ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Genomics  (17)
  • Time Factors  (17)
  • Nature Publishing Group (NPG)  (34)
  • American Geophysical Union (AGU)
  • American Institute of Physics
  • National Academy of Sciences
  • Wiley
Collection
Publisher
Years
  • 1
    Publication Date: 2010-04-16
    Description: Massively parallel DNA sequencing technologies provide an unprecedented ability to screen entire genomes for genetic changes associated with tumour progression. Here we describe the genomic analyses of four DNA samples from an African-American patient with basal-like breast cancer: peripheral blood, the primary tumour, a brain metastasis and a xenograft derived from the primary tumour. The metastasis contained two de novo mutations and a large deletion not present in the primary tumour, and was significantly enriched for 20 shared mutations. The xenograft retained all primary tumour mutations and displayed a mutation enrichment pattern that resembled the metastasis. Two overlapping large deletions, encompassing CTNNA1, were present in all three tumour samples. The differential mutation frequencies and structural variation patterns in metastasis and xenograft compared with the primary tumour indicate that secondary tumours may arise from a minority of cells within the primary tumour.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2872544/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2872544/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ding, Li -- Ellis, Matthew J -- Li, Shunqiang -- Larson, David E -- Chen, Ken -- Wallis, John W -- Harris, Christopher C -- McLellan, Michael D -- Fulton, Robert S -- Fulton, Lucinda L -- Abbott, Rachel M -- Hoog, Jeremy -- Dooling, David J -- Koboldt, Daniel C -- Schmidt, Heather -- Kalicki, Joelle -- Zhang, Qunyuan -- Chen, Lei -- Lin, Ling -- Wendl, Michael C -- McMichael, Joshua F -- Magrini, Vincent J -- Cook, Lisa -- McGrath, Sean D -- Vickery, Tammi L -- Appelbaum, Elizabeth -- Deschryver, Katherine -- Davies, Sherri -- Guintoli, Therese -- Lin, Li -- Crowder, Robert -- Tao, Yu -- Snider, Jacqueline E -- Smith, Scott M -- Dukes, Adam F -- Sanderson, Gabriel E -- Pohl, Craig S -- Delehaunty, Kim D -- Fronick, Catrina C -- Pape, Kimberley A -- Reed, Jerry S -- Robinson, Jody S -- Hodges, Jennifer S -- Schierding, William -- Dees, Nathan D -- Shen, Dong -- Locke, Devin P -- Wiechert, Madeline E -- Eldred, James M -- Peck, Josh B -- Oberkfell, Benjamin J -- Lolofie, Justin T -- Du, Feiyu -- Hawkins, Amy E -- O'Laughlin, Michelle D -- Bernard, Kelly E -- Cunningham, Mark -- Elliott, Glendoria -- Mason, Mark D -- Thompson, Dominic M Jr -- Ivanovich, Jennifer L -- Goodfellow, Paul J -- Perou, Charles M -- Weinstock, George M -- Aft, Rebecca -- Watson, Mark -- Ley, Timothy J -- Wilson, Richard K -- Mardis, Elaine R -- 1 U01 CA114722-01/CA/NCI NIH HHS/ -- 3P50 CA68438/CA/NCI NIH HHS/ -- U01 CA114722/CA/NCI NIH HHS/ -- U10 CA076001/CA/NCI NIH HHS/ -- U54 HG003079/HG/NHGRI NIH HHS/ -- U54 HG003079-07/HG/NHGRI NIH HHS/ -- UL1 RR024992/RR/NCRR NIH HHS/ -- UL1 TR000448/TR/NCATS NIH HHS/ -- England -- Nature. 2010 Apr 15;464(7291):999-1005. doi: 10.1038/nature08989.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Genome Center at Washington University, St Louis, Missouri 63108, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20393555" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Brain Neoplasms/*genetics/*secondary ; Breast Neoplasms/*genetics/pathology ; DNA Copy Number Variations/genetics ; DNA Mutational Analysis ; Disease Progression ; Female ; Gene Frequency/genetics ; Genome, Human/*genetics ; Genomics ; Humans ; Mutation/*genetics ; *Neoplasm Transplantation ; Translocation, Genetic/genetics ; Transplantation, Heterologous ; alpha Catenin/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-11-07
    Description: Acute myeloid leukaemia is a highly malignant haematopoietic tumour that affects about 13,000 adults in the United States each year. The treatment of this disease has changed little in the past two decades, because most of the genetic events that initiate the disease remain undiscovered. Whole-genome sequencing is now possible at a reasonable cost and timeframe to use this approach for the unbiased discovery of tumour-specific somatic mutations that alter the protein-coding genes. Here we present the results obtained from sequencing a typical acute myeloid leukaemia genome, and its matched normal counterpart obtained from the same patient's skin. We discovered ten genes with acquired mutations; two were previously described mutations that are thought to contribute to tumour progression, and eight were new mutations present in virtually all tumour cells at presentation and relapse, the function of which is not yet known. Our study establishes whole-genome sequencing as an unbiased method for discovering cancer-initiating mutations in previously unidentified genes that may respond to targeted therapies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2603574/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2603574/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ley, Timothy J -- Mardis, Elaine R -- Ding, Li -- Fulton, Bob -- McLellan, Michael D -- Chen, Ken -- Dooling, David -- Dunford-Shore, Brian H -- McGrath, Sean -- Hickenbotham, Matthew -- Cook, Lisa -- Abbott, Rachel -- Larson, David E -- Koboldt, Dan C -- Pohl, Craig -- Smith, Scott -- Hawkins, Amy -- Abbott, Scott -- Locke, Devin -- Hillier, Ladeana W -- Miner, Tracie -- Fulton, Lucinda -- Magrini, Vincent -- Wylie, Todd -- Glasscock, Jarret -- Conyers, Joshua -- Sander, Nathan -- Shi, Xiaoqi -- Osborne, John R -- Minx, Patrick -- Gordon, David -- Chinwalla, Asif -- Zhao, Yu -- Ries, Rhonda E -- Payton, Jacqueline E -- Westervelt, Peter -- Tomasson, Michael H -- Watson, Mark -- Baty, Jack -- Ivanovich, Jennifer -- Heath, Sharon -- Shannon, William D -- Nagarajan, Rakesh -- Walter, Matthew J -- Link, Daniel C -- Graubert, Timothy A -- DiPersio, John F -- Wilson, Richard K -- U54 HG002042/HG/NHGRI NIH HHS/ -- U54 HG002042-05/HG/NHGRI NIH HHS/ -- England -- Nature. 2008 Nov 6;456(7218):66-72. doi: 10.1038/nature07485.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63108, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18987736" target="_blank"〉PubMed〈/a〉
    Keywords: Case-Control Studies ; Disease Progression ; Gene Expression Profiling ; Gene Expression Regulation, Neoplastic/*genetics ; Genome, Human/*genetics ; Genomics ; Humans ; Leukemia, Myeloid, Acute/*genetics ; Mutagenesis, Insertional ; Mutation ; Polymorphism, Single Nucleotide ; Recurrence ; Sequence Analysis, DNA ; Sequence Deletion ; Skin/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-03-01
    Description: The human X and Y chromosomes evolved from an ordinary pair of autosomes during the past 200-300 million years. The human MSY (male-specific region of Y chromosome) retains only three percent of the ancestral autosomes' genes owing to genetic decay. This evolutionary decay was driven by a series of five 'stratification' events. Each event suppressed X-Y crossing over within a chromosome segment or 'stratum', incorporated that segment into the MSY and subjected its genes to the erosive forces that attend the absence of crossing over. The last of these events occurred 30 million years ago, 5 million years before the human and Old World monkey lineages diverged. Although speculation abounds regarding ongoing decay and looming extinction of the human Y chromosome, remarkably little is known about how many MSY genes were lost in the human lineage in the 25 million years that have followed its separation from the Old World monkey lineage. To investigate this question, we sequenced the MSY of the rhesus macaque, an Old World monkey, and compared it to the human MSY. We discovered that during the last 25 million years MSY gene loss in the human lineage was limited to the youngest stratum (stratum 5), which comprises three percent of the human MSY. In the older strata, which collectively comprise the bulk of the human MSY, gene loss evidently ceased more than 25 million years ago. Likewise, the rhesus MSY has not lost any older genes (from strata 1-4) during the past 25 million years, despite its major structural differences to the human MSY. The rhesus MSY is simpler, with few amplified gene families or palindromes that might enable intrachromosomal recombination and repair. We present an empirical reconstruction of human MSY evolution in which each stratum transitioned from rapid, exponential loss of ancestral genes to strict conservation through purifying selection.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3292678/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3292678/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hughes, Jennifer F -- Skaletsky, Helen -- Brown, Laura G -- Pyntikova, Tatyana -- Graves, Tina -- Fulton, Robert S -- Dugan, Shannon -- Ding, Yan -- Buhay, Christian J -- Kremitzki, Colin -- Wang, Qiaoyan -- Shen, Hua -- Holder, Michael -- Villasana, Donna -- Nazareth, Lynne V -- Cree, Andrew -- Courtney, Laura -- Veizer, Joelle -- Kotkiewicz, Holland -- Cho, Ting-Jan -- Koutseva, Natalia -- Rozen, Steve -- Muzny, Donna M -- Warren, Wesley C -- Gibbs, Richard A -- Wilson, Richard K -- Page, David C -- R01 HG000257/HG/NHGRI NIH HHS/ -- R01 HG000257-17/HG/NHGRI NIH HHS/ -- U54 HG003273/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Feb 22;483(7387):82-6. doi: 10.1038/nature10843.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA. jhughes@wi.mit.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22367542" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chromosomes, Human, Y/*genetics ; Conserved Sequence/*genetics ; Crossing Over, Genetic/genetics ; *Evolution, Molecular ; Gene Amplification/genetics ; *Gene Deletion ; Humans ; In Situ Hybridization, Fluorescence ; Macaca mulatta/*genetics ; Male ; Models, Genetic ; Molecular Sequence Data ; Pan troglodytes/genetics ; Radiation Hybrid Mapping ; Selection, Genetic/genetics ; Time Factors ; Y Chromosome/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-08-21
    Description: Modern strains of Mycobacterium tuberculosis from the Americas are closely related to those from Europe, supporting the assumption that human tuberculosis was introduced post-contact. This notion, however, is incompatible with archaeological evidence of pre-contact tuberculosis in the New World. Comparative genomics of modern isolates suggests that M. tuberculosis attained its worldwide distribution following human dispersals out of Africa during the Pleistocene epoch, although this has yet to be confirmed with ancient calibration points. Here we present three 1,000-year-old mycobacterial genomes from Peruvian human skeletons, revealing that a member of the M. tuberculosis complex caused human disease before contact. The ancient strains are distinct from known human-adapted forms and are most closely related to those adapted to seals and sea lions. Two independent dating approaches suggest a most recent common ancestor for the M. tuberculosis complex less than 6,000 years ago, which supports a Holocene dispersal of the disease. Our results implicate sea mammals as having played a role in transmitting the disease to humans across the ocean.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4550673/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4550673/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bos, Kirsten I -- Harkins, Kelly M -- Herbig, Alexander -- Coscolla, Mireia -- Weber, Nico -- Comas, Inaki -- Forrest, Stephen A -- Bryant, Josephine M -- Harris, Simon R -- Schuenemann, Verena J -- Campbell, Tessa J -- Majander, Kerttu -- Wilbur, Alicia K -- Guichon, Ricardo A -- Wolfe Steadman, Dawnie L -- Cook, Della Collins -- Niemann, Stefan -- Behr, Marcel A -- Zumarraga, Martin -- Bastida, Ricardo -- Huson, Daniel -- Nieselt, Kay -- Young, Douglas -- Parkhill, Julian -- Buikstra, Jane E -- Gagneux, Sebastien -- Stone, Anne C -- Krause, Johannes -- 098051/Wellcome Trust/United Kingdom -- AI090928/AI/NIAID NIH HHS/ -- MC_U117581288/Medical Research Council/United Kingdom -- R01 AI090928/AI/NIAID NIH HHS/ -- Medical Research Council/United Kingdom -- England -- Nature. 2014 Oct 23;514(7523):494-7. doi: 10.1038/nature13591. Epub 2014 Aug 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Archaeological Sciences, University of Tubingen, Ruemelinstrasse 23, 72070 Tubingen, Germany [2]. ; 1] School of Human Evolution and Social Change, Arizona State University, PO Box 872402, Tempe, Arizona 85287-2402, USA [2]. ; 1] Department of Archaeological Sciences, University of Tubingen, Ruemelinstrasse 23, 72070 Tubingen, Germany [2] Center for Bioinformatics, University of Tubingen, Sand 14, 72076 Tubingen, Germany [3]. ; 1] Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland [2] University of Basel, Petersplatz 1, CH-4003 Basel, Switzerland [3]. ; Center for Bioinformatics, University of Tubingen, Sand 14, 72076 Tubingen, Germany. ; 1] Genomics and Health Unit, FISABIO-Public Health, Avenida Cataluna 21, 46020 Valencia, Spain [2] CIBER (Centros de Investigacion Biomedica en Red) in Epidemiology and Public Health, Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, Pabellon 11, Planta 0, 28029 Madrid, Spain. ; Department of Archaeological Sciences, University of Tubingen, Ruemelinstrasse 23, 72070 Tubingen, Germany. ; Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK. ; Department of Archaeology, University of Cape Town, Private Bag X1, Rondebosch, 7701, South Africa. ; School of Human Evolution and Social Change, Arizona State University, PO Box 872402, Tempe, Arizona 85287-2402, USA. ; CONICET, Laboratorio de Ecologia Evolutiva Humana (FACSO, UNCPBA), Departamento de Biologia (FCEyN, UNMDP), Calle 508 No. 881 (7631), Quequen, Argentina. ; Department of Anthropology, University of Tennessee, 250 South Stadium Hall, Knoxville, Tennessee 37996, USA. ; Department of Anthropology, Indiana University, 701 East Kirkwood Avenue, Bloomington, Indiana 47405-7100, USA. ; 1] Molecular Mycobacteriology, Forschungszentrum Borstel, Parkallee 1, 23845 Borstel, Germany [2] German Center for Infection Research, Forschungszentrum Borstel, Parkallee 1, 23845 Borstel, Germany. ; McGill International TB Centre, McGill University, 1650 Cedar Avenue, Montreal H3G 1A4, Canada. ; Biotechnology Institute, CICVyA-INTA Castelar, Dr. Nicolas Repetto y De Los Reseros S/N, (B1686IGC) Hurlingham, Buenos Aires, Argentina. ; Instituto de Investigaciones Marinas y Costeras (CONICET-UNMdP), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, San Luis 1722, Mar del Plata 7600, Argentina. ; 1] Department of Medicine, Imperial College, London W2 1PG, UK [2] Division of Mycobacterial Research, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK. ; 1] Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland [2] University of Basel, Petersplatz 1, CH-4003 Basel, Switzerland. ; 1] Department of Archaeological Sciences, University of Tubingen, Ruemelinstrasse 23, 72070 Tubingen, Germany [2] Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tubingen, Tubingen 72070, Germany [3] Max Planck Institute for Science and History, Khalaische Strasse 10, 07745 Jena, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25141181" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bone and Bones/microbiology ; Europe/ethnology ; Genome, Bacterial/*genetics ; Genomics ; History, Ancient ; Human Migration/history ; Humans ; Mycobacterium tuberculosis/*genetics ; Peru ; Phylogeny ; Pinnipedia/*microbiology ; Tuberculosis/*history/*microbiology/transmission ; Zoonoses/*history/*microbiology/transmission
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-03-25
    Description: Multiple myeloma is an incurable malignancy of plasma cells, and its pathogenesis is poorly understood. Here we report the massively parallel sequencing of 38 tumour genomes and their comparison to matched normal DNAs. Several new and unexpected oncogenic mechanisms were suggested by the pattern of somatic mutation across the data set. These include the mutation of genes involved in protein translation (seen in nearly half of the patients), genes involved in histone methylation, and genes involved in blood coagulation. In addition, a broader than anticipated role of NF-kappaB signalling was indicated by mutations in 11 members of the NF-kappaB pathway. Of potential immediate clinical relevance, activating mutations of the kinase BRAF were observed in 4% of patients, suggesting the evaluation of BRAF inhibitors in multiple myeloma clinical trials. These results indicate that cancer genome sequencing of large collections of samples will yield new insights into cancer not anticipated by existing knowledge.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3560292/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3560292/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chapman, Michael A -- Lawrence, Michael S -- Keats, Jonathan J -- Cibulskis, Kristian -- Sougnez, Carrie -- Schinzel, Anna C -- Harview, Christina L -- Brunet, Jean-Philippe -- Ahmann, Gregory J -- Adli, Mazhar -- Anderson, Kenneth C -- Ardlie, Kristin G -- Auclair, Daniel -- Baker, Angela -- Bergsagel, P Leif -- Bernstein, Bradley E -- Drier, Yotam -- Fonseca, Rafael -- Gabriel, Stacey B -- Hofmeister, Craig C -- Jagannath, Sundar -- Jakubowiak, Andrzej J -- Krishnan, Amrita -- Levy, Joan -- Liefeld, Ted -- Lonial, Sagar -- Mahan, Scott -- Mfuko, Bunmi -- Monti, Stefano -- Perkins, Louise M -- Onofrio, Robb -- Pugh, Trevor J -- Rajkumar, S Vincent -- Ramos, Alex H -- Siegel, David S -- Sivachenko, Andrey -- Stewart, A Keith -- Trudel, Suzanne -- Vij, Ravi -- Voet, Douglas -- Winckler, Wendy -- Zimmerman, Todd -- Carpten, John -- Trent, Jeff -- Hahn, William C -- Garraway, Levi A -- Meyerson, Matthew -- Lander, Eric S -- Getz, Gad -- Golub, Todd R -- K12 CA133250/CA/NCI NIH HHS/ -- R01 AG020686/AG/NIA NIH HHS/ -- R01 AG020686-07/AG/NIA NIH HHS/ -- R01 CA133115/CA/NCI NIH HHS/ -- R01 CA133115-04/CA/NCI NIH HHS/ -- R01 CA133966/CA/NCI NIH HHS/ -- R01 CA133966-03/CA/NCI NIH HHS/ -- England -- Nature. 2011 Mar 24;471(7339):467-72. doi: 10.1038/nature09837.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Eli and Edythe L. Broad Institute, 7 Cambridge Center, Cambridge, Massachusetts 02412, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21430775" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Blood Coagulation/genetics ; CpG Islands/genetics ; DNA Mutational Analysis ; DNA Repair/genetics ; Exons/genetics ; Exosome Multienzyme Ribonuclease Complex ; Genome, Human/*genetics ; Genomics ; Histones/metabolism ; Homeodomain Proteins/genetics ; Homeostasis/genetics ; Humans ; Methylation ; Models, Molecular ; Molecular Sequence Data ; Multiple Myeloma/drug therapy/enzymology/*genetics/metabolism ; Mutation/*genetics ; NF-kappa B/metabolism ; Oncogenes/genetics ; Open Reading Frames/genetics ; Protein Biosynthesis/genetics ; Protein Conformation ; Proto-Oncogene Proteins B-raf/antagonists & inhibitors/genetics/metabolism ; RNA Processing, Post-Transcriptional/genetics ; Ribonucleases/chemistry/genetics ; Signal Transduction/genetics ; Transcription, Genetic/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-05-25
    Description: Warming experiments are increasingly relied on to estimate plant responses to global climate change. For experiments to provide meaningful predictions of future responses, they should reflect the empirical record of responses to temperature variability and recent warming, including advances in the timing of flowering and leafing. We compared phenology (the timing of recurring life history events) in observational studies and warming experiments spanning four continents and 1,634 plant species using a common measure of temperature sensitivity (change in days per degree Celsius). We show that warming experiments underpredict advances in the timing of flowering and leafing by 8.5-fold and 4.0-fold, respectively, compared with long-term observations. For species that were common to both study types, the experimental results did not match the observational data in sign or magnitude. The observational data also showed that species that flower earliest in the spring have the highest temperature sensitivities, but this trend was not reflected in the experimental data. These significant mismatches seem to be unrelated to the study length or to the degree of manipulated warming in experiments. The discrepancy between experiments and observations, however, could arise from complex interactions among multiple drivers in the observational data, or it could arise from remediable artefacts in the experiments that result in lower irradiance and drier soils, thus dampening the phenological responses to manipulated warming. Our results introduce uncertainty into ecosystem models that are informed solely by experiments and suggest that responses to climate change that are predicted using such models should be re-evaluated.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wolkovich, E M -- Cook, B I -- Allen, J M -- Crimmins, T M -- Betancourt, J L -- Travers, S E -- Pau, S -- Regetz, J -- Davies, T J -- Kraft, N J B -- Ault, T R -- Bolmgren, K -- Mazer, S J -- McCabe, G J -- McGill, B J -- Parmesan, C -- Salamin, N -- Schwartz, M D -- Cleland, E E -- England -- Nature. 2012 May 2;485(7399):494-7. doi: 10.1038/nature11014.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biological Sciences, University of California San Diego, 9500 Gilman Drive 0116, La Jolla, California 92093, USA. wolkovich@biodiversity.ubc.ca〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22622576" target="_blank"〉PubMed〈/a〉
    Keywords: Artifacts ; Ecosystem ; Flowers/growth & development/physiology ; *Global Warming ; *Models, Biological ; *Periodicity ; Plant Development ; Plant Leaves/growth & development/physiology ; *Plant Physiological Phenomena ; Plants/classification ; Reproducibility of Results ; Soil/chemistry ; Temperature ; Time Factors ; *Uncertainty
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-01-13
    Description: Early T-cell precursor acute lymphoblastic leukaemia (ETP ALL) is an aggressive malignancy of unknown genetic basis. We performed whole-genome sequencing of 12 ETP ALL cases and assessed the frequency of the identified somatic mutations in 94 T-cell acute lymphoblastic leukaemia cases. ETP ALL was characterized by activating mutations in genes regulating cytokine receptor and RAS signalling (67% of cases; NRAS, KRAS, FLT3, IL7R, JAK3, JAK1, SH2B3 and BRAF), inactivating lesions disrupting haematopoietic development (58%; GATA3, ETV6, RUNX1, IKZF1 and EP300) and histone-modifying genes (48%; EZH2, EED, SUZ12, SETD2 and EP300). We also identified new targets of recurrent mutation including DNM2, ECT2L and RELN. The mutational spectrum is similar to myeloid tumours, and moreover, the global transcriptional profile of ETP ALL was similar to that of normal and myeloid leukaemia haematopoietic stem cells. These findings suggest that addition of myeloid-directed therapies might improve the poor outcome of ETP ALL.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3267575/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3267575/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Jinghui -- Ding, Li -- Holmfeldt, Linda -- Wu, Gang -- Heatley, Sue L -- Payne-Turner, Debbie -- Easton, John -- Chen, Xiang -- Wang, Jianmin -- Rusch, Michael -- Lu, Charles -- Chen, Shann-Ching -- Wei, Lei -- Collins-Underwood, J Racquel -- Ma, Jing -- Roberts, Kathryn G -- Pounds, Stanley B -- Ulyanov, Anatoly -- Becksfort, Jared -- Gupta, Pankaj -- Huether, Robert -- Kriwacki, Richard W -- Parker, Matthew -- McGoldrick, Daniel J -- Zhao, David -- Alford, Daniel -- Espy, Stephen -- Bobba, Kiran Chand -- Song, Guangchun -- Pei, Deqing -- Cheng, Cheng -- Roberts, Stefan -- Barbato, Michael I -- Campana, Dario -- Coustan-Smith, Elaine -- Shurtleff, Sheila A -- Raimondi, Susana C -- Kleppe, Maria -- Cools, Jan -- Shimano, Kristin A -- Hermiston, Michelle L -- Doulatov, Sergei -- Eppert, Kolja -- Laurenti, Elisa -- Notta, Faiyaz -- Dick, John E -- Basso, Giuseppe -- Hunger, Stephen P -- Loh, Mignon L -- Devidas, Meenakshi -- Wood, Brent -- Winter, Stuart -- Dunsmore, Kimberley P -- Fulton, Robert S -- Fulton, Lucinda L -- Hong, Xin -- Harris, Christopher C -- Dooling, David J -- Ochoa, Kerri -- Johnson, Kimberly J -- Obenauer, John C -- Evans, William E -- Pui, Ching-Hon -- Naeve, Clayton W -- Ley, Timothy J -- Mardis, Elaine R -- Wilson, Richard K -- Downing, James R -- Mullighan, Charles G -- CA114766/CA/NCI NIH HHS/ -- CA98413/CA/NCI NIH HHS/ -- CA98543/CA/NCI NIH HHS/ -- P30 CA021765/CA/NCI NIH HHS/ -- P30 CA021765-33/CA/NCI NIH HHS/ -- P30CA021765/CA/NCI NIH HHS/ -- U01GM92666/GM/NIGMS NIH HHS/ -- U54 HG003079/HG/NHGRI NIH HHS/ -- England -- Nature. 2012 Jan 11;481(7380):157-63. doi: 10.1038/nature10725.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Computational Biology and Bioinformatics, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22237106" target="_blank"〉PubMed〈/a〉
    Keywords: Age of Onset ; Child ; DNA Copy Number Variations/genetics ; Genes, ras/genetics ; Genetic Predisposition to Disease/*genetics ; Genome, Human/genetics ; Genomics ; Hematopoiesis/genetics ; Histones/metabolism ; Humans ; Janus Kinases/genetics/metabolism ; Leukemia, Myeloid, Acute/drug therapy/genetics/pathology ; Molecular Sequence Data ; Mutation/*genetics ; Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy/*genetics/pathology ; Receptors, Interleukin-7/genetics ; Sequence Analysis, DNA ; Signal Transduction/genetics ; Stem Cells/metabolism/pathology ; T-Lymphocytes/metabolism/pathology ; Translocation, Genetic/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-07-27
    Description: Medulloblastoma is an aggressively growing tumour, arising in the cerebellum or medulla/brain stem. It is the most common malignant brain tumour in children, and shows tremendous biological and clinical heterogeneity. Despite recent treatment advances, approximately 40% of children experience tumour recurrence, and 30% will die from their disease. Those who survive often have a significantly reduced quality of life. Four tumour subgroups with distinct clinical, biological and genetic profiles are currently identified. WNT tumours, showing activated wingless pathway signalling, carry a favourable prognosis under current treatment regimens. SHH tumours show hedgehog pathway activation, and have an intermediate prognosis. Group 3 and 4 tumours are molecularly less well characterized, and also present the greatest clinical challenges. The full repertoire of genetic events driving this distinction, however, remains unclear. Here we describe an integrative deep-sequencing analysis of 125 tumour-normal pairs, conducted as part of the International Cancer Genome Consortium (ICGC) PedBrain Tumor Project. Tetraploidy was identified as a frequent early event in Group 3 and 4 tumours, and a positive correlation between patient age and mutation rate was observed. Several recurrent mutations were identified, both in known medulloblastoma-related genes (CTNNB1, PTCH1, MLL2, SMARCA4) and in genes not previously linked to this tumour (DDX3X, CTDNEP1, KDM6A, TBR1), often in subgroup-specific patterns. RNA sequencing confirmed these alterations, and revealed the expression of what are, to our knowledge, the first medulloblastoma fusion genes identified. Chromatin modifiers were frequently altered across all subgroups. These findings enhance our understanding of the genomic complexity and heterogeneity underlying medulloblastoma, and provide several potential targets for new therapeutics, especially for Group 3 and 4 patients.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3662966/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3662966/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jones, David T W -- Jager, Natalie -- Kool, Marcel -- Zichner, Thomas -- Hutter, Barbara -- Sultan, Marc -- Cho, Yoon-Jae -- Pugh, Trevor J -- Hovestadt, Volker -- Stutz, Adrian M -- Rausch, Tobias -- Warnatz, Hans-Jorg -- Ryzhova, Marina -- Bender, Sebastian -- Sturm, Dominik -- Pleier, Sabrina -- Cin, Huriye -- Pfaff, Elke -- Sieber, Laura -- Wittmann, Andrea -- Remke, Marc -- Witt, Hendrik -- Hutter, Sonja -- Tzaridis, Theophilos -- Weischenfeldt, Joachim -- Raeder, Benjamin -- Avci, Meryem -- Amstislavskiy, Vyacheslav -- Zapatka, Marc -- Weber, Ursula D -- Wang, Qi -- Lasitschka, Barbel -- Bartholomae, Cynthia C -- Schmidt, Manfred -- von Kalle, Christof -- Ast, Volker -- Lawerenz, Chris -- Eils, Jurgen -- Kabbe, Rolf -- Benes, Vladimir -- van Sluis, Peter -- Koster, Jan -- Volckmann, Richard -- Shih, David -- Betts, Matthew J -- Russell, Robert B -- Coco, Simona -- Tonini, Gian Paolo -- Schuller, Ulrich -- Hans, Volkmar -- Graf, Norbert -- Kim, Yoo-Jin -- Monoranu, Camelia -- Roggendorf, Wolfgang -- Unterberg, Andreas -- Herold-Mende, Christel -- Milde, Till -- Kulozik, Andreas E -- von Deimling, Andreas -- Witt, Olaf -- Maass, Eberhard -- Rossler, Jochen -- Ebinger, Martin -- Schuhmann, Martin U -- Fruhwald, Michael C -- Hasselblatt, Martin -- Jabado, Nada -- Rutkowski, Stefan -- von Bueren, Andre O -- Williamson, Dan -- Clifford, Steven C -- McCabe, Martin G -- Collins, V Peter -- Wolf, Stephan -- Wiemann, Stefan -- Lehrach, Hans -- Brors, Benedikt -- Scheurlen, Wolfram -- Felsberg, Jorg -- Reifenberger, Guido -- Northcott, Paul A -- Taylor, Michael D -- Meyerson, Matthew -- Pomeroy, Scott L -- Yaspo, Marie-Laure -- Korbel, Jan O -- Korshunov, Andrey -- Eils, Roland -- Pfister, Stefan M -- Lichter, Peter -- P30 HD018655/HD/NICHD NIH HHS/ -- R01 CA109467/CA/NCI NIH HHS/ -- England -- Nature. 2012 Aug 2;488(7409):100-5. doi: 10.1038/nature11284.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22832583" target="_blank"〉PubMed〈/a〉
    Keywords: Aging/genetics ; Amino Acid Sequence ; Cell Transformation, Neoplastic ; Cerebellar Neoplasms/classification/diagnosis/*genetics/pathology ; Child ; Chromatin/metabolism ; Chromosomes, Human/genetics ; DEAD-box RNA Helicases/genetics ; DNA Helicases/genetics ; DNA-Binding Proteins/genetics ; Genome, Human/*genetics ; Genomics ; Hedgehog Proteins/metabolism ; High-Throughput Nucleotide Sequencing ; Histone Demethylases/genetics ; Humans ; Medulloblastoma/classification/diagnosis/*genetics/pathology ; Methylation ; Mutation/genetics ; Mutation Rate ; Neoplasm Proteins/genetics ; Nuclear Proteins/genetics ; Oncogene Proteins, Fusion/genetics ; Phosphoprotein Phosphatases/genetics ; Polyploidy ; Receptors, Cell Surface/genetics ; Sequence Analysis, RNA ; Signal Transduction ; T-Box Domain Proteins/genetics ; Transcription Factors/genetics ; Wnt Proteins/metabolism ; beta Catenin/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-04-19
    Description: Zebrafish have become a popular organism for the study of vertebrate gene function. The virtually transparent embryos of this species, and the ability to accelerate genetic studies by gene knockdown or overexpression, have led to the widespread use of zebrafish in the detailed investigation of vertebrate gene function and increasingly, the study of human genetic disease. However, for effective modelling of human genetic disease it is important to understand the extent to which zebrafish genes and gene structures are related to orthologous human genes. To examine this, we generated a high-quality sequence assembly of the zebrafish genome, made up of an overlapping set of completely sequenced large-insert clones that were ordered and oriented using a high-resolution high-density meiotic map. Detailed automatic and manual annotation provides evidence of more than 26,000 protein-coding genes, the largest gene set of any vertebrate so far sequenced. Comparison to the human reference genome shows that approximately 70% of human genes have at least one obvious zebrafish orthologue. In addition, the high quality of this genome assembly provides a clearer understanding of key genomic features such as a unique repeat content, a scarcity of pseudogenes, an enrichment of zebrafish-specific genes on chromosome 4 and chromosomal regions that influence sex determination.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3703927/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3703927/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Howe, Kerstin -- Clark, Matthew D -- Torroja, Carlos F -- Torrance, James -- Berthelot, Camille -- Muffato, Matthieu -- Collins, John E -- Humphray, Sean -- McLaren, Karen -- Matthews, Lucy -- McLaren, Stuart -- Sealy, Ian -- Caccamo, Mario -- Churcher, Carol -- Scott, Carol -- Barrett, Jeffrey C -- Koch, Romke -- Rauch, Gerd-Jorg -- White, Simon -- Chow, William -- Kilian, Britt -- Quintais, Leonor T -- Guerra-Assuncao, Jose A -- Zhou, Yi -- Gu, Yong -- Yen, Jennifer -- Vogel, Jan-Hinnerk -- Eyre, Tina -- Redmond, Seth -- Banerjee, Ruby -- Chi, Jianxiang -- Fu, Beiyuan -- Langley, Elizabeth -- Maguire, Sean F -- Laird, Gavin K -- Lloyd, David -- Kenyon, Emma -- Donaldson, Sarah -- Sehra, Harminder -- Almeida-King, Jeff -- Loveland, Jane -- Trevanion, Stephen -- Jones, Matt -- Quail, Mike -- Willey, Dave -- Hunt, Adrienne -- Burton, John -- Sims, Sarah -- McLay, Kirsten -- Plumb, Bob -- Davis, Joy -- Clee, Chris -- Oliver, Karen -- Clark, Richard -- Riddle, Clare -- Elliot, David -- Threadgold, Glen -- Harden, Glenn -- Ware, Darren -- Begum, Sharmin -- Mortimore, Beverley -- Kerry, Giselle -- Heath, Paul -- Phillimore, Benjamin -- Tracey, Alan -- Corby, Nicole -- Dunn, Matthew -- Johnson, Christopher -- Wood, Jonathan -- Clark, Susan -- Pelan, Sarah -- Griffiths, Guy -- Smith, Michelle -- Glithero, Rebecca -- Howden, Philip -- Barker, Nicholas -- Lloyd, Christine -- Stevens, Christopher -- Harley, Joanna -- Holt, Karen -- Panagiotidis, Georgios -- Lovell, Jamieson -- Beasley, Helen -- Henderson, Carl -- Gordon, Daria -- Auger, Katherine -- Wright, Deborah -- Collins, Joanna -- Raisen, Claire -- Dyer, Lauren -- Leung, Kenric -- Robertson, Lauren -- Ambridge, Kirsty -- Leongamornlert, Daniel -- McGuire, Sarah -- Gilderthorp, Ruth -- Griffiths, Coline -- Manthravadi, Deepa -- Nichol, Sarah -- Barker, Gary -- Whitehead, Siobhan -- Kay, Michael -- Brown, Jacqueline -- Murnane, Clare -- Gray, Emma -- Humphries, Matthew -- Sycamore, Neil -- Barker, Darren -- Saunders, David -- Wallis, Justene -- Babbage, Anne -- Hammond, Sian -- Mashreghi-Mohammadi, Maryam -- Barr, Lucy -- Martin, Sancha -- Wray, Paul -- Ellington, Andrew -- Matthews, Nicholas -- Ellwood, Matthew -- Woodmansey, Rebecca -- Clark, Graham -- Cooper, James D -- Tromans, Anthony -- Grafham, Darren -- Skuce, Carl -- Pandian, Richard -- Andrews, Robert -- Harrison, Elliot -- Kimberley, Andrew -- Garnett, Jane -- Fosker, Nigel -- Hall, Rebekah -- Garner, Patrick -- Kelly, Daniel -- Bird, Christine -- Palmer, Sophie -- Gehring, Ines -- Berger, Andrea -- Dooley, Christopher M -- Ersan-Urun, Zubeyde -- Eser, Cigdem -- Geiger, Horst -- Geisler, Maria -- Karotki, Lena -- Kirn, Anette -- Konantz, Judith -- Konantz, Martina -- Oberlander, Martina -- Rudolph-Geiger, Silke -- Teucke, Mathias -- Lanz, Christa -- Raddatz, Gunter -- Osoegawa, Kazutoyo -- Zhu, Baoli -- Rapp, Amanda -- Widaa, Sara -- Langford, Cordelia -- Yang, Fengtang -- Schuster, Stephan C -- Carter, Nigel P -- Harrow, Jennifer -- Ning, Zemin -- Herrero, Javier -- Searle, Steve M J -- Enright, Anton -- Geisler, Robert -- Plasterk, Ronald H A -- Lee, Charles -- Westerfield, Monte -- de Jong, Pieter J -- Zon, Leonard I -- Postlethwait, John H -- Nusslein-Volhard, Christiane -- Hubbard, Tim J P -- Roest Crollius, Hugues -- Rogers, Jane -- Stemple, Derek L -- 095908/Wellcome Trust/United Kingdom -- 098051/Wellcome Trust/United Kingdom -- 1 R01 DK55377-01A1/DK/NIDDK NIH HHS/ -- P01 HD022486/HD/NICHD NIH HHS/ -- P01 HD22486/HD/NICHD NIH HHS/ -- R01 GM085318/GM/NIGMS NIH HHS/ -- R01 OD011116/OD/NIH HHS/ -- R01 RR010715/RR/NCRR NIH HHS/ -- R01 RR020833/RR/NCRR NIH HHS/ -- England -- Nature. 2013 Apr 25;496(7446):498-503. doi: 10.1038/nature12111. Epub 2013 Apr 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23594743" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chromosomes/genetics ; Conserved Sequence/*genetics ; Evolution, Molecular ; Female ; Genes/genetics ; Genome/*genetics ; Genome, Human/genetics ; Genomics ; Humans ; Male ; Meiosis/genetics ; Molecular Sequence Annotation ; Pseudogenes/genetics ; Reference Standards ; Sex Determination Processes/genetics ; Zebrafish/*genetics ; Zebrafish Proteins/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-09-26
    Description: In eukaryotic cells, post-translational histone modifications have an important role in gene regulation. Starting with early work on histone acetylation, a variety of residue-specific modifications have now been linked to RNA polymerase II (RNAP2) activity, but it remains unclear if these markers are active regulators of transcription or just passive byproducts. This is because studies have traditionally relied on fixed cell populations, meaning temporal resolution is limited to minutes at best, and correlated factors may not actually be present in the same cell at the same time. Complementary approaches are therefore needed to probe the dynamic interplay of histone modifications and RNAP2 with higher temporal resolution in single living cells. Here we address this problem by developing a system to track residue-specific histone modifications and RNAP2 phosphorylation in living cells by fluorescence microscopy. This increases temporal resolution to the tens-of-seconds range. Our single-cell analysis reveals histone H3 lysine-27 acetylation at a gene locus can alter downstream transcription kinetics by as much as 50%, affecting two temporally separate events. First acetylation enhances the search kinetics of transcriptional activators, and later the acetylation accelerates the transition of RNAP2 from initiation to elongation. Signatures of the latter can be found genome-wide using chromatin immunoprecipitation followed by sequencing. We argue that this regulation leads to a robust and potentially tunable transcriptional response.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stasevich, Timothy J -- Hayashi-Takanaka, Yoko -- Sato, Yuko -- Maehara, Kazumitsu -- Ohkawa, Yasuyuki -- Sakata-Sogawa, Kumiko -- Tokunaga, Makio -- Nagase, Takahiro -- Nozaki, Naohito -- McNally, James G -- Kimura, Hiroshi -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Dec 11;516(7530):272-5. doi: 10.1038/nature13714. Epub 2014 Sep 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Graduate School of Frontier Biosciences, Osaka University, Osaka, 565-0871, Japan [2] Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870, USA [3] Transcription Imaging Consortium, Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA. ; 1] Graduate School of Frontier Biosciences, Osaka University, Osaka, 565-0871, Japan [2] Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST), Kawaguchi, Saitama, 332-0012, Japan [3] Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan. ; 1] Graduate School of Frontier Biosciences, Osaka University, Osaka, 565-0871, Japan [2] Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan. ; Department of Advanced Medical Initiatives, Faculty of Medicine, Kyushu University, Fukuoka, 812-8582, Japan. ; 1] Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST), Kawaguchi, Saitama, 332-0012, Japan [2] Department of Advanced Medical Initiatives, Faculty of Medicine, Kyushu University, Fukuoka, 812-8582, Japan. ; 1] Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan [2] RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, 230-0045, Japan. ; Department of Biotechnology Research, Kazusa DNA Research Institute, Chiba, 292-0818, Japan. ; Mab Institute Inc., Sapporo, 001-0021, Japan. ; 1] Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA [2] Institute for Soft Matter and Functional Materials, Helmholtz Zentrum Berlin, Berlin, 14109, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25252976" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Animals ; Cell Line, Tumor ; Cell Survival ; Chromatin Immunoprecipitation ; Enzyme Activation ; Genome/genetics ; Histones/*chemistry/*metabolism ; Kinetics ; Lysine/metabolism ; Mice ; Microscopy, Fluorescence ; Phosphorylation ; RNA Polymerase II/*metabolism ; *Single-Cell Analysis ; Time Factors ; Transcription Elongation, Genetic ; Transcription Initiation, Genetic ; *Transcription, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...