin treatment, and abrogated metformin-mediated increases in cytosolic redox state, decreases in plasma glucose concentrations, and inhibition of endogenous glucose production. These findings were replicated in whole-body mitochondrial glycerophosphate dehydrogenase knockout mice. These results have significant implications for understanding the mechanism of metformin's blood glucose lowering effects and provide a new therapeutic target for type 2 diabetes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4074244/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4074244/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Madiraju, Anila K -- Erion, Derek M -- Rahimi, Yasmeen -- Zhang, Xian-Man -- Braddock, Demetrios T -- Albright, Ronald A -- Prigaro, Brett J -- Wood, John L -- Bhanot, Sanjay -- MacDonald, Michael J -- Jurczak, Michael J -- Camporez, Joao-Paulo -- Lee, Hui-Young -- Cline, Gary W -- Samuel, Varman T -- Kibbey, Richard G -- Shulman, Gerald I -- K01 DK-099402/DK/NIDDK NIH HHS/ -- P30 DK-034989/DK/NIDDK NIH HHS/ -- P30 DK-45735/DK/NIDDK NIH HHS/ -- P30 DK034989/DK/NIDDK NIH HHS/ -- P30 DK045735/DK/NIDDK NIH HHS/ -- R01 DK-092606/DK/NIDDK NIH HHS/ -- R01 DK-28348/DK/NIDDK NIH HHS/ -- R01 DK-40936/DK/NIDDK NIH HHS/ -- R01 DK028348/DK/NIDDK NIH HHS/ -- R01 DK040936/DK/NIDDK NIH HHS/ -- R01 DK092606/DK/NIDDK NIH HHS/ -- R24 DK-085638/DK/NIDDK NIH HHS/ -- R24 DK085638/DK/NIDDK NIH HHS/ -- U24 DK-059635/DK/NIDDK NIH HHS/ -- U24 DK059635/DK/NIDDK NIH HHS/ -- UL1 TR000142/TR/NCATS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Jun 26;510(7506):542-6. doi: 10.1038/nature13270. Epub 2014 May 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA [2] Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA [3] Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06520, USA. ; Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA. ; Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06520, USA. ; Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA. ; Cancer Prevention Research Institute of Texas Scholar, Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, USA. ; Isis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, California 92010, USA. ; University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA, 53706. ; 1] Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA [2] Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA. ; 1] Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA [2] Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA [3] Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06520, USA [4] Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark, DK-2200.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24847880" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blood Glucose/analysis/biosynthesis ; Cells, Cultured ; Diabetes Mellitus, Type 2/drug therapy/enzymology/metabolism ; Gluconeogenesis/*drug effects ; Glycerolphosphate Dehydrogenase/*antagonists & ; inhibitors/deficiency/genetics/metabolism ; Humans ; Hypoglycemic Agents/pharmacology ; Insulin/secretion ; Lactic Acid/metabolism ; Liver/drug effects/metabolism ; Male ; Metformin/*pharmacology ; Mice, Knockout ; Mitochondria/*enzymology ; Oxidation-Reduction/drug effects ; Rats ; Rats, Sprague-Dawley
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...