ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Astrophysics
  • Lunar and Planetary Science and Exploration
  • Mice
  • Models, Molecular
  • 1985-1989  (209)
  • 1
    Publication Date: 1989-08-18
    Description: CD4 is a cell surface glycoprotein that is thought to interact with nonpolymorphic determinants of class II major histocompatibility (MHC) molecules. CD4 is also the receptor for the human immunodeficiency virus (HIV), binding with high affinity to the HIV-1 envelope glycoprotein, gp120. Homolog-scanning mutagenesis was used to identify CD4 regions that are important in class II MHC binding and to determine whether the gp120 and class II MHC binding sites of CD4 are related. Class II MHC binding was abolished by mutations in each of the first three immunoglobulin-like domains of CD4. The gp120 binding could be abolished without affecting class II MHC binding and vice versa, although at least one mutation examined reduced both functions significantly. These findings indicate that, while there may be overlap between the gp120 and class II MHC binding sites of CD4, these sites are distinct and can be separated. Thus it should be possible to design CD4 analogs that can block HIV infectivity but intrinsically lack the ability to affect the normal immune response by binding to class II MHC molecules.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lamarre, D -- Ashkenazi, A -- Fleury, S -- Smith, D H -- Sekaly, R P -- Capon, D J -- New York, N.Y. -- Science. 1989 Aug 18;245(4919):743-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratoire d'Immunologie, Institut de Recherches Cliniques de Montreal, Quebec, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2549633" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antigens, Surface ; Binding Sites ; DNA, Recombinant ; HIV/*metabolism ; HIV Envelope Protein gp120 ; HLA-DP Antigens/immunology ; Histocompatibility Antigens Class II/*immunology ; Humans ; Hybridomas ; Mice ; Molecular Sequence Data ; Mutation ; Receptors, HIV ; Receptors, Virus/genetics/immunology/*metabolism ; Retroviridae Proteins/immunology/*metabolism ; Rosette Formation ; Structure-Activity Relationship ; T-Lymphocytes/immunology/metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1988-08-19
    Description: Familial polyposis coli (FPC) is caused by an autosomal dominant gene on chromosome 5, and it has been proposed that colorectal cancer in the general population arises from loss or inactivation of the FPC gene, analogous to recessive tumor genes in retinoblastoma and Wilms' tumor. Since allelic loss can be erroneously scored in nonhomogeneous samples, tumor cell populations were first microdissected from 24 colorectal carcinomas, an additional nine cancers were engrafted in nude mice, and nuclei were flow-sorted from an additional two. Of 31 cancers informative for chromosome 5 markers, only 6 (19%) showed loss of heterozygosity of chromosome 5 alleles, compared to 19 of 34 (56%) on chromosome 17, and 17 of 33 (52%) on chromosome 18. Therefore, it appears that (i) FPC is a true dominant for adenomatosis but not a common recessive gene for colon cancer; and (ii) simple Mendelian models involving loss of alleles at a single locus may be inappropriate for understanding common human solid tumors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Law, D J -- Olschwang, S -- Monpezat, J P -- Lefrancois, D -- Jagelman, D -- Petrelli, N J -- Thomas, G -- Feinberg, A P -- New York, N.Y. -- Science. 1988 Aug 19;241(4868):961-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, University of Michigan Medical School, Ann Arbor 48109.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2841761" target="_blank"〉PubMed〈/a〉
    Keywords: Adenocarcinoma/genetics ; Adenoma/genetics ; Adenomatous Polyposis Coli/*genetics ; *Alleles ; Animals ; Chromosomes, Human, Pair 17 ; Chromosomes, Human, Pair 18 ; Chromosomes, Human, Pair 5 ; Colonic Neoplasms/*genetics ; DNA, Neoplasm/analysis ; Genes, Dominant ; *Genetic Linkage ; Humans ; Mice ; Precancerous Conditions/genetics ; Rectal Neoplasms/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1985-08-09
    Description: Fifteen independently isolated complementary DNA clones that contain T-cell receptor (TCR) V beta genes were sequenced and found to represent 11 different V beta genes. When compared with known sequences, 14 different V beta genes could be defined from a total of 25 complementary DNA's; 11 clones therefore involved repeated usage of previously identified V beta's. Based on these data, we calculate a maximum likelihood estimate of the number of expressed germline V beta genes to be 18 with an upper 95 percent confidence bound of 30 genes. Southern blot analysis has shown that most of these genes belong to single element subfamilies which show very limited interstrain polymorphism. The TCR beta-chain diversity appears to be generated from a limited V beta gene pool primarily by extensive variability at the variable-diversity-joining (V-D-J) junctional site, with no evidence for the involvement of somatic hypermutation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Behlke, M A -- Spinella, D G -- Chou, H S -- Sha, W -- Hartl, D L -- Loh, D Y -- GM07200/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1985 Aug 9;229(4713):566-70.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3875151" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Base Sequence ; Chromosome Mapping ; Cloning, Molecular ; Dna ; Gene Pool ; *Genetic Variation ; Humans ; Hybridomas ; Immunoglobulin Variable Region/genetics ; Mice ; Mice, Inbred BALB C/genetics ; Mice, Inbred C57BL/genetics ; Mice, Inbred Strains/genetics ; Receptors, Antigen, T-Cell/*genetics ; Species Specificity ; Spleen ; T-Lymphocytes ; Thymus Gland
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1987-10-23
    Description: The complete germline organization of the beta-chain genes of the murine T cell receptor was elucidated in order to obtain the structural basis for understanding the mechanisms of somatic DNA rearrangements. Twenty of the 22 known variable (V beta) genes are clustered within 250 kilobases of DNA 5' to the constant region (C beta) genes. These V beta genes share the same transcriptional orientation as the diversity (D beta), joining (J beta), and C beta genes, which implies that chromosomal deletion is the mechanism for most V beta to D beta-J beta rearrangements. Within this V beta cluster, the distance between the most proximal V beta gene and the D beta-J beta-C beta cluster is 320 kilobases, as determined by field-inversion gel electrophoresis. The large distance between V beta and D beta, relative to that between D beta and J beta, may have significant implications for the ordered rearrangement of the T cell receptor beta-chain genes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chou, H S -- Nelson, C A -- Godambe, S A -- Chaplin, D D -- Loh, D Y -- GM07067/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1987 Oct 23;238(4826):545-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2821625" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chromosome Deletion ; Chromosome Mapping ; DNA/genetics ; DNA Restriction Enzymes ; Electrophoresis ; Macromolecular Substances ; Mice ; Mice, Inbred BALB C ; Mice, Mutant Strains ; Nucleic Acid Hybridization ; Receptors, Antigen, T-Cell/*genetics ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1985-02-22
    Description: Purification of two antigens (48-kilodalton polypeptide and a group with major subunits of 50 and 55 kilodaltons) from the infective larvae of the parasitic nematode Trichinella spiralis was recently reported. Immunization of mice with either of these antigens induces strong resistance to a subsequent challenge infection. In the study reported here the mechanism of this resistance was investigated by monitoring the parasite's life cycle in mice immunized with the antigens. Immunized mice were able to expel intestinal adult worms and to inhibit the fecundity of adult female worms at an accelerated rate compared to control mice. Accelerated expulsion and inhibition of fecundity may account entirely for the level of resistance induced by immunization. Although the effects of the immune response apparently are exerted on adult worms, the target antigens are expressed only by developing larvae. This suggests that immune effector mechanisms act on intestinal larvae in such a way that they develop into defective adults.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Silberstein, D S -- Despommier, D D -- New York, N.Y. -- Science. 1985 Feb 22;227(4689):948-50.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3969571" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, Helminth/immunology/*isolation & purification ; Female ; Immunization ; Larva ; Male ; Mice ; Trichinella/growth & development/*immunology ; Trichinellosis/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 76 (1988), S. 148-156 
    ISSN: 1432-2242
    Keywords: Growth curve ; Genetic parameters ; Heritability ; Mice
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Data from 1,919 outbred ICR mice were used to examine the potential usefulness of growth curve parameters as selection criteria for altering the relationship between body weight and age. A logistic growth function was used to model growth through 12 weeks of age. Estimates of asymptotic weight (A), maximum growth rate (r) and age at point of inflection (t*) were obtained by nonlinear least-squares. A log transformation was also used to stabilize residual variance. Phenotypic and genetic parameters were estimated for the estimated growth curve parameters and for body weights at 2, 3, 4.5, 6, 8 and 12 weeks of age. Heritabilities of estimated growth curve parameters (obtained with and without a log transformation, respectively) were: A (0.28±0.07, 0.28±0.07), r (0.35±0.07, 0.53±0.09) and t* (0.41±0.08, 0.44±0.08). Estimated genetic correlations suggest that t* may be useful in selecting for rapid early growth without increasing mature weight.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1988-08-05
    Description: Primary mouse oocytes contain untranslated stable messenger RNA for tissue plasminogen activator (t-PA). During meiotic maturation, this maternal mRNA undergoes a 3'-polyadenylation, is translated, and is degraded. Injections of maturing oocytes with different antisense RNA's complementary to both coding and noncoding portions of t-PA mRNA all selectively blocked t-PA synthesis. RNA blot analysis of t-PA mRNA in injected, matured oocytes suggested a cleavage of the RNA.RNA hybrid region, yielding a stable 5' portion, and an unstable 3' portion. In primary oocytes, the 3' noncoding region was susceptible to cleavage, while the other portions of the mRNA were blocked from hybrid formation until maturation occurred. Injection of antisense RNA complementary to 103 nucleotides of its extreme 3' untranslated region was sufficient to prevent the polyadenylation, translational activation, and destabilization of t-PA mRNA. These results demonstrate a critical role for the 3' noncoding region of a dormant mRNA in its translational recruitment during meiotic maturation of mouse oocytes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Strickland, S -- Huarte, J -- Belin, D -- Vassalli, A -- Rickles, R J -- Vassalli, J D -- HD-17875/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 1988 Aug 5;241(4866):680-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Histology and Embryology, University of Geneva Medical School, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2456615" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Mice ; Nucleic Acid Hybridization ; Oocytes/*metabolism ; Poly A/metabolism ; Protein Biosynthesis/drug effects ; RNA/*pharmacology ; RNA, Antisense ; RNA, Messenger/*antagonists & inhibitors/metabolism ; Tissue Plasminogen Activator/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1988-09-02
    Description: When two different mammalian cell types are fused to generate a stable hybrid cell line, genes that are active in only one of the parents are frequently shut off, a phenomenon called extinction. In this study two distinct, complementary mechanisms for such extinction of growth hormone gene expression were identified. In hybrids formed by fusing fibroblasts to pituitary cells, pituitary-specific proteins that bind to the growth hormone promoter were absent. In addition, a negative regulatory element located near the rat growth hormone promoter was specifically activated.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tripputi, P -- Guerin, S L -- Moore, D D -- New York, N.Y. -- Science. 1988 Sep 2;241(4870):1205-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Massachusetts General Hospital, Boston.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2842865" target="_blank"〉PubMed〈/a〉
    Keywords: Acetyltransferases/genetics ; Animals ; Avian Sarcoma Viruses/genetics ; Chloramphenicol O-Acetyltransferase ; Enhancer Elements, Genetic ; Fibroblasts/metabolism ; *Gene Expression Regulation ; Growth Hormone/*genetics ; Herpesviridae/genetics ; Hybrid Cells/*metabolism ; Hypoxanthine Phosphoribosyltransferase/genetics ; L Cells (Cell Line) ; Mice ; Pituitary Gland/metabolism ; Plasmids ; Promoter Regions, Genetic ; Rats ; Thymidine Kinase/genetics ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1989-04-14
    Description: Previous studies have demonstrated that allelic deletions of the short arm of chromosome 17 occur in over 75% of colorectal carcinomas. Twenty chromosome 17p markers were used to localize the common region of deletion in these tumors to a region contained within bands 17p12 to 17p13.3. This region contains the gene for the transformation-associated protein p53. Southern and Northern blot hybridization experiments provided no evidence for gross alterations of the p53 gene or surrounding sequences. As a more rigorous test of the possibility that p53 was a target of the deletions, the p53 coding regions from two tumors were analyzed; these two tumors, like most colorectal carcinomas, had allelic deletions of chromosome 17p and expressed considerable amounts of p53 messenger RNA from the remaining allele. The remaining p53 allele was mutated in both tumors, with an alanine substituted for valine at codon 143 of one tumor and a histidine substituted for arginine at codon 175 of the second tumor. Both mutations occurred in a highly conserved region of the p53 gene that was previously found to be mutated in murine p53 oncogenes. The data suggest that p53 gene mutations may be involved in colorectal neoplasia, perhaps through inactivation of a tumor suppressor function of the wild-type p53 gene.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baker, S J -- Fearon, E R -- Nigro, J M -- Hamilton, S R -- Preisinger, A C -- Jessup, J M -- vanTuinen, P -- Ledbetter, D H -- Barker, D F -- Nakamura, Y -- White, R -- Vogelstein, B -- GM07184/GM/NIGMS NIH HHS/ -- GM07309/GM/NIGMS NIH HHS/ -- HD20619/HD/NICHD NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1989 Apr 14;244(4901):217-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Oncology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2649981" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; *Chromosome Deletion ; *Chromosomes, Human, Pair 17/ultrastructure ; Colorectal Neoplasms/*genetics ; Humans ; Mice ; Mice, Nude ; *Mutation ; Neoplasm Proteins/*genetics ; Nucleic Acid Hybridization ; Oncogenes ; Phosphoproteins/*genetics ; Suppression, Genetic ; Tumor Suppressor Protein p53
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1989-12-08
    Description: A novel bacteriophage lambda vector system was used to express in Escherichia coli a combinatorial library of Fab fragments of the mouse antibody repertoire. The system allows rapid and easy identification of monoclonal Fab fragments in a form suitable for genetic manipulation. It was possible to generate, in 2 weeks, large numbers of monoclonal Fab fragments against a transition state analog hapten. The methods described may supersede present-day hybridoma technology and facilitate the production of catalytic and other antibodies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huse, W D -- Sastry, L -- Iverson, S A -- Kang, A S -- Alting-Mees, M -- Burton, D R -- Benkovic, S J -- Lerner, R A -- New York, N.Y. -- Science. 1989 Dec 8;246(4935):1275-81.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Research Institute of Scripps Clinic, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2531466" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antibodies, Monoclonal/*biosynthesis/genetics ; Antibody Specificity ; Antigen-Antibody Reactions ; Bacteriophage lambda/*genetics ; Base Sequence ; Cloning, Molecular/methods ; Escherichia coli/genetics ; Gene Amplification ; Gene Library ; *Genetic Vectors ; Hemocyanin/analogs & derivatives/immunology ; Immunoglobulin Fab Fragments/biosynthesis ; Immunoglobulin Fragments/*biosynthesis/genetics ; Mice ; Molecular Sequence Data ; Organophosphorus Compounds/immunology ; Recombinant Proteins/biosynthesis/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...