ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-11-27
    Description: FocA is a representative member of the formate-nitrite transporter family, which transports short-chain acids in bacteria, archaea, fungi, algae and parasites. The structure and transport mechanism of the formate-nitrite transporter family remain unknown. Here we report the crystal structure of Escherichia coli FocA at 2.25 A resolution. FocA forms a symmetric pentamer, with each protomer consisting of six transmembrane segments. Despite a lack of sequence homology, the overall structure of the FocA protomer closely resembles that of aquaporin and strongly argues that FocA is a channel, rather than a transporter. Structural analysis identifies potentially important channel residues, defines the channel path and reveals two constriction sites. Unlike aquaporin, FocA is impermeable to water but allows the passage of formate. A structural and biochemical investigation provides mechanistic insights into the channel activity of FocA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Yi -- Huang, Yongjian -- Wang, Jiawei -- Cheng, Chao -- Huang, Weijiao -- Lu, Peilong -- Xu, Ya-Nan -- Wang, Pengye -- Yan, Nieng -- Shi, Yigong -- England -- Nature. 2009 Nov 26;462(7272):467-72. doi: 10.1038/nature08610.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ministry of Education Protein Science Laboratory, Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19940917" target="_blank"〉PubMed〈/a〉
    Keywords: Aquaporins/*chemistry/metabolism ; Crystallography, X-Ray ; Escherichia coli/chemistry/genetics/metabolism ; Escherichia coli Proteins/*chemistry/genetics/metabolism ; Formates/metabolism ; Liposomes/chemistry/metabolism ; Membrane Transport Proteins/*chemistry/genetics/metabolism ; Models, Molecular ; Molecular Mimicry ; Mutation ; Permeability ; Protein Structure, Quaternary ; Structure-Activity Relationship ; Water/analysis/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-12-04
    Description: T-helper type 17 (TH17) cells that produce the cytokines interleukin-17A (IL-17A) and IL-17F are implicated in the pathogenesis of several autoimmune diseases. The differentiation of TH17 cells is regulated by transcription factors such as RORgammat, but post-translational mechanisms preventing the rampant production of pro-inflammatory IL-17A have received less attention. Here we show that the deubiquitylating enzyme DUBA is a negative regulator of IL-17A production in T cells. Mice with DUBA-deficient T cells developed exacerbated inflammation in the small intestine after challenge with anti-CD3 antibodies. DUBA interacted with the ubiquitin ligase UBR5, which suppressed DUBA abundance in naive T cells. DUBA accumulated in activated T cells and stabilized UBR5, which then ubiquitylated RORgammat in response to TGF-beta signalling. Our data identify DUBA as a cell-intrinsic suppressor of IL-17 production.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rutz, Sascha -- Kayagaki, Nobuhiko -- Phung, Qui T -- Eidenschenk, Celine -- Noubade, Rajkumar -- Wang, Xiaoting -- Lesch, Justin -- Lu, Rongze -- Newton, Kim -- Huang, Oscar W -- Cochran, Andrea G -- Vasser, Mark -- Fauber, Benjamin P -- DeVoss, Jason -- Webster, Joshua -- Diehl, Lauri -- Modrusan, Zora -- Kirkpatrick, Donald S -- Lill, Jennie R -- Ouyang, Wenjun -- Dixit, Vishva M -- England -- Nature. 2015 Feb 19;518(7539):417-21. doi: 10.1038/nature13979. Epub 2014 Dec 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, Genentech, 1 DNA Way, South San Francisco, California 94080, USA. ; Department of Physiological Chemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, USA. ; Department of Protein Chemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, USA. ; Department of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, USA. ; Discovery Chemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, USA. ; Department of Pathology, Genentech, 1 DNA Way, South San Francisco, California 94080, USA. ; Department of Molecular Biology, Genentech, 1 DNA Way, South San Francisco, California 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25470037" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Enzyme Stability ; Female ; Inflammation/genetics/pathology ; Interleukin-17/*biosynthesis ; Intestine, Small/metabolism/pathology ; Lymphocyte Activation ; Mice ; Mice, Inbred C57BL ; Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism ; Proteasome Endopeptidase Complex/metabolism ; Protein Binding ; *Protein Biosynthesis ; Signal Transduction ; Substrate Specificity ; Th17 Cells/*metabolism ; Transforming Growth Factor beta/metabolism ; Ubiquitin-Protein Ligases/metabolism ; Ubiquitin-Specific Proteases/biosynthesis/deficiency/genetics/*metabolism ; Ubiquitination
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-08-08
    Description: micro-Opioid receptors (microORs) are G-protein-coupled receptors that are activated by a structurally diverse spectrum of natural and synthetic agonists including endogenous endorphin peptides, morphine and methadone. The recent structures of the muOR in inactive and agonist-induced active states (Huang et al., ref. 2) provide snapshots of the receptor at the beginning and end of a signalling event, but little is known about the dynamic sequence of events that span these two states. Here we use solution-state NMR to examine the process of muOR activation using a purified receptor (mouse sequence) preparation in an amphiphile membrane-like environment. We obtain spectra of the muOR in the absence of ligand, and in the presence of the high-affinity agonist BU72 alone, or with BU72 and a G protein mimetic nanobody. Our results show that conformational changes in transmembrane segments 5 and 6 (TM5 and TM6), which are required for the full engagement of a G protein, are almost completely dependent on the presence of both the agonist and the G protein mimetic nanobody, revealing a weak allosteric coupling between the agonist-binding pocket and the G-protein-coupling interface (TM5 and TM6), similar to that observed for the beta2-adrenergic receptor. Unexpectedly, in the presence of agonist alone, we find larger spectral changes involving intracellular loop 1 and helix 8 compared to changes in TM5 and TM6. These results suggest that one or both of these domains may play a role in the initial interaction with the G protein, and that TM5 and TM6 are only engaged later in the process of complex formation. The initial interactions between the G protein and intracellular loop 1 and/or helix 8 may be involved in G-protein coupling specificity, as has been suggested for other family A G-protein-coupled receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sounier, Remy -- Mas, Camille -- Steyaert, Jan -- Laeremans, Toon -- Manglik, Aashish -- Huang, Weijiao -- Kobilka, Brian K -- Demene, Helene -- Granier, Sebastien -- DA036246/DA/NIDA NIH HHS/ -- R37 DA036246/DA/NIDA NIH HHS/ -- T32 GM008294/GM/NIGMS NIH HHS/ -- England -- Nature. 2015 Aug 20;524(7565):375-8. doi: 10.1038/nature14680. Epub 2015 Aug 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut de Genomique Fonctionnelle, CNRS UMR-5203 INSERM U1191, University of Montpellier, F-34000 Montpellier, France. ; Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium. ; Structural Biology Research Center, VIB, Pleinlaan 2, B-1050 Brussels, Belgium. ; Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, USA. ; Centre de Biochimie Structurale, CNRS UMR 5048-INSERM 1054- University of Montpellier, 29 rue de Navacelles, 34090 Montpellier Cedex, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26245377" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Animals ; Binding Sites ; Heterotrimeric GTP-Binding Proteins/metabolism ; Lysine/metabolism ; Mice ; Models, Molecular ; Morphinans/chemistry/metabolism/pharmacology ; Nuclear Magnetic Resonance, Biomolecular ; Protein Binding ; Protein Conformation/drug effects ; Pyrroles/chemistry/metabolism/pharmacology ; Receptors, Adrenergic, beta-2/chemistry ; Receptors, Opioid, mu/*chemistry/*metabolism ; Single-Chain Antibodies/chemistry/metabolism/pharmacology ; Structure-Activity Relationship ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-12-18
    Description: T helper 17 (TH17) lymphocytes protect mucosal barriers from infections, but also contribute to multiple chronic inflammatory diseases. Their differentiation is controlled by RORgammat, a ligand-regulated nuclear receptor. Here we identify the RNA helicase DEAD-box protein 5 (DDX5) as a RORgammat partner that coordinates transcription of selective TH17 genes, and is required for TH17-mediated inflammatory pathologies. Surprisingly, the ability of DDX5 to interact with RORgammat and coactivate its targets depends on intrinsic RNA helicase activity and binding of a conserved nuclear long noncoding RNA (lncRNA), Rmrp, which is mutated in patients with cartilage-hair hypoplasia. A targeted Rmrp gene mutation in mice, corresponding to a gene mutation in cartilage-hair hypoplasia patients, altered lncRNA chromatin occupancy, and reduced the DDX5-RORgammat interaction and RORgammat target gene transcription. Elucidation of the link between Rmrp and the DDX5-RORgammat complex reveals a role for RNA helicases and lncRNAs in tissue-specific transcriptional regulation, and provides new opportunities for therapeutic intervention in TH17-dependent diseases.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4762670/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4762670/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, Wendy -- Thomas, Benjamin -- Flynn, Ryan A -- Gavzy, Samuel J -- Wu, Lin -- Kim, Sangwon V -- Hall, Jason A -- Miraldi, Emily R -- Ng, Charles P -- Rigo, Frank W -- Meadows, Sarah -- Montoya, Nina R -- Herrera, Natalia G -- Domingos, Ana I -- Rastinejad, Fraydoon -- Myers, Richard M -- Fuller-Pace, Frances V -- Bonneau, Richard -- Chang, Howard Y -- Acuto, Oreste -- Littman, Dan R -- 1F30CA189514-01/CA/NCI NIH HHS/ -- F30 CA189514/CA/NCI NIH HHS/ -- P50 HG007735/HG/NHGRI NIH HHS/ -- P50-HG007735/HG/NHGRI NIH HHS/ -- R01 AI080885/AI/NIAID NIH HHS/ -- R01 AI121436/AI/NIAID NIH HHS/ -- R01 DK103358/DK/NIDDK NIH HHS/ -- R01 HG004361/HG/NHGRI NIH HHS/ -- R01AI080885/AI/NIAID NIH HHS/ -- R01DK103358/DK/NIDDK NIH HHS/ -- R01HG004361/HG/NHGRI NIH HHS/ -- T32 AI100853/AI/NIAID NIH HHS/ -- T32 CA009161/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Dec 24;528(7583):517-22. doi: 10.1038/nature16193. Epub 2015 Dec 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, New York 10016, USA. ; Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK. ; Center for Personal Dynamic Regulomes, Stanford University, Stanford, California 94305, USA. ; Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York 10003, USA. ; Courant Institute of Mathematical Sciences, Computer Science Department, New York University, New York, New York 10012, USA. ; Simons Center for Data Analysis, Simons Foundation, New York, New York 10010, USA. ; Isis Pharmaceuticals, Carlsbad, California 92010, USA. ; HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA. ; Instituto Gulbenkian de Ciencia, Oeiras 2780-156, Portugal. ; Integrative Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida 32827, USA. ; Division of Cancer Research, University of Dundee, Dundee DD1 9SY, UK. ; Howard Hughes Medical Institute, New York University School of Medicine, New York, New York 10016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26675721" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chromatin/genetics/metabolism ; DEAD-box RNA Helicases/genetics/*metabolism ; Female ; Gene Expression Regulation/genetics ; Hair/abnormalities ; Hirschsprung Disease/genetics ; Humans ; Immunologic Deficiency Syndromes/genetics ; Inflammation/immunology/pathology ; Male ; Mice ; Mice, Inbred C57BL ; Mutation/genetics ; Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism ; Organ Specificity ; Osteochondrodysplasias/congenital/genetics ; Protein Binding ; RNA, Long Noncoding/genetics/*metabolism ; Th17 Cells/*immunology/*metabolism ; Transcription, Genetic/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-08-08
    Description: Activation of the mu-opioid receptor (muOR) is responsible for the efficacy of the most effective analgesics. To shed light on the structural basis for muOR activation, here we report a 2.1 A X-ray crystal structure of the murine muOR bound to the morphinan agonist BU72 and a G protein mimetic camelid antibody fragment. The BU72-stabilized changes in the muOR binding pocket are subtle and differ from those observed for agonist-bound structures of the beta2-adrenergic receptor (beta2AR) and the M2 muscarinic receptor. Comparison with active beta2AR reveals a common rearrangement in the packing of three conserved amino acids in the core of the muOR, and molecular dynamics simulations illustrate how the ligand-binding pocket is conformationally linked to this conserved triad. Additionally, an extensive polar network between the ligand-binding pocket and the cytoplasmic domains appears to play a similar role in signal propagation for all three G-protein-coupled receptors.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4639397/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4639397/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, Weijiao -- Manglik, Aashish -- Venkatakrishnan, A J -- Laeremans, Toon -- Feinberg, Evan N -- Sanborn, Adrian L -- Kato, Hideaki E -- Livingston, Kathryn E -- Thorsen, Thor S -- Kling, Ralf C -- Granier, Sebastien -- Gmeiner, Peter -- Husbands, Stephen M -- Traynor, John R -- Weis, William I -- Steyaert, Jan -- Dror, Ron O -- Kobilka, Brian K -- R01GM083118/GM/NIGMS NIH HHS/ -- R37 DA036246/DA/NIDA NIH HHS/ -- R37DA036246/DA/NIDA NIH HHS/ -- T32 GM008294/GM/NIGMS NIH HHS/ -- England -- Nature. 2015 Aug 20;524(7565):315-21. doi: 10.1038/nature14886. Epub 2015 Aug 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, California 94305, USA. ; Department of Computer Science, Stanford University, 318 Campus Drive, Stanford, California 94305, USA. ; Institute for Computational and Mathematical Engineering, Stanford University, 475 Via Ortega, Stanford, California 94305, USA. ; Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium. ; Structural Biology Research Center, VIB, Pleinlaan 2, B-1050 Brussels, Belgium. ; Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, USA. ; Department of Chemistry and Pharmacy, Friedrich Alexander University, Schuhstrasse 19, 91052 Erlangen, Germany. ; Institut de Genomique Fonctionnelle, CNRS UMR-5203 INSERM U1191, University of Montpellier, F-34000 Montpellier, France. ; Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK. ; Department of Structural Biology, Stanford University School of Medicine, 299 Campus Drive, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26245379" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Animals ; Binding Sites ; Crystallography, X-Ray ; Heterotrimeric GTP-Binding Proteins/chemistry/metabolism ; Mice ; Models, Molecular ; Molecular Dynamics Simulation ; Morphinans/chemistry/metabolism/pharmacology ; Protein Stability/drug effects ; Protein Structure, Tertiary ; Pyrroles/chemistry/metabolism/pharmacology ; Receptor, Muscarinic M2/chemistry ; Receptors, Adrenergic, beta-2/chemistry ; Receptors, Opioid, mu/agonists/*chemistry/*metabolism ; Single-Chain Antibodies/chemistry/pharmacology ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-09-21
    Description: The Pacific oyster Crassostrea gigas belongs to one of the most species-rich but genomically poorly explored phyla, the Mollusca. Here we report the sequencing and assembly of the oyster genome using short reads and a fosmid-pooling strategy, along with transcriptomes of development and stress response and the proteome of the shell. The oyster genome is highly polymorphic and rich in repetitive sequences, with some transposable elements still actively shaping variation. Transcriptome studies reveal an extensive set of genes responding to environmental stress. The expansion of genes coding for heat shock protein 70 and inhibitors of apoptosis is probably central to the oyster's adaptation to sessile life in the highly stressful intertidal zone. Our analyses also show that shell formation in molluscs is more complex than currently understood and involves extensive participation of cells and their exosomes. The oyster genome sequence fills a void in our understanding of the Lophotrochozoa.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Guofan -- Fang, Xiaodong -- Guo, Ximing -- Li, Li -- Luo, Ruibang -- Xu, Fei -- Yang, Pengcheng -- Zhang, Linlin -- Wang, Xiaotong -- Qi, Haigang -- Xiong, Zhiqiang -- Que, Huayong -- Xie, Yinlong -- Holland, Peter W H -- Paps, Jordi -- Zhu, Yabing -- Wu, Fucun -- Chen, Yuanxin -- Wang, Jiafeng -- Peng, Chunfang -- Meng, Jie -- Yang, Lan -- Liu, Jun -- Wen, Bo -- Zhang, Na -- Huang, Zhiyong -- Zhu, Qihui -- Feng, Yue -- Mount, Andrew -- Hedgecock, Dennis -- Xu, Zhe -- Liu, Yunjie -- Domazet-Loso, Tomislav -- Du, Yishuai -- Sun, Xiaoqing -- Zhang, Shoudu -- Liu, Binghang -- Cheng, Peizhou -- Jiang, Xuanting -- Li, Juan -- Fan, Dingding -- Wang, Wei -- Fu, Wenjing -- Wang, Tong -- Wang, Bo -- Zhang, Jibiao -- Peng, Zhiyu -- Li, Yingxiang -- Li, Na -- Wang, Jinpeng -- Chen, Maoshan -- He, Yan -- Tan, Fengji -- Song, Xiaorui -- Zheng, Qiumei -- Huang, Ronglian -- Yang, Hailong -- Du, Xuedi -- Chen, Li -- Yang, Mei -- Gaffney, Patrick M -- Wang, Shan -- Luo, Longhai -- She, Zhicai -- Ming, Yao -- Huang, Wen -- Zhang, Shu -- Huang, Baoyu -- Zhang, Yong -- Qu, Tao -- Ni, Peixiang -- Miao, Guoying -- Wang, Junyi -- Wang, Qiang -- Steinberg, Christian E W -- Wang, Haiyan -- Li, Ning -- Qian, Lumin -- Zhang, Guojie -- Li, Yingrui -- Yang, Huanming -- Liu, Xiao -- Wang, Jian -- Yin, Ye -- Wang, Jun -- 268513/European Research Council/International -- England -- Nature. 2012 Oct 4;490(7418):49-54. doi: 10.1038/nature11413. Epub 2012 Sep 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22992520" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological/*genetics ; Animal Shells/chemistry/*growth & development ; Animals ; Apoptosis Regulatory Proteins/genetics ; Crassostrea/*genetics ; DNA Transposable Elements/genetics ; Evolution, Molecular ; Female ; Gene Expression Regulation, Developmental/genetics ; Genes, Homeobox/genetics ; Genome/*genetics ; Genomics ; HSP70 Heat-Shock Proteins/genetics ; Humans ; Larva/genetics/growth & development ; Mass Spectrometry ; Molecular Sequence Annotation ; Molecular Sequence Data ; Polymorphism, Genetic/genetics ; Repetitive Sequences, Nucleic Acid/genetics ; Sequence Analysis, DNA ; Stress, Physiological/genetics/*physiology ; Transcriptome/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-09-13
    Description: Social behaviours in species as diverse as honey bees and humans promote group survival but often come at some cost to the individual. Although reinforcement of adaptive social interactions is ostensibly required for the evolutionary persistence of these behaviours, the neural mechanisms by which social reward is encoded by the brain are largely unknown. Here we demonstrate that in mice oxytocin acts as a social reinforcement signal within the nucleus accumbens core, where it elicits a presynaptically expressed long-term depression of excitatory synaptic transmission in medium spiny neurons. Although the nucleus accumbens receives oxytocin-receptor-containing inputs from several brain regions, genetic deletion of these receptors specifically from dorsal raphe nucleus, which provides serotonergic (5-hydroxytryptamine; 5-HT) innervation to the nucleus accumbens, abolishes the reinforcing properties of social interaction. Furthermore, oxytocin-induced synaptic plasticity requires activation of nucleus accumbens 5-HT1B receptors, the blockade of which prevents social reward. These results demonstrate that the rewarding properties of social interaction in mice require the coordinated activity of oxytocin and 5-HT in the nucleus accumbens, a mechanistic insight with implications for understanding the pathogenesis of social dysfunction in neuropsychiatric disorders such as autism.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4091761/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4091761/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dolen, Gul -- Darvishzadeh, Ayeh -- Huang, Kee Wui -- Malenka, Robert C -- NS069375/NS/NINDS NIH HHS/ -- P01 DA008227/DA/NIDA NIH HHS/ -- P30 NS069375/NS/NINDS NIH HHS/ -- R21 DA032955/DA/NIDA NIH HHS/ -- England -- Nature. 2013 Sep 12;501(7466):179-84. doi: 10.1038/nature12518.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 265 Campus Drive, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24025838" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Autistic Disorder/physiopathology ; Conditioning (Psychology) ; Female ; Gene Deletion ; Long-Term Synaptic Depression ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Mice, Transgenic ; Neurons/metabolism ; Nucleus Accumbens/cytology/*metabolism ; Oxytocin/deficiency/genetics/*metabolism ; Presynaptic Terminals/metabolism ; Raphe Nuclei/metabolism ; Receptor, Serotonin, 5-HT1B/metabolism ; Receptors, Oxytocin/deficiency/genetics/metabolism ; *Reward ; Serotonin/*metabolism ; *Social Behavior ; Synaptic Transmission
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-05-23
    Description: 〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4684952/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4684952/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Jieqi -- Wegener, Jan Eike -- Huang, Teng-Wei -- Sripathy, Smitha -- De Jesus-Cortes, Hector -- Xu, Pin -- Tran, Stephanie -- Knobbe, Whitney -- Leko, Vid -- Britt, Jeremiah -- Starwalt, Ruth -- McDaniel, Latisha -- Ward, Chris S -- Parra, Diana -- Newcomb, Benjamin -- Lao, Uyen -- Nourigat, Cynthia -- Flowers, David A -- Cullen, Sean -- Jorstad, Nikolas L -- Yang, Yue -- Glaskova, Lena -- Vingeau, Sebastien -- Kozlitina, Julia -- Yetman, Michael J -- Jankowsky, Joanna L -- Reichardt, Sybille D -- Reichardt, Holger M -- Gartner, Jutta -- Bartolomei, Marisa S -- Fang, Min -- Loeb, Keith -- Keene, C Dirk -- Bernstein, Irwin -- Goodell, Margaret -- Brat, Daniel J -- Huppke, Peter -- Neul, Jeffrey L -- Bedalov, Antonio -- Pieper, Andrew A -- P30 AI036211/AI/NIAID NIH HHS/ -- P30 CA138292/CA/NCI NIH HHS/ -- P30 ES005605/ES/NIEHS NIH HHS/ -- P30 HD018655/HD/NICHD NIH HHS/ -- P30 HD024064/HD/NICHD NIH HHS/ -- R01 AG031892/AG/NIA NIH HHS/ -- R01 HD062553/HD/NICHD NIH HHS/ -- S10 RR024574/RR/NCRR NIH HHS/ -- T32 AG000183/AG/NIA NIH HHS/ -- T32 HL092332/HL/NHLBI NIH HHS/ -- U01 HL100395/HL/NHLBI NIH HHS/ -- U54 HD083092/HD/NICHD NIH HHS/ -- England -- Nature. 2015 May 21;521(7552):E1-4. doi: 10.1038/nature14444.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA. ; Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, University Medical Center Gottingen, Robert-Koch-Strasse 40, 37075 Gottingen, Germany. ; 1] Jan and Dan Duncan Neurological Research Institute (Texas Children's Hospital), Baylor College of Medicine, Houston, Texas 77030, USA [2] Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, USA. ; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA. ; 1] Graduate Program of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA [2] Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA. ; Graduate Program of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA. ; Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA. ; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA. ; Jan and Dan Duncan Neurological Research Institute (Texas Children's Hospital), Baylor College of Medicine, Houston, Texas 77030, USA. ; Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, USA. ; Department of Pathology, University of Washington School of Medicine, Seattle, Washington 98195, USA. ; Department of Cell &Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA. ; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA. ; Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA. ; Institute for Cellular and Molecular Immunology; University of Gottingen Medical School, Humboldtallee 34, 37073 Gottingen, Germany. ; 1] Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA [2] Department of Pathology, University of Washington School of Medicine, Seattle, Washington 98195, USA. ; 1] Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, USA [2] Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA [3] Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas 77030, USA [4] Stem Cell and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas 77030, USA [5] Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA [6] Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas 77030, USA. ; Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA. ; 1] Jan and Dan Duncan Neurological Research Institute (Texas Children's Hospital), Baylor College of Medicine, Houston, Texas 77030, USA [2] Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, USA [3] Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA [4] Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA [5] Stem Cell and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas 77030, USA [6] Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA. ; 1] Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA [2] Department of Medicine, University of Washington School of Medicine, Seattle, Washington 98105, USA. ; 1] Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA [2] Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA [3] Veterans Affairs, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA [4] Weill Cornell Autism Research Program, Weill Cornell Medical College, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25993969" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Disease Progression ; Female ; Male ; Methyl-CpG-Binding Protein 2/*metabolism ; Microglia/*cytology/*physiology ; Rett Syndrome/*pathology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...